CN1951799A - 一种金属纳米线阵列的制备方法 - Google Patents

一种金属纳米线阵列的制备方法 Download PDF

Info

Publication number
CN1951799A
CN1951799A CNA2005101005446A CN200510100544A CN1951799A CN 1951799 A CN1951799 A CN 1951799A CN A2005101005446 A CNA2005101005446 A CN A2005101005446A CN 200510100544 A CN200510100544 A CN 200510100544A CN 1951799 A CN1951799 A CN 1951799A
Authority
CN
China
Prior art keywords
metal
nano
nanometer line
array
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005101005446A
Other languages
English (en)
Inventor
董才士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNA2005101005446A priority Critical patent/CN1951799A/zh
Priority to US11/432,995 priority patent/US20070089564A1/en
Publication of CN1951799A publication Critical patent/CN1951799A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B5/00Single-crystal growth from gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires

Abstract

本发明涉及一种金属纳米线阵列的制备方法。所述方法包括以下步骤:提供一碳纳米管阵列;将所述碳纳米管阵列浸泡在一含有纳米金属颗粒与溶剂的纳米金属溶胶中使纳米金属颗粒自组装在碳纳米管表面;取出所述碳纳米管阵列,并将所述自组装有纳米金属颗粒的碳纳米管阵列在等于或高于所述纳米金属熔点的温度下进行热处理使所述纳米金属颗粒连接到一起形成一晶相金属纳米线阵列。

Description

一种金属纳米线阵列的制备方法
【技术领域】
本发明涉及一种纳米线阵列的制备方法,尤其涉及一种金属纳米线阵列的制备方法。
【背景技术】
一维结构纳米材料,如纳米棒、金属纳米线和纳米管等,是当前纳米材料研究的热点。其中金属纳米线具有独特的光、电、催化等特性,在纳米电子器件等领域有良好的应用前景,因此引起了人们的极大关注。目前,较多采用模板法来合成各种金属纳米线,如利用碳纳米管、多孔氧化硅等多孔性介质作为“硬模”来合成金属纳米线;或利用DNA、棒状胶束等线状分子或分子组合体作为“软模”合成金属纳米线。
利用多个分散碳纳米管作为模板合成金属纳米线一般在纳米金属溶胶中进行,纳米金属粒子及模板均分散在溶胶中,利用纳米金属粒子与模板之间的自组装(Self-Assembly)可形成表面吸附纳米金属粒子的碳纳米管模板,再经热处理后,即可形成晶相金属纳米线。
但是,此种制程所制得的金属纳米线是分散的,方向随机,尤其不易应用于纳米元件领域。
【发明内容】
有鉴于此,有必要提供一种能生成排列整齐的金属纳米线阵列的方法。
一种金属纳米线阵列的制备方法,其包括以下步骤:提供一碳纳米管阵列;将所述碳纳米管阵列浸泡在一含有纳米金属颗粒与溶剂的纳米金属溶胶中使纳米金属颗粒自组装在碳纳米管表面;取出所述碳纳米管阵列,并将所述自组装有纳米金属颗粒的碳纳米管阵列在等于或高于所述纳米金属熔点的温度下进行热处理使所述纳米金属颗粒连接到一起形成一晶相金属纳米线阵列。
相对于现有技术,上述制备方法利用一碳纳米管阵列与纳米金属颗粒进行自组装,再经热处理后,可得一排列整齐的晶相金属纳米线阵列,该方法便于实际应用。
【附图说明】
图1是本发明金属纳米线阵列的制备方法流程图。
图2是本发明金属纳米线阵列的制备方法示意图。
【具体实施方式】
以下将结合图示说明一种金属纳米线阵列的制备方法。
请参阅图1及图2,本实施例金属纳米线阵列的制备方法包括以下步骤:
步骤1,提供一碳纳米管阵列10。碳纳米管阵列10包括多根形成在基底12上的碳纳米管14。碳纳米管14之间基本平行。优选的,碳纳米管14与基底12垂直。关于碳纳米管阵列的制备方法已较成熟,可利用化学气相沉积法在基底12上沉积碳纳米管阵列10。
步骤2,将碳纳米管阵列10浸在一预先形成的纳米金属溶胶20中进行自组装。纳米金属溶胶20中包含溶剂22及均匀分散在溶剂22中的纳米金属颗粒24。
溶剂22可为水、氯仿、乙二醇及碳原子数小于5的醇类。为防止纳米金属颗粒24聚集,可向溶胶中加入溶胶稳定剂四辛基胺的溴盐(Tetraoctylzmmonium Bromide)、柠檬酸钠或带负电的聚4-苯乙烯磺酸钠(Poly sodium 4-styrensnlfonate,PSS)。纳米金属颗粒24可为纳米级金、银、铜、锡、镍、锗粒子或者其纳米粒子混合物。纳米金属颗粒直径可为1纳米到100纳米。
碳纳米管阵列10在纳米金属溶胶20中的浸泡时间为5-72小时。优选10-30小时。此步骤是利用碳纳米管14与纳米金属颗粒24间的自组装作用,使纳米金属颗粒24吸附在碳纳米管14表面。
步骤3,取出碳纳米管阵列10。经过自组装步骤后,纳米金属颗粒24吸附在碳纳米管14表面,此时纳米金属颗粒24是不连续的。
步骤4,对碳纳米管阵列10进行热处理。为得到晶相金属纳米线,还需对碳纳米管阵列10进行热处理。热处理一般在空气中进行,热处理时的温度为等于或大于具体纳米金属颗粒24的熔化温度,不同金属,其熔化温度亦有不同。由于纳米材料的熔点降低效应,其熔点比宏观金属熔点均低,例如纳米金颗粒,300℃即可熔化。热处理的时间一般为35-60秒。
经过热处理后,分散的纳米金属颗粒24连接到一起,形成一晶相金属纳米线30,多根晶相金属纳米线30整齐排列在基底12上组成一晶相金属纳米线阵列40。
本发明利用一碳纳米管阵列作为模板,利用碳纳米管与纳米金属颗粒进行自组装,形成一排列整齐的金属纳米线阵列。经热处理后,即可形成晶相金属纳米线阵列,便于应用于纳米传感器、纳米催化电极或作为热界面材料的填充物等领域。

Claims (7)

1.一种金属纳米线阵列的制备方法,其包括以下步骤:提供一碳纳米管阵列;将所述碳纳米管阵列浸泡在一含有纳米金属颗粒与溶剂的纳米金属溶胶中,使纳米金属颗粒自组装在碳纳米管表面;取出所述碳纳米管阵列;并将所述自组装有纳米金属颗粒的碳纳米管阵列在等于或高于所述纳米金属熔点的温度下进行热处理,使所述纳米金属颗粒连接到一起形成一晶相金属纳米线阵列。
2.如权利要求1所述的金属纳米线阵列的制备方法,其特征在于所述纳米金属颗粒可为纳米级金、银、铜、锡、镍、锗粒子或者其纳米粒子混合物。
3.如权利要求1所述的金属纳米线阵列的制备方法,其特征在于所述溶剂为水、氯仿、乙二醇或碳原子数小于5的醇类。
4.如权利要求1所述的金属纳米线阵列的制备方法,其特征在于所述纳米金属溶胶进一步包括一溶胶稳定剂。
5.如权利要求4所述的金属纳米线阵列的制备方法,其特征在于所述稳定剂为四辛基胺的溴盐、柠檬酸钠或带负电的聚4-苯乙烯磺酸钠。
6.如权利要求1所述的金属纳米线阵列的制备方法,其特征在于所述碳纳米管阵列在纳米金属溶胶中浸泡时间为5-72小时。
7.如权利要求1所述的金属纳米线阵列的制备方法,其特征在于热处理时间为35-60秒。
CNA2005101005446A 2005-10-20 2005-10-20 一种金属纳米线阵列的制备方法 Pending CN1951799A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2005101005446A CN1951799A (zh) 2005-10-20 2005-10-20 一种金属纳米线阵列的制备方法
US11/432,995 US20070089564A1 (en) 2005-10-20 2006-05-12 Metal nanowire array and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2005101005446A CN1951799A (zh) 2005-10-20 2005-10-20 一种金属纳米线阵列的制备方法

Publications (1)

Publication Number Publication Date
CN1951799A true CN1951799A (zh) 2007-04-25

Family

ID=37984108

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101005446A Pending CN1951799A (zh) 2005-10-20 2005-10-20 一种金属纳米线阵列的制备方法

Country Status (2)

Country Link
US (1) US20070089564A1 (zh)
CN (1) CN1951799A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399167B (zh) * 2008-07-15 2010-04-14 北方工业大学 硅纳米线装配的方法
CN101376497B (zh) * 2007-08-31 2011-06-22 清华大学 碳纳米管复合材料预制件及其制备方法
CN102358615A (zh) * 2011-11-07 2012-02-22 中国科学院苏州纳米技术与纳米仿生研究所 多功能集成的纳米线阵列制备方法
US10580591B2 (en) 2013-11-05 2020-03-03 The Regents Of California, Riverside Metal-oxide anchored graphene and carbon-nanotube hybrid foam

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137759B2 (en) * 2006-04-07 2012-03-20 The Regents Of The University Of California Gold nanostructures and methods of use
US7888583B2 (en) * 2007-05-07 2011-02-15 Wisconsin Alumni Research Foundation Semiconductor nanowire thermoelectric materials and devices, and processes for producing same
TWI353963B (en) * 2007-10-02 2011-12-11 Univ Nat Taiwan Science Tech Method of fabricating one-dimensional metallic nan
JP6247289B2 (ja) * 2012-06-29 2017-12-13 ノースイースタン ユニバーシティ ナノ要素の電界誘導組立てによって調製された3次元結晶性、均一および複合ナノ構造体
US8951892B2 (en) 2012-06-29 2015-02-10 Freescale Semiconductor, Inc. Applications for nanopillar structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376497B (zh) * 2007-08-31 2011-06-22 清华大学 碳纳米管复合材料预制件及其制备方法
CN101399167B (zh) * 2008-07-15 2010-04-14 北方工业大学 硅纳米线装配的方法
CN102358615A (zh) * 2011-11-07 2012-02-22 中国科学院苏州纳米技术与纳米仿生研究所 多功能集成的纳米线阵列制备方法
CN102358615B (zh) * 2011-11-07 2014-04-16 中国科学院苏州纳米技术与纳米仿生研究所 多功能集成的纳米线阵列制备方法
US10580591B2 (en) 2013-11-05 2020-03-03 The Regents Of California, Riverside Metal-oxide anchored graphene and carbon-nanotube hybrid foam

Also Published As

Publication number Publication date
US20070089564A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
CN1951799A (zh) 一种金属纳米线阵列的制备方法
Hu et al. Femtosecond laser welded nanostructures and plasmonic devices
Xue et al. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions
Larsen et al. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor
Xiang et al. Progress in application and preparation of silver nanowires
EP2837716B1 (en) Graphene fiber and preparation method therefor
Hou et al. Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers
Lao et al. Hierarchical ZnO nanostructures
Liu et al. Field emission and electrical switching properties of large-area CuTCNQ nanotube arrays
Deng et al. Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: end-to-end versus side-by-side
US20030044608A1 (en) Nanowire, method for producing the nanowire, nanonetwork using the nanowires, method for producing the nanonetwork, carbon structure using the nanowire, and electronic device using the nanowire
CN101626674B (zh) 散热结构及其制备方法
TW200307574A (en) Method for assembling nano objects
US20120285673A1 (en) Nanostructured composite polymer thermal/electrical interface material and method for making the same
CN105758909A (zh) 一种基于金纳米管的柔性可拉伸电极及其制备方法与应用
TW200900443A (en) Process for preparing conductive films and articles prepared using the process
CN101768427A (zh) 热界面材料及其制备方法
WO2011091263A1 (en) Fullerene-doped nanostructures and methods therefor
KR101587532B1 (ko) 도전성 복합체가 포함된 나노탄소 하이브리드 섬유, 이의 제조방법 및 이를 이용한 기능성 섬유 조립체 및 반도체 장치
Kim et al. Mechanism of heat-induced fusion of silver nanowires
CN104681688B (zh) 一种微结构层及发光二极管
Yan et al. Fabrication of three-dimensional ZnO− Carbon Nanotube (CNT) hybrids using self-assembled CNT micropatterns as framework
Wang et al. Formation of flexible Ag/C coaxial nanocables through a novel solution process
CN103464776A (zh) 基于天然高分子dna模板的金属纳米环及制备方法
Rodríguez‐Galván et al. Deposition of silver nanoparticles onto human serum albumin‐functionalised multi‐walled carbon nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20070425