CN114706063A - 雷达***中的方法、雷达***或雷达***的装置 - Google Patents

雷达***中的方法、雷达***或雷达***的装置 Download PDF

Info

Publication number
CN114706063A
CN114706063A CN202210248082.6A CN202210248082A CN114706063A CN 114706063 A CN114706063 A CN 114706063A CN 202210248082 A CN202210248082 A CN 202210248082A CN 114706063 A CN114706063 A CN 114706063A
Authority
CN
China
Prior art keywords
signal
comparison
transmit
nkse2
nkse1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210248082.6A
Other languages
English (en)
Inventor
P·古尔登
M·福西克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symeo GmbH
Original Assignee
Symeo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symeo GmbH filed Critical Symeo GmbH
Publication of CN114706063A publication Critical patent/CN114706063A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9092SAR modes combined with monopulse techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/468Indirect determination of position data by Triangulation, i.e. two antennas or two sensors determine separately the bearing, direction or angle to a target, whereby with the knowledge of the baseline length, the position data of the target is determined

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及雷达***中的一种方法,其中:在第一非相干的发送接收单元(NKSE1)中产生第一信号(sigTX1)并且将其通过路径(SP)发送、特别是发射;在另一特别是第二非相干的发送接收单元(NKSE2)中产生第一信号(sigTX2)并且将其通过所述路径(SP)发送、特别是发射;在所述第一发送接收单元(NKSE1)中形成其第一信号(sigTX1)与这样的由所述另一发送接收单元(NKSE2)经由所述路径(SP)接收的第一信号(sigTX2)的比较信号(sigC12);以及在所述另一发送接收单元(NKSE2)中形成其第一信号(sigTX2)与这样的由所述第一发送接收单元(NKSE1)经由所述路径(SP)接收的第一信号(sigTX1)的另一比较信号(sigC21);其中,所述另一比较信号(sigC21)由所述另一发送接收单元(NKSE2)传输、特别是通信给所述第一发送接收单元(NKSE1)。另外的设计方案是雷达***或雷达***的装置,该装置实施这样的方法。

Description

雷达***中的方法、雷达***或雷达***的装置
本申请是基于申请号为201580026040.6(国际申请号为PCT/DE2015/100119),申请日为2015年3月23日,发明名称为“雷达***中的方法、雷达***或雷达***的装置”的中国专利申请提出的分案申请。
技术领域
本发明涉及一种雷达***中的方法、雷达***或雷达***的装置。特别是这适用于具有分布式发送接收单元的雷达设施。
背景技术
在雷达技术中区分一次雷达和次级雷达。一次雷达表示如下雷达设备,该雷达设备分析之前发射的高频信号的被动反射的信号回波。在次级雷达中,在第二雷达单元中接收由第一雷达单元之前发射的高频信号。第二雷达单元随后主动发送应答信号回给第一雷达单元。次级雷达有时也称收发***,其中那么低雷达大约经常称为基站,而第二雷达单元称为收发器。一次雷达接收和处理自身发出的信号,而次级雷达接收和处理外来的在另一单元中生成的信号。
具有合成孔径(SA)的雷达方法不仅对于雷达成像而且对于收发器的定位是已知的。常见方法和实施形式可见于例如专业书籍“Inverse Synthetic Aperture RadarImaging with Matlab Algorithms”的第3和4章中,或者在R.Miesen、F.Kirsch和M.Vossiek的“UHF RFID Localization Based on Synthetic Apertures”,IEEE自动化科学与工程学报,第10册,第3号,第807-815页,2013年7月”中,或者在G.Li、R.Ebelt和M.Vossiek的“A Novel Sequential Monte Carlo Method Based Synthetic ApertureReconstruction Approach for Real-Time 3D Wireless Local Positioning”,Frequenz:Journal of RF-Engineering and Telecommunications,第66册,11-12号,363-371页,2012年11月中。已知的还有来自例如文献US 7948431 B2、US 8299959B2以及在这些文献中阐明的现有技术的SA方法。
一般已知的是,可以实施具有所有相干波形例如在具有电磁的雷达范围中的SA方法。在雷达传感装置的领域中,人们就此大多谈及SAR(合成孔径雷达/具有合成孔径的雷达)或SDRS(软件限定的雷达传感器)或MIMO(多输入多输出)雷达。
接受者不知道其曲线和相干性的波源的信号也可以SA方法处理,如果由在至少两个空间分离的位置接收的信号形成如下信号,该信号不再描述信号的绝对相位而是相位差。该方案也以术语雷达干涉法已知或者对于辐射度学的领域描述在Ruf,CS.;Swift,CT.;Tanner,A.B.;Le Vine,D.M.的“Interferometric synthetic aperture microwaveradiometry for the remote sensing of the Earth”,Geoscience and RemoteSensing,IEEE Transactions on,26册,5号,597、611页,1988年9月中。即使在该方法中仍应要求的是,由相干工作的接收器接收至少在两个空间分离的位置处接收的信号,以便可以如此确定在所述至少两个信号之间的相位差。利用仅仅两个接收位置在这样的方法中却不能够确定与波源的距离。
此外已知的是多种次级雷达方法,如其例如描述在文献US 7940743 B2中、在A.Stelzer,A.Fischer,M.Vossiek的“A New Technology for Precise PositionMeasurement-LPM”,Microwave Symposium Digest,2004,IEEE MTT-S International,2册,6-11,2004年6月,655-658页中,或者在R.Gierlich,J.Huttner,A.Ziroff和M.Huemer的“Indoor positioning utilizing fractional-N PLL Synthesizer and multi-channelbase stations”,Wireless Technology,2008,EuWiT 2008,European Conference,2008,49-52页中。
在雷达-无线电定位和通信技术的领域中也已知的是,通过复合运行分离多个发送器的信号。码分时间或频率复用是常见的复用方法。在Roehr,S.;Gulden,P.;Vossiek,M.的“Precise Distance and Velocity Measurement for Real Time Locating inMultipath Environments Using a Frequency-Modulated Continuous-Wave SecondaryRadar Approach”,Microwave Theory and Techniques,IEEE Transactions,56册,10号,2329、2339页,2008年10月中例如示出,如何可实现FMCW信号的复用(FMCW:FrequencyModulated Continuous Wave)。在Sturm,Christian,et al.的“Spectrally interleavedmulti-carrier signals for radar network applications and multi-input multi-output radar”IET Radar,Sonar&Navigation,2013,7.Jg.,Nr.3,261-269页中并且在GUTIERREZ DEL ARROYO,Jose R.;JACKSON,Julie Ann;TEMPLE,Michael A.的“Receivesignal processing for OFDM-based radar imaging”In:Acoustics,Speech and SignalProcessing(ICASSP),2013IEEE International Conference.IEEE,2013,2775-2779页中将OFDM(OFDM:Orthogonal Frequency-Division Multiplexing)信号用于复用。
已知的是如下雷达方法,该雷达方法应用所谓的多斜坡FMCW信号用于距离和速度测量,例如来自如下:Ali,F.;Vossiek,M.的“Detection of weak moving targets basedon 2-D range-Doppler FMCW radar Fourier processing”,German MicrowaveConference,2010,214、217、15-17页,2010年3月,以及其中引用的现有技术以及文献US020140022111A1。
一般已知的是次级雷达方法和次级雷达设施,这来自于Scheiblhofer,Stefan,etal.的“Performance analysis of cooperative FMCW radar distance measurementSystems”,Microwave Symposium Digest,2008IEEE MTT-S International.IEEE,2008,121-124页和Roehr,S.;Gulden,P.;Vossiek,M.的“Precise Distance and VelocityMeasurement for Real Time Locating in Multipath Environments Using aFrequency-Modulated Continuous-Wave Secondary Radar Approach”,MicrowaveTheory and Techniques,IEEE Transactions,56册,10号,2329,2339页,2008年10月。这些方法或者基于非相干同步或者混合的信号的频率差的传送。两个方法因此不适用于相干距离测量并且作为SAR方法的基础。
发明内容
本发明的任务在于,提出备选方法和***装置,其能实现在各单元之间的相干距离测量。特别是应能实现在各次级雷达单元之间的高精度距离测量并且对于雷达一般能实现较大孔径的合成和/或可实现的较高的分辨率。
该任务通过具有权利要求1特征的雷达***中的方法、根据权利要求12的雷达***或具有权利要求16特征的雷达***的装置解决。有利设计方案是从属权利要求的技术方案。
优选地,因此特别是提出一种雷达***中的方法,其中,在第一非相干的发送接收单元中产生第一信号并且将其通过路径发送、特别是发射;在另一特别是第二非相干的发送接收单元中产生第一信号并且将通过路径发送、特别是发射;在第一发送接收单元中形成其第一信号与这样的由另一发送接收单元经由所述路径接收的第一信号的比较信号;以及在另一发送接收单元中形成其第一信号与这样的由第一发送接收单元经由路径接收的第一信号的另一比较信号;其中,另一比较信号由另一发送接收单元传输、特别是通信给第一发送接收单元。
术语“第一信号”代替仅仅“信号”特别是用作相对于比较信号和比较-比较信号的概念上的限定。这样的比较信号特别是相应于如下比较信号,该比较信号在所述两个发送接收单元中之一中的第一比较级中产生,其中,所述两个发送接收单元中至少之一的比较信号传输给发送接收单元中的至少另一个。
如此应用术语“第二”、“另一”或“其他”,这特别是用于区分在第一这样的发送接收单元中或来自这样的发送接收单元的信号或构件与至少一个第二这样的发送接收单元的至少一个相应信号或相应构件,第二这样的发送接收单元为了方法实施或作为***组成部分与第一这样的发送接收单元配合。
路径特别是空中接口,经由该空中接口借助于天线发送或传输和接收信号和比较信号。
只要在发送接收单元中实施计算、分析处理或其他方法步骤,属于其中的也包括必要时实体的独立的分析处理机构,其连接到发送接收单元。例如发送接收单元可以如此构成为由特别是一个或多个天线连同一些少量的信号产生或信号处理机构构成的机构,而另外的构件如信号比较单元或分析处理机构作为构造上独立的构件连接到这样的机构。只要构件可以应用,那么这些构件——只要技术上可实现——构成为所谓的由处理构件构成的硬件和/或实现为完全或部分在处理器中可实现的信号或数据处理接口。
有利地如此能实现:在第一发送接收单元中能实现改善的数据处理,因为传输到该第一发送接收单元内的比较信号包括特别是关于另一发送接收单元的周期或相位和频率状态的信息内容或者数据并且由此对于在发送接收单元中或与之该连接的分析处理机构相干或显得相干的信号时是可重构和可处理的。
也有利的是,通过确定比较信号存在具有较低频率的信号,该信号需要较小数量的扫描点用于明确显示。由可以将包含的信息更容易地传输给另一/其他发送接收单元。特别是对于在1G赫兹以上的频率范围中的信号,较小的扫描率对于用于技术实现的比较信号是非常有利的并且因此是要追求的。有利地还有通过较小的数据量降低存储要求。
一种设计方案存在如下,由所述比较信号与所述另一比较信号形成比较-比较信号。这样的比较-比较信号特别是相应于如下信号,该信号在第二比较级中在所述两个发送接收单元之一中由两个这样的比较信号产生,其中,所述比较信号特别是源自发送接收单元自身并且其他用于比较的比较信号由所述另一发送接收单元传输。这样的比较-比较信号特别是在次级雷达***中是具有如下信号特征的信号,该信号此外利用一次雷达***是可创建的。
一种设计方案在于,所述比较-比较信号相应于利用相干雷达***产生的比较信号,其方法是两个比较信号相互处理特别是共轭复数相乘。
特别是因此方法可以在雷达***中实施,其中,比较-比较信号由此形成,即在第一非相干的发送接收单元中形成由其自身产生的第一信号和在另一特别是第二非相干的发送接收单元中产生并且通过路径发送特别是发射的第一信号的比较信号,并且以下比较-比较信号由该比较信号和另一比较信号形成,其中,所述另一比较信号以相应的方式和方法在另一发送接收单元中由这样的在该产生的第一信号和这样的在该通过路径接收的来自第一发送接收单元的第一信号形成并且传输、特别是通信给第一发送接收单元。
特别是因此可以在雷达***中实施方法,其中,由此形成比较-比较信号,即在第一非相干的发送接收单元中产生第一信号,并且比较信号由第一信号和由另一特别是第二非相干的发送接收单元接收的第一信号形成,其中,第一信号由另一发送接收单元产生并且通过路径发送特别是发射给第一发送接收单元,另一比较信号通过相应方式和方法在另一发送接收单元中由这样的在其中产生的第一信号和这样的在其中通过路径接收的第一发送接收单元的第一信号形成并且传输、特别是通信给第一发送接收单元,并且所述比较-比较信号由该比较信号和所述另一比较信号形成。
特别是因此方法可以实施在分布式雷达***中,其包括至少两个空间上间隔的发送接收单元作为雷达单元,其中,发送接收单元分别具有信号生成器,其中信号生成器生成如下信号,该信号交替地在雷达单元之间交换并且其中发送接收单元具有通信机构,其中利用通信机构将发送接收单元(比较信号在其中形成)的比较信号的至少之一传输给至少另一发送接收单元,并且其中,发送接收单元中的至少之一具有第二或另一比较单元并且该第二比较单元提供所述两个第一比较单元的确定的比较信号给所述两个发送接收单元,并且在该第二比较单元中实施至少一个混合过程或相干并且如此由此形成比较-比较信号,使得该比较-比较信号的特征与信号传播时延成比例,信号对于在发送接收单元之间的路程需要该信号传播时延,其中,该特征是比较信号中的相位或相位曲线或频率或者在比较信号中脉冲形信号最大值的位置。
有利的是该方法或者用于在次级雷达单元之间的高度精确的距离测量的实施该方法的机构。有利的是该方法或者按照另一设计方案的实施该方法的机构,以便能实现对于雷达一般较大的孔径和可实现的较高的分辨率。对于较大的孔径有利地实现阵列的技术上更简单的实施,因为特别是不再需要高频信号的至今必要的复杂的分布。
一种设计方案在于,比较信号、另一比较信号或比较-比较信号中至少之一通过混合或相干中的至少一种形成。
优选地,在另一比较单元或第二比较过程中至少实施混合过程并且如此形成比较-比较信号并且由该比较-比较信号借助于傅里叶变换确定或计算如下信号。由该确定或计算的信号确定对象或用作发送接收单元的第二雷达单元的距离和/或空间位置和/或速度。
优选地,在另一比较单元或第二比较过程中形成至少一个比较-比较信号并且由该比较-比较信号借助于傅里叶变换确定至少一个相位或相位值和/或至少一个频率值。特别是利用这些相位或频率值中至少之一确定、特别是计算距离和/或速度值。
代替或附加于混合可应用相干。
一种设计方案在于,至少一个这样的另一比较信号在发送接收单元之间作为数据、包含数据的信号或可重构地包含数据的信号中至少之一来传输。
这确保:在接收器中比较信号的数据内容完好地接收或者是可重构的。在比较信号的比较中,因此避免失真或干扰效应,其可能由于在传输包含在信号中的数据时而信号失真。因此特别是数据作为这样的特别是数字数据传输或通信,其中,这样的数据不仅通过发送借助于天线可传输到天线的环境中而且可有线传输。也有利的是,在此特别是仅仅必须传输信号的必要部分或者可以以压缩/预处理形式传输信号并且因此对通信数据速率的要求更低。
一种设计方案在于,第一信号中至少之一作为发送信号经由构成为空中接口的路径发送。第一信号的发送因此可以通过通常方式由此实现,使得雷达信号作为模拟信号利用发送天线发射或放射到发送天线的环境中。
一种设计方案在于,如此协调用于发送第一信号的时刻,使得第一信号在时间上至少部分重叠。由此发送第一信号的发送接收单元的特别的预同步如此产生,使得信号重叠,特别是重叠了其信号长度或调制持续时间的至少四分之一、优选重叠了其信号长度或调制持续时间的一半以上。有利地,在这样的实现中需要较小的带宽,在信号产生和需要的构件的大小确定时必须考虑该带宽。再者改善作用范围,因为在较长的时间段上存在两个信号。
一种设计方案在于,由至少一个比较-比较信号确定信号传播时延,这样的第一信号对于在发送接收单元之间的路程需要该信号传播时延,其方法是分析比较-比较信号的相位或相位值、频率、幅度曲线或相位曲线中至少之一。
由信号传播时延特别是可确定在参与的发送接收单元之间的距离。作为用于确定信号传播时延的方法例如可利用频谱分析特别是傅里叶变换确定频率,解析地或借助于傅里叶变换确定相位值,由幅度-时间图确定幅度曲线和/或由相位与时间图确定相位曲线。特别是,如此通过信号传播时延决定性地确定在比较-比较信号中比较-比较信号的相位、频率、幅度曲线、相位曲线或者脉冲形信号最大值的位置。
在第二比较过程中,特别是实施相干过程并且如此形成比较-比较信号并且在该比较-比较信号中探测至少一个脉冲形信号最大值或脉冲。以下,确定在比较信号中的脉冲的时间位置或至少一个探测的脉冲的相位值或频率,并且这些之前确定的位置、相位或频率值中至少之一用于计算距离或速度值。
一种设计方案在于,作为FMCW或OFDM调制信号产生和发送第一信号中至少之一。FMCW调制信号能实现比较-比较信号通过傅里叶变换的特别简单的分析处理。再者FMCW调制信号按照原理特别好地适用于距离测量,因为其时间-频率关系特别好地是已知的。此外可以以小的技术成本产生FMCW信号。OFDW信号对于通信***是特别有利的。OFDW信号因此能实现方法在通信***中有利的结合。
一种设计方案在于,作为多斜坡信号产生和发送第一信号中至少之一。有利地由此产生好的速度确定和目标分离。
一种设计方案在于,利用至少两个发送接收单元在时间上依次测量多个比较-比较信号,其中发送所述接收单元中至少之一运动;以及利用合成孔径方法确定发送接收单元之一的距离、位置、速度或存在中至少之一或者这样的发送接收单元的存在或者相对于目标的距离、位置、速度中至少之一或目标的存在。
为此例如测量在在发送接收单元之间的直接路程上的距离,如在次级雷达中,并且如此确定所述两个单元相互间的距离。而且可以如此通过在作为被动目标的对象上的反射确定或测量在发送接收单元之间的距离。借助于单元已知的位置那么也可以确定对象的距离和位置。
优选地特别是一种雷达***,其中:
-至少一个第一非相干的发送接收单元构成为,产生第一信号并且通过路径发送、特别是发射;
-至少另一特别是第二非相干的发送接收单元构成为,产生第一信号并且通过所述路径发送、特别是发射;
-所述第一发送接收单元构成为,形成其第一信号与这样的由另一发送接收单元经由路径接收的第一信号的比较信号;
-所述另一发送接收单元构成为,形成其第一信号与这样的由第一发送接收单元经由路径接收的第一信号的另一比较信号;以及
-所述另一比较信号由所述另一发送接收单元传输、特别是通信给所述第一发送接收单元。
一种设计方案在于,在雷达***中由所述比较信号和所述另一比较信号形成比较-比较信号。
一种设计方案在于一种具有三个或更多个空间上间隔的发送接收单元的雷达***,其中,利用多于两对的各两个所述空间间隔开的发送接收单元测量两个或更多个比较-比较信号,所述比较-比较信号确定发送接收单元之一的距离、位置、速度或存在或者这样的发送接收单元的存在或者相对于目标的距离、位置、速度中至少之一或目标的存在。
通过机构因此构成孔径矩阵,其分析处理能实现入射角的确定。备选地可以利用仅仅一个发送接收单元利用(abfahren)孔径并且随后借助于合成孔径方法确定入射角。
一种设计方案是如下雷达***,其中,所述第一发送接收单元和至少一个这样的另一发送接收单元和/或分析处理机构构成为用于实施这样的方法。这样的分析处理机构特别是一个或两个发送接收单元的组成部分或者连接到一个或多个这样的发送接收单元。
优选地特别是雷达***的装置,特别是用于实施这样的方法和/或在这样的雷达***中,其中,该装置:
-构成为第一非相干的发送接收单元,特别是第一非相干的发送接收单元;
-以及具有信号生成器和至少一个天线,所述天线构成为,产生第一信号并且将其通过路径发送、特别是发射;
-具有如下机构,该机构构成为,形成第一信号与这种由另一发送接收单元经由路径接收的第一信号的比较信号;并且
-具有如下接口中至少之一:所述接口构成为,将比较信号传输、特别是通信给另一发送接收单元;或者所述接口构成为,借助于传输、特别是通信在第一发送接收单元中获取这样的由该另一发送接收单元产生的另一比较信号。
一种设计方案在于如下装置,其具有另一比较单元,所述另一比较单元由在相同发送接收单元中形成的比较信号和传输给该发送接收单元的比较信号形成比较-比较信号。
输出比较信号的机构和比较单元特别是构成为混合器或校正器。如此因此实施处理特别是相干过程。由最后形成的比较-比较信号特别是确定对象或这样的所述发送接收单元中之一的距离或位置或速度。
一种设计方案在于如下装置,其中,所述至少一个接口是数据接口。这能实现将第一比较信号作为数据——特别是作为包含数字数据的数据信号——在发送接收单元之间传输。
一种设计方案在于如下装置,其中,在输出比较信号的机构与形成比较-比较信号的另一比较单元之间设置滤波器,其中,滤波器给比较单元施加比较信号,其中,滤波器不施加于另一在前置于滤波器的机构中形成的比较信号并且抑制在所述前置的机构中形成的比较信号或者将其在接口提供。
如此,通过由发送接收单元的发送天线到其接收天线的反向反射产生的另一比较信号要么仅仅由另一比较单元避开要么在自身输出端或接口上提供用于进一步处理。这样的机构特别是在CW信号应用中是有利的并且考虑通过反向或横向反射产生的被动雷达内容。
一种设计方案在于如下装置,该装置具有多个相互空间间隔开的接收天线,给这些接收天线分别配置一个机构,该机构构成为,分别由第一信号和由这样的由这样的另一发送接收单元经由路径接收的第一信号形成比较信号。
如此构成一种相干的多通道接收器,其模仿空间孔径,所述空间孔径利用第一信号的测量或发送产生多个比较-比较信号并且能实现在装置相互间和/或在空间中例如角位置的相应分析处理。
优选地因此特别是用于利用多个相互不相干工作的发送接收单元产生相干雷达信号的方法和用于实施该方法的机构以及新式分布式的用于使用所述方法和机构定位和成像的雷达***。相干在此特别是通过不同信号的再处理(Postprocessing)产生。
所述任务特别是也通过如下方式解决,即,测量信号在分布式雷达***中(所述雷达***包括至少两个其源相互不相干的雷达单元)如此形成,使得如此形成的信号的相位与在雷达单元之间交换的测量信号的信号传播时延成比例关系,如这仅仅是在相干雷达单元中的情况。通过优选方法和机构能实现具有多个不相干的发送接收单元的新式的性能卓越的分布式雷达***,该雷达***不仅适用于被动反射对象的定位和成像而且适用于其他非相干的发送接收单元的定位。在具有多个非相干的发送接收单元的这些分布式雷达***中特别是也可应用SA方法。
这构成决定性的改善,因为如上所述SA方法需要原本相干的发送接收单元。通过优选的方法特别是可能的是,利用多个空间分布的发送接收单元产生大的合成孔径,而无需给多个单元如此外通常的那样供以共同的相干的高频参考信号。通过省去用于分布高频参考信号的高频线路显著降低这样的机构的成本和复杂性。
在次级雷达领域中通过机构附加地提高位置、运动和速度测量的可达到的精度,因为现在存在相干信号。
附图说明
在以下附图进一步阐明各实施例。在此,在不同附图中对于相同或作用相同的方法步骤、信号、构件和诸如此类应用相同附图标记,从而对此也参照其他附图的实施方案。特别是优选地描述相对于对其他特别是上述附图的实施方案的区别。
附图示出:
图1示意地示出两个不相干的发送接收单元的结构及其交互和信号处理;
图2示意地示出在应用CW雷达信号(CW:连续波(Continuous Wave))时两个不相干的发送接收单元的结构及其交互和信号处理;
图3示出多个这样的非相干的发送接收单元对于用于测量被动反射的对象以便定位对象或描绘对象情景的MIMO机构的布置;
图4示出多个这样的非相干的发送接收单元对于用于在主动反射的非相干的发送接收单元之间的测量以便定位至少另一非相干的发送接收单元的MIMO机构的布置;
图5示出用于次级雷达孔径合成的接收情况;
图6示出用于逆次级雷达孔径合成的接收情况;
图7示出用于测量在两个非相干的发送接收单元之间相对于第二天线平面的角的机构;
图8示出用于测量在两个非相干的发送接收单元之间相对于第一天线平面的角的机构;
图9示出用于测量在对象与两个非相干的发送接收单元中第一发送接收单元之间的角或者用于定位对象或者用于描绘对象情景的机构;以及
图10示出示例性应用的FMCW多斜坡信号。
具体实施方式
图1示意地示出两个非相干的发送接收单元NKSE1、NKSE2的结构及其优选交互和信号处理作为分布式雷达***的构件,以便显示示例性的优选基本结构。以下发送接收单元NKSE1、NKSE2总是理解为非相干的发送接收单元NKSE1、NKSE2。
两个发送接收单元NKSE1、NKSE2特别是空间分离地设置。发送接收单元NKSE1、NKSE2相互交换信号,所述信号也包括具有包含在其中的关于路径SP的信息或数据的信号,路径特别是构成为空中接口。在发送接收单元NKSE1、NKSE2之一中除了在直接路径上由另一发送接收单元NKSE2、NKSE1传输的信号之外也接收间接传输的信号,该信号受到沿路径SP在对象上的反射。
对于优选方法的应用存在优选的机构,该机构包括至少两个同样构造的发送接收单元NKSE1、NKSE2。
在至少两个发送接收单元NKSE1、NKSE2中的第一发送接收单元中,信号生成器SigGen1产生第一信号sigTX1。通过信号分配器将该第一信号sigTX1分配到两个路径中。通过路径中之一将第一信号sigTX1通过构成为发送天线的天线TA1从第一发送接收单元NKSE1发射。通过另一路径将第一信号sigTX1提供给信号比较单元SigComp1。信号生成器特别是应用时钟源或振荡器或振荡信号。
第二发送接收单元或至少两个发送接收单元中的另一发送接收单元NKSE2通过设计为接收天线的天线RA2接收由第一发送接收单元NKSE1发射的信号并且将该信号作为第一接收信号sigRX21提供给信号比较单元SigComp2。在该第二或另一发送接收单元NKSE2中,信号生成器SigGen2产生另一第一信号sigTX2。该另一第一信号sigTX2同样被分配特别是通过信号分配器分配,并且在路径中提供给信号比较单元SigComp2。该另一第一信号sigTX2仅由第二路径通过设计为发送天线的天线TA2发射。
第一发送接收单元NKSE1通过设计为接收天线的天线RA1接收由第二或另一发送接收单元NKSE2发射的信号并且将该信号作为第一接收信号sigRX12提供给第一发送接收单元NKSE1的信号比较单元SigComp1。
按照一个变形,相应的第一信号sigTX1、sigTX2例如经由方向耦合器从在信号生成器SigGen1、SigGen2与天线TA1、TA2之间的路径解耦。也可能的是,通过设计为发送天线的天线TA1、TA2发送第一信号sigTX1、sigTX2并且通过另一设计为接收天线的天线RA1、RA2接收并且施加给信号比较单元SigComp1、SigComp2。此外可能的是,第一信号sigTX1、sigTX2通过设计为发送天线的天线TA1、TA2发送并且通过相同的附加地设计为接收天线的天线在相同路径上接收、解耦并且施加给信号比较单元SigComp1、SigComp2。
优选地,作为这样的第一信号sigTX1或sigTX2应用调频信号。特别是,线性调频信号(FMCW:frequency modulated continous wave)、逐级调频信号(FSCW:frequencystepped continuous wave)或者频移键控信号(FSK:frequencyshift keying)或者具有跳频(FHOP:frequency hop)的信号或在正交频分复用方法中的信号(OFDM:Orthogonalfrequency-division multiplexing)是优选的信号和/或调制形式。但是也可应用所有其他具有所谓良好的相干特性的信号形式——如其在雷达技术中一般已知的那样——如例如噪声信号、虚拟随机的具有幅度或相位调制的脉冲序列,如例如Barker、M、Gold或Kasami序列或者多相码。对于多个发送接收单元NKSE1、NKSE2的同时运行特别有利的是,为了具有N>1的发送接收单元NKSE-N的多个数量为N的发送接收单元NKSE-N的复用选择如下信号形式,利用该信号形式可以形成一组N个正交调制的信号sigTXl、sigTX2、...、sigTXN。如此,每个在发送接收单元NKSE1、NSKE2、...、NSKE-N之一中如此形成的第一信号sigTX1、sigTX2、...也可以在同时接收的情况下分别与在发送接收单元NKSE1、NSKE2、...、NSKE-N中的其他如此形成的第一接收信号分离。特别是数量N因此也可以大于二。
信号比较单元SigComp1、SigComp2比较在其上分别施加的第一信号sigTX1或sigTX2与第一接收信号sigRX12或sigRX21并且分别形成特别是第一比较信号sigC12或sigC21。特别是由这些比较信号sigC12、C21通过相应的第一信号sigTX1或sigTX2的时间、频率和/或频率差和相应的第一接收信号sigRX12或sigRX21预定其相位和/或时间曲线并且将其可选择地确定。特别是由第一发送接收单元NKSE1的比较信号sigC12通过在第一发送接收单元NKSE1中的第一信号sigTX1和第一接收信号sigRX21的时间、频率和/或相位差确定和可确定其相位和/或时间曲线,并且由第二或另一发送接收单元NKSE2的比较信号sigC21通过在第二发送接收单元NKSE2中的第一信号sigTX2和第一接收信号sigRX21的时间、频率和/或相位差确定和可确定其相位和/或时间曲线。
这样的信号比较单元SigComp1或SigComp2优选包括在应用调频信号下所谓的混合器或在应用相位和幅度调制或脉冲形信号下的校正器以便形成比较信号sigC12或sigC21。在混合器中,分别存在的两个信号完全或逐步相乘或者在校正器中完全或部分相干。而且混合器和校正器的组合应用也是可实现的。
第二或另一发送接收单元NKSE2的比较信号sigC21利用第二发送接收单元NKSE2的数据接口CommTX、CommRX传输给第一发送接收单元NKSE1的数据接口CommTX、CommRX并且在第一发送接收单元NKSE1中提供给另一信号比较单元SigComp2。比较信号sigC21在此优选数字化并且利用设计为数字接口的接口传输。在数据接口CommTX、CommRX之间的接口可以无线地构成为无线电接口,特别是经由在这些无线电接口之间的路径SP,或者构成为线路连接或有线连接。给第一发送接收单元NKSE1中的另一信号比较单元SigComp2作为另一信号提供在第一发送接收单元NKSE1中形成的比较信号sigC12。
另一信号比较单元SigComp2比较在其上存在的比较信号sigC12和sigC21并且形成比较-比较信号sigCC12。特别是,比较-比较信号的相位或其幅度和/或相位曲线通过信号传播时延确定或可选择地确定,信号用于由第一发送接收单元NKSE1到第二和/或另一发送接收单元NKSE2或由第二和/或另一发送接收单元NKSE2到第一发送接收单元NKSE1的路程需要该信号传播时延。另一信号比较单元SigComp2为此优选地包括混合器和/或校正器用于形成比较-比较信号sigCC12。比较信号sigC12优选数字化地提供给另一信号比较单元SigComp2并且优选借助于数字信号处理实施信号比较。
比较-比较信号sigCC21因此特别是通过如下方式形成,即,在第一步骤中在第一发送接收单元NKSE1中形成由该发送接收单元本身产生的第一信号sigTX1和在第二或另一发送接收单元NKSE2中产生并且经由路径SP传输的第一信号sigTX2的比较信号sigC12,并且随后在第二步骤中形成该第一比较信号sigC12和另一第一比较信号sigC21的比较-比较信号sigCC21,其中之前另一第一比较信号sigC21通过相应方式和方法在另一发送接收单元NKSE2中由其第一信号sigTX2和在其中经由路径SP接收的来自第一发送接收单元NKSE1的第一信号sigTX1形成并且作为特别是数据信号来传输。
首先特别不重要的是,由发送接收单元NKSE1的天线TA1发射的信号sigTX1是否通过直接路程到达设计为接收天线的天线RA2或者通过对象反射到达另一发送接收单元NKSE2的设计为接收天线的天线RA2。由天线TA1到另一天线TA2的传输路径可以一般如在***原理中通常的那样通过通道传递函数或所谓的通道脉冲响应来描述。在这里所述的方法中特别是利用如下,即,由用于发送的天线TA2发射的信号sigTX2经由相同通道传输到天线RA1,如之前沿相反方向由发送接收单元NKSE1的用于发送的天线TA1传输到另一发送接收单元NKSE2的用于接收的天线RA2。用于沿两个传输方向通道传递函数的特别要求的一致性的一般已知的专业概念是所谓的通道交互性。对于本领域内技术人员而言已知的是,如果天线TA1和RA1位于在相同地点或者在发送接收单元NKSE1中仅仅利用一个天线用于发送和接收,并且另一发送接收单元NKSE2的天线TA2和RA2也位于在相同地点或也在另一发送接收单元NKSE2中仅仅利用一个天线用于发送和接收,人们可以基于通道交互性。如果不仅发送接收单元NKSE1的天线TA1、RA1而且至少另一发送接收单元NKSE2的天线TA2、RA2非常紧密相邻地设置,那么也可以基于特别是足够近似的通道交互性。非常紧密相邻理解为,遵循空间扫描原理,亦即例如对于具有180°的开角的天线的间隔为半波长或者在90°的间隔下为一个波长。
在至少另一发送接收单元NKSE2中可以以相应的方式——如在前述发送接收单元NKSE1中形成比较-比较信号sigCC12那样——形成比较-比较信号sigCC21。在通道交互性中,可以由比较-比较信号sigCC21和sigCC12提取的信息然而是相同的。因此通常足够的是,形成两个比较-比较信号中的仅仅一个。
可选择地可以附加地通过相应方法将第一发送接收单元NKSE1的比较信号sigC12利用第一发送接收单元NKSE1的所述或者一个数据接口CommTX、CommRX传输给第二和/或另一发送接收单元NKSE2的所述或者一个数据接口CommTX、CommRX并且施加给该第二和/或另一发送接收单元NKSE2的另一信号比较单元SigComp21。作为另一信号给在第二和/或另一发送接收单元NKSE2中的另一信号比较单元SigComp21提供在该发送接收单元NKSE2中形成的比较信号sigC21。利用另一信号比较单元SigComp21如此同样形成比较-比较信号sigCC21。
根据在图2中阐明的示例性实施形式现在示例性阐述适合的非相干的发送接收单元的基本功能和基本结构。
出于简单的数学表达首先特别是假定信号生成器为正弦信号生成器。在数学上,生成的CW信号(CW=连续波(continous wave))分别表示为在示例性的发送接收单元NKSE1、NKSE2的固定圆频率ω1或ω2的情况下复数值的正弦形连续波信号。连续波信号特别是如下信号,该信号以不变频率连续在一个时间段中发射。该信号表示到实数值信号上的传输作为这样的是已知的。两个发送接收单元NKSE1、NKSE2的假定为CW发送信号的第一信号sigTX1、sigTX2根据时间t如下定义:
Figure BDA0003545856620000181
Figure BDA0003545856620000182
信号sigTX1、sigTX2的开始时间是T01或T02,而相位
Figure BDA0003545856620000183
Figure BDA0003545856620000184
是任意的零相位角,亦即在时刻t=0的角。在时间限制的信号中优选如此选择信号的开始时间,使得这两个信号sigTX1、sigTX2明显地重叠。如果T是两个信号sigTX1、sigTX2的持续时间,并且ΔT12是开始时间T01或T02的差值,那么优选地要求:持续时间T比差ΔT12的值大得非常多,有利地大至少10倍。如果不是这种情况,那么发送接收单元NKSE1、NKSE2配备如下机构,该机构构成为,存储发送和接收信号sigTX1、sigTX2、sigRX21、sigRX12,以便紧接于信号传输地离线比较这些发送和接收信号。
发送接收单元中之一NKSE1发出第一信号sigTX1。该信号一方面传输给至少一个另一发送接收单元NKSE2并且在那儿作为信号sigRX21接收。另一方面,发送的信号但是也可以在对象反射回地到达发送该信号的发送接收单元NKSE1并且在那儿作为信号sigRX11接收。下式适用于还没有混合的信号:
Figure BDA0003545856620000185
以及
Figure BDA0003545856620000191
其中τ12表示信号由一个特别是第一发送接收单元NKSE1到另一特别是第二发送接收单元NKSE2的运行时间,而τ11表示信号由一个特别是第一发送接收单元NKSE1到对象并且又返回到自身的运行时间。通过相位
Figure BDA0003545856620000194
Figure BDA0003545856620000195
特别是考虑所有不变的***和反射有关的可能出现的相位移动。
另一发送接收单元NKSE2发出其信号sigTX2。该信号一方面传输给特别是第一发送接收单元NKSE1并且在那儿作为信号sigRX12接收。另一方面,信号但是也可以在对象处反射回并且返回到达发送该信号的另一发送接收单元NKSE2并且在那儿作为信号sigRX22接收。适用下式:
Figure BDA0003545856620000192
以及
Figure BDA0003545856620000193
其中τ21表示信号由另一特别是第二发送接收单元NKSE2到一个特别是第一发送接收单元NKSE1的运行时间,而τ22表示信号由另一发送接收单元NKSE2到对象并且又返回的运行时间。在通道交互性中运行时间τ21和τ12相同,下文中基于此。通过相位或相位值
Figure BDA0003545856620000196
Figure BDA0003545856620000199
特别是考虑所有不变的***和反射有关的可能出现的相位移动。在通道交互性中相位
Figure BDA0003545856620000197
Figure BDA0003545856620000198
相同,在下文中简化地基于此。
信号比较单元SigComp1、SigComp2在实施例中构成为混合器Mix。利用该混合器将接收的信号sigRX21、sigRX11或sigRX12、sigRX22分别混合到低频频带中。作为这一般已知的是,混合过程***理论上可以表示为相乘或者混合在两个复数正弦信号的情况下表示为信号之一与另一信号的共轭复数(*=共轭的标识)的相乘。因此适用如下:
Figure BDA0003545856620000201
Figure BDA0003545856620000202
以及
Figure BDA0003545856620000203
Figure BDA0003545856620000204
在第一发送接收单元NKSE1的信号比较单元SigComp1中形成第一发送接收单元NKSE1的信号sigTX1和其中接收的另一发送接收单元NKSE2的信号sigRX12的比较信号sigC12以及第一发送接收单元NKSE1的信号sigTX1和其中接收的反射的信号sigRX11的比较信号sigC11。在另一特别是第二发送接收单元NKSE2的信号比较单元SigComp2中形成该发送接收单元NKSE2的信号sigTX2和其中接收的另一第一发送接收单元NKSE1的信号sigRX21的比较信号sigC21以及第二发送接收单元NKSE2的信号sigTX2和其中接收的反射的信号sigRX22的比较信号sigC22。
通过比较信号sigC12和sigC11或比较信号sigC21和sigC22可以简单地相互分离,亦即特别是能实现复用运行,优选地发送接收单元NKSE1的圆频率ω1与另一发送接收单元NKSE2的频率ω2不同地选择。频率偏差|Δ12|=|ω1-ω2|应优选大于零但是不太大地选择。后者是有意义的,以便不会不必要地提高比较信号的带宽,特别是对于如下构件,如模拟数字转换器ADC、滤波器FLT、另一信号比较单元SigComp2和数据接口CommTX、CommRX。特别是频率偏差|Δ12|应小于现在例如作为通常运行频率的20M赫兹。混合的比较信号的带宽相应于在信号中包含的频率,特别是由零直至最高在比较信号中包含的频率的范围。
这样的模拟数字转换器ADC特别是后置于信号比较单元SigComp1、SigComp2。根据设计方案,特别是给模拟数字转换器ADC后置这样的滤波器FLT或者数据接口CommTX、CommRX。这样的滤波器FLT特别是前置于另一信号比较单元SigComp12。另一信号比较单元SigComp12例如又构成为混合器MIX。
在滤波器FLT与接收数据接口CommRX之间连接的另一信号比较单元SigComp12由滤波器FLT获得施加的比较信号sigC12,该比较信号由在该发送接收单元NKSE1中产生的信号sigTX1和由另一发送接收单元NKSE2经由路径SP接收的信号sigRX12形成。此外给另一信号比较单元SigComp12由数据接口CommRX施加由另一发送接收单元NKSE2传输的信号sigC21。
可选择地,滤波器FLT提供通过反向反射产生的比较信号sigC11用于进一步处理。可选择地,数据接口CommRX提供共同传输的比较信号sigC22用于进一步处理,该比较信号通过反向反射在另一发送接收单元NKSE2中产生并且被一同传输。
如果应用多于两个非相干的发送接收单元NKSEi,其中i=1,2,...N,那么所有发送接收单元NKSEi的信号特别是在复用运行中运行。在示出的实施例中那么在第三非相干的发送接收单元中对于相应的频率偏差例如适用如下,即|Δ12|≠|Δ13|≠|A23|并且|Δ12|≠0,|Δ13|≠0,|Δ23|≠0。
如果作为通过发送接收单元产生的信号sigTX1或sigTX2应用复杂调制的信号,亦即例如FMCW-、HSK-、FSCW-或OFDM信号,那么信号sigTX1或sigTX2优选如此调制,使得这些信号是支持复用的,亦即所有通过发送接收单元产生、发送的信号在发送接收单元中接收之后可以分离并且配置给相应的已经发送信号的发送接收单元。在此为了信号分离特别是可应用码分、频分和时分复用方法。
由通过发送接收单元之一产生、发送和又反向反射的信号产生的比较信号sigC11、sigC22特别是本身看起来是通常的CW雷达信号或在应用由例如FMCW调制的信号中特别是本身看起来通常的FMCW雷达信号。用于获得该比较信号sigC11、sigC22的构件及其机构特别是相应于本身看起来通常的CW雷达。因此作为这样已知的是,如何构成CW雷达***并且如何处理CW雷达信号以及如何在应用多个信号频率时可通过FMCW、FSK、FHOP或OFDM雷达方法确定对于多个目标的距离和速度。
特别是在特别是第二发送接收单元NKSE2中第一信号比较单元SigComp2的两个比较信号sigC22、sigC21通过接口CommTX、CommRX传输给特别是第一发送接收单元NKSE1并且在那儿进一步处理。可选择地也可能的是,在特别是第一发送接收单元NKSE1中形成的相应的两个比较信号sigC11、sigC12以相同方式传输给另一特别是第二发送接收单元NKSE2并且在那儿处理。出于清晰的原因该选择和为此必要的构件在实施例中没有示出。
如上所述,一种特别优选的方案在于,如此传输的比较信号sigC21和sigC12提供给至少另一信号比较单元SigComp12。在例子中,为此在特别是第一发送接收单元NKSE1中另一信号比较单元SigComp12特别是构成为混合器,该混合器将借助于传输获得的比较信号sigC21和在发送接收单元NKSE1中形成的比较信号sigC12处理、特别是相乘。作为比较-比较结果,特别是混合结果使用相位值
Figure BDA0003545856620000222
的情况下产生:
Figure BDA0003545856620000221
如可见的那样,现在该比较-比较信号sigCC12在第二比较过程之后也符合根据作为这样通常的CW雷达的信号的形式,因为信号的相位与信号的运行时间τ12成比例。通过交替测量和另外的信号比较实现:特别是补偿首先非相干信号的所有未知成分。通过这种方式和方法,即使使用两个非相干的发送接收单元NKSE1、NKSE2来测量,也产生如在相干雷达中那样的雷达信号。
因为比较-比较信号sigCC12符合也按照通常CW雷达信号的形式,因此也可以在应用多个信号频率的情况下应用自身已知的FMCW-、FSK-、FHOP-或OFDM雷达方法,以便确定在两个非相干的发送接收单元NKSE1、NKSE2之间的距离和在其之间的相对速度。FMCW-、FSK-、FHOP-或OFDM雷达方法在雷达技术领域中作为这样是已知的并且可用于传输的第一信号sigTX1、sigTX2。
如果发送接收单元NKSE1、NKSE2相互位于未知距离或者它们以未知相对速度相互运动,那么可以如所述通过比较-比较信号sigCC12——其在多个频率下确定——的分析处理确定发送接收单元相互间的距离和速度,只要信号在发送接收单元之间直接通过可见连接交换。
图3示出在用于目标O的定位或成像的测量情况下多个非相干的发送接收单元NKSE1、NKSE2、…、NKSE-N的可能的布置。发送接收单元NKSE1、NKSE2、…、NKSE-N分别具有已知位置
Figure BDA0003545856620000231
特别是共同的分析处理机构P由发送接收单元NKSE1、NKSE2、…、NKSE-N分别获得特别是比较-比较信号sigCC11、sigCC12、sigCC13、sigCC22、sigCC21、sigCC23、…、sigCC33、sigCC31、sigCC32用于进一步处理。比较-比较信号sigCC11、sigCC12、sigCC13、sigCC22、sigCC21、sigCC23、…、sigCC33、sigCC31、sigCC32在此覆盖发送接收单元NKSE1、NKSE2、…、NKSE-N中的两个以上的组合,特别是所有发送接收单元NKSE1、NKSE2、…、NKSE-N的所有可能的组合,其通过这样的布置产生。
如果发送接收单元NKSE1、NKSE2相互位于不变和已知的间隔并且一起发送信号共同辐射目标O,如此可以以与在按照前述设计方案的反向反射的比较信号sigC11和sigC22相似的方式确定信号传输路段的间隔或长度,并且可以如在比较-比较信号sigCC12中那样确定与目标O的相对速度。
那么可以通过两个或更多个基于反向发射形成的比较信号sigC11、sigC22和比较-比较信号sigCC12的分析处理分别确定信号传输路段的长度。在例如圆形辐射的天线的情况下,来自基于反向反射形成的比较信号sigC11、sigC22的距离值因此分别提供圆形轨迹,目标O可以位于在其上,并且比较-比较信号sigCC12提供双曲线。通过作为这样已知的多边方法可以因此确定目标O特别是相对于发送接收单元NKSE1、NKSE2位置的位置。通过应用附加使用的另外的发送接收单元NKSE-N改善定位精度或者实现改善的多目标功能。
相位值
Figure BDA0003545856620000245
Figure BDA0003545856620000246
相互间偏差通常已知,但是不是强制已知。然而如果相位值
Figure BDA0003545856620000247
Figure BDA0003545856620000248
相互间偏差由校准测量已知,那么基于反向反射形成的信号sigC11、sigC22和比较-比较信号sigCC12也关于其相位进行比较。这那么允许通过特别是相位单脉冲方法或干涉测量方法以及应用所谓的重构成像方法如例如SAR重构方法或宽带全息图的非常准确的角测量。重构方法作为这样也已知为术语数字波束成形或衍射断层图。对于重构方法有利的是,应用大量例如N件发送接收单元。在这里优选的方法的应用中有利的是,不仅可确定N个单边/单一静态测量的相位值
Figure BDA0003545856620000241
如这在分布式非相干运行的雷达中作为这样通常的那样,特别是横向传输路程的相位值
Figure BDA0003545856620000242
也进入分析处理中,由此大幅提高测量信息。在所谓的稀疏区域(英语:sparse array)中天线位置的适合选择中可能的是,利用相对少的发送接收单元实现良好的重构结果。
图4示出一种可能的布置:在用于定位至少另一非相干的发送接收单元NKSE2的测量情况下多个非相干的发送接收单元NKSE1、NKSE3、…、NKSE-N布置为一个MIMO次级雷达。在例子中,发送接收单元NKSE1、NKSE3、…、NKSE-N的N-1个位置
Figure BDA0003545856620000243
是已知的。另一或其他特别是第二发送接收单元NKSE2的位置
Figure BDA0003545856620000244
首先是未知的。
通过优选方法可以由发送接收单元NKSE1、NKSE3、…、NKSE-N中的每个确定与发送接收单元NKSE1、NKSE3、…、NKSE-N中的另一个的间隔。在实施例中,例如比较-比较信号sigCC12使用在第一和第二发送接收单元NKSE1、NKSE2中产生的信号sigTX1、sigTX2提供在第一发送接收单元NKSE1与第二发送接收单元NKSE2之间的间隔,而第三发送接收单元NKSE3和例如第N发送接收单元NKSE-N分别同样提供与第二发送接收单元NKSE2的距离值。通过作为这样已知的多边方法因此可以确定第二发送接收单元NKSE2的位置。通过应用另外适合设置的发送接收单元改善定位精度。
相位值
Figure BDA0003545856620000251
Figure BDA0003545856620000252
相互间偏差通常是不变的,但是不是强制已知的。然而如果已知相位值的偏差,这例如可以通过校准确保,那么按照一个优选设计方案也关于其相位或相位值
Figure BDA0003545856620000253
Figure BDA0003545856620000254
比较例如比较信号sigC12、sigC32(所述比较信号基于在发送接收单元NKSE1、NKSE3中产生的和其他特别是第二发送接收单元NKSE2形成)与比较-比较信号sigCCN2(该比较-比较信号基于例如第N发送接收单元NKSE1-N和第二发送接收单元NKSE2形成)。这那么允许通过相位单脉冲方法或干涉测量方法以及应用所谓的重构定位方法如例如SAR重构方法或宽带全息图的非常准确的角测量。备选地例如也可以实施这样的方法,其方法是每个发送接收单元以至少两个接收通道运行并且应用其发送和传输信号。由此信号的入射角可以在发送接收单元中通过通道的相位差的分析处理实现。
用于定位收发器的适合的SAR方法例如由开始所述文献已知。基于在此所述优选的该方法和这样的机构可以应用这样的用于定位收发器的方法不再仅仅用于所谓的背向散射收发器,所述背向散射收发器的特征在于,雷达信号由收发器利用相干载波相调制地反射。传输到其他收发***现在也是可能的,即使具有自身信号源的收发器通常非相干地应答。通过所述方法现在特别是可能的是,确定相位值
Figure BDA0003545856620000255
Figure BDA0003545856620000256
该相位值与在分别两个相互集成的非相干的发送接收单元之间相应的距离成比例关系。因此所有定位和重构方法都是可用的,如其由一次雷达技术领域和由背向散射收发器定位领域作为这样已知的那样。相比于背向散射收发器***,具有在此描述的非相干的发送接收单元的收发器***具有如下优点,其作用范围可以显著更大,特别是可应用更复杂的复用方法。
特别有利地,该优选方法可以在如下情况应用,即如果在两个非相干的发送接收单元NKSE1、NKSE2之间测量时至少一个所述发送接收单元NKSE1运动并且通过辅助传感装置例如借助于惯性传感装置、里程表或其他测量运动的机构确定在发送接收单元NKSE1、NKSE2之间的相对运动。图5利用次级雷达孔径合成的接收情况示出对此示例性的SAR测量情况。因为在利用在此所述方法在两个发送接收单元NKSE1、NKSE2之间测量时形成如下信号,该信号的相位与在发送接收单元NKSE1、NKSE2之间距离成比例,因此可应用在雷达技术中作为这样已知的合成孔径方法(SAR)或逆合成孔径方法(ISAR)。
特别是第一发送接收单元NKSE1在时刻t从位置
Figure BDA0003545856620000261
开始以不等于零的速度
Figure BDA0003545856620000262
沿着轨迹运动并且在行驶期间多次实施根据在此所述的方法对于其他特别是第二发送接收单元NKSE2的测量。第二发送接收单元NKSE2例如位于在具有等于零的速度
Figure BDA0003545856620000263
的位置上。为了分析处理特别是应用这两个发送接收单元NKSE1、NKSE2的比较-比较信号sigCC12。通过全息图重构算法,如其例如由开始所述文献作为这样已知的那样,那么可能的是,高度精确地确定第二发送接收单元NKSE2相对于第一发送接收单元NKSE1的位置。示出的方法和机构因此特别适用于高度精确地定位车辆,如机动车、飞机、轨道车辆、移动机器人,自动驾驶车辆等。第一发送接收单元NKSE1例如位于在车辆上,而另一发送接收单元NKSE2等作为路标位于在已知位置上。如果车辆运动,那么第一发送接收单元NKSE1可以根据SA方法确定其与另一发送接收单元NKSE2的相对位置并且因此在路标的坐标***中确定其自身位置。
图6示出对于逆次级雷达孔径合成的示例性测量情况或接收情况。特别是第二发送接收单元NKSE2在时间t从位置
Figure BDA0003545856620000271
以不同于零的速度
Figure BDA0003545856620000272
沿着轨迹运动并且在运动期间根据优选方法利用至少另一特别是第一发送接收单元NKSE1多次实施测量。通过例如惯性平台,第二发送接收单元NKSE2也确定轨迹的曲线并且将其通过无线电发送给第一发送接收单元NKSE1,所述第一发送接收单元特别是留在位置固定的位置
Figure BDA0003545856620000273
并且速度
Figure BDA0003545856620000274
等于零。在此惯性平台特别是理解为由加速度和角速度传感器组成的机构,优选分别三轴地实现。对于分析处理特别是应用这两个发送接收单元NKSE1、NKSE2的比较-比较信号sigCC12。通过全息图重构算法如其例如在开始所述文献中作为这样所示,那么特别是高度精确地确定第二发送接收单元NKSE2相对于第一发送接收单元NKSE1的位置。示出的方法和机构因此特别是适用于定位配备具有这样的非相干的发送接收单元的收发器的移动对象或者特别是适用于定位机器人或例如起重机臂或负重装置的如此配备的最终执行机构。如果多个位置固定的发送接收单元用于确定移动发送接收单元的位置,那么特别有利地在开始所述的文献应用表示为“多边拟合成孔径次级雷达(multilateral inverse syntheticaperture secondary radar)”的定位方法。
以下附图示出这样的非相干的发送接收单元的可能的进一步的设计方案。
图7示出在两个非相干的发送接收单元NKSE1、NKSE2之间相对于具有特别是多个用于接收的天线RA2,1、RA2,2、RA2,3的天线平面的角的机构。第一发送接收单元NKSE1特别是类似于来自图2的第一发送接收单元NKSE1那样构成,其中滤波器没有示出或者完全忽略。用于接收其他特别是第二发送接收单元NKSE2的通信接口CommRX可选择地如此设计,使得该通信接口可以接收比较信号,该比较信号由第二发送接收单元NKSE2利用设计用于发送的天线CA2也经由空中接口传输。
第二发送接收单元NKSE2同样具有信号生成器SigGen2,其生成的信号sigTX2通过天线TA2发送并且此外解耦。在第二发送接收单元NKSE2中多个例如三个连接用于接收的天线RA2,1、RA2,2、RA2,3分别具有后置的信号比较单元SigComp2,其例如构成为混合器。对于这些信号比较单元SigComp2分别为了与天线的接收信号混合附加地施加生成的信号sigTX2。混合信号分别直接传输或者特别是分别施加给后置的模拟数字转换器并且施加给通信接口CommTRX用以传输给其他发送接收单元NKSE1。例如该通信接口CommTRX配备有用于经由空中接口发送的天线CA2。
因此给第一发送接收单元NKSE1传输三个或更多个比较信号sigC21,1、sigC21,2、sigC21,3,其中,比较信号sigC21,1、sigC21,2、sigC21,3分别配置给在第二发送接收单元NKSE内的另一接收地点。在第一发送接收单元NKSE1中因此优选形成多个比较-比较信号sigCC121、sigCC122、…、sigCC12N并且提供用于分析处理或分析处理。
通过在发送接收单元NKSE2中这样的应用多个相干耦合的接收天线可能的是,不仅确定在两个发送接收单元NKSE1、NKSE2之间的间隔和速度,而且也确定其相互间的角。本身已知的是,如何可以利用多个相干接收通道确定波的入射角。利用根据图7的机构特别是也确定在两个发送接收单元NKSE1、NKSE2之间相对于具有多个天线RA2,1、RA2,2、RA2,3的发送接收单元NKSE2的天线平面的角。
利用根据图8的机构可以确定在两个非相干的发送接收单元NKSE1、NKSE2之间相对于第一发送接收单元NKSE1的天线平面的角。
在该例子中,第一发送接收单元NKSE1特别是类似于图7中的第二发送接收单元NKSE2构成,配备特别是多个连接用于接收的天线RA1,1、RA1,2、RA1,3。对于该第一发送接收单元后置有由信号比较单元SigComp1构成的机构,信号比较单元例如对于每个天线RA1,1、RA1,2、RA1,3分别具有一个混合器。对于信号比较单元SigComp2为了混合天线之一的分别一个接收信号并且附加地施加在第一发送接收单元NKSE1中生成的信号sigTX1。利用混合器产生的信号作为比较信号分别施加给后置的模拟数字转换器ADC1、ADC2或ADCN并且在转换之后或者直接施加给信号比较单元SigComp12。给信号比较单元SigComp12此外还施加通过通信接口CommTRX接收的信号或在其上接收的数据,其包含由第二发送接收单元NKSE2接收的比较信号sigC21。信号比较单元SigComp12特别是产生多个比较-比较信号sigCC112、sigCC122、…、sigCC1N2,它们被提供用于分析处理或分析处理。
例如通信接口CommTRX配备用于经由空中接口接收的天线CA1。相应地,在第二发送接收单元NKSE2中通信接口CommTRX配备用于经由空中接口发送的天线CA2。第二发送接收单元NKSE2此外例如如图2的第二发送接收单元NKSE2那也设计。相比之下作为另外的区别,图8中的第二发送接收单元NKSE2具有滤波器FLT,滤波器FLT连接在模拟数字转换器ADC与通信接口CommTRX之间并且对于通信接口CommTRX仅仅如下比较信号允许通过,该比较信号由自身产生的信号sigTX2和由第一发送接收单元NKSE1接收的信号sigRX21产生。
如果按照另一设计方案在两个非相干的发送接收单元中构成多个连接用于接收的天线,那么在发送接收单元之间的角和两个天线平面相互倾斜是可确定的。备选或附加地例如也可能的是,应用多个相干发送通道。
具有多个平行设置的非相干的发送接收单元的这样的机构对于作为被动雷达目标的目标O的测量也是有利的。对此图9示例性地示出利用两个非相干的发送接收单元NKSE1、NKSE2针对非协作的目标的测量包括其角测量的机构。在此发送接收单元NKSE1、NKSE2如图8设计,但是分别发送的第一信号sigTX1或sigTX2针对目标O,信号由该目标反射到相应天线RA1,1、RA1,2、…、RA1,N或RA2。利用该机构附加地除了根据上述方法之一的距离之外也可通过相位差估计入射角并且可与距离组合。为了解决内部校准问题,每个发送接收单元也可以配备所谓的背向散射(后向散射),利用背向散射校准接收通道。
对于距离和速度测量特别有利的是,作为测量信号或通过相应信号生成器SigGen1、SigGen2作为其信号sigTX1、sigTX2应用所谓的多斜坡FMCW信号。图10示出示例性的FMCW多斜坡信号,其作为特别是第一信号sigTX1,1、sigTX1,2、…、sigTX1,K或sigTX2,1、sigTX2,2、…、sigTX2,K通过信号生成器SigGen1、SigGen2作为前述图的第一或另一/第二发送接收单元NKSE1、NKSE2的其信号sigTX1产生。在该多斜坡FMCW信号中,多个优选K个相同的FMCW调制信号sigTX1,1;sigTX1,2;…sigTX1,K或sigTX2,1;sigTX2,2;…sigTX2,K以优选固定的时间间隔发送。为了复用,多斜坡-FMCW信号在参与测量的发送接收单元中要么微小时间错开地要么频率错开地发送。微小特别是理解为在时间频率图中测量斜坡持续时间的最大10%的时间延迟或等同的频率错开。
通过信号的优选交替的交换如所述在每个单个的FMCW斜坡中产生FMCW测量信号。因此总共产生K个FMCW测量信号。优选地,这些测量信号作为比较-比较信号sigCC12,1;sigCC12,2;…,sigCC12,K现在设置为矩阵。该数据矩阵在按照时间设置信号的情况下例如具有如下形式:
Figure BDA0003545856620000301
如果对该矩阵应用二维傅里叶变换,那么产生所谓的距离-多普勒图,由该图特别是可以非常准确地确定在非相干的发送接收单元NKSE之间的距离和速度。
为了在分布式发送接收单元中更好协调信号生成器可以有意义的是,将信号源在站中或者在具有非相干的发送接收单元的装置中通过交换无线电信号在实施作为优选描述的测量过程之前关于频率/时钟频率和时间偏差进行同步。因为成本有利的振荡器可能值得注意地偏离额定值或者在温度变化时产生漂移。信号源中的时钟生成器的偏差例如引起所有频率值和持续时间的缩放,这特别是可以使得信号调制和数字化信号的时间基础失真并随之可能导致错误的比较结果。为了同步非相干的发送接收单元例如适合的是按照专利文献US 8,108,558B2“Circuit arrangement and method for synchronization ofclocks in a network”的方法或按照文献US 7,940,743 B2“Method and device for thesynchronization of radio stations and a time-synchronous radio bus System”的方法。特别是对于同步非相干的发送接收单元有利的是,应用来自文献US 7,940,743 B2的方法到比较信号sigC21或sigC12。特别是在此有利的是,交换具有至少两个数值或符号不同的扫描率(每个时间信号频率的变化)的至少两个FMCW雷达信号。优选实施形式在此应用至少两个FMCW雷达信号,其中,在该FMWC信号之一中频率随时间上升,这相应于正的扫描率,而在另一FMWC信号中频率随时间下降,这相应于负的扫描率。
特别是还有另外的可实现为在不同附图中示出的或者对此备选的所述不同设计方案元素的所述组合。
作为另一设计方案可实现例如预选比较信号sigC21、sigC12的感兴趣的范围并且通过通信机构仅仅传输该范围而不是传输完全的比较信号。相应地落入到概念“比较信号”上的还有仅仅部分的比较信号,只要该比较信号对于比较-比较信号的确定还具有足够数据内容。在这样的情况下可以可选择地附加地传输系数值,该系数值表示传输比较信号的哪个范围。同样可实现传输这样的比较信号的多个范围或部段。
通过传输比较信号按照又一设计方案也可实现传输频谱而不是原本产生的比较信号和/或逐部段传输的频谱。可实现的特别是还有形成所述两个比较信号的频谱或者为了形成比较比较信号在频谱平面上共轭复数相乘。

Claims (20)

1.雷达***中的一种方法,其中:
-在第一非相干的发送接收单元(NKSE1)中产生第一信号(sigTX1)并且将其通过路径(SP)发送、特别是发射;
-在另一特别是第二非相干的发送接收单元(NKSE2)中产生第一信号(sigTX2)并且将其通过所述路径(SP)发送、特别是发射;
-在所述第一发送接收单元(NKSE1)中形成其第一信号(sigTX1)与这样的由所述另一发送接收单元(NKSE2)经由所述路径(SP)接收的第一信号(sigTX2)的比较信号(sigC12);以及
-在所述另一发送接收单元(NKSE2)中形成其第一信号(sigTX2)与这样的由所述第一发送接收单元(NKSE1)经由所述路径(SP)接收的第一信号(sigTX1)的另一比较信号(sigC21);
-其中所述另一比较信号(sigC21)由所述另一发送接收单元(NKSE2)传输、特别是通信给所述第一发送接收单元(NKSE1)。
2.根据权利要求1所述的方法,其中,形成所述比较信号(sigC21)与所述另一比较信号(sigC21)的比较-比较信号(sigC21;sigC12)。
3.根据权利要求2所述的方法,其中,所述比较-比较信号(sigC21;sigC12)相应于利用相干雷达***产生的比较信号,其方法是所述两个比较信号(sigC12;sigC21)相互处理特别是共轭复数相乘。
4.根据上述权利要求所述的方法,其中,比较信号(sigC12)、另一比较信号(sigC21)或比较-比较信号(sigC21;sigC12)中至少之一通过混合或相干中的至少一种形成。
5.根据上述权利要求所述的方法,其中,至少一个这样的另一比较信号(sigC21;sigC12)在所述发送接收单元(NKSE2;NKSE1)之间作为数据、包含数据的信号或可重构地包含数据的信号中至少之一来传输。
6.根据上述权利要求所述的方法,其中,所述第一信号(sigTX1、sigTX2)中至少之一作为发送信号经由构成为空中接口的路径(SP)发送。
7.根据上述权利要求所述的方法,其中,如此协调用于发送所述第一信号(sigTX1、sigTX2)的时刻,使得所述第一信号(sigTX1、sigTX2)在时间上至少部分重叠。
8.根据上述权利要求所述的方法,其中,由至少一个比较-比较信号(sigC21;sigC12)确定信号传播时延(τ12),这样的第一信号(sigTX1、sigTX2)对于在发送接收单元(NKSE1、NKSE2)之间的路程需要所述信号传播时延,其方法是分析所述比较-比较信号(sigCC12)的相位或相位值
Figure FDA0003545856610000021
Figure FDA0003545856610000022
频率、幅度曲线或相位曲线中至少之一。
9.根据上述权利要求所述的方法,其中,作为FMCW或OFDM调制信号产生和发送所述第一信号(sigTX1、sigTX2)中至少之一。
10.根据上述权利要求所述的方法,其中,作为多斜坡信号产生和发送所述第一信号(sigTX1、sigTX2)中至少之一。
11.根据上述权利要求所述的方法,其中,
-利用至少两个发送接收单元(NKSE2、NKSE1)在时间上依次测量多个比较-比较信号(sigCC12),其中所述发送接收单元(NKSE2、NKSE1)中至少之一运动;以及
-利用合成孔径方法确定:所述发送接收单元(NKSE1、NKSE2)之一的距离、位置、速度或存在中至少之一或者这样的发送接收单元(NKSE1、NKSE2)的存在或者相对于目标(O)的距离、位置、速度中至少之一或目标(O)的存在。
12.雷达***,其中,
-至少一个第一非相干的发送接收单元(NKSE1)构成为,产生第一信号(sigTX1)并且将其通过路径(SP)发送、特别是发射;
-至少另一特别是第二非相干的发送接收单元(NKSE2)构成为,产生第一信号(sigTX2)并且将其通过所述路径(SP)发送、特别是发射;
-所述第一发送接收单元(NKSE1)构成为,形成其第一信号(sigTX1)与这样的由所述另一发送接收单元(NKSE2)经由所述路径(SP)接收的第一信号(sigTX2)的比较信号(sigC12);
-所述另一发送接收单元(NKSE2)构成为,形成其第一信号(sigTX2)与这样的由所述第一发送接收单元(NKSE1)经由所述路径(SP)接收的第一信号(sigTX1)的另一比较信号(sigC21);以及
-所述另一比较信号(sigC21)由所述另一发送接收单元(NKSE2)传输、特别是通信给所述第一发送接收单元(NKSE1)。
13.根据权利要求12所述的雷达***,其中,形成该比较信号(sigC21)与所述另一比较信号(sigC21)的比较-比较信号(sigCC21;sigCC12)。
14.根据权利要求12或13所述的雷达***,具有三个或更多个空间上间隔的发送接收单元(NKSE1、NKSE2、NKSE3、…、NKSE-N),其中,利用两对以上各两个所述空间间隔开的发送接收单元(NKSE1、NKSE2;NKSE-N、NKSE2)来测量两个或更多个比较-比较信号(sigCC12、sigCC12、sigCC13、sigCC22、…、sigCC32),由所述比较-比较信号确定所述发送接收单元(NKSE2、NKSE1)之一的距离、位置、速度或存在或者这样的发送接收单元(NKSE2、NKSE1)的存在或者相对于目标(O)的距离、位置、速度中至少之一或目标(O)的存在。
15.根据权利要求12至14之一所述的雷达***,其中,第一发送接收单元(NKSE1)和至少一个这样的另一发送接收单元(NKSE2)和/或分析处理机构(P)构成为用于实施根据上述权利要求之一所述的方法。
16.雷达***的装置,特别是用于实施根据权利要求1至11之一所述的方法和/或在根据权利要求12至15中之一所述的雷达***中,其中,该装置:
-构成为第一非相干的发送接收单元(NKSE1),特别是第一非相干的发送接收单元(NKSE1);以及
-具有信号生成器和至少一个天线(TA1;RA1),所述天线构成为,产生第一信号(sigTX1)并且将其通过路径(SP)发送、特别是发射;
-具有如下机构,该机构构成为,形成第一信号(sigTX1)与这样的由所述另一发送接收单元(NKSE2)经由所述路径(SP)接收的第一信号(sigTX2)的比较信号(sigC12);并且
-具有如下中至少之一:
-接口(CommTX),该接口构成为,将比较信号(sigC12)传输、特别是通信给所述另一发送接收单元(NKSE2);或者
-接口(CommRX),该接口构成为,借助于传输、特别是通信在第一发送接收单元(NKSE1)中获取这样的由该另一发送接收单元(NKSE2)产生的另一比较信号(sigC21)。
17.根据权利要求16所述的装置,具有另一比较单元(sigComp12),所述另一比较单元由在相同发送接收单元(NKSE1)中形成的比较信号(sigC21)和传输给该发送接收单元(NKSE1)的比较信号(sigC21)形成比较-比较信号(sigCC12)。
18.根据权利要求16或17所述的装置,其中,所述至少一个接口(CommTX、CommRX)是数据接口。
19.根据权利要求16至18之一所述的装置,其中,在输出所述比较信号(sigC12)的机构与形成所述比较-比较信号(sigCC12)的另一比较单元(sigComp12)之间设置有滤波器(FLT),其中,所述滤波器(FLT)给所述比较单元(sigComp12)施加所述比较信号(sigC12),其中,所述滤波器(FLT)不施加于另一在前置于所述滤波器(FLT)的机构中形成的比较信号(sigC11)并且抑制在所述前置的机构中形成的比较信号(sigC11)或者将其在接口提供。
20.根据权利要求16至19之一所述的装置,其具有多个相互空间上间隔的接收天线(RA1,1、…、RA1,N;RA2,1、…、RA2,N),给所述接收天线分别配置一个机构,所述机构构成为,分别由第一信号(sigTX2)和由这种从这样的另一发送接收单元(NKSE2)经由路径(SP)接收的第一信号(sigTX1)形成比较信号(sigC21,1、sigC21,2、sigC21,3)。
CN202210248082.6A 2014-03-26 2015-03-23 雷达***中的方法、雷达***或雷达***的装置 Pending CN114706063A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014104273.5 2014-03-26
DE102014104273.5A DE102014104273A1 (de) 2014-03-26 2014-03-26 Verfahren in einem Radarsystem, Radarsystem bzw. Vorrichtung eines Radarsystems
CN201580026040.6A CN106461770A (zh) 2014-03-26 2015-03-23 雷达***中的方法、雷达***或雷达***的装置
PCT/DE2015/100119 WO2015144134A2 (de) 2014-03-26 2015-03-23 Verfahren in einem radarsystem, radarsystem bzw. vorrichtung eines radarsystems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580026040.6A Division CN106461770A (zh) 2014-03-26 2015-03-23 雷达***中的方法、雷达***或雷达***的装置

Publications (1)

Publication Number Publication Date
CN114706063A true CN114706063A (zh) 2022-07-05

Family

ID=53525034

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580026040.6A Pending CN106461770A (zh) 2014-03-26 2015-03-23 雷达***中的方法、雷达***或雷达***的装置
CN202210248082.6A Pending CN114706063A (zh) 2014-03-26 2015-03-23 雷达***中的方法、雷达***或雷达***的装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201580026040.6A Pending CN106461770A (zh) 2014-03-26 2015-03-23 雷达***中的方法、雷达***或雷达***的装置

Country Status (7)

Country Link
US (1) US10962634B2 (zh)
EP (2) EP3123199B1 (zh)
JP (2) JP6752195B2 (zh)
KR (1) KR102364110B1 (zh)
CN (2) CN106461770A (zh)
DE (1) DE102014104273A1 (zh)
WO (1) WO2015144134A2 (zh)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014212281A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh Radarmessverfahren mit unterschiedlichen Sichtbereichen
US9880261B2 (en) * 2014-09-30 2018-01-30 Texas Instruments Incorporated Loopback techniques for synchronization of oscillator signal in radar
KR20180113502A (ko) * 2016-01-04 2018-10-16 지메오 게엠베하 레이더 시스템에서 위상 잡음에 의해 초래되는 간섭을 감소시키기 위한 방법 및 시스템
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
WO2017187306A1 (en) * 2016-04-25 2017-11-02 Uhnder, Inc. Adaptive filtering for fmcw interference mitigation in pmcw radar systems
US10473773B2 (en) 2016-10-26 2019-11-12 GM Global Technology Operations LLC Time synchronization of spatially separated radars
US10690750B2 (en) * 2017-01-24 2020-06-23 GM Global Technology Operations LLC Synchronization of spatially distributed radar
US9971020B1 (en) 2017-02-10 2018-05-15 Uhnder, Inc. Radar data buffering
US10908272B2 (en) 2017-02-10 2021-02-02 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
JP6938812B2 (ja) * 2017-02-24 2021-09-22 株式会社三井E&Sマシナリー データ処理方法及び計測装置
DE102017104380A1 (de) 2017-03-02 2018-09-06 Friedrich-Alexander-Universität Erlangen-Nürnberg Radar-System sowie Verfahren zum Betreiben eines Radar-Systems
DE102017110063A1 (de) 2017-03-02 2018-09-06 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Vorrichtung zur Umfelderfassung
DE102017107212A1 (de) * 2017-04-04 2018-10-04 Infineon Technologies Ag Verfahren und Vorrichtung zum Verarbeiten von Radarsignalen
DE102017110404A1 (de) 2017-05-12 2018-11-15 Symeo Gmbh Verfahren und Vorrichtung zur Kompensation von Störeinflüssen
DE102017110403A1 (de) * 2017-05-12 2018-11-15 Symeo Gmbh Verfahren und Vorrichtung zur Kompensation von Phasenrauschen
EP3407082B1 (en) * 2017-05-24 2021-06-23 Apple Inc. Apparatus and method for determining a distance to an object
KR102401176B1 (ko) * 2017-09-14 2022-05-24 삼성전자주식회사 레이더 영상 처리 방법, 장치 및 시스템
WO2019052687A1 (de) 2017-09-15 2019-03-21 Metirionic Gmbh Verfahren für funkmessanwendungen
DE102018100632A1 (de) * 2017-10-11 2019-04-11 Symeo Gmbh Radar-Verfahren und -System zur Bestimmung der Winkellage, des Ortes und/oder der, insbesondere vektoriellen, Geschwindigkeit eines Zieles
EP3470874A1 (de) * 2017-10-11 2019-04-17 Symeo GmbH Radar-verfahren und -system zur bestimmung der winkellage, des ortes und/oder der, insbesondere vektoriellen, geschwindigkeit eines zieles
CN108120964B (zh) * 2017-11-22 2021-12-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 动态测试二次雷达本机时延数据提高测距精度的方法
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
DE102018202290A1 (de) * 2018-02-15 2019-08-22 Robert Bosch Gmbh Winkelschätzung und Mehrdeutigkeitsauflösung von Radarsensoren für Kraftfahrzeuge mit großem Antennenarray
DE102018202289A1 (de) * 2018-02-15 2019-08-22 Robert Bosch Gmbh Winkelauflösender breitbandiger Radarsensor für Kraftfahrzeuge
US10779191B1 (en) 2018-03-26 2020-09-15 Lynq Technologies, Inc. Data compression techniques
CN110531358B (zh) * 2018-05-25 2023-07-18 华为技术有限公司 信息测量方法及信息测量装置
DE102018128962A1 (de) * 2018-11-19 2020-05-20 Rheinmetall Waffe Munition Gmbh Verfahren zur Bestimmung der Position eines Objektes, Vorrichtung zur Bestimmung der Position eines Objektes und System
KR102143069B1 (ko) * 2019-01-15 2020-08-10 주식회사 디케이이앤씨 Uwb 레이더를 적용한 지능형 재난 경보 시스템 및 방법
KR102174321B1 (ko) * 2019-04-22 2020-11-04 한국항공우주연구원 광역 고해상도 sar 영상 구현 방법 및 광역 고해상도 sar 영상 구현 장치
CN110320517B (zh) * 2019-05-31 2023-08-15 惠州市德赛西威汽车电子股份有限公司 一种车载雷达识别方法
US11119204B2 (en) * 2019-06-06 2021-09-14 GM Global Technology Operations LLC Angular resolution enhancement using non-coherent radar systems
DE102019209310A1 (de) * 2019-06-27 2020-12-31 Robert Bosch Gmbh OFDM-Radarsensorsystem mit aktiv zurücksendendem Repeater
CN110412559B (zh) * 2019-07-26 2023-05-26 西安电子科技大学 分布式无人机mimo雷达的非相参融合目标检测方法
KR20210016159A (ko) 2019-08-01 2021-02-15 주식회사 아이유플러스 산업용 충돌방지용 거리측정 레이더 센서장치 및 방법 그리고 보안용 센서의 응용
DE102019124120A1 (de) 2019-09-09 2021-03-11 Friedrich-Alexander-Universität Erlangen-Nürnberg Radar-Verfahren sowie Radar-System
DE102019126988A1 (de) * 2019-10-08 2021-04-08 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Reduzierung von Störeinflüssen in einem Radar-System
CN111273292B (zh) * 2020-02-20 2022-02-22 中国科学院电子学研究所 合成孔径雷达高频振动补偿方法、装置、电子设备及介质
JP7150771B2 (ja) 2020-03-16 2022-10-11 株式会社東芝 測距装置、測距システム及び測距方法
CN111308579B (zh) * 2020-03-20 2022-01-04 南京大桥机器有限公司 一种l波段窄带电子探空仪
DE102020110696A1 (de) 2020-04-20 2021-10-21 Symeo Gmbh Radar-Verfahren und Radar-System zur phasenkohärenten Auswertung
US20230228842A1 (en) * 2020-06-17 2023-07-20 Google Llc Distributed Radar System
WO2022002629A1 (en) * 2020-06-30 2022-01-06 Interdigital Ce Intermediate, Sas Methods, apparatuses and systems directed to localizing a target based on a radar processing of a signal
US11899127B2 (en) * 2020-09-30 2024-02-13 Aurora Operations, Inc. Virtual antenna array with distributed aperture
US11762079B2 (en) 2020-09-30 2023-09-19 Aurora Operations, Inc. Distributed radar antenna array aperture
CN112684445B (zh) * 2020-12-02 2021-09-07 中国人民解放军国防科技大学 基于md-admm的mimo-isar三维成像方法
WO2022117502A1 (en) * 2020-12-04 2022-06-09 Interdigital Ce Intermediate, Sas Methods, apparatuses and systems directed to obtain a localization power matrix of a radar
DE102020134284A1 (de) 2020-12-18 2022-06-23 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Kalibrierung mindestens eines Signal- und/oder System-Parameters eines wellenbasierten Messsystems
US20230111983A1 (en) * 2021-09-28 2023-04-13 Nxp B.V. Radar with phase noise correction
US20230314562A1 (en) * 2022-04-04 2023-10-05 Nxp B.V. Phase noise reduction for symmetric bistatic radar
US20240012086A1 (en) * 2022-07-06 2024-01-11 Qualcomm Incorporated Mitigation of impact of oscillator error on doppler estimation for radio frequency sensing
CN116559802B (zh) * 2023-07-04 2023-09-08 中国科学院空天信息创新研究院 一种干涉合成孔径雷达***相位内定标方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044629B2 (ja) * 1977-12-16 1985-10-04 株式会社安川電機 変位測定装置
FI83999C (fi) * 1989-10-26 1991-09-25 Vaisala Oy Foerfarande och anordning foer maetning av hastigheten av ett objekt genom att utnyttja doppler -foerskjutningen av elektromagnetisk straolning.
DE4037725A1 (de) * 1990-11-27 1992-06-11 Deutsche Forsch Luft Raumfahrt Verfahren zur digitalen generierung von sar-bildern und einrichtung zu dessen durchfuehrung
JPH05273350A (ja) * 1992-03-27 1993-10-22 Agency Of Ind Science & Technol 高精度距離測定法
JP2546175B2 (ja) * 1993-12-08 1996-10-23 日本電気株式会社 干渉型合成開口レーダ動揺補正装置
DE19521771A1 (de) * 1995-06-20 1997-01-02 Jan Michael Mrosik FMCW-Abstandsmeßverfahren
CA2214285C (en) * 1995-12-19 2001-06-05 Siemens Schweiz Ag Process and amplitude or phase monopulse radar device for locating flying objects
US6522890B2 (en) * 1995-12-22 2003-02-18 Cambridge Positioning Systems, Ltd. Location and tracking system
JP2842366B2 (ja) * 1996-03-27 1999-01-06 日本電気株式会社 誤差補正方位角検出装置
SE509434C2 (sv) * 1997-05-16 1999-01-25 Ericsson Telefon Ab L M Anordning och förfarande vid antennkalibrering
JP3672212B2 (ja) * 1997-10-24 2005-07-20 三菱電機株式会社 合成開口レーダ装置
JP3436879B2 (ja) * 1998-03-05 2003-08-18 松下電器産業株式会社 距離検出方法及びその装置
US5861845A (en) * 1998-05-19 1999-01-19 Hughes Electronics Corporation Wideband phased array antennas and methods
JP3411856B2 (ja) * 1999-07-26 2003-06-03 松下電器産業株式会社 距離検出方法及び距離検出装置
JP3427187B2 (ja) * 2001-02-07 2003-07-14 東京大学長 変調光による距離測定装置および測定方法
JP2002323556A (ja) * 2001-04-27 2002-11-08 Nec Corp 距離計測装置
DE10157931C2 (de) 2001-11-26 2003-12-11 Siemens Ag Verfahren und Vorrichtungen zur Synchronisation von Funkstationen und zeitsynchrones Funkbussystem
DE102005000732A1 (de) 2005-01-04 2006-07-13 Siemens Ag Funkbasiertes Ortungssystem mit synthetischer Apertur
US7606592B2 (en) 2005-09-19 2009-10-20 Becker Charles D Waveguide-based wireless distribution system and method of operation
US20070290916A1 (en) * 2006-06-16 2007-12-20 Physical Logic Ag Method of Detecting Physical Phenomena
US8094061B2 (en) * 2007-02-22 2012-01-10 Nec Corporation Multiband transceiver and positioning system using the transceiver
US7929802B2 (en) * 2007-03-22 2011-04-19 Harris Corporation Method and apparatus for registration and vector extraction of SAR images based on an anisotropic diffusion filtering algorithm
DE102008010536A1 (de) 2008-02-22 2009-08-27 Symeo Gmbh Schaltungsanordnung und Verfahren zur Synchronisation von Uhren in einem Netz
AT506707B1 (de) * 2008-08-18 2009-11-15 Univ Linz Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen
JP5750214B2 (ja) * 2009-03-30 2015-07-15 日本信号株式会社 無線距離・速度計測装置
DE102009030075A1 (de) * 2009-06-23 2010-12-30 Symeo Gmbh Vorrichtung und Abbildungsverfahren mit synthetischer Apertur zum Bestimmen eines Einfallwinkels und/oder einer Entfernung
JP5602395B2 (ja) * 2009-08-07 2014-10-08 株式会社ヨコオ 近距離レーダ装置及び測距方法
EP2602636A1 (en) 2011-12-08 2013-06-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method of determining distance and speed of FMCW radar terminals
DE102012212888A1 (de) 2012-07-23 2014-01-23 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs

Also Published As

Publication number Publication date
WO2015144134A2 (de) 2015-10-01
EP3588134A1 (de) 2020-01-01
DE102014104273A1 (de) 2015-10-01
WO2015144134A3 (de) 2015-11-12
CN106461770A (zh) 2017-02-22
JP6752195B2 (ja) 2020-09-09
EP3123199A2 (de) 2017-02-01
JP2017513024A (ja) 2017-05-25
US10962634B2 (en) 2021-03-30
EP3123199B1 (de) 2020-05-13
US20170176583A1 (en) 2017-06-22
KR20160138065A (ko) 2016-12-02
JP7357585B2 (ja) 2023-10-06
JP2020165980A (ja) 2020-10-08
KR102364110B1 (ko) 2022-02-18

Similar Documents

Publication Publication Date Title
JP7357585B2 (ja) レーダシステムの方法、レーダシステム及びレーダシステムの装置
CN110622026B (zh) 用于环境检测的方法和装置
Gottinger et al. Coherent automotive radar networks: The next generation of radar-based imaging and mapping
JP6877438B2 (ja) レーダシステムにおける位相ノイズに起因する干渉を低減するための方法及びシステム
CN109655821B (zh) 用于确定目标的矢量速度的雷达方法和雷达***
EP3324205B1 (en) Decentralised radar system
US10914818B2 (en) Angle-resolving FMCW radar sensor
JP5197138B2 (ja) マルチスタティックレーダ装置
WO2013010123A1 (en) System and method for enhanced point-to-point direction finding
US11774551B2 (en) Method and device for compensating for interfering influences
US20220334217A1 (en) Radar method and radar system
Gottinger et al. Coherent full-duplex double-sided two-way ranging and velocity measurement between separate incoherent radio units
CN112470023A (zh) 通过使用基于波的信号定位至少一个对象的测位方法以及测位***
KR20210018339A (ko) 레이더 센서 시스템
EP2096457B1 (en) Digital beam forming using frequency-modulated signals
JP2007192573A (ja) 目標測位装置
Brisken Multistatic ISAR-chances and challenges
Subedi et al. Robust motion parameter estimation in multistatic passive radar
EP4258019A1 (en) Phase noise reduction for symmetric bistatic radar
US20240036183A1 (en) Radar method and radar system for a phase-coherent analysis
RU2380723C1 (ru) Способ определения параметров движения источника радиоизлучения
Friedman et al. Resolving complex targets in multipath environments using ARI RADAR systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination