CN110082406A - 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法 - Google Patents

一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法 Download PDF

Info

Publication number
CN110082406A
CN110082406A CN201910489462.7A CN201910489462A CN110082406A CN 110082406 A CN110082406 A CN 110082406A CN 201910489462 A CN201910489462 A CN 201910489462A CN 110082406 A CN110082406 A CN 110082406A
Authority
CN
China
Prior art keywords
sensitive material
junctions
hetero
sno
nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910489462.7A
Other languages
English (en)
Inventor
孙鹏
郭杰
卢革宇
刘方猛
闫旭
刘凤敏
粱喜双
高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910489462.7A priority Critical patent/CN110082406A/zh
Publication of CN110082406A publication Critical patent/CN110082406A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Abstract

一种基于SnO2‑Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法,属于半导体氧化物气体传感器技术领域。由外表面带有两条平行、环状且彼此分立的金电极的陶瓷管衬底、涂覆在陶瓷管外表面和金电极上的SnO2‑Co3O4异质结纳米结构敏感材料、置于陶瓷管内的镍铬合金加热丝组成;本发明所述的基于SnO2‑Co3O4异质结纳米结构敏感材料的传感器对二甲苯表现出优异的灵敏度(101.9~100ppm)以及较低的检测下限(0.05ppm)。制备器件的工艺简单、体积小、适于大批量生产,在检测微环境中二甲苯污染物方面有广阔的应用前景。

Description

一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体 传感器及其制备方法
技术领域
本发明属于半导体氧化物气体传感器技术领域,具体涉及一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法。
背景技术
二甲苯广泛用于涂料、树脂、染料、油墨等行业做溶剂;用于医药、***、农药等行业做合成单体或溶剂;也可作为高辛烷值汽油组分,是有机化工的重要原料。然而,类似于其他有机溶剂,二甲苯对眼睛及上呼吸道有刺激作用,高浓度时,对中枢***具有麻醉作用。因此,研制具有高灵敏度以及痕量气体检测下限的二甲苯气体传感器具有十分重要的意义。
在种类众多的气体传感器中,以半导体氧化物为敏感材料的电阻型气体传感器具有灵敏度高、检测下限低、选择性好、响应和恢复速度快、制作方法简单、成本较低等优点,是目前应用最广泛的气体传感器之一。随着纳米科学与技术的发展,将气敏材料调控成纳米结构能够极大地提高材料的比表面积,增加活性位点,可以使气敏特性得到改善。另外,通过使两种气敏材料相结合,利用它们之间的协同效应可以使得气敏材料得到进一步改性,从而获得更好的气敏特性。
Co3O4作为一种代表性的p型半导体功能材料,适用于如锂离子电池,超级电容器和多相催化等各种领域的应用,但是由于它们通常具有比n型半导体更低的响应,所以包括Co3O4在内的所有p型半导体氧化物很少以其原始形式用于传感应用。然而得益于Co3O4具有良好的催化效果和高吸附氧的优点,使得其在传感领域的应用仍然具有很大的开发价值。通过将两个或多个具有不同带隙的半导体组合以形成异质结,可以优化气体传感器的气敏特性。因此本发明结合SnO2高电子迁移率以及高化学稳定性等优点,对Co3O4材料进一步改性,进而使得气体传感器的气敏特性显著提高。
发明内容
本发明的目的是提供一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法。
利用SnO2-Co3O4异质结纳米结构作为敏感材料,一方面Co3O4对多种VOC气体都具有较好的催化氧化活性,而且针对苯、甲苯、二甲苯一类反应活性较低的气体仍然可以起到很好的催化效果;另一方面经过SnO2改性以后,极大地提高了Co3O4的异质结纳米结构的比表面积,使得吸附氧能力增强,所以会引起更多的氧分子参与反应;此外,由于SnO2与Co3O4之间异质结的存在,使得载流子的调制作用更加明显,导致敏感材料的电阻变化的更加明显。这三方面的共同作用大幅提高了气体与敏感材料的反应效率,进而提高了传感器的灵敏度。本发明所采用的市售的管式结构传感器制作工艺简单,体积小,利于工业上批量生产,因此具有重要的应用价值。
本发明所述的基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器,由外表面带有两条平行、环状且彼此分立的金电极的陶瓷管衬底、涂覆在陶瓷管外表面和金电极上的敏感材料、置于陶瓷管内的镍铬合金加热丝组成;其特征在于:敏感材料为SnO2-Co3O4异质结纳米结构敏感材料,且由如下步骤制备得到:
(1)首先量取15~30mL去离子水与15~30mL乙二醇,将其混合后搅拌均匀;
(2)将0.2~0.3g的四水合醋酸钴(C4H6CoO4·4H2O)、0.4~0.6g的聚乙烯吡咯烷酮(PVP)、0.4~0.6g的谷氨酸(L-Glutamic acid)加入到步骤(1)的去离子水与乙二醇的混合溶液中;搅拌10~20分钟以后,再加入0.1~0.2g的尿素(CH4N2O)和0.05~0.06g的五水氯化锡(SnCl4.5H2O),并保持不断地搅拌直至其全部溶解;
(3)把步骤(2)得到的溶液转移到水热釜中,在150~190℃下保持12~14小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,在室温下干燥后再在400~500℃下煅烧1~2小时,从而得到SnO2-Co3O4异质结纳米结构粉末。
本发明所述的一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器的制备方法,其步骤如下:
①取适量的去离子水与SnO2-Co3O4异质结纳米结构粉末均匀混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管表面,形成10~30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
②在红外灯下烘烤30~45分钟,待敏感材料薄膜干燥后,再将Al2O3陶瓷管在400~450℃下煅烧2~3小时;然后将电阻值为30~40Ω的镍铬加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照旁热式气敏元件进行焊接和封装,从而得到基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器。
本发明制备的基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器具有以下优点:
1.利用简单的一步水热法成功制备出SnO2-Co3O4异质结纳米结构敏感材料,制备方法简单,成本低廉;
2.通过将SnO2与Co3O4两种材料相结合,显著提高了Co3O4基气体传感器对二甲苯的选择性和灵敏度(101.9-100ppm),降低了传感器的气体浓度检测下限(1.2-0.05ppm),且具有良好稳定性,在检测微环境中二甲苯含量方面有广阔的应用前景;
3.采用市售管式传感器,器件工艺简单,体积小,适于大批量生产。
附图说明
图1a和图1b分别为纯Co3O4纳米结构敏感材料和SnO2-Co3O4异质结纳米结构敏感材料的SEM形貌图;
图2a、图2b、图2c分别为纯Co3O4纳米结构敏感材料的低分辨率和高分辨率的TEM图;图2d、图2e、图2f分别为SnO2-Co3O4异质结纳米结构敏感材料的低分辨率和高分辨率TEM图;
图3:纯Co3O4纳米结构敏感材料和SnO2-Co3O4异质结纳米结构敏感材料的XRD图;
图4:对比例和实施例中传感器在不同工作温度下对100ppm二甲苯气体的灵敏度曲线;
图5a:对比例和实施例中传感器在最佳工作温度(175℃)下对7种100ppm待测气体的选择性曲线;
图5b:实施例中传感器在不同工作温度下对7种100ppm待测气体的选择性曲线;
图6:对比例和实施例中传感器在最佳工作温度(175℃)下的灵敏度-二甲苯浓度特性曲线
图7a:实施例中传感器在最佳工作温度(175℃)下对0.05ppm~1ppm二甲苯气体的响应恢复曲线;
图7b:实施例中传感器在最佳工作温度(175℃)下对3ppm~200ppm二甲苯气体的响应恢复曲线;
图8:实施例中传感器在最佳工作温度(175℃)下对100ppm二甲苯气体的灵敏度的长期稳定性曲线;
如图1所示,纯Co3O4纳米结构敏感材料为绒球状,单个纳米绒球由纳米线构成,纳米花球的直径约为2~4μm。SnO2-Co3O4异质结纳米结构敏感材料呈现出纳米颗粒组成的不规则结构。
如图2所示,纯Co3O4纳米结构敏感材料的TEM图与SEM图所示的形貌统一,为由许多纳米线构成的纳米绒球结构,高分辨TEM图显示出0.286nm宽的晶格间距,与纯Co3O4的(220)晶面吻合。SnO2-Co3O4异质结纳米结构敏感材料的TEM图与SEM图所示的形貌统一,为纳米颗粒组成的不规则结构,高分辨TEM图显示出0.286nm和0.334nm宽的晶格间距,分别与Co3O4的(220)和SnO2(1100)晶面吻合。
如图3所示,SnO2-Co3O4异质结纳米结构敏感材料的XRD谱图与纯Co3O4纳米结构敏感材料的XRD谱图相比,Co3O4特征峰吻合,剩余的特征峰与SnO2特征峰相匹配,而且没有多余的特征峰,证明了SnO2-Co3O4异质结纳米结构敏感材料由SnO2与Co3O4组成。
如图4所示,对比例和实施例中的传感器的最佳工作温度均为175℃,此时器件对100ppm二甲苯的灵敏度分别为6.2和101.9,灵敏度提升了16.4倍。
如图5所示,在最佳工作温度条件下,相对于对比例中传感器来说,实施例中的传感器的灵敏度提升明显,而且对二甲苯的选择性最好。同时在不同的温度条件下,实施例中的传感器仍然对二甲苯呈现出最好的选择性。
如图6所示,在最佳工作温度条件下,相对于对比例中传感器来说,随着二甲苯气体浓度的增加,实施例中的传感器的灵敏度提升更加明显。
如图7所示,实施例传感器对不同浓度的二甲苯表现出优异的响应和恢复特性。此外,实施例传感器的检测下限较低,可以达到ppb级别,对低浓度二甲苯也有较好的响应,对50ppb二甲苯的灵敏度为1.2。
如图8所示,在连续测试的30天里,工作在175℃温度下的实施例中的传感器在100ppm二甲苯气体中的灵敏度曲线波动较小,显示出其良好的长期稳定性。
器件的灵敏度(p型半导体)在测试还原性气体中被定义为其在被测气体中电阻值(Rg)与在空气中电阻值(Ra)大小之比,即为S=Rg/Ra。在测试过程中,使用静态测试***进行测试。将器件置于50~80L的气箱内,向内注射一定量的待测有机气体,观察并记录其阻值变化,通过计算得到相应的灵敏度数值。
具体实施方式
对比例1:
用纯Co3O4纳米结构作为敏感材料制作二甲苯传感器,其具体的制作过程:
(1)首先量取20mL去离子水与20mL乙二醇,将其倒入烧杯中,并不断地搅拌;
(2)将0.25g四水合醋酸钴、0.5g聚乙烯吡咯烷酮、0.5g谷氨酸加入到去离子水与乙二醇均匀混合的烧杯中;搅拌15分钟以后,再加入0.2g尿素,并保持不断地搅拌直至其全部溶解;
(3)把上述溶液转移到水热釜中,在160℃下保持12小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在450℃下煅烧2小时,从而得到纯Co3O4纳米结构敏感材料粉末。
(4)取适量的去离子水与纯Co3O4纳米结构敏感材料粉末均匀混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有2个环形金电极的Al2O3陶瓷管表面,形成40μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(5)在红外灯下烘烤40分钟,待敏感材料干燥后,把Al2O3陶瓷管在450℃下煅烧2小时;然后将电阻值为35Ω的镍铬加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于纯Co3O4纳米结构敏感材料的二甲苯气体传感器。
实施例1:
用SnO2-Co3O4异质结纳米结构作为敏感材料制作二甲苯传感器,其具体的制作过程:
(1)首先量取20mL去离子水与20mL乙二醇,将其倒入烧杯中,并不断地搅拌;
(2)将0.25g四水合醋酸钴、0.5g聚乙烯吡咯烷酮、0.5g谷氨酸加入到去离子水与乙二醇均匀混合的烧杯中;在搅拌15分钟以后,再加入0.2g尿素和0.05g五水氯化锡,并保持不断地搅拌直至其全部溶解;
(3)把上述溶液转移到水热釜中,在160℃下保持12小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在450℃下煅烧2小时,从而得到了SnO2-Co3O4异质结纳米结构粉末。
(4)取适量的去离子水与SnO2-Co3O4异质结纳米结构粉末均匀混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有2个环形金电极的Al2O3陶瓷管表面,形成40μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(5)在红外灯下烘烤40分钟,待敏感材料干燥后,把Al2O3陶瓷管在450℃下煅烧2小时;然后将电阻值为35Ω的镍铬加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器。

Claims (2)

1.一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器,由外表面带有两条平行、环状且彼此分立的金电极的陶瓷管衬底、涂覆在陶瓷管外表面和金电极上的敏感材料、置于陶瓷管内的镍铬合金加热丝组成;其特征在于:敏感材料为SnO2-Co3O4异质结纳米结构敏感材料,且由如下步骤制备得到,
(1)首先量取15~30mL去离子水与15~30mL乙二醇,将其混合后搅拌均匀;
(2)将0.2~0.3g的四水合醋酸钴、0.4~0.6g的聚乙烯吡咯烷酮、0.4~0.6g的谷氨酸加入到步骤(1)的去离子水与乙二醇的混合溶液中;搅拌10~20分钟以后,再加入0.1~0.2g的尿素和0.05~0.06g的五水氯化锡,并保持不断地搅拌直至其全部溶解;
(3)把步骤(2)得到的溶液转移到水热釜中,在150~190℃下保持12~14小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,在室温下干燥后再在400~500℃下煅烧1~2小时,从而得到SnO2-Co3O4异质结纳米结构粉末。
2.权利要求1所述的一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器的制备方法,其步骤如下:
①取适量的去离子水与SnO2-Co3O4异质结纳米结构粉末均匀混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管表面,形成10~30μm厚的敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
②在红外灯下烘烤30~45分钟,待敏感材料薄膜干燥后,再将Al2O3陶瓷管在400~450℃下煅烧2~3小时;然后将电阻值为30~40Ω的镍铬加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后按照旁热式气敏元件进行焊接和封装,从而得到基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器。
CN201910489462.7A 2019-06-06 2019-06-06 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法 Pending CN110082406A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910489462.7A CN110082406A (zh) 2019-06-06 2019-06-06 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910489462.7A CN110082406A (zh) 2019-06-06 2019-06-06 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN110082406A true CN110082406A (zh) 2019-08-02

Family

ID=67423745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910489462.7A Pending CN110082406A (zh) 2019-06-06 2019-06-06 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN110082406A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455891A (zh) * 2019-08-20 2019-11-15 吉林大学 基于CoWO4-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
CN111111677A (zh) * 2020-01-06 2020-05-08 辽宁大学 氧化锡复合四氧化三钴光热催化剂的制备方法及其在热催化中的应用
CN111167434A (zh) * 2020-02-14 2020-05-19 辽宁大学 一种降解气态污染物的光催化复合材料Cr2O3-SnO2及其制备方法和应用
CN113295737A (zh) * 2021-05-17 2021-08-24 电子科技大学长三角研究院(湖州) 一种锰掺杂四氧化三钴多孔纳米片状材料及其制备方法与应用
CN116145286A (zh) * 2023-01-03 2023-05-23 吉林大学 一种可在低工作温度下有效检测超低浓度二甲苯的钴基纳米纤维敏感材料、制备方法及应用
CN116145286B (zh) * 2023-01-03 2024-05-10 吉林大学 一种可在低工作温度下有效检测超低浓度二甲苯的钴基纳米纤维敏感材料、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009089A1 (en) * 2009-03-31 2012-01-12 Industrial Cooperation Foundation Chonbuk National University Thin-film high-activity gas sensor using core-shell structured composite nanoparticles as sensing material and method of manufacturing the same
CN103199219A (zh) * 2013-04-08 2013-07-10 朱苗红 石墨烯-锡酸钴-四氧化三钴复合负极材料的制备方法
US20160025695A1 (en) * 2013-04-18 2016-01-28 Korean University Research and Business Foundation Methylbenzene gas sensor using chrome-doped nickel oxide nanostructures and method for producing same
CN106558691A (zh) * 2015-09-30 2017-04-05 比亚迪股份有限公司 一种中空多孔结构负极材料及其制备方法和电池
CN106950274A (zh) * 2017-04-06 2017-07-14 吉林大学 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法
CN107331831A (zh) * 2016-04-28 2017-11-07 严天祥 一种锡纳米复合材料及其制备方法
CN108906076A (zh) * 2018-06-27 2018-11-30 济南大学 一种多分支的三维十字架Pt-Cu-Co合金纳米颗粒的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009089A1 (en) * 2009-03-31 2012-01-12 Industrial Cooperation Foundation Chonbuk National University Thin-film high-activity gas sensor using core-shell structured composite nanoparticles as sensing material and method of manufacturing the same
CN103199219A (zh) * 2013-04-08 2013-07-10 朱苗红 石墨烯-锡酸钴-四氧化三钴复合负极材料的制备方法
US20160025695A1 (en) * 2013-04-18 2016-01-28 Korean University Research and Business Foundation Methylbenzene gas sensor using chrome-doped nickel oxide nanostructures and method for producing same
CN106558691A (zh) * 2015-09-30 2017-04-05 比亚迪股份有限公司 一种中空多孔结构负极材料及其制备方法和电池
CN107331831A (zh) * 2016-04-28 2017-11-07 严天祥 一种锡纳米复合材料及其制备方法
CN106950274A (zh) * 2017-04-06 2017-07-14 吉林大学 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法
CN108906076A (zh) * 2018-06-27 2018-11-30 济南大学 一种多分支的三维十字架Pt-Cu-Co合金纳米颗粒的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYUN-MOOK JEONG 等: ""Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides"", 《MATER. INTERFACES》 *
XING WANG 等: ""Porous Co3O4/SnO2 quantum dot (QD) heterostructures with abundant oxygen vacancies and Co2+ ions for highly efficient gas sensing and oxygen evolution reaction"", 《NANOSCALE》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455891A (zh) * 2019-08-20 2019-11-15 吉林大学 基于CoWO4-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
CN111111677A (zh) * 2020-01-06 2020-05-08 辽宁大学 氧化锡复合四氧化三钴光热催化剂的制备方法及其在热催化中的应用
CN111111677B (zh) * 2020-01-06 2022-04-05 辽宁大学 氧化锡复合四氧化三钴光热催化剂的制备方法及其在热催化中的应用
CN111167434A (zh) * 2020-02-14 2020-05-19 辽宁大学 一种降解气态污染物的光催化复合材料Cr2O3-SnO2及其制备方法和应用
CN111167434B (zh) * 2020-02-14 2022-04-05 辽宁大学 一种降解气态污染物的光催化复合材料Cr2O3-SnO2及其制备方法和应用
CN113295737A (zh) * 2021-05-17 2021-08-24 电子科技大学长三角研究院(湖州) 一种锰掺杂四氧化三钴多孔纳米片状材料及其制备方法与应用
CN113295737B (zh) * 2021-05-17 2022-10-18 电子科技大学长三角研究院(湖州) 一种锰掺杂四氧化三钴多孔纳米片状材料及其制备方法与应用
CN116145286A (zh) * 2023-01-03 2023-05-23 吉林大学 一种可在低工作温度下有效检测超低浓度二甲苯的钴基纳米纤维敏感材料、制备方法及应用
CN116145286B (zh) * 2023-01-03 2024-05-10 吉林大学 一种可在低工作温度下有效检测超低浓度二甲苯的钴基纳米纤维敏感材料、制备方法及应用

Similar Documents

Publication Publication Date Title
CN110082406A (zh) 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
CN106124573B (zh) 一种基于NiO/ZnO异质结构空心球敏感材料的丙酮气体传感器及其制备方法
KR101491819B1 (ko) 크롬이 도핑된 산화니켈 나노구조체를 이용한 메틸벤젠 가스 센서 및 그 제조 방법
CN110455891A (zh) 基于CoWO4-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
KR101550356B1 (ko) 팔라듐이 첨가된 산화코발트 나노구조체를 이용한 메틸벤젠 가스센서 및 그 제조 방법
CN104990961A (zh) 一种基于Al掺杂的NiO纳米棒花材料的乙醇气体传感器及制备方法
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
CN106093137A (zh) 一种基于α‑Fe2O3多孔微米花敏感材料的丙酮气体传感器及其制备方法
CN106950274A (zh) 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法
CN111830089A (zh) 一种基于双壳形Cu2O分等级结构微米球敏感材料的正丙醇气体传感器及其制备方法
Wang et al. MOF-derived NiWO4@ NiO pp heterostructure for distinguish detection of TEA and xylene by temperature regulation
Yang et al. UV-enhanced highly sensitive ammonia sensing properties based on 2DPI/In2O3 heterostructure at room temperature
Yin et al. Selectivity sensing response of ZnO-xCo3O4 based sensor to CO against CH4
CN107966480A (zh) 一种基于石墨烯包覆α-Fe2O3复合物的室温NO2传感器及其制备方法
Xia et al. Synthesis of SnO2 quantum dot sensitized LaFeO3 for conductometric formic acid gas sensors
Ji et al. Co3O4/In2O3 pn heterostructures based gas sensor for efficient structure-driven trimethylamine detection
CN109665556A (zh) 一种海胆状氧化铜及其制备方法和应用
CN107082455A (zh) 一种镍掺杂四氧化三钴纳米花及其制备方法
CN108152338A (zh) 基于等价Sn2+间隙掺杂的NiO纳米花状微球的二甲苯气体传感器及其制备方法
CN113125519A (zh) 一种In2O3/α-Fe2O3纳米线、三乙胺传感器及其制备方法
CN109665557A (zh) 一种花状氧化铜及其制备方法和应用
CN109709184A (zh) 一种基于In2O3-碳点复合物的NO2传感器及其制备方法
CN113406155B (zh) 氧化锡/多酸/氧化钨三层同轴纳米纤维气体传感材料及其制备方法
CN114956196A (zh) 一种丙酮传感材料及其快速制备方法
CN114604903A (zh) 一种硫化钴/还原氧化石墨烯复合物及在气体传感器中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190802