CN106950274A - 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法 - Google Patents

一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法 Download PDF

Info

Publication number
CN106950274A
CN106950274A CN201710219153.9A CN201710219153A CN106950274A CN 106950274 A CN106950274 A CN 106950274A CN 201710219153 A CN201710219153 A CN 201710219153A CN 106950274 A CN106950274 A CN 106950274A
Authority
CN
China
Prior art keywords
nio
sensitive material
sensor
doping
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710219153.9A
Other languages
English (en)
Inventor
卢革宇
高洪雨
孙鹏
刘凤敏
高原
马健
揣晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710219153.9A priority Critical patent/CN106950274A/zh
Publication of CN106950274A publication Critical patent/CN106950274A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Abstract

一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法,属于半导体氧化物气体传感器技术领域。本发明利用异价金属离子(Sn4+)掺杂的方法对P型NiO半导体敏感材料进行改性,实现了气敏特性的较大飞跃。基于Sn掺杂NiO纳米花球的传感器对二甲苯表现出卓越的选择性和灵敏度(20.2~100ppm)以及较低的检测下限(0.3ppm)。此外,本发明所采用的传感器结构是由市售的带有2个环形金电极的Al2O3绝缘陶瓷管、涂敷在环形金电极和Al2O3绝缘陶瓷管上的半导体敏感材料、以及穿过Al2O3绝缘陶瓷管的镍铬合金加热线圈组成。器件工艺简单,体积小,适于大批量生产,在检测微环境中二甲苯污染物方面有广阔的应用前景。

Description

一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯 气体传感器及其制备方法
技术领域
本发明属于半导体氧化物气体传感器技术领域,具体涉及一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法。
背景技术
二甲苯是室内环境中挥发性有机化合物(VOCs)的代表性污染物之一,可从建筑材料、装饰材料、木质家具和地毯中释放出来。众所周知,它不仅会造成环境污染,而且也直接威胁人类健康。虽然二甲苯具有毒性和危害性,但仍被用在工业上作为中间体来生产其他化学品以及在科研实验室中作为溶剂使用。因此,研制具有良好选择性和高灵敏度的二甲苯气体传感器以实现对微环境中二甲苯气体的高效检测具有十分重要的意义。
在种类众多的气体传感器中,以半导体氧化物为敏感材料的电阻型气体传感器具有灵敏度高、检测下限低、选择性好、响应和恢复速度快、制作方法简单、成本较低等优点,是目前应用最广泛的气体传感器之一。随着纳米科学与技术的发展,将气敏材料调控成具有新颖形貌的分等级纳米结构能够极大地提高材料的比表面积,增加活性位点,可以使气敏特性得到改善。另外,可以通过异价金属离子掺杂技术在载流子浓度和吸附氧组分方面的调控作用来促进气敏特性的进一步改性,从而获得更好的气敏特性。
氧化镍(NiO)是一种重要的P型金属氧化物半导体,由于其具有稳定的化学和电学性质,被广泛应用于储能、锂离子电池、催化剂和气体传感器等领域。对NiO纳米结构传感性能的研究表明,虽然与某些N型金属氧化物半导体相比,其灵敏度相对较低,然而氧化镍在对挥发性有机化合物(VOC)的氧化方面具有优秀的催化活性,这使得对NiO敏感材料的改性变得有意义。本专利中采用异价金属离子(Sn4+)掺杂方法来促进NiO气敏特性的进一步改性,通过大量文献调研证实,异价金属离子掺杂的确可以提高气体传感器的气敏特性。
发明内容
本发明的目的是提供一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法。
利用Sn掺杂NiO分等级结构纳米花球作为敏感材料,一方面未掺杂NiO纳米花球具有较强的氧化性,且对多种VOC气体都具有较好的催化氧化活性,可以引起更多的氧分子参与反应;而且,通过对NiO的异价金属离子(Sn4+)掺杂改性,极大地提高了NiO的分等级纳米结构的比表面积,使得吸附氧能力增强;此外,由于异价金属离子掺杂技术在载流子浓度和吸附氧组分方面的调控作用,使得NiO材料中载流子空穴浓度降低,缺陷氧和化学吸附氧组分增加,导致敏感材料的电阻变化更加显著。这三方面的共同作用大幅提高了气体与敏感材料的反应效率,进而提高了传感器的灵敏度。本发明所采用的市售的管式结构传感器制作工艺简单,体积小,利于工业上批量生产,因此具有重要的应用价值。
本发明所述的一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器,由外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管衬底、涂覆在Al2O3陶瓷管外表面和金电极上的敏感材料、置于Al2O3陶瓷管内的镍铬合金加热线圈组成;其特征在于:敏感材料为Sn掺杂NiO分等级结构纳米花球,且由如下步骤制备得到,
(1)将0.01~0.045g SnCl4.5H2O,0.3~0.5g NiCl2·6H2O以及0.2~0.4g HMT(六亚甲基四胺)加入到20~40mL去离子水中,并保持不断地搅拌直至其全部溶解,再向其中加入1~4mL乙醇胺;
(2)把上述溶液转移到水热釜中,在140~200℃下水热反应10~14小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在300~500℃下煅烧1~3小时,从而得到Sn掺杂NiO分等级结构纳米花球粉末。
本发明所述的一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器的制备方法,其步骤如下:
(1)取Sn掺杂NiO分等级结构纳米花球粉末与去离子水混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管衬底表面,形成敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(2)在红外灯下烘烤30~45分钟,待敏感材料干燥后,把Al2O3陶瓷管在300~500℃下煅烧1~3小时;然后将电阻值为30~40Ω的镍铬合金加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器。其中,Al2O3陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm。
本发明制备的基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器具有以下优点:
1.利用一步简单的水热法成功制备出Sn掺杂NiO分等级结构纳米花球,合成方法简单,成本低廉;
2.通过对NiO敏感材料进行异价金属离子(Sn4+)掺杂改性,提高了NiO基气体传感器对二甲苯的选择性和灵敏度(20.2~100ppm),降低了敏感材料的气体浓度检测下限(1.2~0.3ppm),且具有良好的重复性和稳定性,在检测微环境中二甲苯污染方面有广阔的应用前景;
3.采用市售管式传感器,器件工艺简单,体积小,适于大批量生产。
附图说明
图1:(a,b)分别为未掺杂(对比例1)和Sn掺杂NiO(实施例1)分等级结构纳米花球的SEM形貌图;
图2:(a1,a2,b,c)分别为未掺杂NiO(对比例1)的SEM、TEM、高分辨TEM、选区电子衍射图;(d1,d2,e,f)分别为Sn掺杂NiO(实施例1)的SEM、TEM、高分辨TEM、选区电子衍射图;
图3:未掺杂(对比例1)和Sn掺杂NiO(实施例1)分等级结构纳米花球的XRD图;
图4:(a内插图)对比例1和实施例1中传感器在不同工作温度下对100ppm二甲苯气体的灵敏度曲线;(a)对比例1和实施例1中传感器在225℃下对8种100ppm待测气体的选择性曲线;(b内插图)实施例1中传感器在不同温度下对6种100ppm不同待测气体的选择性曲线;(b)实施例1中传感器在6种不同气体中分别工作于不同温度下的灵敏度曲线;
图5:对比例1和实施例1中传感器在最佳工作温度(225℃)下的灵敏度-二甲苯浓度特性曲线,其中内插图为较低二甲苯浓度(1~10ppm)处灵敏度特性曲线的放大图;
图6:(a)对比例1和实施例1中传感器在最佳工作温度(225℃)下的关于二甲苯浓度梯度(10~100ppm)的响应恢复曲线;(b)实施例1中的传感器在225℃下对于低浓度(1~8ppm)二甲苯的响应恢复曲线;(c)实施例1中的传感器在225℃下对于低浓度(0.1~0.8ppm)二甲苯的响应恢复曲线;(d)实施例1中的传感器在225℃下对于低浓度(0.1~8ppm)二甲苯的灵敏度;
图7:实施例1中传感器在最佳工作温度(225℃)下对于100ppm二甲苯气体的响应恢复曲线(5个循环);
图8:(上面的图)实施例1中传感器工作在最佳工作温度时(225℃)空气中电阻的长期稳定性曲线;(下面的图)实施例1中传感器工作在最佳工作温度时(225℃)在100ppm二甲苯气体中灵敏度的长期稳定性曲线;
如图1所示,未掺杂(对比例1)和Sn掺杂NiO(实施例1)为分等级纳米花球结构,分散性良好,单个纳米花球由许多弯曲变形的二维纳米片构成,纳米花球的直径约为2.5~4.5μm。
如图2所示,未掺杂NiO(对比例1)的TEM图与SEM图所示的形貌统一,为由许多弯曲变形的二维纳米片构成的分等级纳米花球结构,高分辨TEM图显示出0.241nm宽的晶格间距,与纯NiO的(111)晶面吻合,选区电子衍射表明合成的未掺杂NiO纳米花球为多晶;Sn掺杂NiO(实施例1)的TEM图与SEM图所示的形貌统一,为由许多弯曲变形的二维纳米片构成的分等级纳米花球结构,高分辨TEM图显示出0.241nm和0.205nm宽的晶格间距,与NiO的(111)和(200)晶面吻合,选区电子衍射表明合成的Sn掺杂NiO纳米花球为多晶。
如图3所示,Sn掺杂NiO(实施例1)纳米花球的XRD谱图与未掺杂NiO(对比例1)纳米花球的XRD谱图相比,NiO特征峰吻合,且没有出现其他相的杂峰,表明Sn4+成功掺入到NiO晶格中。
如图4所示,对比例1和实施例1中的传感器的最佳工作温度均为225℃,此时器件对100ppm二甲苯的灵敏度分别为1.7和20.2,灵敏度提升了12倍,而且对二甲苯的选择性最好,相对于对比例1中传感器来说,实施例1中的传感器气敏性能提升较大。
如图5所示,相对于对比例1中传感器来说,随着二甲苯气体浓度的增加,实施例1中的传感器的灵敏度提升明显,而且灵敏度和浓度之间表现出较好的线性增长关系。
如图6所示,对于暴露在二甲苯中的实施例1传感器,半导体的电阻变大,这一特性与P型氧化物半导体的气敏特性一致,而且传感器对不同浓度的二甲苯表现出优异的响应和恢复特性。当实施例器件在工作温度为225℃下,器件的灵敏度随着二甲苯浓度的增加而增大,实施例1传感器对10、30、50、80和100ppm二甲苯的灵敏度分别为3.2、5.8、7.7、12.7和20.2,而对比例1器件对10~100ppm二甲苯的灵敏度仅为1.1~1.7。此外,实施例1传感器的检测下限较低,可以达到ppb级别,对低浓度二甲苯也有较好的响应,从图6c,图6d中可以看到,对300ppb二甲苯的灵敏度为1.2,表明实施例1中Sn掺杂NiO传感器可以用于微环境中微量二甲苯污染物的检测。
如图7所示,实施例1中的传感器在225℃工作温度下对于100ppm二甲苯的响应恢复曲线没有明显的波动,而且灵敏度较高,显示出其良好的重复性。
如图8所示,在连续测试的20天里,工作在225℃温度下的实施例1中的传感器在空气中的初始电阻及其相应的在100ppm二甲苯气体中的灵敏度曲线波动较小,显示出其良好的长期稳定性。
注:实际测试时发现,实施例1中传感器的气敏特性最好,明显优于实施例2和实施例3中的气体传感器,更具有代表性。所以如图1至图8所示,本专利中重点对实施例1和对比例1中传感器的气敏特性进行对比研究,明显且具代表性地展示出由水热法合成的Sn掺杂NiO分等级结构纳米花球敏感材料相对于未掺杂NiO敏感材料所表现出的卓越的二甲苯气体传感特性。此外,对于器件的灵敏度(P型半导体)在测试还原性气体中被定义为其在被测气体中电阻值(Rg)与在空气中电阻值(Ra)大小之比,即为S=Rg/Ra。在测试过程中,使用静态测试***进行测试,将器件置于50~80L的气箱内,向内注射一定量的待测气体,观察并记录其阻值变化,通过计算得到相应的灵敏度数值。
具体实施方式
对比例1:
用未掺杂NiO分等级结构纳米花球作为敏感材料制作二甲苯传感器,其具体的制作过程:
(1)首先量取30mL去离子水,将其倒入烧杯中,并不断地搅拌;
(2)将0.47g NiCl2·6H2O以及0.28g HMT(六亚甲基四胺)加入到装有去离子水的烧杯中,并保持不断地搅拌直至其全部溶解,再向其加入2mL乙醇胺;
(3)把上述溶液转移到水热釜中,在160℃下保持12小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在400℃下煅烧2小时,从而得到了未掺杂NiO分等级结构纳米花球粉末,材料的比表面积为45.9m2g-1
(4)取适量用水热法制备的未掺杂NiO分等级结构纳米花球粉末与去离子水混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有2个环形金电极的Al2O3陶瓷管表面,形成敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(5)在红外灯下烘烤30分钟,待敏感材料干燥后,把Al2O3陶瓷管在400℃下煅烧2小时;然后将电阻值为32Ω的镍铬合金加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于未掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器。
实施例1:
用Sn掺杂NiO分等级结构纳米花球作为敏感材料制作二甲苯传感器,其具体的制作过程:
(1)首先量取30mL去离子水,将其倒入烧杯中,并不断地搅拌;
(2)将0.021g SnCl4.5H2O,0.47g NiCl2·6H2O以及0.28g HMT(六亚甲基四胺)加入到装有去离子水的烧杯中,并保持不断地搅拌直至其全部溶解,再向其加入2mL乙醇胺;
(3)把上述溶液转移到水热釜中,在160℃下保持12小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在400℃下煅烧2小时,从而得到了Sn掺杂NiO分等级结构纳米花球粉末,材料的比表面积为90.2m2g-1
(4)取适量用水热法制备的Sn掺杂NiO分等级结构纳米花球粉末与去离子水混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有2个环形金电极的Al2O3陶瓷管表面,形成敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(5)在红外灯下烘烤30分钟,待敏感材料干燥后,把Al2O3陶瓷管在400℃下煅烧2小时;然后将电阻值为32Ω的镍铬合金加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器。
实施例2:
用Sn掺杂NiO分等级结构纳米花球作为敏感材料制作二甲苯传感器,其具体的制作过程:
(1)首先量取20mL去离子水,将其倒入烧杯中,并不断地搅拌;
(2)将0.01g SnCl4.5H2O,0.32g NiCl2·6H2O以及0.23g HMT(六亚甲基四胺)加入到装有去离子水的烧杯中,并保持不断地搅拌直至其全部溶解,再向其加入4mL乙醇胺;
(3)把上述溶液转移到水热釜中,在200℃下保持10小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在300℃下煅烧3小时,从而得到了Sn掺杂NiO分等级结构纳米花球粉末,材料的比表面积为70.8m2g-1
(4)取适量用水热法制备的Sn掺杂NiO分等级结构纳米花球粉末与去离子水混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有2个环形金电极的Al2O3陶瓷管表面,形成敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(5)在红外灯下烘烤45分钟,待敏感材料干燥后,把Al2O3陶瓷管在300℃下煅烧2小时;然后将电阻值为40Ω的镍铬合金加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器。
实施例3:
用Sn掺杂NiO分等级结构纳米花球作为敏感材料制作二甲苯传感器,其具体的制作过程:
(1)首先量取40mL去离子水,将其倒入烧杯中,并不断地搅拌;
(2)将0.045g SnCl4.5H2O,0.5g NiCl2·6H2O以及0.38g HMT(六亚甲基四胺)加入到装有去离子水的烧杯中,并保持不断地搅拌直至其全部溶解,再向其加入3mL乙醇胺;
(3)把上述溶液转移到水热釜中,在140℃下保持14小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在500℃下煅烧1小时,从而得到了Sn掺杂NiO分等级结构纳米花球粉末,材料的比表面积为77.8m2g-1
(4)取适量用水热法制备的Sn掺杂NiO分等级结构纳米花球粉末与去离子水混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面自带有2个环形金电极的Al2O3陶瓷管表面,形成敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(5)在红外灯下烘烤40分钟,待敏感材料干燥后,把Al2O3陶瓷管在500℃下煅烧1小时;然后将电阻值为31Ω的镍铬合金加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器。

Claims (3)

1.一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器,由外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管衬底、涂覆在Al2O3陶瓷管外表面和金电极上的敏感材料、置于Al2O3陶瓷管内的镍铬合金加热线圈组成;其特征在于:敏感材料为Sn掺杂NiO分等级结构纳米花球材料,且由如下步骤制备得到,
(1)将0.01~0.045g SnCl4.5H2O,0.3~0.5g NiCl2·6H2O以及0.2~0.4g HMT加入到20~40mL去离子水中,并保持不断地搅拌直至其全部溶解,再向其中加入1~4mL乙醇胺;
(2)把上述溶液在140~200℃下水热反应10~14小时后取出,自然冷却至室温后将生成的沉淀用去离子水和乙醇多次离心清洗,然后在室温下干燥后再在300~500℃下煅烧1~3小时,从而得到Sn掺杂NiO分等级结构纳米花球粉末。
2.权利要求1所述的一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器的制备方法,其步骤如下:
(1)取Sn掺杂NiO分等级结构纳米花球粉末与去离子水混合,并研磨形成糊状浆料,然后蘸取少量浆料均匀地涂覆在外表面带有两条平行、环状且彼此分立的金电极的Al2O3陶瓷管衬底表面,形成敏感材料薄膜,并使敏感材料完全覆盖环形金电极;
(2)在红外灯下烘烤30~45分钟,待敏感材料干燥后,把Al2O3陶瓷管在300~500℃下煅烧1~3小时;然后将电阻值为30~40Ω的镍铬合金加热线圈穿过Al2O3陶瓷管内部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器。
3.如权利要求2所述的一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器的制备方法,其特征在于:Al2O3陶瓷管的长为4~4.5mm,外径为1.2~1.5mm,内径为0.8~1.0mm。
CN201710219153.9A 2017-04-06 2017-04-06 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法 Pending CN106950274A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710219153.9A CN106950274A (zh) 2017-04-06 2017-04-06 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710219153.9A CN106950274A (zh) 2017-04-06 2017-04-06 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN106950274A true CN106950274A (zh) 2017-07-14

Family

ID=59475810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710219153.9A Pending CN106950274A (zh) 2017-04-06 2017-04-06 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN106950274A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107399767A (zh) * 2017-08-28 2017-11-28 四川理工学院 一种Fe掺杂NiO复合材料及半导体气敏元件
CN107607591A (zh) * 2017-09-11 2018-01-19 吉林大学 一种基于SnO2修饰的NiO纳米结构敏感材料的超灵敏甲苯气体传感器及其制备方法
CN107879381A (zh) * 2017-11-07 2018-04-06 上海纳米技术及应用国家工程研究中心有限公司 用于甲醛传感器的Sn单原子修饰NiO纳米材料的制备方法及其产品和应用
CN108152338A (zh) * 2017-12-26 2018-06-12 吉林大学 基于等价Sn2+间隙掺杂的NiO纳米花状微球的二甲苯气体传感器及其制备方法
CN108169291A (zh) * 2017-12-18 2018-06-15 吉林大学 基于分等级结构的Zn掺杂CdS纳米敏感材料的乙醇传感器、制备方法及其应用
CN108872324A (zh) * 2018-05-16 2018-11-23 吉林大学 一种基于NiO/NiCr2O4纳米复合敏感材料的二甲苯气体传感器及其制备方法
RU2682575C1 (ru) * 2018-05-07 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ изготовления хеморезистора на основе наноструктур оксида никеля электрохимическим методом
CN109768259A (zh) * 2019-01-23 2019-05-17 福州大学 一种铁掺杂的分等级结构二氧化锗
CN110082398A (zh) * 2019-06-03 2019-08-02 海南大学 NiO氧化物半导体二甲苯传感器及其制备方法与应用
CN110082406A (zh) * 2019-06-06 2019-08-02 吉林大学 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663542A (zh) * 2013-12-10 2014-03-26 中国科学院过程工程研究所 锡掺杂层状多孔纳米氧化锌及其制备方法和用途
CN104880492A (zh) * 2015-06-01 2015-09-02 吉林大学 W6+掺杂NiO氧化物半导体二甲苯传感器、制备方法及其应用
CN104990961A (zh) * 2015-07-23 2015-10-21 吉林大学 一种基于Al掺杂的NiO纳米棒花材料的乙醇气体传感器及制备方法
US20160025695A1 (en) * 2013-04-18 2016-01-28 Korean University Research and Business Foundation Methylbenzene gas sensor using chrome-doped nickel oxide nanostructures and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160025695A1 (en) * 2013-04-18 2016-01-28 Korean University Research and Business Foundation Methylbenzene gas sensor using chrome-doped nickel oxide nanostructures and method for producing same
CN103663542A (zh) * 2013-12-10 2014-03-26 中国科学院过程工程研究所 锡掺杂层状多孔纳米氧化锌及其制备方法和用途
CN104880492A (zh) * 2015-06-01 2015-09-02 吉林大学 W6+掺杂NiO氧化物半导体二甲苯传感器、制备方法及其应用
CN104990961A (zh) * 2015-07-23 2015-10-21 吉林大学 一种基于Al掺杂的NiO纳米棒花材料的乙醇气体传感器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIUMEI XU ET.AL.: "Porous hierarchical In<sub>2</sub>O<sub>3</sub> nanostructures: Hydrothermal preparation and gas sensing properties", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
曲奉东: "复合及掺杂对NiO纳米材料的甲苯、二甲苯气敏性能改进的研究", 《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107399767B (zh) * 2017-08-28 2019-05-03 四川理工学院 一种Fe掺杂NiO复合材料及半导体气敏元件
CN107399767A (zh) * 2017-08-28 2017-11-28 四川理工学院 一种Fe掺杂NiO复合材料及半导体气敏元件
CN107607591A (zh) * 2017-09-11 2018-01-19 吉林大学 一种基于SnO2修饰的NiO纳米结构敏感材料的超灵敏甲苯气体传感器及其制备方法
CN107607591B (zh) * 2017-09-11 2019-12-10 吉林大学 一种基于SnO2修饰的NiO纳米结构敏感材料的超灵敏甲苯气体传感器及其制备方法
CN107879381A (zh) * 2017-11-07 2018-04-06 上海纳米技术及应用国家工程研究中心有限公司 用于甲醛传感器的Sn单原子修饰NiO纳米材料的制备方法及其产品和应用
CN108169291A (zh) * 2017-12-18 2018-06-15 吉林大学 基于分等级结构的Zn掺杂CdS纳米敏感材料的乙醇传感器、制备方法及其应用
CN108152338A (zh) * 2017-12-26 2018-06-12 吉林大学 基于等价Sn2+间隙掺杂的NiO纳米花状微球的二甲苯气体传感器及其制备方法
RU2682575C1 (ru) * 2018-05-07 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ изготовления хеморезистора на основе наноструктур оксида никеля электрохимическим методом
EA034568B1 (ru) * 2018-05-07 2020-02-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." Способ изготовления хеморезистора на основе наноструктур оксида никеля электрохимическим методом
CN108872324A (zh) * 2018-05-16 2018-11-23 吉林大学 一种基于NiO/NiCr2O4纳米复合敏感材料的二甲苯气体传感器及其制备方法
CN109768259A (zh) * 2019-01-23 2019-05-17 福州大学 一种铁掺杂的分等级结构二氧化锗
CN110082398A (zh) * 2019-06-03 2019-08-02 海南大学 NiO氧化物半导体二甲苯传感器及其制备方法与应用
CN110082406A (zh) * 2019-06-06 2019-08-02 吉林大学 一种基于SnO2-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法

Similar Documents

Publication Publication Date Title
CN106950274A (zh) 一种基于Sn掺杂NiO分等级结构纳米花球敏感材料的二甲苯气体传感器及其制备方法
Guo et al. Xylene gas sensing properties of hydrothermal synthesized SnO2-Co3O4 microstructure
Gao et al. Ultrasensitive and low detection limit of toluene gas sensor based on SnO2-decorated NiO nanostructure
Xu et al. In situ growth of Co3O4@ NiMoO4 composite arrays on alumina substrate with improved triethylamine sensing performance
Wang et al. Au-loaded mesoporous WO3: preparation and n-butanol sensing performances
Sun et al. Selective oxidizing gas sensing and dominant sensing mechanism of n-CaO-decorated n-ZnO nanorod sensors
Zhang et al. Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde
CN106124573B (zh) 一种基于NiO/ZnO异质结构空心球敏感材料的丙酮气体传感器及其制备方法
Sun et al. MOF-derived bow-like Ga-doped Co3O4 hierarchical architectures for enhanced triethylamine sensing performance
Cai et al. Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays
Li et al. High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide
Xiao et al. MOF-derived porous ZnO/Co 3 O 4 nanocomposites for high performance acetone gas sensing
CN106896142A (zh) 基于分等级结构的Ce掺杂In2O3纳米敏感材料的丙酮传感器、制备方法及其应用
CN101318704A (zh) 一种氧化钨纳米线及氧化钨纳米线气敏传感器的制备方法
CN107607591A (zh) 一种基于SnO2修饰的NiO纳米结构敏感材料的超灵敏甲苯气体传感器及其制备方法
CN104990961A (zh) 一种基于Al掺杂的NiO纳米棒花材料的乙醇气体传感器及制备方法
CN106093137A (zh) 一种基于α‑Fe2O3多孔微米花敏感材料的丙酮气体传感器及其制备方法
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
Dong et al. In 2 O 3-decorated ordered mesoporous NiO for enhanced NO 2 sensing at room temperature
Sun et al. MOF-derived Au-NiO/In2O3 for selective and fast detection of toluene at ppb-level in high humid environments
CN105675664A (zh) 一种基于rGO/α-Fe2O3异质结构复合物的丙酮传感器及其制备方法
CN110455891A (zh) 基于CoWO4-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
CN105842291A (zh) 一种CuWO4/WO3复合光助气敏元件及其制备方法
Han et al. Variable dimensional structure and interface design of In2O3/rGO nanocomposites with oxygen vacancy for enhancing NO2 sensing performance
Liu et al. Metal–organic framework-derived porous NiFe2O4 nanoboxes for ethyl acetate gas sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170714

RJ01 Rejection of invention patent application after publication