CN107075647B - 生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途 - Google Patents

生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途 Download PDF

Info

Publication number
CN107075647B
CN107075647B CN201580057132.0A CN201580057132A CN107075647B CN 107075647 B CN107075647 B CN 107075647B CN 201580057132 A CN201580057132 A CN 201580057132A CN 107075647 B CN107075647 B CN 107075647B
Authority
CN
China
Prior art keywords
steel
steel plate
cold rolling
method described
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580057132.0A
Other languages
English (en)
Other versions
CN107075647A (zh
Inventor
埃尔克·勒尼斯
汤姆·万德普特
西格丽德·雅各布斯
瓦希卜·赛卡吕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51868993&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN107075647(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN107075647A publication Critical patent/CN107075647A/zh
Application granted granted Critical
Publication of CN107075647B publication Critical patent/CN107075647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

本发明涉及一种生产非晶粒取向的Fe‑Si钢板的方法。该方法包括以下步骤:使包含以重量百分比计的C≤0.006、2.0≤Si≤5.0、0.1≤Al≤3.0、0.1≤Mn≤3.0、N≤0.006、0.04≤Sn≤0.2、S≤0.005、P≤0.2、Ti≤0.01、余量为Fe和其他不能避免的杂质的钢组合物熔化;将所述熔体铸造成板坯;对板坯进行再加热;对板坯进行热轧;对经热轧的钢进行卷取;任选地,对经热轧的钢进行退火;冷轧;将经冷轧的钢退火并冷却至室温。

Description

生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途
本发明涉及生产表现出磁特性的Fe-Si电工钢板的方法。这种材料例如用于制造用于车辆的电动机的转子和/或定子。
赋予Fe-Si钢磁特性是最经济的磁感应源。从化学组成的观点来看,向铁添加硅是增加电阻率的非常常用的方式,因此改善了磁特性,并且同时减小了总的功率损耗。目前共存的用于电气设备的钢的构造的两类为:晶粒取向钢和非晶粒取向钢。
非晶粒取向钢具有在所有磁化方向上拥有几乎相等的磁特性的优点。因此,这种材料更适用于需要旋转运动的应用,例如马达或发电机。
以下特性用于评估电工钢的就磁特性而言的效率:
-磁感应,以特斯拉表示。该感应是在以A/m表示的特定磁场下获得的。磁感应越高越好。
-磁芯功率损耗,以W/kg表示,磁芯功率损耗在以特斯拉(T)表示的特定极化下使用以赫兹表示的频率测量。总的损耗越低越好。
许多冶金参数可能会影响上述特性,最常见的冶金参数是:合金含量、材料织构、铁素体晶粒尺寸、析出物尺寸及分布、以及材料厚度。自此,从铸造至最终经冷轧的钢退火的热机械处理对于达到目标规格是至关重要的。
JP201301837公开了生产电磁钢板的方法,其包括0.0030%或更小的C、2.0-3.5%的Si、0.20-2.5%的Al、0.10-1.0%的Mn和0.03-0.10%的Sn,其中,Si+Al+Sn≤4.5%。对这种钢进行热轧,然后以60-70%的轧制率进行初步冷轧,以生产具有中等厚度的钢板。然后,对钢板进行中间退火,然后以55-70%的轧制率进行二次冷轧,并且进一步在950℃或更高的温度下进行最终退火持续20秒至90秒。这种方法相当消耗能量,并且涉及长的生产路线。
JP2008127612涉及非晶粒取向电磁钢板,其具有包括以质量%计的以下化学组成:0.005%或更小的C、2%至4%的Si、1%或更小的Mn、0.2%至2%的Al、0.003%至0.2%的Sn、余量为Fe和不可避免的杂质。厚度为0.1mm至0.3mm的非晶粒取向电磁钢板通过以下步骤制造:在中间退火步骤之前和之后对经热轧的板进行冷轧,随后对板进行再结晶退火。这样的处理路线如同用于不利于生产率的第一种应用的处理路线,这是由于其涉及了长的生产路线。
似乎仍需要生产这种FeSi钢的方法,该方法将简化并且更加稳健,而不包括功率损耗和感应性能。
根据本发明的钢遵循简化的生产路线以达到功率损耗和感应的良好折衷。此外,工具磨损由根据本发明的钢来限制。
本发明的目的在于提供生产经退火经冷轧的非晶粒取向Fe-Si钢板的方法,该方法包括以下顺序步骤:
-使包含以重量百分比计的以下元素的钢组合物熔化:
C≤0.006
2.0≤Si≤5.0
0.1≤Al≤3.0
0.1≤Mn≤3.0
N≤0.006
0.04≤Sn≤0.2
S≤0.005
P≤0.2
Ti≤0.01
余量为Fe和不可避免的杂质,
-将所述熔体铸造成板坯,
-在1050℃与1250℃之间的温度下对所述板坯进行再加热,
-用750℃与950℃之间的热轧终止温度对所述板坯进行热轧以获得经热轧的钢带,
-在500℃与750℃之间的温度下对所述经热轧的钢带进行卷取,以获得热带
-任选地,在650℃与950℃之间的温度下将经热轧的钢带退火持续
10秒与48小时之间的时间,
-对经热轧的钢带进行冷轧以获得经冷轧的钢板,
-将经冷轧的钢板加热至850℃与1150℃之间的均热温度,
-将经冷轧的钢板保持在均热温度下持续20秒与100秒之间的时间,
-将经冷轧的钢板冷却至室温,以获得经退火经冷轧的钢板。
在优选的实施方案中,根据本发明的生产非晶粒取向Fe-Si钢板的方法的硅含量使得2.0≤Si≤3.5,甚至更优选地2.2≤Si≤3.3。
在优选的实施方案中,根据本发明的生产非晶粒取向Fe-Si钢板的方法的铝含量使得:0.2≤Al≤1.5,甚至更优选地0.25≤Al≤1.1。
在优选的实施方案中,根据本发明的生产非晶粒取向Fe-Si钢板的方法的锰含量使得:0.1≤Mn≤1.0。
优选地,根据本发明的生产非晶粒取向Fe-Si钢板的方法的锡含量使得:0.07≤Sn≤0.15,甚至更优选地0.11≤Sn≤0.15。
在另一优选的实施方案中,根据本发明的生产非晶粒取向Fe-Si钢板的方法涉及任选的热带退火使用连续退火线进行。
在另一优选的实施方案中,根据本发明的生产非晶粒取向Fe-Si钢板的方法包括任选的热带退火使用分批退火进行。
在优选的实施方案中,均热温度在900℃与1120℃之间。
在另一实施方案中,根据本发明的非晶粒取向的经冷轧经退火的钢板被涂覆。
本发明的另一目的是使用本发明的方法获得的非晶粒取向钢。
本发明的目的还为使用根据本发明生产的非晶粒取向钢的高效率工业马达、用于电力生产的发电机、用于电动车辆的马达,以及使用根据本发明生产的非晶粒取向钢的用于混合动力车辆的马达。
为了达到所期望的特性,根据本发明的钢包括以重量百分比计的以下化学组成元素:
碳量限制于0.006,且0.006包括在内。该元素可以是有害的,由于碳能够引起钢的老化和/或析出,这将会使磁特性劣化。因此,浓度应限制为低于60ppm(0.006wt%)。
Si的最小含量为2.0%,同时Si的最大含量限制为5.0%,且两个端值包括在内。Si在增加钢的电阻率方面起主要作用,因此降低涡流损耗。低于2.0wt%的Si,难以实现低损耗等级的损耗水平。高于5.0wt%的Si,钢变脆并且随后的工业处理变得困难。因此,Si含量为使得:2.0wt%≤Si≤5.0wt%,在优选实施方案中,2.0wt%≤Si≤3.5wt%,甚至更优选地,2.2wt%≤Si≤3.3wt%。
铝含量应在0.1%与3.0%之间,且两个端值均包括在内。在电阻率效应方面,该元素以与硅所起作用的方式类似的方式起作用。低于0.1wt%的Al,对电阻率或损耗没有实际影响。高于3.0wt%的Al,钢变脆并且随后的工业处理变得困难。因此,Al含量为使得:0.1wt%≤Al≤3.0wt%,在优选实施方案中,0.2wt%≤Al≤1.5wt%,甚至更优选地,0.25wt%≤Al≤1.1wt%。
锰含量应在0.1%与3.0%之间,且两个端值均包括在内。对于电阻率,该元素以与Si或Al所起作用的方式类似的方式起作用:锰增加电阻率,因此降低涡流损耗。另外,Mn有助于使钢硬化,并且可对需要较高机械特性的等级有用。低于0.1wt%的Mn,对电阻率、损耗或机械特性没有实际影响。高于3.0wt%的Mn,将形成例如MnS的硫化物并且可以对磁芯损耗造成不利影响。因此,Mn为使得0.1wt%≤Mn≤3.0wt%,在优选的实施方案中,0.1wt%≤Mn≤1.0wt%。
正如碳,氮可以是有害的,由于氮能够导致AIN或TiN析出,这能够使磁特性劣化。游离氮也能够引起老化,这将使磁特性劣化。因此,氮的浓度应限制为60ppm(0.006wt%)。
锡是本发明的钢的必需元素。锡的含量必须在0.04%与0.2%之间,且两个端值均包括在内。锡对磁特性起着有益的作用,特别是通过织构改善。锡有助于减少最终织构中的(111)成分,并且通过这样做其有助于总体上改善磁特性,并且特别是极化/感应。低于0.04wt%的锡,效果可忽略不计,而高于0.2wt%的锡,钢脆性将成为问题。因此,锡为使得0.04wt%≤Sn≤0.2wt%。在优选实施方案中,0.07wt%≤Sn≤0.15wt%。
需要将硫浓度限制为0.005wt%,这是由于S可能会形成例如MnS或TiS的析出物,这将会使磁特性劣化。
磷含量必须低于0.2wt%。P增加电阻率,这降低损耗、并且由于磷是可能对再结晶和织构起作用的偏析元素还可能会改善织构和磁特性。磷还能够增加机械特性。如果浓度高于0.2wt%,则由于钢的脆性增加而将使工业处理变得困难。因此,P为使得P≤0.2wt%,但在优选实施方案中,为了限制偏析问题,P≤0.05wt%。
钛是可能会形成对磁特性有害的析出物例如:TiN、TiS、Ti4C2S2、Ti(C,N)和TiC的析出物形成元素。钛的浓度应低于0.01wt%。
余量为铁和不可避免的杂质例如本文下面列出的具有根据本发明的钢中允许的最大含量的杂质:
Nb≤0.005wt%
V≤0.005wt%
Cu≤0.030wt%
Ni≤0.030wt%
Cr≤0.040wt%
B≤0.0005
其他可能的杂质是:As、Pb、Se、Zr、Ca、O、Co、Sb和Zn,其可以以痕量存在。
随后对具有根据本发明的化学组成的铸件进行再加热,板坯再加热温度(SRT)介于1050℃与1250℃之间直到整个板坯的温度均匀为止。低于1050℃,轧制变得困难,并且轧机上的力将过高。高于1250℃,高硅级别变得非常软并且可能出现一些松弛,从而变得难以处理。
热轧终止温度对最终热轧显微组织起作用,并且热轧终止温度在750℃与950℃之间。当终轧温度(FRT)低于750℃时,再结晶被限制,并且显微组织高度变形。高于950℃将意味着固溶体中更多的杂质,并且可能导致偏析以及磁特性劣化。
经热轧的带的卷取温度(CT)也对最终经热轧的产品起作用;并且其在500℃与750℃之间。在低于500℃的温度下进行卷取将不允许发生足够的回复,同时该冶金步骤对于磁特性是必需的。高于750℃,将会出现厚的氧化层,并且氧化层将会对于例如冷轧和/或酸洗的后续处理步骤造成困难。
经热轧的钢带呈现出具有取向成分为{110}<100>的高斯织构的表面层,所述高斯织构在经热轧的钢带的厚度的15%处测量。高斯织构为带提供了增强的磁通密度,从而降低磁芯损耗,这从下文提供的表2、表4和表6中可以看出。在热轧期间,通过使终轧温度保持高于750摄氏度来促进高斯织构的成核。
热轧带钢带的厚度从1.5mm变化至3mm。通过通常的热轧机难以得到低于1.5mm的厚度。从大于3mm厚的带冷轧至目标冷轧厚度将大大降低卷取步骤之后的生产率,并且还将使最终磁特性劣化。
任选的热带退火(HBA)可以在650℃与950℃之间的温度下进行,该步骤是任选的。其可以是连续退火或分批退火。低于650℃的均热温度,再结晶将是不完全的,并且最终磁特性的改善将被限制。高于950℃的均热温度,再结晶晶粒将变得过大,并且金属将变脆并在随后的工业步骤期间难以处理。均热的持续时间将取决于是连续退火(10秒与60秒之间)还是分批退火(24h与48h之间)。随后,对带(经退的或未经退火的)进行冷轧。在本发明中,冷轧在一个步骤中进行,即不进行中间退火。
酸洗可以在退火步骤之前或之后进行。
最后,经冷轧的钢经历在介于850℃与1150℃之间(优选地,介于900℃与1120℃之间)的温度(FAT)下根据所使用的温度和目标晶粒尺寸而持续10秒与100秒之间的时间的最终退火。低于850℃,再结晶将是不完全的,并且损耗将无法达到其全部潜能。高于1150℃,晶粒尺寸将过大并且感应将劣化。至于均热时间,低于10秒,给予再结晶的时间不足,然而高于100秒,晶粒尺寸将过大,并且将负面影响例如感应水平的最终磁性能。
最终板厚度(FST)在0.14mm与0.67mm之间。
根据本发明生产的最终板的显微组织包含粒径在30μm与200μm之间的铁素体。低于30μm,损耗将会过高,而高于200μm,感应水平将会过低。
至于机械特性,屈服强度将在300MPa与480MPa之间,而极限拉伸强度应在350MPa与600MPa之间。
以下实施例出于说明目的,并不旨在解释为限制本文公开的范围:
实施例1
使用下表1中给出的组成生产两个实验批次(heat)。带有下划线的值不是根据本发明的。然后,顺序地:在1150℃下对板坯进行再加热之后进行热轧。终轧温度为900℃并且在530℃下对钢进行卷取。在750℃下在48小时期间对热带进行分批退火。钢被冷轧至0.5mm。没有进行中间退火。最终退火在1000℃的均热温度下进行并且均热时间为40秒。
表1:批次1和批次2的以重量%计的化学组成
元素(wt%) 批次1 批次2
C 0.0024 0.0053
Si 2.305 2.310
Al 0.45 0.50
Mn 0.19 0.24
N 0.001 0.0021
Sn <u>0.005</u> 0.12
S 0.0049 0.005
P <0.05% <0.05%
Ti 0.0049 0.0060
对这两个批次进行磁性测量。测量了在1.5T和50Hz下的总磁损耗以及感应B5000,结果如下表中所示。可以看出,使用该处理路线,Sn增加导致了磁性能显著改善。
表2:批次1和批次2的磁性能
批次1 批次2
1.5T/50Hz下的损耗(W/Kg) 2.98 2.92
B5000(T) 1.663 1.695
实施例2
使用下表3中给出的组成生产两个批次。带有下划线的值不是根据本发明的。在1120℃下对板坯进行再加热之后进行热轧。终轧温度为870℃,卷取温度为635℃。在750℃下在48小时期间对热带进行分批退火。然后冷轧至0.35mm。没有进行中间退火。最终退火在950℃的均热温度下进行并且均热时间为60秒。
表3:批次3和批次4的以重量%计的化学组成
元素(wt%) 批次3 批次4
C 0.0037 0.0030
Si 2.898 2.937
Al 0.386 0.415
Mn 0.168 0.135
N 0.0011 0.0038
Sn <u>0.033</u> 0.123
S 0.0011 0.0012
P 0.0180 0.0165
Ti 0.0049 0.0041
对这两个批次进行磁性测量。测量了在1.5T和50Hz下的总磁损耗以及感应B5000,结果如下表中所示。可以看出,使用该处理路线,Sn增加导致了磁性能的显著改善。
表4:批次3和批次4的磁性能
批次3 批次4
1.5T/50Hz下的损耗(W/Kg) 2.40 2.34
B5000(T) 1.666 1.688
实施例3
使用下表5中给出的组成生产两个批次。带有下划线的值不是根据本发明的。然后,顺序地:在1150℃下对板坯进行再加热之后进行热轧。终轧温度为850℃,并且在550℃下对钢进行卷取。在800℃下在48小时期间对热带进行分批退火。将钢冷轧至0.35mm。没有进行中间退火。最终退火在1040℃的均热温度下进行并且均热时间为60秒。
表5:批次5和批次6的以重量%计的化学组成
元素(wt%) 批次5 批次6
C 0.002 0.0009
Si 3.30 3.10
Al 0.77 0.61
Mn 0.20 0.21
N 0.0004 0.0014
Sn <u>0.006</u> 0.076
S 0.0004 0.0012
P ≤0.05 ≤0.05
Ti 0.0015 0.0037
电阻率(μΩcm) 55.54 53.07
对这两个批次进行磁性测量。测量了在1.5T和50Hz下的总磁损耗、在1T和400Hz下的总磁损耗以及感应B5000,结果如下表中所示。可以看出,0.07wt%的Sn增加使用该处理路线导致了磁性能的改善。
表6:批次5和批次6的磁性能
批次5 批次6
1.5T/50Hz下的损耗(W/Kg) 2.17 2.12
B5000(T) 1.673 1.682
可以看出,从这两个实施例中,使用具有不同化学组成的根据本发明的冶金路线,Sn改善了磁特性。
根据本发明的方法获得的钢可用于电动汽车或混合动力汽车的马达、用于高效率工业马达以及用于电力生产的发电机。

Claims (14)

1.生产经退火经冷轧的非晶粒取向Fe-Si钢板的方法,所述方法包括以下顺序步骤:
-使包含以下的以重量百分比计的钢组合物熔化:
C≤0.006
2.0≤Si≤5.0
0.1≤Al≤3.0
0.1≤Mn≤3.0
N≤0.006
0.04≤Sn≤0.2
S≤0.005
P≤0.2
Ti≤0.01
余量为Fe和不可避免的杂质,
-将所熔化的钢铸造成板坯,
-在1050℃与1250℃之间的温度下对所述板坯进行再加热,
-用750℃与950℃之间的热轧终止温度对所述板坯进行热轧以获得经热轧的钢带,
-在500℃与750℃之间的温度下对所述经热轧的钢带进行卷取,
-在650℃与950℃之间的温度下对所述经热轧的钢带进行退火持续10秒与48小时之间的时间,
-对所述经热轧的钢带进行冷轧以获得经冷轧的钢板,
-将所述经冷轧的钢板加热至850℃与1150℃之间的均热温度,
-将所述经冷轧的钢保持在所述均热温度下持续20秒与100秒之间的时间,
-将所述经冷轧的钢冷却至室温。
2.根据权利要求1所述的方法,其中,2.0≤Si≤3.5。
3.根据权利要求2所述的方法,其中,2.2≤Si≤3.3。
4.根据权利要求1所述的方法,其中,0.2≤Al≤1.5。
5.根据权利要求4所述的方法,其中,0.25≤Al≤1.1。
6.根据权利要求1所述的方法,其中,0.1≤Mn≤1.0。
7.根据权利要求1所述的方法,其中,0.07≤Sn≤0.15。
8.根据权利要求7所述的方法,其中,0.11≤Sn≤0.15。
9.根据权利要求1至8中任一项所述的方法,其中,热轧带退火使用连续退火线进行。
10.根据权利要求1至8中任一项所述的方法,其中,所述热轧带退火使用分批退火进行。
11.根据权利要求1所述的方法,其中,所述均热温度在900℃与1120℃之间。
12.根据权利要求1所述的方法,其中,所述经冷轧经退火的钢板被进一步涂覆。
13.根据权利要求1所述的方法生产的经退火经冷轧的非晶粒取向钢板,所述钢板的屈服强度在300MPa与480MPa之间,极限拉伸强度在350MPa与600MPa之间,所述钢板包括粒径在30μm与200μm之间的铁素体,板的厚度(FST)在0.14mm与0.67mm之间。
14.根据权利要求13所述的经退火经冷轧的非晶粒取向钢板在马达和发电机的制造中的用途。
CN201580057132.0A 2014-10-20 2015-10-20 生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途 Active CN107075647B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IBPCT/IB2014/002174 2014-10-20
PCT/IB2014/002174 WO2016063098A1 (en) 2014-10-20 2014-10-20 Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
PCT/IB2015/001944 WO2016063118A1 (en) 2014-10-20 2015-10-20 Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof

Publications (2)

Publication Number Publication Date
CN107075647A CN107075647A (zh) 2017-08-18
CN107075647B true CN107075647B (zh) 2019-05-14

Family

ID=51868993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580057132.0A Active CN107075647B (zh) 2014-10-20 2015-10-20 生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途

Country Status (28)

Country Link
US (1) US11566296B2 (zh)
EP (3) EP3209807B1 (zh)
JP (2) JP6728199B2 (zh)
KR (1) KR102535436B1 (zh)
CN (1) CN107075647B (zh)
BR (1) BR112017008193B1 (zh)
CA (1) CA2964681C (zh)
CL (1) CL2017000958A1 (zh)
CO (1) CO2017003825A2 (zh)
CR (1) CR20170156A (zh)
CU (1) CU24581B1 (zh)
DK (2) DK3741874T3 (zh)
DO (1) DOP2017000099A (zh)
EC (1) ECSP17024484A (zh)
ES (2) ES2856958T3 (zh)
FI (1) FI3741874T3 (zh)
HR (2) HRP20231336T1 (zh)
HU (2) HUE063684T2 (zh)
MX (1) MX2017005096A (zh)
PE (1) PE20171248A1 (zh)
PL (2) PL3209807T3 (zh)
PT (2) PT3209807T (zh)
RS (2) RS64786B1 (zh)
RU (1) RU2687783C2 (zh)
SI (2) SI3741874T1 (zh)
SV (1) SV2017005423A (zh)
UA (1) UA119373C2 (zh)
WO (2) WO2016063098A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063098A1 (en) * 2014-10-20 2016-04-28 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
WO2017033873A1 (ja) * 2015-08-21 2017-03-02 吉川工業株式会社 ステータコア及びそれを備えたモータ
CN108500066B (zh) * 2017-02-24 2020-06-16 上海梅山钢铁股份有限公司 T5硬质镀锡板尾部厚差冷热轧工序协调控制方法
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
KR102009392B1 (ko) 2017-12-26 2019-08-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
DE102018201618A1 (de) * 2018-02-02 2019-08-08 Thyssenkrupp Ag Nachglühfähiges, aber nicht nachglühpflichtiges Elektroband
RU2692146C1 (ru) * 2018-05-25 2019-06-21 Олег Михайлович Губанов Способ получения изотропной электротехнической стали
EP3867414A1 (de) * 2018-10-15 2021-08-25 ThyssenKrupp Steel Europe AG Verfahren zur herstellung eines no elektrobands mit zwischendicke
CN111690870A (zh) * 2019-03-11 2020-09-22 江苏集萃冶金技术研究院有限公司 一种冷连轧生产高磁感薄规格无取向硅钢方法
MX2021015679A (es) 2019-06-28 2022-02-03 Jfe Steel Corp Metodo para producir una chapa de acero electrico no orientado, metodo para producir un nucleo de motor y nucleo de motor.
DE102019217491A1 (de) 2019-08-30 2021-03-04 Sms Group Gmbh Verfahren zur Herstellung eines kaltgewalzten Si-legierten Elektrobandes mit einer Kaltbanddicke dkb < 1 mm aus einem Stahlvorprodukt
CN112030059B (zh) * 2020-08-31 2021-08-03 武汉钢铁有限公司 一种短流程无取向硅钢的生产方法
CN112159927A (zh) * 2020-09-17 2021-01-01 马鞍山钢铁股份有限公司 一种具有不同屈强比的冷轧无取向硅钢及其两种产品的生产方法
KR20240015427A (ko) * 2022-07-27 2024-02-05 현대제철 주식회사 무방향성 전기강판 및 그 제조 방법
CN115369225B (zh) * 2022-09-14 2024-03-08 张家港扬子江冷轧板有限公司 新能源驱动电机用无取向硅钢及其生产方法与应用
DE102022129243A1 (de) 2022-11-04 2024-05-08 Thyssenkrupp Steel Europe Ag Nicht kornorientiertes metallisches Elektroband oder -blech sowie Verfahren zur Herstellung eines nicht kornorientierten Elektrobands

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602335A1 (en) * 2010-08-04 2013-06-12 Nippon Steel & Sumitomo Metal Corporation Process for producing non-oriented electromagnetic steel sheet

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930519C1 (de) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
JPS583027B2 (ja) 1979-05-30 1983-01-19 川崎製鉄株式会社 鉄損の低い冷間圧延無方向性電磁鋼板
JPH01198427A (ja) 1988-02-03 1989-08-10 Nkk Corp 磁気特性の優れた無方向性電磁鋼板の製造方法
JPH01225723A (ja) 1988-03-04 1989-09-08 Nkk Corp 磁気特性の優れた無方向性珪素鋼板の製造方法
KR100240993B1 (ko) * 1995-12-18 2000-03-02 이구택 철손이 낮은 무방향성 전기강판 및 그 제조방법
KR100240995B1 (ko) 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
US6139650A (en) 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
DE19807122C2 (de) * 1998-02-20 2000-03-23 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech
TW476790B (en) * 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
JP3852227B2 (ja) 1998-10-23 2006-11-29 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
DE19918484C2 (de) 1999-04-23 2002-04-04 Ebg Elektromagnet Werkstoffe Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
JP4568999B2 (ja) * 2000-09-01 2010-10-27 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2006051543A (ja) 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
CN100529115C (zh) * 2004-12-21 2009-08-19 株式会社Posco 具有优良磁性的无取向电工钢板及其制造方法
JP4724431B2 (ja) * 2005-02-08 2011-07-13 新日本製鐵株式会社 無方向性電磁鋼板
JP4681450B2 (ja) * 2005-02-23 2011-05-11 新日本製鐵株式会社 圧延方向の磁気特性に優れた無方向性電磁鋼板とその製造方法
KR100973627B1 (ko) * 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 무방향성 전자 강판 및 그 제조 방법
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP4855220B2 (ja) * 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
JP4855222B2 (ja) 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
EP1995336A1 (fr) 2007-05-16 2008-11-26 ArcelorMittal France Acier à faible densité présentant une bonne aptitude à l'emboutissage
JP5228413B2 (ja) * 2007-09-07 2013-07-03 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
US20120267015A1 (en) 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
EP2540853B1 (en) * 2010-02-25 2015-05-27 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
JP5671872B2 (ja) * 2010-08-09 2015-02-18 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
CN102453837B (zh) * 2010-10-25 2013-07-17 宝山钢铁股份有限公司 一种高磁感无取向硅钢的制造方法
CA2822206C (en) * 2011-02-24 2016-09-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
JP5658099B2 (ja) 2011-06-17 2015-01-21 株式会社ブリヂストン 接着ゴム組成物
JP5724824B2 (ja) * 2011-10-27 2015-05-27 新日鐵住金株式会社 圧延方向の磁気特性が良好な無方向性電磁鋼板の製造方法
JP6043808B2 (ja) 2011-12-28 2016-12-14 ポスコPosco 無方向性電磁鋼板およびその製造方法
MX2014008493A (es) * 2012-01-12 2014-10-14 Nucor Corp Procesamiento de acero electrico sin un recocido intermedio de post-laminacion en frio.
EP2832882B1 (en) 2012-03-29 2019-09-18 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and method for producing same
WO2016063098A1 (en) 2014-10-20 2016-04-28 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602335A1 (en) * 2010-08-04 2013-06-12 Nippon Steel & Sumitomo Metal Corporation Process for producing non-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
CU20170054A7 (es) 2017-10-05
EP3741874A1 (en) 2020-11-25
PT3209807T (pt) 2021-02-25
CU24581B1 (es) 2022-02-04
CO2017003825A2 (es) 2017-08-31
DK3741874T3 (da) 2023-11-06
JP2017537230A (ja) 2017-12-14
RU2017113457A3 (zh) 2019-04-05
PL3741874T3 (pl) 2024-01-22
KR20170072210A (ko) 2017-06-26
PE20171248A1 (es) 2017-08-28
PL3209807T3 (pl) 2022-02-28
HUE052846T2 (hu) 2021-05-28
FI3741874T3 (fi) 2023-11-02
PT3741874T (pt) 2023-11-07
WO2016063118A1 (en) 2016-04-28
DK3209807T3 (da) 2021-02-22
CR20170156A (es) 2017-09-22
WO2016063098A1 (en) 2016-04-28
RU2017113457A (ru) 2018-10-19
SI3741874T1 (sl) 2024-02-29
HRP20231336T1 (hr) 2024-02-16
CA2964681C (en) 2022-08-02
CL2017000958A1 (es) 2018-02-23
US11566296B2 (en) 2023-01-31
HUE063684T2 (hu) 2024-01-28
EP3741874B1 (en) 2023-10-11
SI3209807T1 (sl) 2021-04-30
RS64786B1 (sr) 2023-11-30
JP7066782B2 (ja) 2022-05-13
CN107075647A (zh) 2017-08-18
JP6728199B2 (ja) 2020-07-22
HRP20210247T1 (hr) 2021-04-02
RU2687783C2 (ru) 2019-05-16
CA2964681A1 (en) 2016-04-28
EP4254440A2 (en) 2023-10-04
EP3209807B1 (en) 2020-11-25
ES2856958T3 (es) 2021-09-28
MX2017005096A (es) 2018-02-23
KR102535436B1 (ko) 2023-05-22
ECSP17024484A (es) 2018-02-28
BR112017008193B1 (pt) 2021-10-13
RS61449B1 (sr) 2021-03-31
BR112017008193A2 (pt) 2017-12-26
EP4254440A3 (en) 2024-05-22
DOP2017000099A (es) 2017-08-15
UA119373C2 (uk) 2019-06-10
ES2967592T3 (es) 2024-05-03
JP2020183583A (ja) 2020-11-12
SV2017005423A (es) 2017-10-17
EP3209807A1 (en) 2017-08-30
US20170314087A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
CN107075647B (zh) 生产含锡非晶粒取向的硅钢板的方法、所得的钢板及其用途
TWI575075B (zh) A non-oriented electrical steel sheet, a manufacturing method thereof, and an electric motor core and a manufacturing method thereof
WO2018179871A1 (ja) 無方向性電磁鋼板の製造方法、モータコアの製造方法およびモータコア
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
EP2876173B1 (en) Manufacturing method of electrical steel sheet grain-oriented
KR20180087374A (ko) 무방향성 전기 강판, 및 무방향성 전기 강판의 제조 방법
KR101993202B1 (ko) 무방향성 전자 강판의 제조 방법
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
JP6870687B2 (ja) 無方向性電磁鋼板
JP6443355B2 (ja) 方向性電磁鋼板の製造方法
CN110114488B (zh) 再利用性优良的无取向性电磁钢板
US11970757B2 (en) Electric steel strip or sheet for higher frequency electric motor applications, with improved polarization and low magnetic losses
KR100779579B1 (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판의제조방법
CN110291214A (zh) 方向性电磁钢板的制造方法
JP2022509676A (ja) 無方向性電磁鋼板およびその製造方法
JPH055126A (ja) 無方向性電磁鋼板の製造方法
KR102361872B1 (ko) 무방향성 전기강판 및 그 제조방법
KR20030052139A (ko) 응력제거소둔 후 철손이 낮고 자속밀도가 높은 무방향성전기강판의 제조방법
CN114616353A (zh) 无方向性电磁钢板
KR20080062270A (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판의제조방법
JPH10102144A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant