WO2017033873A1 - ステータコア及びそれを備えたモータ - Google Patents

ステータコア及びそれを備えたモータ Download PDF

Info

Publication number
WO2017033873A1
WO2017033873A1 PCT/JP2016/074294 JP2016074294W WO2017033873A1 WO 2017033873 A1 WO2017033873 A1 WO 2017033873A1 JP 2016074294 W JP2016074294 W JP 2016074294W WO 2017033873 A1 WO2017033873 A1 WO 2017033873A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
electromagnetic steel
motor
thickness
steel sheet
Prior art date
Application number
PCT/JP2016/074294
Other languages
English (en)
French (fr)
Inventor
榎園 正人
森 祐司
凌 上田
勝之 林
Original Assignee
吉川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉川工業株式会社 filed Critical 吉川工業株式会社
Priority to US15/754,226 priority Critical patent/US20180248420A1/en
Priority to JP2017536412A priority patent/JPWO2017033873A1/ja
Priority to CN201680048122.5A priority patent/CN107925281A/zh
Priority to EP16839220.7A priority patent/EP3340435A4/en
Publication of WO2017033873A1 publication Critical patent/WO2017033873A1/ja
Priority to US17/019,565 priority patent/US20210021162A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator core formed by laminating electromagnetic steel sheets and a motor provided with the same.
  • Patent Document 1 a technique related to the improvement of the efficiency of the motor is described in, for example, Patent Document 1.
  • the technology described in Patent Document 1 is intended to reduce deterioration of iron loss by forming a groove in the back yoke of the electromagnetic steel sheet in the stator core on which the electromagnetic steel sheets are stacked.
  • Patent Document 1 proposes a stator core that causes less deterioration in iron loss characteristics due to compressive stress applied to the stator core when the stator core is fixed to the housing of the motor (motor), and a motor using the stator core. Grooves are formed in the back yoke of the magnetic steel sheet in the stator core to reduce iron loss deterioration due to compressive stress.
  • the stator core is formed by laminating and fixing a plurality of electromagnetic steel plates 1 punched into an annular shape. It is preferable to use a non-oriented electromagnetic plate as the electromagnetic steel plate to be the material of the motor core, and the thickness of this electromagnetic steel plate is preferably 0.35 mm or less in consideration of the fact that the motor is used at high frequency. Have been described. In Example 1, it is described that a stator core having a stack thickness of 20 mm was manufactured using a nondirectional electromagnetic plate having a thickness of 0.20 mm for the electromagnetic steel sheet.
  • an armature core formed by laminating silicon steel plates having a plurality of convex portions in the outer peripheral portion and joining them by caulking portions present in the convex portions is fitted such that the outer peripheral portion of the convex portions fits
  • Patent Document 2 A method of fixing an armature core fixed to a motor case has been proposed (for example, Patent Document 2).
  • the silicon steel plate provided in the armature core employed in the armature core fixing method disclosed in Patent Document 2 has a shape having a plurality of convex portions in the outer peripheral portion.
  • Patent Document 2 does not at all disclose the thickness of the silicon steel plate.
  • Non-Patent Document 1 the drive motors of mass-production hybrid electric vehicles (HEVs) / electric vehicles (EVs) are different from general motors, and have high torque characteristics at start-up and climbing at high speed and high speed at maximum speed operation. It is described that rotation characteristics and the like are required, and high efficiency and the like are required in the high frequency travel area.
  • a motor core that constitutes such a motor has a laminated structure in which electromagnetic steel sheets are stacked, and a 0.20 mm to 0.50 mm electromagnetic steel sheet is used as a core of a general motor (for example, non-patented) Reference 1 and FIG. 11).
  • electromagnetic steel sheets have been proposed as soft magnetic materials based on iron.
  • Such a magnetic steel sheet is a material in which iron loss generated in an alternating magnetic field is reduced to the limit by performing high-level metallurgical processing.
  • the thickness of the sheet is described to be in the range of 0.23 mm to 0.35 mm mainly for the grain-oriented electrical steel sheet and 0.20 mm to 0.65 mm for the non-oriented magnetic steel sheet (for example, non-patent literature) 2).
  • this patent applicant presents the following patent documents as a literature well-known invention relevant to this invention.
  • the iron loss can be effectively suppressed when the thickness of the electromagnetic steel plate forming the stator core is 0.3 to 0.5 mm in the motor.
  • the iron loss (Ptotal) is the sum of the eddy current loss (Pe) and the hysteresis loss (Ph), and as the electromagnetic steel sheet becomes thicker, the eddy current loss increases. As the electromagnetic steel sheet becomes larger and thinner, the effect of hysteresis loss becomes larger. As a result, it is considered that iron loss can be most suppressed when the thickness of the electromagnetic steel sheet is in the range of 0.3 to 0.5 mm. Because it was
  • Ke proportional constant
  • Kh proportional constant
  • t plate thickness of magnetic steel sheet
  • f frequency
  • Bm maximum magnetic flux density
  • resistivity
  • eddy current loss and hysteresis loss can be expressed by the following equations it can.
  • Pe Ke (tfBm) 2 / ⁇
  • Ph Khf (Bm) 1.6 .
  • an amorphous material is mentioned to the typical thing of a thin plate material.
  • the amorphous material has problems such as low saturation electromagnetic density, large deterioration due to processing, and high manufacturing cost.
  • the present invention is made in view of such circumstances, and it is an object of the present invention to provide a stator core which is formed by laminating electromagnetic steel sheets and is capable of stably suppressing iron loss, and a motor provided with the stator core.
  • the inventors of the present invention stably suppress iron loss of the stator core by making the plate thickness of the electromagnetic steel plate provided in the stator core smaller than that of the conventional electromagnetic steel plate. It has been found that the present invention can be accomplished. More specifically, the present invention comprises the following technical matters.
  • the stator core according to the first invention in accordance with the object is formed by laminating electromagnetic steel sheets having a thickness of 25 to 80 ⁇ m. Verification confirmed that iron loss can be suppressed by adopting a magnetic steel sheet with a thickness of 80 ⁇ m or less.
  • a motor according to a second invention in accordance with the object includes a stator core formed by laminating electromagnetic steel sheets having a thickness of 25 to 80 ⁇ m. It was confirmed by verification that a motor employing a magnetic steel sheet having a thickness of 80 ⁇ m or less can suppress an increase in iron loss and can exhibit excellent motor efficiency.
  • the motor according to the second invention preferably rotates at a frequency of 500 Hz or more.
  • the motor according to the second invention can exhibit excellent motor efficiency at a frequency of 500 Hz or more.
  • the thickness of the electromagnetic steel sheet is 25 to 80 ⁇ m, iron loss can be stably suppressed.
  • the stator core 10 includes the electromagnetic steel plates 11 and is formed by laminating a plurality of electromagnetic steel plates 11. That is, the stator core 10 according to the embodiment of the present invention is formed by laminating a plurality of stator core pieces made of electromagnetic steel sheets.
  • the stator core piece is formed by punching a magnetic steel sheet, and the stator core piece is "temporarily fixed” with other stator core pieces to form a stator core piece group.
  • stator core piece existing in the stator core piece group by temporarily fixing the stator core pieces to form the stator core piece group prior to “final fixing” by the curable resin described later. Means “pre-processing” to "fixed” between them.
  • stator core pieces are stacked to form a stator core piece group.
  • a curable resin before curing is applied between the stator core pieces.
  • the stator core pieces are “fixed” by the curable resin by adhesion.
  • stator core pieces punched out of the respective magnetic steel plates 11 are “temporarily fixed” by “crimping”, the present invention is not limited to this.
  • temporary fixing by “adhesion” by a curable resin It may be done.
  • the stator core 10 exists in “temporary fixing” performed to obtain a stator core piece group formed by laminating a plurality of stator core pieces punched out of the magnetic steel sheet 11 and the stator core piece group It manufactured by using together with "this fixation” performed in order to adhere
  • the plate thickness of the magnetic steel plate 11 constituting the stator core 10 of the present invention is extremely thinner than the electromagnetic steel plate having a plate thickness exceeding 200 ⁇ m, which is used in the conventional stator core, and usually “scaly” or “adhesive”. If only the above is applied, it is difficult to secure the peel strength between the magnetic steel plates 11.
  • the stator core 10 of the present invention is “temporarily fixed” performed to obtain a stator core piece group formed by laminating a plurality of stator core pieces punched out of the magnetic steel sheet 11 and a stator core piece existing in such stator core piece group It manufactures by the manufacturing method which used together with "this fixation” performed in order to adhere
  • the stator core 10 of the present invention including the electromagnetic steel plate 11 having a thickness of 25 to 80 ⁇ m is performed to obtain a stator core piece group formed by laminating a plurality of stator core pieces punched out of the electromagnetic steel plate 11. It was manufactured by combining "temporary fixation” by caulking and “real fixation” by "adhesion” using an adhesive. And the electromagnetic steel sheet 11 of a present Example is manufactured by the cold rolling method.
  • the stator core 10 of the present invention may be an inner core or an outer core.
  • the curable resin before curing which is used to fix the inner core piece group and the outer core piece group is not necessarily applied to the entire surface of the outer peripheral region or the inner peripheral region, and the outer peripheral region or the inner peripheral region It may be a part. That is, the area
  • the thickness of each of the electromagnetic steel plates 11 provided in the stator core 10 is 25 to 80 ⁇ m. This is defined in order to suppress eddy current loss by making the plate thickness of each of the electromagnetic steel plates 11 provided in the stator core 10 thinner than the thickness of the electromagnetic steel plates employed in the conventional stator core. Furthermore, in the present invention, by making the plate thickness of the magnetic steel sheet 11 provided in the stator core 10 as thin as 80 ⁇ m or less, it is possible to significantly reduce the increase of the hysteresis loss from the value conventionally considered. , Due to confirmation.
  • the verification results are described below.
  • the iron loss of the electromagnetic steel sheet having a thickness of 50 ⁇ m and the magnetic steel sheet having a thickness of 350 ⁇ m was measured.
  • the vertical axis and the horizontal axis respectively indicate iron loss and frequency (frequency for rotating the rotor in a motor in which the corresponding electromagnetic steel sheet is adopted as a stator core).
  • the iron loss was measured in accordance with a vector magnetic property measuring apparatus (VH analyzer) developed by one of the inventors of the present invention to conduct a magnetic measurement test of the magnetic steel sheet.
  • VH analyzer vector magnetic property measuring apparatus
  • sample 1 50 ⁇ m thick electromagnetic steel plate
  • sample 2 10 electromagnetic steel plates with 50 ⁇ m thickness laminated
  • sample 3 1 sheet of 350 ⁇ m thick electromagnetic steel sheet
  • the increase rate of the core loss to the frequency is about 0.006 (W / Kg ⁇ Hz) for the electromagnetic steel sheet having a thickness of 80 ⁇ m, and the frequency of the electromagnetic steel sheet for It was confirmed that the increase rate of iron loss with respect to is about 0.005 (W / Kg ⁇ Hz).
  • the influence of the hysteresis loss on the iron loss is smaller than the value conventionally regarded as common sense in the electromagnetic steel sheet thinner than 80 ⁇ m .
  • the lower limit is 25 ⁇ m.
  • the thickness of the electromagnetic steel sheets may be set to 60 to 80 ⁇ m.
  • the motor 20 includes the stator 21 manufactured by winding the stator core 10 and the rotor 22 housed inside the stator 21. There is. That is, the motor 20 includes the stator core 10.
  • the motor 20 having the stator core 10 in which the electromagnetic steel sheets 11 (that is, the electromagnetic steel sheets having a thickness of 25 to 80 ⁇ m) are laminated has a rotational speed as compared with the motor having the stator core in which the electromagnetic steel sheets having a thickness of more than 80 ⁇ m are laminated.
  • the electromagnetic steel sheets 11 that is, the electromagnetic steel sheets having a thickness of 25 to 80 ⁇ m
  • the treatment in the manufacturing process of the electromagnetic steel plate differs depending on the thickness of the electromagnetic steel plate, and a difference occurs in the actual iron loss of the motor adopting the electromagnetic steel plate according to the treatment in the manufacturing process of the electromagnetic steel plate Needless to say.
  • electromagnetic steel sheets employed for stator cores having a thickness of 60 to 80 ⁇ m are not present at least as products, but also there is no technology for industrially laminating electromagnetic steel sheets having a thickness of 80 ⁇ m or less.
  • the present inventors succeeded in laminating an ultrathin electromagnetic steel plate having a thickness of 80 ⁇ m or less (laminating so as to exhibit performance as a stator core), and a stator core in which 80 ⁇ m thick electromagnetic steel plates were actually laminated. Succeeded in measuring the magnitude of iron loss of the motor by using. The measurement results are shown in FIG.
  • the graphs shown as 0.08 mm (A) and 0.08 mm (B) in FIG. 6 correspond to a motor adopting an 80 ⁇ m thick electromagnetic steel plate as a stator core, and are respectively processed in the manufacturing process of the electromagnetic steel plate Are different.
  • 0.08 mm (A) and 0.08 mm (B) show the material characteristic variation due to the production variation of the plate thickness of 80 ⁇ m.
  • the graph displayed as 0.1 mm corresponds to a motor using a 100 ⁇ m thick electromagnetic steel plate as a stator core.
  • the motor provided with the stator core in which the electromagnetic steel sheets having a thickness of 80 ⁇ m are laminated has a frequency of 500 Hz or more and a thickness of 100 ⁇ m stably even if the treatment in the manufacturing process of the electromagnetic steel sheets is different. It was confirmed that the iron loss of a motor having a stator core laminated with steel plates is less than that of the motor.
  • the reason why the core loss did not increase in the electromagnetic steel sheet with a thickness of 80 ⁇ m or less is considered to be that the skin effect thickness (the thickness at which the reaction field is generated by the eddy current) in the eddy current of the magnetic steel sheet was 80 ⁇ m .
  • the motor provided with the stator core using the electromagnetic steel plate having a thickness of 80 ⁇ m has a remarkable effect of suppressing the increase in iron loss by driving and rotating at a frequency of 500 Hz or more.
  • the upper limit value of the number of revolutions required for the motor is generally 100,000 revolutions (corresponding to 10,000 Hz in frequency).
  • a reaction magnetic field against the magnetic field applied to the electromagnetic steel sheet (hereinafter, also referred to as “applied magnetic field”) is generated in the electromagnetic steel sheet. Therefore, when an eddy current is generated in the electromagnetic steel sheet, a larger applied magnetic field is required to provide the magnetic steel sheet with a magnetic flux density of a predetermined magnitude as compared to the case where no reaction magnetic field is generated in the electromagnetic steel sheet. Therefore, it is thought that the reaction magnetic field can be reduced by the suppression of the eddy current by adopting the thin magnetic steel sheet, and it is possible to reduce the excitation current to the motor at this point.
  • an electromagnetic steel sheet having a thickness of 25 to 80 ⁇ m is adopted as an electromagnetic steel sheet constituting a stator core included in the motor, and a plurality of stator core pieces made of such electromagnetic steel sheets are stacked. This is realized by combining “temporarily fixing” performed to obtain the stator core piece group and “main fixing” between the stator core pieces present in the stator core piece group.
  • the motor does not constitute a closed magnetic circuit and a demagnetizing field is generated, when the electromagnetic steel sheet becomes thinner, the coefficient of the demagnetizing field in the thickness direction of the electromagnetic steel sheet becomes larger, and the in-plane direction of the electromagnetic steel sheet The demagnetizing field in the direction perpendicular to the direction is relatively small. Therefore, in a motor employing a thin electromagnetic steel sheet for the stator core, the demagnetizing field in the in-plane direction of the magnetic steel sheet becomes relatively smaller than the demagnetizing field in the thickness direction of the stator core, and this also reduces the excitation current to the motor Is considered to be possible.
  • the stator core piece group was formed by temporarily fixing a plurality of stator core pieces punched out of a magnetic steel plate having a predetermined thickness using "swimming".
  • the stator core was manufactured by "mainly fixing” between the stator core pieces present in the stator core piece group with a curable resin.
  • adopted in the Example was made into the outer core.
  • the outer core piece is provided with a "squeeze”. Twelve crimps are provided in the non-extension area of the teeth of the annular base that constitutes the outer core piece.
  • a curable resin before curing was applied to the inner peripheral region of the outer core piece group formed by laminating a plurality of outer core pieces by caulking. An epoxy resin was employed as the curable resin.
  • the motor manufactured in Example 1 is a motor provided with a stator core (outer core) by stacking 800 pieces of a plurality of stator core pieces (outer core pieces) made of electromagnetic steel sheets with a thickness of 50 ⁇ m.
  • the motor manufactured in Example 2 is a motor provided with a stator core (outer core) by laminating 500 pieces of a plurality of stator core pieces (outer core pieces) made of an electromagnetic steel sheet having a thickness of 80 ⁇ m.
  • the motor manufactured in the comparative example is a motor provided with a stator core (outer core) by laminating a plurality of stator core pieces (outer core pieces) made of electromagnetic steel sheets having a plate thickness of 350 ⁇ m.
  • the stator core (outer core) included in the manufactured motor was ⁇ 182 ⁇ 40 mm in thickness.
  • Motor having stator core laminated with electromagnetic plates of 50 ⁇ m thickness (Example 1), motor provided with stator core laminated with electromagnetic plates of 80 ⁇ m thickness (Example 2), stator core laminated with electromagnetic plates of 350 ⁇ m thickness
  • Iron loss and motor efficiency were measured about the motor which comprises (comparative example).
  • the measurement results of the iron loss and the measurement results of the motor efficiency are respectively shown in the graphs of FIG. 7 and FIG.
  • the measurement results of the iron loss and the measurement results of the motor efficiency are shown in Table 2 and Table 3, respectively.
  • the motor efficiency is a value obtained by dividing the motor output by the input power and multiplying the value by 100.
  • the one described as “50 ⁇ m” or “80 ⁇ m” is the first embodiment.
  • 2 and described as “350 ⁇ m” is a comparative example.
  • 12 poles and 6 phases of stator cores (FIG. 9) were used.
  • the stator core and the motor according to the present invention can stably suppress iron loss. Therefore, the present invention can be expected to be used in products such as transformers, generators, motors and the like that require a motor with high motor efficiency, and power generation equipment.
  • the present invention is capable of stably suppressing iron loss, and can therefore be used in the electrical equipment industry where it is required to improve the efficiency of a motor.
  • the present invention can be suitably used as a drive motor for mass-production hybrid electric vehicles (HEVs) and electric vehicles (EVs), the present invention can also be used in the automobile industry.
  • HEVs hybrid electric vehicles
  • EVs electric vehicles
  • stator core 10: stator core, 11: magnetic steel plate, 20: motor, 21: stator, 22: rotor, 100: caulking, 110: outer core piece, 120: annular base, 130: teeth, 140: magnetic pole portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

電磁鋼板の積層によって形成され、鉄損を安定的に抑制可能なステータコア及びそのステータコアを備えたモータを提供すること。 板厚が25~80μmの電磁鋼板11を積層して形成されたステータコア10の採用により、鉄損を安定的に抑制する。また、板厚が25~80μmの電磁鋼板11を積層して形成されたステータコア10を備えることで、モータ20は、モータ効率を安定的に向上させる。

Description

ステータコア及びそれを備えたモータ
 本発明は、電磁鋼板の積層によって形成されたステータコア及びそれを備えたモータに関する。
 省エネルギーの観点より、モータの効率化が望まれ、モータの効率化に関する技術が、例えば、特許文献1に記載されている。特許文献1に記載の技術は、電磁鋼板が積層されたステータコアにおいて、電磁鋼板のバックヨークに溝を形成して、鉄損の劣化を軽減するものである。
 具体的に特許文献1には、ステータコアをモータ(電動機)のハウジングに固定した際にステータコアに加わる圧縮応力による鉄損特性の劣化が小さいステータコアと、そのステータコアを用いたモータが提案されている。上記ステータコアには、電磁鋼板のバックヨークに溝が形成されており、圧縮応力による鉄損劣化を軽減している。ステータコアは、環状の形状に打ち抜いた複数枚の電磁鋼板1を、積層して、固着したものである。モータコアの素材となる電磁鋼板は、無方向性電磁板を用いるのが好ましく、この電磁鋼板の板厚は、モータが高周波で使用されることを考慮し、0.35mm以下であることが好ましいと記載されている。
 実施例1においては、電磁鋼板の板厚が0.20mmの無方向性電磁板を用いて、積み厚が20mmのステータコアを製作したことが記載されている。
 また、外周部に複数個の凸部を有した珪素鋼板を積層し、凸部に存在するカシメ部によって接合して形成された電機子鉄心を、凸部の外周部が嵌合するようにしてモータケースに固定する電機子鉄心の固定方法が提案されている(例えば、特許文献2)。
 特許文献2に開示された電機子鉄心の固定方法において採用されている電機子鉄心が備えている珪素鋼板は、外周部に複数個の凸部を有する形状を有している。しかしながら、特許文献2には、上記珪素鋼板の板厚に関する記載は全くない。
 一方、非特許文献1には、量産型ハイブリッド電気自動車(HEV)/電気自動車(EV)の駆動モータが一般的なモータと異なり、起動時、登坂時の高トルク特性、最高速運転での高速回転特性等が要求され、高頻度走行領域では高効率などが要求されることが記載されている。かかるモータを構成するモータ鉄心は、電磁鋼板を重ねた積層構造を有しており、一般的なモータの鉄心として、0.20mmから0.50mmの電磁鋼板が用いられている(例えば、非特許文献1、図11)。
 また、鉄をベースとする軟磁性材料として、電磁鋼板が提案されている。かかる電磁鋼板は、高度の冶金処理を施すことによって、交流磁場で発生する鉄損を極限まで低減した材料である。その板厚は、方向性電磁鋼板では、主に0.23mm~0.35mm、無方向性電磁鋼板では0.20mm~0.65mmの範囲であることが説明されている(例えば、非特許文献2)。なお、本件特許出願人は、本件発明に関連する文献公知発明として、以下の特許文献を提示する。
特開2010-252463号公報 特開平4-325846号公報
新日鉄技報第393号(2012)技術論文「ハイブリッド/電気自動車駆動モータ用電磁鋼板の最近の動向」脇坂岳顕 新井聡 黒崎洋介 2012年8月 発行 JFEスチールグループの軟磁性材料 JFE技報No.8 2005年6月 発行 p.1-6
 ところで、モータは、ステータコアを形成する電磁鋼板の板厚が0.3~0.5mmの範囲で、鉄損を効果的に抑制できると認知されていた。これは、図1に示すように、鉄損(Ptotal)が渦電流損(Pe)とヒステリシス損(Ph)を足し合わせたものであり、電磁鋼板が厚くなるのに伴って、渦電流損が大きくなり、電磁鋼板が薄くなるのに伴って、ヒステリシス損の影響が大きくなり、その結果、鉄損は、電磁鋼板の板厚が0.3~0.5mmの範囲で最も抑制できると考えられていたためである。
 なお、Ke:比例定数、Kh:比例定数、t:電磁鋼板の板厚、f:周波数、Bm:最大磁束密度、ρ:抵抗率として、渦電流損及びヒステリシス損は以下の式で表すことができる。
Pe=  Ke(tfBm)/ρ、Ph= Khf(Bm)1.6 である。 
 また、薄板材の代表的なものにアモルファス材が挙げられる。しかしながら、アモルファス材は、飽和電磁密度が低い上に、加工による劣化が大きく、更には、製造コストも高いという課題がある。
 本発明は、かかる事情に鑑みてなされるもので、電磁鋼板の積層によって形成され、鉄損を安定的に抑制可能なステータコア及びそのステータコアを備えたモータを提供することを目的とする。
 本件発明者等は、鋭意検討を行った結果、ステータコアが備えている電磁鋼板の板厚を従来の電磁鋼板の板厚よりも薄板とすることによって、ステータコアの鉄損を安定的に抑制することができることを見出し、本発明を完成するに至った。より具体的には、本発明は以下の技術的事項から構成される。
(1) 前記目的に沿う第1の発明に係るステータコアは、板厚が25~80μmの電磁鋼板を積層して形成されたものである。板厚が80μm以下の電磁鋼板を採用することによって、鉄損が抑制できることを検証によって確認した。
(2) 前記目的に沿う第2の発明に係るモータは、板厚が25~80μmの電磁鋼板を積層して形成されたステータコアを備える。板厚が80μm以下の電磁鋼板を採用したモータは、鉄損の増加を抑制することができ、優れたモータ効率を発揮できることを検証によって確認した。
(3) 第2の発明に係るモータは、500Hz以上の周波数で回転するのが好ましい。第2の発明に係るモータは、500Hz以上の周波数において、優れたモータ効率を発揮することができる。
 第1の発明に係るステータコア及び第2の発明に係るモータは、電磁鋼板の板厚が25~80μmであるので、鉄損を安定的に抑制可能である。
鉄損と電磁鋼板の板厚について従来考えられていた関係を示すグラフである。 本発明の一実施形態に係るステータコア及びモータの側断面図である。 電磁鋼板の鉄損の計測結果を示すグラフである。 電磁鋼板のW/fの計測結果を示すグラフである。 電磁鋼板の鉄損と板厚の関係を示すグラフである。 モータの鉄損と周波数の関係を示すグラフである。 実施例及び比較例の鉄損の計測結果を示すグラフである。 実施例及び比較例のモータ効率の計測結果を示すグラフである。 ステータコアがアウターコアである場合におけるステータコアの平面図(A)及び側面図(B)である。
 続いて、添付した図面を参照しつつ、本発明を具体化した実施形態につき説明し、本発明の理解に供する。
 図2に示すように、本発明の一実施形態に係るステータコア10は、電磁鋼板11を備えており、複数の電磁鋼板11が積層されて形成されている。
 すなわち、本発明の一実施形態に係るステータコア10は、電磁鋼板からなる複数のステータコア片が積層されて形成されている。ステータコア片は電磁鋼板を打ち抜いて形成され、ステータコア片は、他のステータコア片と「仮固定」されてステータコア片群を形成している。
 ここで、「仮固定」とは、後述する硬化性樹脂による「本固定」に先立って、ステータコア片群を形成するためにステータコア片の間を仮に固定して、ステータコア片群に存在するステータコア片の間を「本固定」するための前処理を意味する。
 「仮固定」によって、ステータコア片が積層され、ステータコア片群が形成される。ステータコア片群に存在するステータコア片の間を固定するために、硬化前の硬化性樹脂が当該ステータコア片の間に塗布される。かかる硬化前の硬化性樹脂を熱等により硬化させることにより、当該ステータコア片の間は、接着によって硬化性樹脂によって「本固定」される。
 なお、本実施形態では、各電磁鋼板11を打ち抜いた複数のステータコア片が「かしめ」によって「仮固定」されているが、これに限定されず、例えば、硬化性樹脂による「接着」によって仮固定されていてもよい。
 本発明の一実施形態に係るステータコア10は、電磁鋼板11を打ち抜いた複数のステータコア片が積層されて形成されたステータコア片群を得るために行う「仮固定」と、かかるステータコア片群に存在するステータコア片の間を硬化性樹脂によって接着するために行う「本固定」とが併用される(複合積層)ことによって製造された。
 本発明のステータコア10を構成する電磁鋼板11の板厚は、従来のステータコアに用いられている板厚が200μmを超える電磁鋼板よりも極薄となっており、通常「かしめ」や「接着剤」のみを適用すると、電磁鋼板11間の剥離強度の確保が困難である。
 しかしながら、本発明のステータコア10は、電磁鋼板11を打ち抜いた複数のステータコア片が積層されて形成されたステータコア片群を得るために行う「仮固定」と、かかるステータコア片群に存在するステータコア片の間を硬化性樹脂によって接着するために行う「本固定」とを併用した製造方法によって製造されている。このため、本発明のステータコア10は、従来製造することが技術的に困難であった板厚が25~80μmである電磁鋼板11を備えたステータコアとなっている。
 つまり、板厚が25~80μmである電磁鋼板11を備えている本発明のステータコア10は、電磁鋼板11を打ち抜いた複数のステータコア片が積層されて形成されたステータコア片群を得るために行う「かしめ」による「仮固定」と、接着剤を用いた「接着」による「本固定」とを併用することによって、製造された。
そして、本実施例の電磁鋼板11は、冷間圧延法によって製造されている。
 本発明のステータコア10は、インナーコアであってもよいし、アウターコアであってもよい。インナーコア片群やアウターコア片群を本固定するために使用される硬化前の硬化性樹脂は、必ずしも外周領域又は内周領域の全面に塗布される必要はなく、外周領域又は内周領域の一部であってもよい。すなわち、インナーコア片群やアウターコア片群には硬化性樹脂が不存在の領域が存在していてもよい。
 本件発明において、ステータコア10が備えている各電磁鋼板11の板厚は、25~80μmである。これは、ステータコア10が備えている各電磁鋼板11の板厚を従来のステータコアに採用されている電磁鋼板の板厚よりも薄くすることによって、渦電流損を抑制するために規定されている。更に、本発明においては、ステータコア10が備えている電磁鋼板11の板厚を80μm以下に薄くすることによって、ヒステリシス損の増加を従来考えられていた値より、きわめて低減できることを、鋭意検証の結果、確認したことによるものである。
 検証結果を以下に説明する。
 板厚50μmの電磁鋼板及び板厚350μmの電磁鋼板について、鉄損を計測した結果を図3のグラフに示した。図3のグラフにおいて、縦軸及び横軸は、鉄損及び周波数(該当する電磁鋼板をステータコアに採用したモータにおいてロータを回転させるための周波数)をそれぞれ意味する。なお、鉄損の測定は、本発明の発明者の一人が開発したベクトル磁気特性測定装置(V-Hアナライザー)に従い、電磁鋼板の磁気測定試験を行った。
「1sheet」、「10sheet」及び「35A360」は、1枚の板厚50μmの電磁鋼板(以下、「サンプル1」とも言う)、板厚50μmの電磁鋼板10枚を積層したもの(以下、「サンプル2」とも言う)及び1枚の板厚350μmの電磁鋼板(以下、「サンプル3」とも言う)をそれぞれ意味する。
 図3のグラフより、サンプル3、サンプル2及びサンプル1の順に、周波数の上昇による鉄損の増加率が大きくなることが確認された。
 そして、同じ3つのサンプルについて、鉄損を周波数で割ったW/fと周波数の関係を導出した結果、図4のグラフに示すようになった。図4のグラフより、周波数の増加に伴うW/fの増加勾配は、鉄損に含まれる渦電流損の影響により、渦電流損は電磁鋼板の板厚の2乗に比例して増加する為、サンプル3が、サンプル1、2に比べて大きくなった。
 また、表1に750Hzにおける鉄損を計測した結果、及び鉄損を周波数(750Hz)で割ったW/fと周波数の関係を示した。
Figure JPOXMLDOC01-appb-T000001
 
 
 ここで、本実施形態の電磁鋼板(冷間圧延法により製造されたもの)をステータコアに採用した際の電磁鋼板の厚みと鉄損の関係をシミュレーションした。シミュレーションの結果を図5のグラフに示す。
 図5のグラフより、電磁鋼板が薄くなるほど、周波数の上昇に伴う鉄損の増加勾配が小さくなること、板厚が80μm以下の電磁鋼板は、鉄損が周波数の上昇(100Hzからの上昇)に対して、ほぼ直線的に増加すること、並びに、板厚が100μm以上の電磁鋼板は、周波数の上昇に従う鉄損の増加率が大きくなることが確認された。従って、板厚が80μm以下の電磁鋼板は、周波数が100Hz以上の領域で鉄損を安定的に抑制できることがシミュレーションによって判明した。なお、図5のグラフより、板厚が80μmの電磁鋼板は、周波数に対する鉄損の増加率は、約0.006(W/Kg・Hz)であり、板厚が50μmの電磁鋼板は、周波数に対する鉄損の増加率は、約0.005(W/Kg・Hz)であることが確認された。
 図3、図4のグラフ、並びに図5のグラフから、80μm以下より薄い電磁鋼板は、鉄損に対するヒステリシス損の影響が、従来において、常識とされていた値より小さくなっていることが考えられる。
 なお、電磁鋼板の製造工程や電磁鋼板の積層工程での技術的困難性等から、現実的に製品化できるステータコアが備えている電磁鋼板の板厚には下限値があり、本実施形態では、その下限値を25μmにしている。なお、電磁鋼板からなるステータコア片を積層してステータコアを製造する観点からは、電磁鋼板の板厚を60~80μmとしてもよい。
 また、本発明の一実施形態に係るモータ20は、図2に示すように、ステータコア10に巻線加工を経て製造されたステータ21と、ステータ21の内側に収容されたロータ22とを備えている。即ち、モータ20は、ステータコア10を備えている。
 電磁鋼板11(即ち、板厚が25~80μmの電磁鋼板)を積層したステータコア10を具備するモータ20は、厚みが80μmを超える電磁鋼板を積層したステータコアを具備するモータと比較して、回転数が上昇するのに伴う鉄損の増加を安定的に抑制することができることを確認した。
 ここで、電磁鋼板の製造工程における処理は電磁鋼板の厚みに応じて異なり、電磁鋼板の製造工程における処理に応じて、その電磁鋼板を採用したモータの実際の鉄損には差異が生じるのは言うまでもない。そして、従来、ステータコアに採用する電磁鋼板で60~80μmの厚みのものが少なくとも製品として存在しないばかりか、80μm以下の厚みの電磁鋼板を工業的に積層する技術も存在せず、しかも、図1に示された鉄損と電磁鋼板の厚みの関係から、25~80μmの厚みの電磁鋼板をステータコアに採用しようという試みが工業的になされていなかった。
 今回、本願発明者らは、80μm以下の厚みの極薄の電磁鋼板を積層すること(ステータコアとして性能を発揮できるように積層すること)に成功し、実際に80μm厚の電磁鋼板を積層したステータコアを用いることで、モータの鉄損がどの程度の大きさになるかを計測することに成功した。その計測結果を図6に示す。
 なお、図6において、0.08mm(A)及び0.08mm(B)として表示したグラフは、80μm厚の電磁鋼板をステータコアに採用したモータに対応するもので、それぞれ電磁鋼板の製造工程における処理が異なっている。
 また、図6において、0.08mm(A)と0.08mm(B)は板厚80μm製造ばらつきによる材料特性ばらつきを示している。
 0.1mmとして表示したグラフは、100μm厚の電磁鋼板をステータコアに用いたモータに対応している。
 図6に示す結果から、板厚が80μmの電磁鋼板を積層したステータコアを具備するモータは、電磁鋼板の製造工程における処理が異なっても、周波数が500Hz以上で安定的に板厚が100μmの電磁鋼板を積層したステータコアを具備するモータの鉄損を下回ることが確認できた。
 板厚が80μm以下の電磁鋼板において、鉄損が増加しなかった理由は、電磁鋼板の渦電流における表皮効果厚さ(渦電流による反抗磁場が発生する厚さ)が80μmであったと推定される。
 また、板厚が80μmの電磁鋼板を用いたステータコアを備えるモータは、500Hz以上の周波数で駆動回転することによって、鉄損の増加の抑制効果が顕著になることが分かる。  
 なお、現状、モータに要求される回転数の上限値は、一般的に10万回転(周波数では1万Hz相当)とされている。
 ここで、電磁鋼板に渦電流が生じると、電磁鋼板には電磁鋼板に印加される磁場(以下、「印加磁場」とも言う)に逆らう反抗磁場が生じる。従って、電磁鋼板に渦電流が生じる場合、電磁鋼板に反抗磁場が生じない場合に比べ、電磁鋼板に所定の大きさの磁束密度を設けるために、より大きい印加磁場が必要とされる。よって、薄い電磁鋼板の採用による渦電流の抑制によって、反抗磁場を小さくすることができ、この点でモータへの励磁電流の低減化を可能にすると考えられる。
 すなわち、モータへの励磁電流の低減化は、当該モータが備えているステータコアを構成する電磁鋼板として、板厚が25~80μmの電磁鋼板を採用し、かかる電磁鋼板からなる複数のステータコア片が積層されたステータコア片群を得るために行う「仮固定」とステータコア片群に存在するステータコア片の間を「本固定」とを併用することによって実現している。
 そして、モータは閉磁路を構成しておらず反磁場が生じることから、電磁鋼板が薄くなると、電磁鋼板の厚み方向の反磁場の係数が大きくなり、電磁鋼板の面内方向(電磁鋼板の厚み方向に垂直な方向)の反磁場が相対的に小さくなる。従って、ステータコアに薄い電磁鋼板を採用したモータは、ステータコアの厚み方向の反磁場に対し、電磁鋼板の面内方向の反磁場が相対的に小さくなり、この点でもモータへの励磁電流の低減化を可能にすると考えられる。
 次に、本発明の作用効果を確認するために行った実施例について説明する。所定の厚みを有する電磁鋼板を打ち抜いた複数のステータコア片を「かしめ」を用いて仮固定することによりステータコア片群を形成した。このステータコア片群に存在するステータコア片の間を硬化性樹脂により「本固定」することによって、ステータコアを製造した。なお、図9に示すように、実施例において採用したステータコアは、アウターコアとした。
 アウターコア片には、「かしめ」が設けられている。かしめは、アウターコア片を構成する環状基部のティースの非延長領域に12個設けられている。複数のアウターコア片がかしめによって積層されて形成されたアウターコア片群の内周領域に硬化前の硬化性樹脂を塗布した。硬化性樹脂として、エポキシ系樹脂を採用した。
 実施例1において製造したモータは、板厚50μmの電磁鋼板からなる複数のステータコア片(アウターコア片)を800枚積層してステータコア(アウターコア)を備えたモータである。実施例2において製造したモータは、板厚80μmの電磁鋼板からなる複数のステータコア片(アウターコア片)を500枚積層してステータコア(アウターコア)を備えたモータである。
 比較例において製造したモータは、板厚350μmの電磁鋼板からなる複数のステータコア片(アウターコア片)を積層してステータコア(アウターコア)を備えたモータである。
 実施例1において、製造されたモータが備えているステータコア(アウターコア)は、φ182×厚さ40mmであった。
 板厚50μmの電磁鋼板を積層したステータコアを具備するモータ(実施例1)、板厚80μmの電磁鋼板を積層したステータコアを具備するモータ(実施例2)及び板厚350μmの電磁鋼板を積層したステータコアを具備するモータ(比較例)について、鉄損及びモータ効率を計測した。鉄損の計測結果及びモータ効率の計測結果をそれぞれ、図7、図8のグラフに示す。併せて、鉄損の計測結果及びモータ効率の計測結果をそれぞれ表2、表3に示した。なお、モータ効率とは、モータ出力を入力電力で割った値に100を掛けた値であり、図7、図8中で、「50μm」又は「80μm」と記載したものが、実施例1、2であり、「350μm」と記載したものが、比較例である。また、実施例のモータ及び比較例のモータにおいては、共に12極、6相のステータコア(図9)を用いた。
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000003
 図7に示すグラフから、3000~7000回転数(300~700Hzの周波数に相当)で、回転数が大きくなるのに伴い、実施例において生じる鉄損と比較例において生じる鉄損との間の開きが大きくなることが分かる。
 また、図8に示すグラフから、3000~7000回転数の範囲で、実施例のモータ効率が比較例のモータ効率より高い値になることが確認された。
 以上、本発明の実施例を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
 本発明に係るステータコア及びモータは、鉄損を安定的に抑制することが可能である。従って、本発明は、モータ効率の高いモータを必要とする変圧器、発電機、モータ等の製品や発電設備での利用が期待できる。本発明は、鉄損を安定的に抑制することが可能であるから、モータの効率を向上させることが要求される電気機器産業において利用することができる。さらに、本発明は、量産型ハイブリッド電気自動車(HEV)、電気自動車(EV)の駆動モータとして好適に使用することができるため、自動車産業においても利用することができる。
 10:ステータコア、11:電磁鋼板、20:モータ、21:ステータ、22:ロータ、100:かしめ、110:アウターコア片、120:環状基部、130:ティース、140:磁極部

Claims (3)

  1.  板厚が25~80μmの電磁鋼板を積層して形成されたステータコア。
  2.  板厚が25~80μmの電磁鋼板を積層して形成されたステータコアを備えることを特徴とするモータ。
  3.  請求項2記載のモータであって、500Hz以上の周波数で回転することを特徴とするモータ。
PCT/JP2016/074294 2015-08-21 2016-08-19 ステータコア及びそれを備えたモータ WO2017033873A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/754,226 US20180248420A1 (en) 2015-08-21 2016-08-19 Stator core and motor equipped with same
JP2017536412A JPWO2017033873A1 (ja) 2015-08-21 2016-08-19 ステータコア及びそれを備えたモータ
CN201680048122.5A CN107925281A (zh) 2015-08-21 2016-08-19 定子芯及具备该定子芯的电机
EP16839220.7A EP3340435A4 (en) 2015-08-21 2016-08-19 STATOR CORE AND ENGINE COMPRISING IT
US17/019,565 US20210021162A1 (en) 2015-08-21 2020-09-14 Stator core and motor equipped with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015163290 2015-08-21
JP2015-163290 2015-08-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/754,226 A-371-Of-International US20180248420A1 (en) 2015-08-21 2016-08-19 Stator core and motor equipped with same
US17/019,565 Continuation US20210021162A1 (en) 2015-08-21 2020-09-14 Stator core and motor equipped with the same

Publications (1)

Publication Number Publication Date
WO2017033873A1 true WO2017033873A1 (ja) 2017-03-02

Family

ID=58100255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074294 WO2017033873A1 (ja) 2015-08-21 2016-08-19 ステータコア及びそれを備えたモータ

Country Status (5)

Country Link
US (2) US20180248420A1 (ja)
EP (1) EP3340435A4 (ja)
JP (1) JPWO2017033873A1 (ja)
CN (1) CN107925281A (ja)
WO (1) WO2017033873A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699074B (zh) * 2017-09-29 2020-07-11 日商日立金屬股份有限公司 徑向間隙式旋轉電機及其製造方法、旋轉電機用齒片的製造裝置、旋轉電機用齒構件的製造方法
JP2021005645A (ja) * 2019-06-26 2021-01-14 学校法人トヨタ学園 積層鉄心およびその製造方法、その積層鉄心を用いた電気デバイス
TWI717154B (zh) * 2018-12-17 2021-01-21 日商日本製鐵股份有限公司 積層鐵芯及旋轉電機
TWI717940B (zh) * 2018-12-17 2021-02-01 日商日本製鐵股份有限公司 定子用接著積層鐵芯及旋轉電機
TWI720745B (zh) * 2018-12-17 2021-03-01 日商日本製鐵股份有限公司 定子用接著積層鐵芯、其製造方法、及旋轉電機

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017033873A1 (ja) * 2015-08-21 2018-08-09 吉川工業株式会社 ステータコア及びそれを備えたモータ
SG11202108950YA (en) * 2018-12-17 2021-09-29 Nippon Steel Corp Adhesively-laminated core for stator and electric motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016159A (ja) * 1983-07-07 1985-01-26 Mitsubishi Electric Corp 回転電機の製造方法
JPS6112004A (ja) * 1984-06-27 1986-01-20 Mitsui Petrochem Ind Ltd アモルファス合金製多極コアの製造方法
JP2004048859A (ja) * 2002-07-09 2004-02-12 Mitsui Chemicals Inc 薄型、高効率、電動機または発電機用積層板及び、電動機または発電機
JP2005151648A (ja) * 2003-11-12 2005-06-09 Daikin Ind Ltd モータ及びモータの製造方法並びに駆動装置、圧縮機、移動体
JP2007221869A (ja) * 2006-02-15 2007-08-30 Hitachi Metals Ltd 積層体
JP2011091933A (ja) * 2009-10-22 2011-05-06 Hitachi Industrial Equipment Systems Co Ltd アキシャルギャップモータ、圧縮機、モータシステム、および発電機
JP2011250585A (ja) * 2010-05-27 2011-12-08 Hitachi Appliances Inc アキシャルギャップ型モータとその固定子、及び、その製造方法、並びに、それを用いた空気調和機
WO2014184859A1 (ja) * 2013-05-14 2014-11-20 株式会社日立製作所 エポキシ樹脂組成物、エポキシ樹脂硬化物、モータ及びアキシャルギャップ型モータ
JP2016025317A (ja) * 2014-07-24 2016-02-08 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739510A (en) * 1980-08-20 1982-03-04 Matsushita Electric Ind Co Ltd Manufacture of electromagnetic steel plate
JPS57126113A (en) * 1981-01-27 1982-08-05 Matsushita Electric Ind Co Ltd Magnetic core
JPH02179246A (ja) * 1988-12-28 1990-07-12 Fanuc Ltd ビルトインモータのステータ構造
US5809638A (en) * 1992-10-26 1998-09-22 L.H. Carbide Corporation Method for manufacturing laminated parts with center interlock
JPH11308821A (ja) * 1998-04-22 1999-11-05 Mitsui High Tec Inc 積層鉄心の製造方法
EP1198059A3 (en) * 2000-10-11 2004-03-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for position-sensorless motor control
EP1616886A4 (en) * 2003-02-18 2006-06-14 Konishi Co Ltd CURABLE RESIN, PROCESS FOR PRODUCING THE SAME, AND CURABLE RESIN COMPOSITION
JP2007124791A (ja) * 2005-10-27 2007-05-17 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP4682100B2 (ja) * 2006-07-13 2011-05-11 株式会社日立製作所 回転電機
JP5309431B2 (ja) * 2006-08-04 2013-10-09 新日鐵住金株式会社 鋼板剪断面の鋼板間抵抗が高い電磁鋼の積層鋼板およびそのカシメ方法
JP2008131696A (ja) * 2006-11-17 2008-06-05 Hitachi Metals Ltd 複合磁性材料および回転子
JP2008148469A (ja) * 2006-12-12 2008-06-26 Hitachi Ltd スピンドルモータ,ディスク駆動装置及び固定子鉄心の製造方法
JP5632308B2 (ja) * 2011-02-24 2014-11-26 日立オートモティブシステムズ株式会社 かご形回転子および回転電機
JP5383781B2 (ja) * 2011-12-16 2014-01-08 三菱電機株式会社 固定子鉄心、その製造方法、およびその固定子鉄心を用いた回転電機
DE102013107147A1 (de) * 2012-07-17 2014-01-23 Remy Technologies, L.L.C. Elektrische Permanentmagnetmaschine (PM) umfassend Permanentmagnete, die mit einer Opferbeschichtung aufweisend ein thermisch leitfähiges Material (TIM) versehen sind
JP5777814B2 (ja) * 2012-08-09 2015-09-09 三菱電機株式会社 電気車の制御装置
JP5991241B2 (ja) * 2013-03-15 2016-09-14 アイシン・エィ・ダブリュ株式会社 コアの製造方法
US9919340B2 (en) * 2014-02-21 2018-03-20 Regal Beloit America, Inc. Method for making a component for use in an electric machine
JP6401466B2 (ja) * 2014-03-10 2018-10-10 株式会社三井ハイテック 積層鉄心及びその製造方法
CR20170156A (es) * 2014-10-20 2017-09-22 Arcelormittal Método de producción de hojalata conteniendo una lámina de acero de silicio de grano no orientado, lámina de acero obtenida y uso de esta.
US10428403B2 (en) * 2014-11-27 2019-10-01 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
EP3239353B1 (en) * 2014-12-26 2020-03-11 Nippon Steel Corporation Electrical steel sheet
JPWO2017033873A1 (ja) * 2015-08-21 2018-08-09 吉川工業株式会社 ステータコア及びそれを備えたモータ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016159A (ja) * 1983-07-07 1985-01-26 Mitsubishi Electric Corp 回転電機の製造方法
JPS6112004A (ja) * 1984-06-27 1986-01-20 Mitsui Petrochem Ind Ltd アモルファス合金製多極コアの製造方法
JP2004048859A (ja) * 2002-07-09 2004-02-12 Mitsui Chemicals Inc 薄型、高効率、電動機または発電機用積層板及び、電動機または発電機
JP2005151648A (ja) * 2003-11-12 2005-06-09 Daikin Ind Ltd モータ及びモータの製造方法並びに駆動装置、圧縮機、移動体
JP2007221869A (ja) * 2006-02-15 2007-08-30 Hitachi Metals Ltd 積層体
JP2011091933A (ja) * 2009-10-22 2011-05-06 Hitachi Industrial Equipment Systems Co Ltd アキシャルギャップモータ、圧縮機、モータシステム、および発電機
JP2011250585A (ja) * 2010-05-27 2011-12-08 Hitachi Appliances Inc アキシャルギャップ型モータとその固定子、及び、その製造方法、並びに、それを用いた空気調和機
WO2014184859A1 (ja) * 2013-05-14 2014-11-20 株式会社日立製作所 エポキシ樹脂組成物、エポキシ樹脂硬化物、モータ及びアキシャルギャップ型モータ
JP2016025317A (ja) * 2014-07-24 2016-02-08 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340435A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699074B (zh) * 2017-09-29 2020-07-11 日商日立金屬股份有限公司 徑向間隙式旋轉電機及其製造方法、旋轉電機用齒片的製造裝置、旋轉電機用齒構件的製造方法
TWI717154B (zh) * 2018-12-17 2021-01-21 日商日本製鐵股份有限公司 積層鐵芯及旋轉電機
TWI717940B (zh) * 2018-12-17 2021-02-01 日商日本製鐵股份有限公司 定子用接著積層鐵芯及旋轉電機
TWI720745B (zh) * 2018-12-17 2021-03-01 日商日本製鐵股份有限公司 定子用接著積層鐵芯、其製造方法、及旋轉電機
JP2021005645A (ja) * 2019-06-26 2021-01-14 学校法人トヨタ学園 積層鉄心およびその製造方法、その積層鉄心を用いた電気デバイス

Also Published As

Publication number Publication date
CN107925281A (zh) 2018-04-17
US20210021162A1 (en) 2021-01-21
JPWO2017033873A1 (ja) 2018-08-09
EP3340435A4 (en) 2019-03-27
US20180248420A1 (en) 2018-08-30
EP3340435A1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2017033873A1 (ja) ステータコア及びそれを備えたモータ
TWI744743B (zh) 積層鐵芯及旋轉電機
KR20240005116A (ko) 적층 코어 및 회전 전기 기기
KR102485638B1 (ko) 적층 코어 및 회전 전기 기계
JP7055209B2 (ja) 積層コアおよび回転電機
JP5531841B2 (ja) 電動機
JP2007336690A (ja) 電動機固定子
JP6024919B2 (ja) 焼き嵌めによる鉄損劣化の小さいモータ
JP6024918B2 (ja) 焼き嵌めによる鉄損劣化の小さいモータ
JP5732716B2 (ja) モータコア
JP5732718B2 (ja) モータコア
JP6554805B2 (ja) 電磁鋼板およびその製造方法とクローポールモータ
Okada et al. Proposal of 3D-stator structure using soft magnetic composite for PM motor
JP6925838B2 (ja) 鉄心およびこれを備えるモータ
JP5691571B2 (ja) 圧縮応力下での鉄損劣化の小さいモータコアとその製造方法
JP7510103B2 (ja) 積層コアおよび回転電機
JP4264273B2 (ja) モータのステータ鉄心の製造方法
JP7415137B2 (ja) 積層コアおよび回転電機
JP5489076B2 (ja) 回転電機
WO2020262298A1 (ja) コアブロック、積層コアおよび回転電機
JP7412874B2 (ja) 電磁機器
JP5609076B2 (ja) モータコア
JP2024001799A (ja) ステータ及びモータ
JP2023060136A (ja) 積層コア及び回転電機
EA041716B1 (ru) Шихтованный сердечник и электродвигатель

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536412

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839220

Country of ref document: EP