CN102453837B - 一种高磁感无取向硅钢的制造方法 - Google Patents

一种高磁感无取向硅钢的制造方法 Download PDF

Info

Publication number
CN102453837B
CN102453837B CN2010105178727A CN201010517872A CN102453837B CN 102453837 B CN102453837 B CN 102453837B CN 2010105178727 A CN2010105178727 A CN 2010105178727A CN 201010517872 A CN201010517872 A CN 201010517872A CN 102453837 B CN102453837 B CN 102453837B
Authority
CN
China
Prior art keywords
silicon steel
temperature
normalizing
cold rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010105178727A
Other languages
English (en)
Other versions
CN102453837A (zh
Inventor
王子涛
王波
谢世殊
金冰忠
马爱华
邹亮
朱雨华
胡瞻源
陈晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2010105178727A priority Critical patent/CN102453837B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to RU2012124187/02A priority patent/RU2527827C2/ru
Priority to KR1020127015086A priority patent/KR101404101B1/ko
Priority to MX2012006680A priority patent/MX2012006680A/es
Priority to EP11835489.3A priority patent/EP2508629A4/en
Priority to PCT/CN2011/072775 priority patent/WO2012055215A1/zh
Priority to JP2012542352A priority patent/JP2013513724A/ja
Publication of CN102453837A publication Critical patent/CN102453837A/zh
Priority to US13/492,984 priority patent/US20120285584A1/en
Application granted granted Critical
Publication of CN102453837B publication Critical patent/CN102453837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种高磁感无取向硅钢的制造方法,其包括如下步骤:1)冶炼、浇铸,无取向硅钢化学成分重量百分比:Si 0.1~1%,Al 0.005~1%,C≤0.004%,Mn 0.10~1.50%,P≤0.2%,S≤0.005%,N≤0.002%,Nb+V+Ti≤0.006%;余铁;炼钢、二次精炼,浇铸成铸坯;2)热轧,加热温度1150℃~1200℃,终轧温度830~900℃,≥570℃温度下进行卷取;3)平整,压下量2~5%的冷轧;4)常化,温度不低于950℃,保温时间30~180s;5)酸洗,冷轧,酸洗后进行累计压下量70~80%的冷轧;6)退火,升温速率≥100℃/s,到800~1000℃保温,保温时间5~60s,后以3~15℃/s缓冷至600~750℃。本发明在保证铁损的前提下,可以提高无取向硅钢磁感最少200高斯。

Description

一种高磁感无取向硅钢的制造方法
技术领域
本发明涉及无取向硅钢的制造方法,特别涉及一种高磁感无取向硅钢的制造方法。
背景技术
无取向硅钢是一种重要的磁性材料,广泛应用于各种电机、压缩机等领域。一般情况下,其硅含量小于6.5%,铝含量低于3%,C%低于0.1%,同时含有较少的杂质元素。再实施热轧、常化和冷轧工序,并进行最终退火和涂覆绝缘层。
对于无取向硅钢来说,性能指标主要包括材料铁损、磁感和磁各向异性等。无取向硅钢磁性能受材料成分、厚度、热处理工艺等多种因素的影响。
为了获得超高磁感无取向硅钢,通常采用较低的硅含量,降低材料电阻率,同时,采用高的热轧板常化温度,常化温度甚至高达1000℃。但由于硅、铝含量较低,无取向硅钢常化板再结晶组织较为细小。细小的常化组织使得最终退火板中{0kl}面织构强度低,相应的磁感较低。
同时,退火工艺同样是影响材料磁感的关键因素。通常采用适当的均热温度和保温时间来获得晶粒大小适当的退火板。如果均热温度高,保温时间长,退火板晶粒粗大,材料中的{111}面织构会增强,造成磁感降低;但如果晶粒直径偏小,则材料的磁滞损耗偏大,增大了最终使用时的电机损耗。
与慢速加热相比,采用快速加热退火时,成品板中存在很强的高斯织构。另一方面,慢速加热退火成品板中主要织构组分是{111}<112>,而{110}<114>、{001}<120>和{111}<110>组分很弱。(文献:Jong-Tae PARK,Jerzy A.SZPUNAR Sang-Yun CHA Effect of Heating Rateon the Development of Annealing Texture in Nonoriented Electrical SteelsISIJ International,Vol.43(2003),No.10,pp.1611-1614)。因此,采用快速加热的退火方式,可以抑制回复过程,同时获得{110}和{100}面织构核心,有效提高材料磁感。
发明内容
本发明的目的是提供一种高磁感无取向硅钢的制造方法,在保证铁损的前提下,利用热轧板轻压下措施及冷轧板快速加热退火来生产高磁感无取向电工钢。
为达到上述目的,本发明的技术方案是:
一种高磁感无取向硅钢的制造方法,其包括如下步骤:
1)冶炼、浇铸
无取向硅钢化学成分重量百分比:Si:0.1~1%,Al:0.005~1%,C≤0.004%,Mn:0.10~1.50%,P≤0.2%,S≤0.005%,N≤0.002%,Nb+V+Ti≤0.006%;其余为铁和不可避免的杂质;转炉或电炉炼钢,钢水经二次精炼处理,浇铸成铸坯;
2)热轧
铸坯加热温度1150℃~1200℃,均热保温后进行热轧,热轧终轧温度830~900℃,在≥570℃温度条件下进行卷取;
3)平整,对热轧板进行压下量为2~5%的冷轧;
4)常化,对冷轧后的热轧板进行一次连续退火常化处理,常化温度不低于950℃,保温时间30~180s;
5)酸洗,冷轧
将常化板进行酸洗,之后进行多道次累计压下量为70~80%的冷轧,轧制成目标厚度的冷轧板
6)退火,对冷轧后的冷轧板进行快速加热退火,升温速率≥100℃/s,升温到800~1000℃保温,保温时间5~60s,然后以3~15℃/s冷却速度缓慢冷却至600~750℃;
进一步,退火气氛为(体积比30%~70%)H2+(体积比70%~30%)N2,露点≤-25℃。
影响无取向硅钢磁感应强度B25和B50的主要因素是化学成分和晶体织构。硅、铝或锰量提高,材料电阻率提高,B25和B50降低。理想的晶体织构为(100)[uvw]面织构,因为它是各向同性且难磁化方向[111]不在轧面上。实际上不能得到这种单一的面织构。一般存在有(100)[011],(111)[112],(110)[001],(112)[011]等织构组分,其中(100)组分织构只约占20%,基本属于无取向混乱织构,也就是磁各向同性。因此,调整成分和改善制造工艺使(100)组分加强和(111)组分减弱是提高磁感应强度B25和B50的重要途径。
本发明的成分设计主要考虑以下几点:
Si:能溶于铁素体中形成置换固溶体,提高基体电阻率,降低铁损,是电工钢最重要的合金元素,但是Si恶化磁感,本发明着眼于一种超高磁感无取向硅钢,所以Si含量较低,为0.1~1%。
Al:也是电阻率提高元素,可溶于铁素体提高基体电阻率,粗化晶粒,降低铁损,但同时也会使磁感降低。Al含量超过1.5%将使冶炼浇注困难,磁感降低,且加工困难。
Mn:与Si、Al一样可以增加钢的电阻率,会使磁感降低,但Mn可以降低铁损,可与不可避免夹杂物S形成稳定的MnS,消除S对磁性的危害。因此有必要添加0.1%以上的含量。本发明Mn为0.10%~1.50%。
P:0.2%以下,在钢中添加一定的磷可以改善钢板的加工性。
C、N、Nb、V、Ti:均为磁性不利元素,本发明中要求C≤0.004%,S≤0.005%,N≤0.002%,Nb+V+Ti≤0.006%,尽量减少对磁性能的劣化。
板坯加热温度应该低于钢种夹杂物MnS、AlN的固溶温度。本发明中加热温度设定为1150℃~1200℃,热轧终轧温度830~900℃,卷取温度≥570℃,可以保证夹杂物未固溶并且获得粗大的热轧板晶粒。
对热轧板适量平整为本发明中获得超高磁感无取向硅钢的一个关键因素。本发明着眼于一种超高磁感的无取向硅钢制造方法,因此,化学成分中,硅、铝含量较低。而缺少硅、铝等晶粒长大元素导致热轧板常化过程中晶粒无法正常长大。同时,低硅无取向硅钢在热轧过程中,容易发生再结晶,因此,其热轧板组织中细小的等轴再结晶晶粒较多,而轧制纤维组织很少。在常化之前对热轧板施加压下率为2~5%的平整,能够增加材料内部形变储能,从而使常化板再结晶组织更为粗大。而当平整压下率过大时,则会因热轧板内部缺陷过多而影响常化板晶粒长大。
热轧板常化和预退火的主要目的是改善成品的晶粒组织和织构。对低硅无取向电工钢研究的结果表明,冷轧前晶粒组织的粗大化将使冷轧板经最终退火后{111}织构组分减弱,对磁性有利的{0kl}织构组分增强,同时析出物粗化使晶粒更容易长大,从而使磁感和铁损得到了改善。本发明中,高磁感无取向硅钢常化温度不低于950℃,保温时间30~180s。
对磁性能有利的{110}高斯织构晶粒通常在冷轧切边带中形核和长大,而如果升温速率较慢,在温度较低时,材料中会发生回复过程,从而降低材料中的点阵畸变,这样,高斯织构形核的几率就大为降低了。采用快速加热退火,能快速穿过不利织构发展的温度区间,使有利织构{0kl}面织构有更好发展。从而使铁损、磁感均有所优化。缓慢冷却可以降低退火板内应力,改善磁性能。本发明中对冷轧板采取快速加热退火,退火升温速率≥100℃/s,升温到800~1000℃保温,保温时间5~60s,然后以3~15℃/s冷却速度缓慢冷却至600~750℃。
本发明的优点在于:
与常规的无取向硅钢制造方法相比,在保证铁损的前提下,本发明可以提高无取向硅钢磁感最少200高斯。
附图说明
图1为热轧板平整压下量与最终退火板磁性能关系。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
实施例1
(1)无取向硅钢热轧板,厚度2.6mm,成分为:Si 0.799%,Al 0.4282%,C 0.0016%,Mn 0.26%,P≤0.022%,S≤0.0033%,N≤0.0007%,Nb 0.0004%,V 0.0016%,Ti 0.0009%;其余为铁和不可避免的杂质。
(2)对热轧板进行冷轧,压下率1~10%。
(3)进行常化处理,常化均热温度970℃,保温60s。之后对常化板酸洗,然后冷轧到0.5mm厚度。
(4)利用实验室的通电加热退火炉进行快速加热退火。升温速率250℃/s,均热温度850℃,保温13s。
热轧板经过1~10%轻压下后,常化板再结晶组织明显变大,但成品板显微组织差异不大。压下量为4~6%时,成品板磁性能最优,磁感B50达到1.83T。性能如表1所示,热轧板平整压下量与最终退火板磁性能关系如图1所示。
表1、无取向硅钢最终退火板磁性能
Figure BDA0000029359920000051
检测了经过不同压下率平整后的常化板与最终退火板显微组织,发现,热轧板轻微冷轧后,其常化板晶粒明显长大,最终退火板晶粒大小变化不明显。常化板、退火板平均晶粒直径如表2所示。该结果与成品板磁性能有良好对应关系,随着常化板晶粒变大,冷轧板经最终退火后{111}织构组分减弱,对磁性有利的{110}织构组分增强,最终退火板磁感B50优化。
表2、无取向硅钢常化板、退火板平均晶粒直径
Figure BDA0000029359920000052
实施例2
(1)无取向硅钢热轧板,厚度2.6mm,成分为:Si 1%,Al 0.2989%,C 0.0015%,Mn 0.297%,P 0.0572%,S 0.0027%,N 0.0009%,Nb 0.0005%,V 0.0015%,Ti 0.0011%;其余为铁和不可避免的杂质。
(2)对热轧板进行冷轧,压下率4%。
(3)进行常化处理,常化均热温度950℃,保温60s。之后对常化板酸洗,然后冷轧到0.5mm厚度。
(4)利用实验室的通电加热退火炉进行不同升温速率快速加热退火。升温速率20℃/s、150℃/s、250℃/s,均热温度960℃,保温13s。
最终退火板性能如表3所示。
表3、无取向硅钢最终退火板磁性能
Figure BDA0000029359920000061
从表3可以看出,退火升温速率对退火板铁损和磁感的影响。随着退火升温速率提高,铁损降低,磁感升高。

Claims (2)

1.一种高磁感无取向硅钢的制造方法,其包括如下步骤:
1)冶炼、浇铸
无取向硅钢化学成分重量百分比:Si:0.1~1%,Al:0.005~1%,C≤0.004%,Mn:0.10~1.50%,P≤0.2%,S≤0.005%,N≤0.002%,Nb+V+Ti≤0.006%;其余为铁和不可避免的杂质;转炉或电炉炼钢,钢水经二次精炼处理,浇铸成铸坯;
2)热轧
铸坯加热温度1150℃~1200℃,均热保温后进行热轧,热轧终轧温度830~900℃,在≥570℃温度条件下进行卷取;
3)平整,对热轧板进行压下量为2~5%的冷轧;
4)常化,对冷轧后的热轧板进行一次连续退火常化处理,常化温度不低于950℃,保温时间30~180s;
5)酸洗,冷轧
将常化板进行酸洗,之后进行多道次累计压下量为70~80%的冷轧,轧制成目标厚度的冷轧板;
6)退火,对冷轧后的冷轧板进行快速加热退火,升温速率≥100℃/s,升温到800~1000℃保温,保温时间5~60s,然后以3~15℃/s冷却速度缓慢冷却至600~750℃。
2.如权利要求1所述的高磁感无取向硅钢的制造方法,其特征是,退火气氛为:体积比30%~70%H2+体积比70%~30%N2,露点≤-25℃。
CN2010105178727A 2010-10-25 2010-10-25 一种高磁感无取向硅钢的制造方法 Active CN102453837B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2010105178727A CN102453837B (zh) 2010-10-25 2010-10-25 一种高磁感无取向硅钢的制造方法
KR1020127015086A KR101404101B1 (ko) 2010-10-25 2011-04-14 고 자기유도를 가지는 무방향성 규소강의 제조 방법
MX2012006680A MX2012006680A (es) 2010-10-25 2011-04-14 Un proceso de fabricacion de acero al silicio no orientado con alta induccion magnetica.
EP11835489.3A EP2508629A4 (en) 2010-10-25 2011-04-14 PROCESS FOR MANUFACTURING NON-ORIENTED SILICON STEEL WITH HIGH MAGNETIC INDUCTION
RU2012124187/02A RU2527827C2 (ru) 2010-10-25 2011-04-14 Способ производства нетекстурированной электротехнической стали с высокой магнитной индукцией
PCT/CN2011/072775 WO2012055215A1 (zh) 2010-10-25 2011-04-14 一种高磁感无取向硅钢的制造方法
JP2012542352A JP2013513724A (ja) 2010-10-25 2011-04-14 高磁気誘導の無方向性ケイ素鋼の製造プロセス
US13/492,984 US20120285584A1 (en) 2010-10-25 2012-06-11 Manufacture Process Of Non-Oriented Silicon Steel With High Magnetic Induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105178727A CN102453837B (zh) 2010-10-25 2010-10-25 一种高磁感无取向硅钢的制造方法

Publications (2)

Publication Number Publication Date
CN102453837A CN102453837A (zh) 2012-05-16
CN102453837B true CN102453837B (zh) 2013-07-17

Family

ID=45993116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105178727A Active CN102453837B (zh) 2010-10-25 2010-10-25 一种高磁感无取向硅钢的制造方法

Country Status (8)

Country Link
US (1) US20120285584A1 (zh)
EP (1) EP2508629A4 (zh)
JP (1) JP2013513724A (zh)
KR (1) KR101404101B1 (zh)
CN (1) CN102453837B (zh)
MX (1) MX2012006680A (zh)
RU (1) RU2527827C2 (zh)
WO (1) WO2012055215A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361544B (zh) 2012-03-26 2015-09-23 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN103834858B (zh) * 2012-11-23 2016-10-05 宝山钢铁股份有限公司 一种低铁损无取向硅钢的制造方法
CN103882299B (zh) * 2012-12-21 2016-05-11 鞍钢股份有限公司 一种高铝薄规格电工钢及其生产方法
CN103882288B (zh) * 2012-12-21 2016-03-02 鞍钢股份有限公司 一种高强度专用冷轧无取向电工钢及其生产方法
RU2540243C2 (ru) * 2013-05-07 2015-02-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства высокопроницаемой электротехнической изотропной стали
CN103388106A (zh) * 2013-06-27 2013-11-13 宝山钢铁股份有限公司 一种高磁感低铁损无取向电工钢板及其制造方法
CN103753116B (zh) * 2013-10-31 2016-05-25 宜兴市鑫源辊业有限公司 森吉米尔轧机工作辊的制造方法
CN103586430B (zh) * 2013-11-06 2016-08-24 北京首钢股份有限公司 无取向电工钢的生产方法
CN104178617A (zh) * 2014-08-25 2014-12-03 东北大学 控制双辊薄带连铸无取向硅钢磁性能的快速热处理方法
KR102462210B1 (ko) * 2014-10-09 2022-11-03 티센크루프 스틸 유럽 악티엔게젤샤프트 냉간 압연되고 재결정 어닐링된 평강 제품 및 평강 제품의 제조 방법
US11239012B2 (en) * 2014-10-15 2022-02-01 Sms Group Gmbh Process for producing grain-oriented electrical steel strip
CR20170156A (es) 2014-10-20 2017-09-22 Arcelormittal Método de producción de hojalata conteniendo una lámina de acero de silicio de grano no orientado, lámina de acero obtenida y uso de esta.
JP6264450B2 (ja) * 2014-10-30 2018-01-24 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN104480383B (zh) * 2014-11-24 2016-11-02 武汉钢铁(集团)公司 0.35mm厚高效电机用高磁感无取向硅钢的生产方法
CN105779877B (zh) * 2014-12-23 2017-10-27 鞍钢股份有限公司 一种半工艺无取向电工钢的高效生产方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
JP6369626B2 (ja) * 2015-04-02 2018-08-08 新日鐵住金株式会社 一方向性電磁鋼板の製造方法
WO2017043035A1 (ja) 2015-09-07 2017-03-16 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017053341A (ja) * 2016-04-15 2017-03-16 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
CN105925884B (zh) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
TWI588265B (zh) * 2016-06-07 2017-06-21 中國鋼鐵股份有限公司 電磁鋼片製造方法
KR101877198B1 (ko) * 2018-01-16 2018-07-10 포항공과대학교 산학협력단 무방향성 전기강판 및 그 제조방법
CN108277433A (zh) * 2018-03-15 2018-07-13 马钢(集团)控股有限公司 一种新型冷轧高牌号无取向电工钢及其生产方法
RU2692146C1 (ru) * 2018-05-25 2019-06-21 Олег Михайлович Губанов Способ получения изотропной электротехнической стали
CN109082596B (zh) * 2018-09-04 2019-12-13 马鞍山钢铁股份有限公司 一种低铁损高磁极化强度的无取向硅钢及其制备方法
CN109023116B (zh) * 2018-09-30 2021-09-07 日照钢铁控股集团有限公司 一种采用薄板坯无头轧制生产无取向电工钢的方法
BR112021016821B1 (pt) * 2019-03-20 2024-01-30 Nippon Steel Corporation Chapa de aço elétrica não orientada, e, método para produzir uma chapa de aço elétrica não orientada
CN110438317A (zh) * 2019-07-29 2019-11-12 江苏理工学院 一种初始组织热轧法制备{100}织构柱状晶无取向电工钢的方法
CN112430776B (zh) 2019-08-26 2022-06-28 宝山钢铁股份有限公司 一种磁各向异性小的无取向电工钢板及其制造方法
CN112430775A (zh) 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN112430780B (zh) * 2019-08-26 2022-03-18 宝山钢铁股份有限公司 一种含Cu高洁净度无取向电工钢板及其制造方法
CN110468352A (zh) * 2019-09-25 2019-11-19 江苏沙钢集团有限公司 一种无取向硅钢及其生产方法
CN113981307A (zh) * 2020-07-27 2022-01-28 宝山钢铁股份有限公司 一种高磁感、低铁损的无取向电工钢板及其制造方法
CN114000045B (zh) * 2020-07-28 2022-09-16 宝山钢铁股份有限公司 一种磁性能优良的高强度无取向电工钢板及其制造方法
CN113106224B (zh) * 2021-03-18 2022-11-01 武汉钢铁有限公司 一种提高无取向硅钢铁损均匀性的方法
CN113403455B (zh) * 2021-06-17 2024-03-19 张家港扬子江冷轧板有限公司 无取向硅钢的生产方法
CN113789467B (zh) * 2021-08-19 2023-01-17 鞍钢股份有限公司 一种含磷无铝高效无取向硅钢生产方法
CN116445806A (zh) * 2022-01-07 2023-07-18 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其制造方法
CN115418550A (zh) * 2022-09-26 2022-12-02 江苏沙钢集团有限公司 一种含磷无铝高强度无取向硅钢生产方法
CN117305680B (zh) * 2023-11-30 2024-03-05 江苏省沙钢钢铁研究院有限公司 高Al无取向硅钢卷绕铁芯及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611616A (zh) * 2003-10-27 2005-05-04 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
CN101333620A (zh) * 2007-06-25 2008-12-31 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102507A (ja) * 1985-10-29 1987-05-13 Kawasaki Steel Corp 無方向性けい素鋼板の製造方法
JPS63317627A (ja) * 1987-06-18 1988-12-26 Kawasaki Steel Corp 鉄損が低くかつ透磁率が高いセミプロセス無方向性電磁鋼板およびその製造方法
JP2954735B2 (ja) * 1991-04-19 1999-09-27 川崎製鉄株式会社 打抜加工性の優れた無方向性電磁鋼板の製造方法
RU2048543C1 (ru) * 1992-12-21 1995-11-20 Верх-Исетский металлургический завод Способ производства электротехнической анизотропной стали
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP3644039B2 (ja) * 1993-03-25 2005-04-27 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP3531779B2 (ja) * 1996-11-14 2004-05-31 Jfeスチール株式会社 磁気異方性の小さな低級電磁鋼板の製造方法及び磁気異方性の小さな低級電磁鋼板
JP4258918B2 (ja) * 1999-11-01 2009-04-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
KR100956530B1 (ko) * 2001-06-28 2010-05-07 제이에프이 스틸 가부시키가이샤 무방향성 전자강판 및 그 제조방법
RU2199594C1 (ru) * 2002-06-25 2003-02-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали
US7513959B2 (en) * 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
CN100546762C (zh) * 2006-03-22 2009-10-07 宝山钢铁股份有限公司 一种冷轧无取向电工钢板及其生产方法
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP4855222B2 (ja) * 2006-11-17 2012-01-18 新日本製鐵株式会社 分割コア用無方向性電磁鋼板
JP5167824B2 (ja) * 2008-01-17 2013-03-21 Jfeスチール株式会社 エッチング加工用無方向性電磁鋼板とモータコアの製造方法
CN101343683B (zh) * 2008-09-05 2011-04-20 首钢总公司 一种低铁损高磁感无取向电工钢的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611616A (zh) * 2003-10-27 2005-05-04 宝山钢铁股份有限公司 冷轧无取向电工钢的制造方法
CN101333620A (zh) * 2007-06-25 2008-12-31 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法

Also Published As

Publication number Publication date
KR101404101B1 (ko) 2014-06-09
WO2012055215A1 (zh) 2012-05-03
CN102453837A (zh) 2012-05-16
MX2012006680A (es) 2012-10-15
RU2012124187A (ru) 2013-12-20
EP2508629A1 (en) 2012-10-10
EP2508629A4 (en) 2016-11-30
US20120285584A1 (en) 2012-11-15
JP2013513724A (ja) 2013-04-22
KR20120086343A (ko) 2012-08-02
RU2527827C2 (ru) 2014-09-10

Similar Documents

Publication Publication Date Title
CN102453837B (zh) 一种高磁感无取向硅钢的制造方法
CN100546762C (zh) 一种冷轧无取向电工钢板及其生产方法
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
CN101654757B (zh) 涂层半工艺无取向电工钢板及制造方法
CN102925793B (zh) 一种磁感≥1.8t的无取向电工钢及其生产方法
CN1258608C (zh) 冷轧无取向电工钢的制造方法
CN103834858A (zh) 一种低铁损无取向硅钢的制造方法
CN103667879A (zh) 磁性能和机械性能优良的无取向电工钢及生产方法
CN109609734B (zh) 一种冷轧无取向硅钢的制备方法
CN102747291B (zh) 一种高频低铁损磁性优良的无取向硅钢薄带及生产方法
EP2644716A1 (en) Method for producing directional electromagnetic steel sheet
CN104937118A (zh) 磁特性优异的半工艺无取向性电磁钢板的制造方法
CN109252102A (zh) 一种提高低硅无取向硅钢磁性能的方法
CN104018068A (zh) 一种厚度为0.18mm的高磁感取向硅钢的制备方法
CN105256226A (zh) 一种低铁损冷轧无取向硅钢及生产方法
CN104294185B (zh) 一种高效电机用无取向电工钢及生产方法
CN112430780B (zh) 一种含Cu高洁净度无取向电工钢板及其制造方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
JP6079580B2 (ja) 方向性電磁鋼板の製造方法
CN101348852A (zh) 一种低温板坯加热生产取向电工钢的方法
CN101586180A (zh) 一种提高无取向电工钢性能的方法
CN107267858B (zh) 一种硅钢板及其制备方法
CN115198179A (zh) 一种无取向电工钢及其制备方法
CN117127101A (zh) 一种低铁损无取向硅钢的生产方法及其制得的产品
JP2022545889A (ja) 無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant