CN1031338C - 非还原性介电陶瓷组合物 - Google Patents

非还原性介电陶瓷组合物 Download PDF

Info

Publication number
CN1031338C
CN1031338C CN94101600A CN94101600A CN1031338C CN 1031338 C CN1031338 C CN 1031338C CN 94101600 A CN94101600 A CN 94101600A CN 94101600 A CN94101600 A CN 94101600A CN 1031338 C CN1031338 C CN 1031338C
Authority
CN
China
Prior art keywords
ceramic composition
dielectric ceramic
electrode
dielectric
reducing dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN94101600A
Other languages
English (en)
Other versions
CN1092198A (zh
Inventor
大谷修
高原弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN1092198A publication Critical patent/CN1092198A/zh
Application granted granted Critical
Publication of CN1031338C publication Critical patent/CN1031338C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates

Abstract

提供了一种多层陶瓷电容器用非还原性介电陶瓷组合物,即使在中性或还原性气氛中煅烧此组合物时,这种电容器的比电阻和使用寿命也不会因介电陶瓷组合物的还原而降低或缩短,而且电容也不随温度变化而剧烈变化。本发明的非还原性介电陶瓷组合物含有86.32~97.64mol BaTiO3,0.01~10.00molY2O3,0.01~10.00mol MgO,和0.001~0.200molV2O5。其中也可以加入含0.01~1.0mol%MnO、Cr2O3和Co2O3中至少一种或多种物质的添加剂以及含0.5~10.0mol%{BaA,Ca(1-A)}SiO3(0≤A≤1)的添加剂。

Description

非还原性介电陶瓷组合物
本发明涉及非还原性介电陶瓷组合物,具体说涉及多层陶瓷电容器中使用的、采用镍等贱金属作为内电极的非还原性介电陶瓷组合物。
随着各种电子装置的快速发展,存在一种日益按小型、轻量化设计生产这些装置的趋势。向小型、轻量化设计发展的这种趋势,在陶瓷集成化磁带录相机、手提电话机、书本型个人电脑和掌上型电脑等中使用的便携式电子装置中尤为明显。
向小型、轻量化电子产品发展的这种趋势中,这些装置中的元器件也越来越按小型和轻量化设计生产。安装这种电子元件的手段,也由在传统的印刷电路板上的过孔中***并焊接要使用的管脚(即电子器件)的方法,改成表面安装技术(SMT),即在印刷电路板的导电图案表面上安装和焊接电子元件的技术。
在这种SMT中使用的电子元件,一般叫作表面安装元件(SMD),其中不仅包括半导体元件,而且还包括电容器、电阻器、电感器、滤波器等等。其中电容器和电阻器等小元件叫作芯片元件,而最具有代表性的是多层陶瓷电容器。
图1是表示某种多层陶瓷电容器的结构的部分剖视图。
此多层陶瓷电容器1为长方体,端电极3和4安装在长方体多层陶瓷电容器体1的二个相对的表面上。
在此多层陶瓷电容器主单元2中,于层压的BaTiO3介电层9、10和11内形成四个内电极5、6、7和8,而且介电材料制的介电层12和13被层叠在内电极的上表面和内电极8的下表面上。
内电极5、6、7和8间隔地被连到端电极上。也就是说,内电极6和8被连到端电极4上,而内电极5和7被连到另一个端电极3上。结果,形成一个在内电极5和6之间,内电极6和7之间,以及内电极7和8之间呈平行状态连接的电容器。
端电极3和4各包括一层导电层,含有玻璃料的导电糊涂或印于其上并经烘烤,以及镀于其上的一层金属覆盖层或压配于其上的一个金属帽。
为了制造多层陶瓷电容器,在介电陶瓷组合物片上印上用作内电极的电极糊,多片这种片经层叠和热压,在空气中烧结如此制成的叠层制品,并在其上安装端电极。
按此制造方法,用作电容器内电极的电极糊和介电陶瓷组合物被同时煅烧。因此,用作内电极的材料必须具有这样一种性质,即在介电陶瓷组合物的烧结温度下形成电极,而且在空气中加热时无氧化作用或者与介电陶瓷组合物不反应。
作为满足上述要求的材料,过去一直使用铂、钯等贵金属。但是,这些贵金属极昂贵而且成为这种多层陶瓷电容器的高成本的主要原因。
为此,人们一直试图使用镍之类的贱金属作为内电极、然而在氧化气氛下煅烧时镍被氧化而且与介电陶瓷组合物反应,因此干扰电极的形成。
在非氧化性气氛中煅烧镍以阻止其氧化的方法披露在美国专利4,241,378号的说明书中,然而此方法中介电陶瓷组合物被还原,比电阻急剧降低,因而不适于作为电容器实际使用。
在特开昭62-2408中,公开了一种含有CaZrO2和MnO2等的BaTiO3介电陶瓷组合物,它作为介电陶瓷组合物具有符合要求的介电性质,如介电常数(相对介电常数)等;但是这种介电陶瓷组合物在非氧化性气氛中煅烧时还原,而且使用寿命较短。
该多层陶瓷电容器按下列步骤制造:
(1)原料称量后混合,使煅烧后的组成与预定的混合比一致;
(2)进行湿法混合和粉碎;
(3)脱水和干燥;
(4)加入适量有机粘合剂,混合后使之变成珐琅态;
(5)用刮刀法将其涂于薄片上,形成介电陶瓷组合物片;
(6)在这样制出的介电陶瓷组合物片上,印制用作内电极材料的镍糊;
(7)层叠并热压此品得到多层品;
(8)将此多层品切成预定形状;
(9)除去粘合剂;
(10)在控制氧气分压下煅烧此品;
(11)在中性气氛下进行再氧化;
(12)安装端电极。
在特开平3-18261中公开了一种含有{BaA,Ca(1-A)}SiO3(其中0≤A≤1)(以下叫作“BCG”)作为BaTiO3、MinO2和Y2O3的添加剂的介电陶瓷组合物,这种非还原性介电陶瓷组合物具有较长的使用寿命。但是,用这种介电陶瓷组合物生产的多层陶瓷电容器,电容随温度变化而变化。
除上述之外,非还原性介电陶瓷组合物还记载在特开昭61-248304、特开昭57-71866、美国专利4,115,493和由Y.SAKABE,T.TAKAGI和K.WAKINO于“Proceedings of the ElectronicsDivision Fall Meeting”(美国陶瓷会,1985年10月13-16)中刊载的“贱金属多层陶瓷电容器用介电材料”一文之中。
本发明的目的在于提供一种适于生产多层陶瓷电容器用的非还原性介电陶瓷组合物,其中即使使用镍作内电极,在中性或还原性气氛中煅烧以阻止氧化时,均不存在因所说介电陶瓷组合物的还原而产生比电阻降低和使用寿命缩短的现象,而且电容也不随温度变化而大幅度变化。
为了达到上述目的,所说的非还原性介电陶瓷组合物含有86.32~97.64摩尔BaTiO3,0.01~10.00摩尔Y2O3,0.01~10.00摩尔MgO以及0.001~0.200摩尔V2O5
图1表明一种多层陶瓷电容器的结构,图2是说明所说非还原性介电陶瓷组合物的加工过程的流程图。
以下,结合具体实施方案对本发明的特点进行说明。
图2中示出一种说明本发明的非还原性介电陶瓷组合物的加工过程的流程图。
(1)将BaTiO3、Y2O3、MgO、V2O5、MnO、Cr2O3、Co2O3等称量后混合成煅烧后组成如表1和表2中所示的组合物。
                                            表1
 No.                                         组成    (mol%)  煅烧温度T2(℃)
BaTiO3 Y2O3 MgO V2O5     BCGr  XMnO     YCr2O3     ZCo2O3  X·Y·Z总量
    A
    1     97.69     0     0.02  0.001  0.58     1.95  0.05     0.29    --     0.34     1400
    2     97.54     0.20     0.02  0  0.58     1.95  --     0.29    --     0.29     1380
    3     96.88     0.58     0.02  0  0.58     1.94  0.29     0.29    --     0.58     1380
    4     97.04     0.58     0  0.005  0.58     1.94  0.15     0.29     --     0.44     1380
    5     96.25     0.58     0.96  0.005  0.58     1.92  0.29      --     --     0.29     1340
    6     96.89     0.58     0.01  0.30  0.58     1.94  0.29     0.29     --     0.58     1340
    7     96.61     0.58     0.01  1.00  0.58     1.93  0.29     0.58     --     0.87     1340
    8     96.39     0.58     0.96  0.005  0.58     1.93  0.14      --     --     0.14     1300
    9     92.68     0.58     4.63  0.002  0.58     1.85  0.28      --     --     0.28     1300
    10     95.86     0.01     1.92  0.005  0.58     1.92  0.29      --     --     0.29     1380
    11     87.43     0.53     10.00  0.001  0.58     1.77  0.27      --     --     0.27     1300
    12     85.95     0.53     11.50  0  0.58     1.76  0.26      --     --     0.26     1300
    13     96.48     0.58     0.96  0.005  0.58     1.93  0.05      --     --     0.05     1340
    14     96.67     0.29     0.97  0.005  0.58     1.93  0.14      --     --     0.14     1340
    15     97.28     0.58     0  0.001  0.58     1.95   --     0.19     --     0.19     1320
    16     97.45     0.58     0.02  0  0.58     1.95   --      --     --     0     1320
    17     96.51     0.58     0.97  0.005  0.58     1.93  0.01      --     --     0.01     1320
    18     95.47     0.57     1.91  0.002  0.58     1.91  0.14      --     --     0.14     1340
    19     92.80     0.56     4.64  0.002  0.58     1.86  0.14      --     --     0.14     1340
    20     95.47     0.57     1.91  0.050  0.58     1.91  0.14      --     --     0.14     1340
    21     95.42     0.57     1.91  0.001  0.58     1.91   --     0.19     --     0.19     1380
    22     97.24     0.58     0.05  0.050  0.58     1.94   --     0.19     --     0.19     1380
    23     95.42     0.57     1.91  0.030  0.58     1.91   --     0.19     --     0.19     1360
*BCG:{BaA.Ca(1-A)}SiO3
                                                      表2
    No.                                     组成    (mol%)  煅烧温度T2(℃)
BaTiO3 Y2O3 MgO V2O5     BCGr     XMnO     YCr2O3     ZCo2O3  X·Y·Z总量
    A     量
    24     95.42     0.57     1.91     0.003  0.58     1.91    --     0.19    --     0.19     1360
    25     95.42     0.57     1.91     0.010  0.58     1.91    --     0.19    --     0.19     1360
    26     95.48     0.57     1.91     0.240  0.58     1.90    0.14     --    --     0.14     1360
    27     96.53     0.39     0.96     0.190  0.58     1.93    --     0.19    --     0.19     1360
    28     97.26     0.58     0.01     0.002  0.58     1.95    --     0.20    --     0.20     1320
    29     95.05     0.95     0.90     0.002  0.58     1.91    --     0.19    --     0.19     1360
    30     91.58     4.58     1.83     0.002  0.58     1.83    --     0.18    --     0.18     1340
    31     86.32     10.00     1.75     0.005  0.58     1.75    --     0.18    --     0.18     1340
    32     85.39     11.00     1.72     0.001  0.58     1.72    --     0.17    --     0.17     1340
    33     98.14     0.59     0.98     0.001  0.58     0    0.29     --    --     0.29     1380
    34     97.64     0.59     0.98     0.001  0.58     0.50    0.29     --    --     0.29     1320
    35     93.54     0.56     0.94     0.001  0.58     4.68    0.28     --    --     0.28     1340
    36     88.30     0.54     0.89     0.001  0.58     10.00    0.27     --    --     0.27     1300
    37     85.79     0.53     0.88     0.001  0.58     12.54    0.26     --    --     0.26     1300
    38     96.40     0.58     0.10     0.001  0.58     1.93    0.31     0.68    --     1.00     1360
    39     92.51     0.74     0.09     0.001  0.58     5.55    0.65     0.46    --     1.11     1360
    40     96.11     0.58     0.96     0.001  0.58     1.92    --     0.29    0.14     0.43     1360
    41     96.11     0.58     0.96     0.001  0.58     1.92    0.14     --    0.29     0.43     1320
    42     97.19     0.58     0.05     0.001  0.58     1.94    0.05     --    0.19     0.24     1360
    43     91.85     4.58     1.83     0.002  1.0     1.83    --     0.18    --     --     1390
    44     91.58     4.58     1.83     0.002  0.7     1.83    --     0.18    --     --     1360
    45     91.58     4.58     1.83     0.002  0.3     1.83    --     0.18    --     --     1340
    46     91.58     4.58     1.83     0.002  0     1.83    --     0.18    --     --     1340
*BCG:{BaA.Ca(1-A)}SiO3
作为起始原料,使用这样一种BaTiO3,它是按摩尔比1∶1混合BaO和TiO2后于900~1200℃下进行化学反应得到的。作为这种BaTiO3,可以使用用溶液法制备的粉末(50%颗粒的粒度为0.8~1.2μ),或者是由经超雾粉碎机粉碎成粒度约为1μm的BaCO3和TiO2得到的BaTiO3
(2)湿法混合及粉碎;
(3)脱水和干燥;
(4)加入适量有机粘合剂,混合,使之变成珐琅态;
(5)用刮刀法将这样制出的材料涂在薄片上形成20μm厚度的膜,制成介电陶瓷组合物片;
(6)将作为内电极材料使用的镍糊,印在该介电陶瓷组合物片上;
(7)将此品叠成五层热压,制造多层品;
(8)将这样制成的多层品切成3216形状,即尺寸为3.2mm(长)×1.6mm;
(9)在250~300℃稳定化,进行除粘合剂处理10小时;
(10)控制氧分压为7×10-9~9×10-13大气压,并在T2=1200~1300℃煅烧温度下稳定化,煅烧2小时;
(11)在中性气氛中在700~1200℃下稳定化,进行9小时再氧化处理;
(12)在其中安装铟-镓(In-Ga)合金端电极。
这样制出的电容器,每层的电容为20pF,总电容100pF。
对于按上述制成的电容器样品测定了诸电学性质,如介电常数(εs)、介电损耗tgδ、绝缘电阻IR(Ω)、电容的温度特性T·C(%)以及使用寿命μ(小时)。结果列于表3和表4之中。
                                            表3
No. εs tanδ IR(Ω)                        T·C(%) μ(小时)
-55℃ -25℃ 85℃ 125℃
    1                                       难烧结
    2  3390     2.6  5×1010 -13.2 -8.0 -8.5 -1.0     3
    3  3800     2.2  8×1010 -5.0 -4.0 0 6.0     4
    4  3920     2.8  2×1010 -16.8 -12.7 -7.0 -1.3     9
    5  3600     1.9  5×1011 -13.2 -7.8 -5.4 2.0     100
    6  2100     2.3  5×109 -12.0 -7.5 -5.4 -3.1     7
    7  1400     5.4  8×107 -10.9 -6.0 -1.0 2.8     3
    8  3100     2.0  2×1011 -14.2 -9.0 -4.0 -1.0     90
    9  2900     1.8  3×1011 -8.0 -5.3 -8.5 -4.0     34
    10  3250     1.8  3×1011 -8.4 -5.8 -6.4 -1.7     31
    11  2560     1.6  1×1011 -7.6 -5.3 -9.6 -8.7     37
    12  1810     1.4  1×1011 -8.9 -5.3 -11.4 -13.4     0
    13  2820     2.2  2×1011 -15.0 -9.8 -1.1 2.0     36
    14  3180     2.6  2×1011 -14.8 -8.7 3.7 0     29
    15  3790     5.9  2×1011 -17.8 -11.9 -1.0 2.0     45
    16                                          变成半导体状态
    17  3000     1.8  2×1010 -14.8 -9.8 0 12.5     39
    18  3180     1.8  3×1011 -8.6 -6.2 -5.1 1.0     60
    19  3050     2.2  1×1011 -10.2 -6.1 -7.8 -3.7     48
    20  2480     1.5  2×1011 -11.7 -8.4 -4.4 4.6     200
    21  3210     2.0  2×1011 -7.4 -5.1 -6.3 0     25
    22  2800     2.2  3×1010 -8.3 -6.1 -6.4 1.0     150
    23  3000     2.2  1×1011 -5.7 -3.3 -7.8 -3.8     110
                                                   表4
No. εs tan δ IR(Ω)                        T·C(%) μ(小时)
-55℃ -25℃ 85℃ 125℃
    24  3180     2.1  2×1011 -8.5 -5.0 -5.0  4.0     52
    25  3260     2.1  1×1011 -7.9 -5.5 -6.2  2.0     100
    26  2480     1.8  8×109 -10.6 -7.9 -6.1   0     6
    27  3100     1.9  3×1010 -8.5 -6.2 -7.5 -3.2     200
    28  3010     3.0  2×1011 -15.0 -9.8 -2.4 -3.4     33
    29  3150     2.0  3×1011 -8.5 -5.9 -6.3 -2.0     28
    30  2950     1.9  2×1011 -10.5 -8.7 -4.4 -5.0     25
    31  2650     1.6  3×1011 -7.5 -5.4 -3.8 -9.0     46
    32                                 变成半导体状态
    33  4330     5.2  1×1011 -35.2 -20.0 -11.3 -18.5     8
    34  3210     1.7  3×1011 -15.0 -10.0 0 7.5     28
    35  2880     1.9  1×1011 -13.0 -6.1 -6.5 -4.0     40
    36  2610     1.6  2×1011 -8.9 -7.0 -6.0 -5.5     38
    37  1910     1.4  3×1011 -5.0 -4.0 -3.0 -5.0     9
    38  2680     1.2  2×1010 -6.9 -3.5 -2.5 -4.8     85
    39  1380     1.0  4×109 -4.6 -2.6 -8.0 -9.0     7
    40  3080     1.9  1×1011 -13.8 -10.0 -9.0 -8.5     35
    41  2980     2.0  7×1010 -11.8 -7.4 -4.6 -1.9     36
    42  3850     3.0  4×1010 -14.9 -8.9 -7.8 -4.0     40
    43  3160     2.2  2×1011 -11.5 -9.0 -2.0 -7.0     35
    44  3120     2.0  1×1011 -10.6 -8.4 -4.9 -5.0     30
    45  3000     2.0  3×1011 -14.5 -10.0 -7.0 -8.5     25
    46  2850     1.4  3×1011 -14.9 -9.8 -5.0 -9.8     26
表中介电常数εs和介电损耗tgδ诸数值是在20℃和1KHz频率下的数值,绝缘电阻IR是在加了50伏电压30秒后在20℃下测定的,电容的温度特性T·C是指电容在各温度下相对于电容在20℃的温度特性,而使用寿命μ是在200℃下加200伏电压时的加速使用寿命。
评价上述测量结果时,符合要求的数值是指介电常数εs为2500或更高,介电损耗tgδ为3.0或更低,绝缘电阻IR为1010Ω或更高,电容的温度特性T·C处于±15%范围内,使用寿命μ为10小时或更高。若所说数值不符合这些标准,则产品视为有缺陷。
难于烧结或变成半导体状态的产品,视为有缺陷产品,因为这种产品不适于作电容器使用。
按上述标准评价的结果,第5、8、9、10、11、13、14、17、18、19、21、22、23、24、25、27、28、29、30、31、34、35、36、38、40、41、42、43、44、45和46号样品被判定为符合要求,而第1、2、3、4、6、7、12、15、16、20、26、32、33、37和39号样品被判定为有缺陷。
根据上面的判定结果,组成范围定义如下:
如果Y2O3低于0.01mol%(样品1),则即使煅烧温度(T2)为1400℃也难于烧结,不适于实际使用。如果它高于10.0mol%(样品32),则组合物还原变成半导体状态,因而不适于作为介电物质使用。
因此,为了获得满意的结果,Y2O3必须处于0.01~10.0mol%的范围内。
如果MgO含量低于0.01mol%(样品4和15),则电容的温度特性T·C增大到超过±15%,而且介电损耗tgδ可以高达5.9。如果它超过10.0mol%(样品12),则加速使用寿命急剧降低。
因此,为了获得满意的结果,MgO必须处于0.01~10.0mol%的范围内。
V2O3加入量高于0.001mol%(除2、3、12和16号之外的全部样品),加速使用寿命得到显著改善。如果其加入量高于0.20mol%(样品6、7和26),则介电常数εs为2500或更低而且绝缘电阻为1×1010Ω或更低,因而此产品不适于实际使用。
因此,为了获得满意结果,V2O3必须处于0.001~0.20mlo%的范围内。
如果{BaA,Ca(1-A)}SiO3(其中0≤A≤1)作为添加剂BCG的加入量低于0.5mol%(样品33),则电容的温度特性超过±15%:若其超过10mol%(样品37),则εs为2500或更低。
因此,为了获得满意结果,添加剂BCG必须处于0.5~10mol%的范围内。
若MnO·Cr2O3·Co2O3的总量低于0.01mol%(样品16),则组合物变成半导体状态。若它超过1.0mol%(样品39),则绝缘电阻为1×1010Ω或更低。
因此,为了获得满意的结果,MnO·Cr2O3·Co2O3的总量必须处于0.01~1.0mol%的范围内。
利用处于上述组成范围内的本发明的非还原性介电陶瓷组合物,可以得到多层陶瓷电容器,在这种电容器中即使用镍作内电极在中性或还原性气氛中煅烧以阻止氧化时,其比电阻和使用寿命也不会因介电陶瓷组合物的还原而降低或缩短,而且电容也不随温度变化而急剧变化。

Claims (3)

1、一种非还原性介电陶瓷组合物,其中含有:
86.32~97.64molBaTiO3
0.01~10.00molY2O3
0.01~10.00molMgO,和
0.001~0.200molV2O5
2、权利要求1的非还原性介电陶瓷组合物,其中含有0.01~1.0mol%MnO、Cr2O3和Co2O3中的至少一种或多种物质作为添加剂。
3、权利要求1或2的非还原性介电陶瓷组合物,其中含有0.5~10.0mol%{BaA,Ca(1-A)}SiO3(其中0≤A≤1)作为添加剂。
CN94101600A 1993-01-21 1994-01-21 非还原性介电陶瓷组合物 Expired - Lifetime CN1031338C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5008304A JP2764513B2 (ja) 1993-01-21 1993-01-21 耐還元性誘電体磁器組成物
JP008304/93 1993-01-21

Publications (2)

Publication Number Publication Date
CN1092198A CN1092198A (zh) 1994-09-14
CN1031338C true CN1031338C (zh) 1996-03-20

Family

ID=11689418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94101600A Expired - Lifetime CN1031338C (zh) 1993-01-21 1994-01-21 非还原性介电陶瓷组合物

Country Status (9)

Country Link
US (1) US5403797A (zh)
EP (1) EP0615262B1 (zh)
JP (1) JP2764513B2 (zh)
KR (1) KR100190244B1 (zh)
CN (1) CN1031338C (zh)
CA (1) CA2113060C (zh)
DE (1) DE69400932T2 (zh)
MY (1) MY110393A (zh)
TW (1) TW258724B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400463C (zh) * 2000-12-25 2008-07-09 Tdk株式会社 介电陶瓷组合物和电子装置
CN100440392C (zh) * 2000-02-09 2008-12-03 Tdk株式会社 具有介电层的电子器件及其生产方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650367A (en) * 1994-01-28 1997-07-22 Kyocera Corporation Dielectric ceramic composition
DE69532235T2 (de) * 1994-10-19 2004-09-16 Tdk Corp. Keramischer mehrschicht-chipkondensator
US5879812A (en) * 1995-06-06 1999-03-09 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor and method of producing the same
TW434600B (en) * 1998-02-17 2001-05-16 Murata Manufacturing Co Dielectric ceramic composition, laminated ceramic capacitor, and method for producing the laminate ceramic capacitor
US6074971A (en) * 1998-11-13 2000-06-13 The United States Of America As Represented By The Secretary Of The Army Ceramic ferroelectric composite materials with enhanced electronic properties BSTO-Mg based compound-rare earth oxide
EP1096518A4 (en) * 1999-02-26 2007-05-09 Tdk Corp METHOD OF MANUFACTURING DIELECTIC PORCELAIN COMPOSITION AND MANUFACTURING METHOD OF DIELECTRIC COATING ELECTRONIC COMPONENTS
DE19918091A1 (de) * 1999-04-21 2000-10-26 Epcos Ag Reduktionsstabile X7R-Keramikkondensatoren mit Ni-Innenelektroden
JP3760364B2 (ja) * 1999-07-21 2006-03-29 Tdk株式会社 誘電体磁器組成物および電子部品
JP3348081B2 (ja) * 1999-10-19 2002-11-20 ティーディーケイ株式会社 誘電体磁器組成物および電子部品
KR20020037038A (ko) * 1999-08-23 2002-05-17 마싸 앤 피네간 규산염 기재의 소결 보조제 및 소결 방법
DE19945014C1 (de) * 1999-09-20 2001-03-01 Epcos Ag Reduktionsstabile X7R-Keramikmasse und ihre Verwendung
US6774077B2 (en) 2001-01-24 2004-08-10 Paratek Microwave, Inc. Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
US6514895B1 (en) * 2000-06-15 2003-02-04 Paratek Microwave, Inc. Electronically tunable ceramic materials including tunable dielectric and metal silicate phases
US6556422B2 (en) 2000-07-05 2003-04-29 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, multi-layer ceramic capacitor using the same, and manufacturing method therefor
JP3417911B2 (ja) 2000-08-21 2003-06-16 ティーディーケイ株式会社 誘電体磁器組成物の製造方法と誘電体層含有電子部品の製造方法
JP2002164247A (ja) * 2000-11-24 2002-06-07 Murata Mfg Co Ltd 誘電体セラミック組成物および積層セラミックコンデンサ
JP2002201064A (ja) * 2000-12-27 2002-07-16 Nippon Chemicon Corp 誘電体磁器組成物、積層セラミックコンデンサとその製造方法
US8609017B2 (en) 2001-01-24 2013-12-17 Blackberry Limited Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
KR100415561B1 (ko) * 2001-04-02 2004-01-24 삼성전기주식회사 적층 세라믹 커패시터용 유전체 조성물 및 이를 이용한 유전체의 제조방법
US6673274B2 (en) 2001-04-11 2004-01-06 Cabot Corporation Dielectric compositions and methods to form the same
US8749054B2 (en) 2010-06-24 2014-06-10 L. Pierre de Rochemont Semiconductor carrier with vertical power FET module
CN1252755C (zh) * 2002-10-14 2006-04-19 清华大学 温度稳定型的贱金属内电极多层陶瓷电容器介电材料
KR100501184B1 (ko) * 2002-11-22 2005-07-18 삼성전기주식회사 내전압 특성을 갖는 유전체 자기 조성물과 이를 이용한 적층세라믹 커패시터
KR100471155B1 (ko) * 2002-12-03 2005-03-10 삼성전기주식회사 저온소성 유전체 자기조성물과 이를 이용한 적층세라믹커패시터
JP4547945B2 (ja) * 2004-03-11 2010-09-22 Tdk株式会社 電子部品、誘電体磁器組成物およびその製造方法
CN101006027B (zh) * 2004-08-19 2010-05-05 株式会社村田制作所 介电陶瓷和单片陶瓷电容器
JP4682559B2 (ja) * 2004-08-30 2011-05-11 Tdk株式会社 誘電体磁器組成物及び電子部品
EP1797617A4 (en) 2004-10-01 2009-08-12 Rochemont L Pierre De CERAMIC ANTENNA MODULE AND METHODS OF MAKING SAME
JP4697582B2 (ja) * 2005-02-25 2011-06-08 株式会社村田製作所 誘電体セラミック及び誘電体セラミックの製造方法、並びに積層セラミックコンデンサ
CN102255143B (zh) * 2005-06-30 2014-08-20 L.皮尔·德罗什蒙 电子元件及制造方法
US8350657B2 (en) 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
KR100632001B1 (ko) * 2005-07-29 2006-10-09 삼성전기주식회사 저온 소결용 유리 조성물, 유리 프릿, 유전체 조성물 및이를 이용한 적층 세라믹 콘덴서
JP4396608B2 (ja) * 2005-09-30 2010-01-13 Tdk株式会社 誘電体磁器組成物および電子部品
US8354294B2 (en) 2006-01-24 2013-01-15 De Rochemont L Pierre Liquid chemical deposition apparatus and process and products therefrom
JP4893361B2 (ja) * 2007-02-23 2012-03-07 Tdk株式会社 誘電体磁器組成物および電子部品
JP4858248B2 (ja) * 2007-03-14 2012-01-18 Tdk株式会社 誘電体磁器組成物および電子部品
JP4910812B2 (ja) * 2007-03-22 2012-04-04 Tdk株式会社 誘電体磁器組成物および電子部品
US20090135546A1 (en) * 2007-11-27 2009-05-28 Tsinghua University Nano complex oxide doped dielectric ceramic material, preparation method thereof and multilayer ceramic capacitors made from the same
JP5084657B2 (ja) * 2008-07-29 2012-11-28 京セラ株式会社 積層セラミックコンデンサ
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8922347B1 (en) 2009-06-17 2014-12-30 L. Pierre de Rochemont R.F. energy collection circuit for wireless devices
US8952858B2 (en) 2009-06-17 2015-02-10 L. Pierre de Rochemont Frequency-selective dipole antennas
JP4894908B2 (ja) 2009-11-17 2012-03-14 Tdk株式会社 誘電体磁器組成物
US8552708B2 (en) 2010-06-02 2013-10-08 L. Pierre de Rochemont Monolithic DC/DC power management module with surface FET
US9023493B2 (en) 2010-07-13 2015-05-05 L. Pierre de Rochemont Chemically complex ablative max-phase material and method of manufacture
CN109148425B (zh) 2010-08-23 2022-10-04 L·皮尔·德罗什蒙 具有谐振晶体管栅极的功率场效应晶体管
WO2012061656A2 (en) 2010-11-03 2012-05-10 De Rochemont L Pierre Semiconductor chip carriers with monolithically integrated quantum dot devices and method of manufacture thereof
EP3374905A1 (en) 2016-01-13 2018-09-19 Bigfoot Biomedical, Inc. User interface for diabetes management system
CN108495665B (zh) 2016-01-14 2021-04-09 比格福特生物医药公司 调整胰岛素输送速率
USD874471S1 (en) 2017-06-08 2020-02-04 Insulet Corporation Display screen with a graphical user interface
USD928199S1 (en) 2018-04-02 2021-08-17 Bigfoot Biomedical, Inc. Medication delivery device with icons
CN111410530B (zh) * 2020-05-12 2021-07-20 武汉理工大学 一种抗还原BaTiO3基介质陶瓷及其制备方法
USD977502S1 (en) 2020-06-09 2023-02-07 Insulet Corporation Display screen with graphical user interface
CN111925199B (zh) * 2020-07-03 2022-07-01 成都宏科电子科技有限公司 一种低温烧结微波介质陶瓷材料及其制备方法
CN113277847A (zh) * 2021-06-10 2021-08-20 天津大学 一种抗还原X8R型BaTiO3基介质陶瓷材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324600A (en) * 1976-08-19 1978-03-07 Murata Manufacturing Co Nonnreducing dielectric ceramic composition
US4241378A (en) * 1978-06-12 1980-12-23 Erie Technological Products, Inc. Base metal electrode capacitor and method of making the same
JPS61250905A (ja) * 1985-04-26 1986-11-08 ティーディーケイ株式会社 誘電体磁器組成物及びその製造法
JPH0680562B2 (ja) * 1985-12-27 1994-10-12 京セラ株式会社 非還元性誘電体磁器組成物
US4855266A (en) * 1987-01-13 1989-08-08 E. I. Du Pont De Nemours And Company High K dielectric composition for use in multilayer ceramic capacitors having copper internal electrodes
JP2710639B2 (ja) * 1988-09-20 1998-02-10 ティーディーケイ株式会社 誘電体磁器組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440392C (zh) * 2000-02-09 2008-12-03 Tdk株式会社 具有介电层的电子器件及其生产方法
CN100400463C (zh) * 2000-12-25 2008-07-09 Tdk株式会社 介电陶瓷组合物和电子装置

Also Published As

Publication number Publication date
EP0615262A3 (en) 1994-09-21
CA2113060C (en) 2000-10-24
KR100190244B1 (ko) 1999-06-01
TW258724B (zh) 1995-10-01
US5403797A (en) 1995-04-04
CN1092198A (zh) 1994-09-14
CA2113060A1 (en) 1994-07-22
DE69400932T2 (de) 1997-03-13
KR940018337A (ko) 1994-08-16
MY110393A (en) 1998-04-30
JPH06215979A (ja) 1994-08-05
EP0615262B1 (en) 1996-11-20
JP2764513B2 (ja) 1998-06-11
EP0615262A2 (en) 1994-09-14
DE69400932D1 (de) 1997-01-02

Similar Documents

Publication Publication Date Title
CN1031338C (zh) 非还原性介电陶瓷组合物
CN1118444C (zh) 介电陶瓷组合物及叠层陶瓷电容器
CN1167082C (zh) 介电陶瓷组合物和单块陶瓷电容器
CN1197101C (zh) 绝缘陶瓷及其制备方法和多层陶瓷电容器
CN100355698C (zh) 绝缘组合物
KR100673879B1 (ko) 전자 부품, 유전체 자기 조성물 및 그 제조 방법
CN1100332C (zh) 叠层陶瓷电容器
EP1528578A2 (en) Multilayer ceramic capacitor
CN1287366A (zh) 介质陶瓷组合物与单片陶瓷电容器
KR920003225B1 (ko) 반도체 세라믹 조성물
CN1469397A (zh) 介电陶瓷组合物、使用该组合物的多层陶瓷片状电容器及该电容器的制备方法
JPS621595B2 (zh)
CN1171381A (zh) 介电陶瓷组合物及使用该组合物的叠层陶瓷电容器
CN1983478B (zh) 电子部件、电介质陶瓷组合物及其制造方法
KR101086804B1 (ko) 저온 소성 세라믹 회로 기판
CN1411604A (zh) 具有czt电介质的陶瓷电容器
KR100803499B1 (ko) 후막 유전성 및 전도성 조성물
CN1263045C (zh) 电子器件和介电陶瓷组合物以及其制备方法
EP3268329A1 (en) Cog dielectric composition for use with nickel electrodes
CN1634798A (zh) 抗还原热补偿陶瓷介质材料及其制成的陶瓷电容器
CN1404081A (zh) 用于贱金属电极的高介电、抗还原电容介质材料
KR910001347B1 (ko) 초저온에서 소결되는 세라믹 조성물 및 그 제조방법
CN1420105A (zh) 陶瓷介质材料及其制备方法和用于生产陶瓷电容器的方法
JP3269907B2 (ja) 磁器コンデンサ及びその製造方法
JP3269909B2 (ja) 磁器コンデンサ及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Expiration termination date: 20140121

Granted publication date: 19960320

CX01 Expiry of patent term