CN111925199B - 一种低温烧结微波介质陶瓷材料及其制备方法 - Google Patents

一种低温烧结微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111925199B
CN111925199B CN202010631188.5A CN202010631188A CN111925199B CN 111925199 B CN111925199 B CN 111925199B CN 202010631188 A CN202010631188 A CN 202010631188A CN 111925199 B CN111925199 B CN 111925199B
Authority
CN
China
Prior art keywords
dielectric ceramic
low
ceramic material
crystal phase
microwave dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010631188.5A
Other languages
English (en)
Other versions
CN111925199A (zh
Inventor
汪小玲
曲明山
蒋琦
赵杨军
刘杨琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Hongke Electronic Technology Co ltd
Original Assignee
Chengdu Hongke Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hongke Electronic Technology Co ltd filed Critical Chengdu Hongke Electronic Technology Co ltd
Priority to CN202010631188.5A priority Critical patent/CN111925199B/zh
Publication of CN111925199A publication Critical patent/CN111925199A/zh
Application granted granted Critical
Publication of CN111925199B publication Critical patent/CN111925199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass

Abstract

本发明属于电子陶瓷材料技术领域,提供了一种低温烧结微波介质陶瓷材料及其制备方法。该低温烧结微波介质陶瓷材料原料包括主晶相和Zn‑B‑Si‑Al玻璃粉;主晶相的化学式为CaxBa1‑x(SiO3)y(Al2O4)1‑y,其中0.95≤x≤0.975,0.965≤y≤0.983。该低温烧结微波介质陶瓷材的烧结温度低,具有优异的介电性能,应用范围广泛,性能稳定,可用于制造谐振器、滤波器、介质陶瓷基板等微波元器件。该制备方法通过分别采用研磨煅烧制得主晶相和Zn‑B‑Si‑Al玻璃粉,再低温烧结制得低温烧结微波介质陶瓷材料。工艺简单,绿色环保,可实现产业化批量生产。

Description

一种低温烧结微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷材料技术领域,具体地说,涉及一种低温烧结微波介质陶瓷材料及其制备方法。
背景技术
微波介质陶瓷为现代移动通讯、卫星通讯和军用雷达等谐振器、滤波器、介质陶瓷基板等微波元器件的关键材料。
近年来,随着电子技术的不断发展,为了满足元器件的小型化、微型化、集成化和模块化,对制备元器件的微波介质陶瓷也提出了更高的要求。对微波介质陶瓷的介电性能的要求也越来越高。
微波介质陶瓷的介电性能主要包括介电常数、介电损耗和容量温度系数。近年来,对于微波介质陶瓷制备的能耗要求也越来越高。制备一种能耗低且具有优异介电性能的微波介质陶瓷成为了当前的热点。
发明内容
针对现有技术中上述的不足,本发明的第一目的在于提供了一种低温烧结微波介质陶瓷材料,该低温烧结微波介质陶瓷材料的烧结温度显著降低,能耗减少,且介电性能提高,具有优异的介电性能,应用范围广泛,性能稳定,可用于制造谐振器、滤波器、介质陶瓷基板等微波元器件。
针对现有技术中上述的不足,本发明的第二目的在于提供了一种低温烧结微波介质陶瓷材料的制备方法,该制备方法工艺简单,绿色环保,可实现产业化批量生产。
为了达到上述目的,本发明采用的解决方案是:
一种低温烧结微波介质陶瓷材料,其原料包括主晶相和Zn-B-Si-Al玻璃粉;主晶相的化学式为CaxBa1-x(SiO3)y(Al2O4)1-y,其中0.95≤x≤0.975,0.965≤y≤0.983。
一种如上述低温烧结微波介质陶瓷材料的制备方法,包括:(1)将CaCO3、BaCO3、SiO2和Al2O3按照主晶相的化学式进行配料得到混合料后进行球磨、烘干、过筛,再于1180-1200℃进行预烧3-5h后粉碎,得到主晶相粉;(2)将ZnO、H3BO3、Al2O3和SiO2进行配料,干磨混合,于1250-1350℃熔融后水淬,磨细烘干过320目筛,得到Zn-B-Si-Al玻璃粉;(3)将主晶相粉和Zn-B-Si-Al玻璃粉进行配料,球磨、过筛、烘干、压制,并于960-1050℃烧结2-3h,制得低温烧结微波介质陶瓷材料。
本发明提供的一种低温烧结微波介质陶瓷材料及其制备方法的有益效果是:
(1)本发明提供的该种低温烧结微波介质陶瓷材料,通过在主晶相CaxBa1-x(SiO3)y(Al2O4)1-y中加入可助烧的Zn-B-Si-Al玻璃粉末。该Zn-B-Si-Al玻璃粉末在较低的温度下会发生相变,随着温度升高该Zn-B-Si-Al玻璃粉末首先会生成粘性液相,并开始润湿和包覆粉体颗粒。
在烧结过程中,玻璃中Zn2+同时与两个O2-联结,使玻璃结构网络连续,使烧结温度降低;同时Zn2+进入主晶相晶格内,与Ca2+、Ba2+进行置换,引起晶格畸变,Zn2+能够将Zn-B-Si-Al形成玻璃体系带入晶格内,由于B-Si-Al是降温材料,进一步地引起降温。此时一部分Zn-B-Si-Al玻璃体系被带入主晶相的晶格中并填系在主晶格粒子之间,当液相完全填充到颗粒间后,毛细管压力形成,它既可促使颗粒重新排布,达到更紧密的空间堆集,又可使小的颗粒溶解在液相中,并通过液相扩散在大颗粒表面凝析,从而促进晶粒的均匀分布,加快烧结速度,实现降低烧结温度。而另一部分Zn-B-Si-Al玻璃体系包裹于主晶相晶格,从而起到进一步地降温的作用。
除了烧结温度下降,该低温烧结微波介质陶瓷材料的综合介电性能得以提高;应用范围广泛,性能稳定,可用于制造谐振器、滤波器、介质陶瓷基板等微波元器件。
(2)本发明提供的该种低温烧结微波介质陶瓷材料的制备方法,通过分别采用研磨煅烧制得主晶相和Zn-B-Si-Al玻璃,再通过研磨后低温烧结制得低温烧结微波介质陶瓷材料。该制备方法工艺简单,制备过程中均采用国产原材料,无铅、镉等有毒有害物质,绿色环保,可实现产业化批量生产。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例提供的一种低温烧结微波介质陶瓷材料及其制备方法进行具体说明。
本发明实施例提供的一种低温烧结微波介质陶瓷材料,其原料包括主晶相、Zn-B-Si-Al玻璃粉和SrTiO3。其中,主晶相的化学式为CaxBa1-x(SiO3)y(Al2O4)1-y,其中0.95≤x≤0.975,0.965≤y≤0.983。
SrTiO3的加入能够使得锶离子进入主晶相取代钙离子、钛进入主晶相取代铝离子,从而引起晶格畸变,不仅能够进一步地降低烧结温度,还能够大大提升介电常数并调节容量温度系数。
进一步地,在本实施例中,按重量份数计,主晶相为74.77-93.02份,Zn-B-Si-Al玻璃粉为6.98-9.8份以及SrTiO3小于或等于16.82份。按照上述重量份数制备得到的低温烧结微波介质陶瓷材料,能够在960-1050℃之间进行烧结制得,烧结温度显著降低,且介电常数在7.8-12.6之间可调,1MHz下介质损耗2.3-3.8×10-4,容量温度系数0±30ppm/℃,介电性能显著提升。
本发明实施例提供的一种低温烧结微波介质陶瓷材料的制备方法,包括:(1)将CaCO3、BaCO3、SiO2和Al2O3按照主晶相的化学式进行配料,并同时加入金属氧化物得到混合料;在本实施例中,金属氧化物包括镁、锆和钛的氧化物中的至少一种,且金属氧化物的质量百分比为0.05-0.7%。上述金属氧化物的加入能够进一步起到调节损耗的作用。以二氧化锆球作为研磨介质,水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合5-8h,得到第一混合浆料;将第一混合浆料在140℃下烘干并过40目筛,1180-1200℃进行预烧3-5h后粉碎,得到主晶相粉。
(2)将ZnO、H3BO3、Al2O3和SiO2进行配料,干磨混合,于1250-1350℃熔融后水淬,磨细烘干过320目筛,得到Zn-B-Si-Al玻璃粉。在本实施例中,ZnO、H3BO3、Al2O3和SiO2的质量比为28.46-31.72:36.13-38.08:17.81-18.86:14.10-15.42。在上述各原料的配比范围和熔融的温度范围内,Zn-B-Si-Al玻璃粉中的各元素能够紧密地连接并形成连续的玻璃结构网络。
(3)将SrCO3、TiO2按摩尔比为1:1进行配料,二氧化锆球为研磨介质,以水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合5-8h,得到第三混合浆料;将第三混合浆料于140℃下烘干并过40目筛,于1280-1340℃进行预烧3-5h后粉碎,得到SrTiO3粉。
(4)将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉进行配料,以二氧化锆球为研磨介质,以水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合18-45h,过320目筛,得到第二混合浆料,将第二混合浆料于140℃下烘干并过80目筛,得到干燥粉体;将干燥粉加入质量百分数为8-12%的石蜡后压制成圆片生坯,于960-1050℃烧结2-3h,制得低温烧结微波介质陶瓷材料。
上述制备方法每一步中均采用了研磨和煅烧,制备工艺简单,最终产品的烧结温度低,能耗小,制得的最终产品的介电性能优异。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,包括:(1)取x=0.95,y=0.983,将CaCO3、BaCO3、SiO2和Al2O3按照主晶相的化学式进行配料,并同时加入质量百分比为0.05%的镁氧化物;以二氧化锆球作为研磨介质,水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合5-8h,得到第一混合浆料;将第一混合浆料在140℃下烘干并过40目筛,1180-1200℃进行预烧3-5h后粉碎,得到主晶相粉;(2)将ZnO、H3BO3、Al2O3和SiO2按照质量比为28.46:38.08:18.86:14.6进行配料,干磨混合,于1250-1350℃熔融后水淬,磨细烘干过320目筛,得到Zn-B-Si-Al玻璃粉;(3)将主晶相粉、Zn-B-Si-Al玻璃粉按照质量比为93.02:6.98进行配料,以二氧化锆球为研磨介质,以水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合18-45h,过320目筛,得到第二混合浆料,将第二混合浆料于140℃下烘干并过80目筛,得到干燥粉体;将干燥粉加入质量百分数为8-12%的石蜡后压制成圆片生坯,于960-1050℃烧结2-3h,制得低温烧结微波介质陶瓷材料。
实施例2
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例1,不同之处在于步骤(2)与步骤(3)之间还包括:将SrCO3、TiO2按摩尔比为1:1进行配料,二氧化锆球为研磨介质,以水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合5-8h,得到第三混合浆料;将第三混合浆料于140℃下烘干并过40目筛,于1280-1340℃进行预烧3-5h后粉碎,得到SrTiO3粉;以及步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为74.77:8.41:16.82进行配料。
实施例3
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例2,不同之处在于:步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为77.67:8.73:13.5进行配料。
实施例4
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例2,不同之处在于:步骤(1)中,取x=0.975,y=0.965,且加入质量百分比为0.7%的镁氧化物、锆氧化物和钛氧化物;步骤(2)中,ZnO、H3BO3、Al2O3和SiO2按照质量比为31.72:36.13:17.81:14.34进行配料;步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为78.43:9.8:11.77进行配料。
实施例5
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例4,不同之处在于:步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为78.74:5.91:15.35进行配料。
实施例6
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例4,不同之处在于:步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为76.92:9.61:13.47进行配料。
实施例7
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例2,不同之处在于:步骤(1)中,取x=0.96,y=0.975,且加入质量百分比为0.1%的锆氧化物和钛氧化物;步骤(2)中,ZnO、H3BO3、Al2O3和SiO2按照质量比为29.52:37.25:17.81:15.42进行配料;步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为77.97:9.74:12.29进行配料。
实施例8
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例7,不同之处在于:步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为76.92:7.69:15.39进行配料。
实施例9
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例7,不同之处在于:步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为76.62:8.05:15.33进行配料。
实施例10
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,具体方法可参照实施例7,不同之处在于:步骤(3)中,将主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉按照质量比为80.83:7.52:11.65进行配料。
对比例1
本实施例提供了一种低温烧结微波介质陶瓷材料的制备方法,包括:(1)取x=0.95,y=0.983,将CaCO3、BaCO3、SiO2和Al2O3按照CaxBa1-x(SiO3)y(Al2O4)1-y的化学式进行配料;以二氧化锆球作为研磨介质,水为溶剂;按照料:球:水重量比为1:5-6:1.5-2.5进行研磨混合5-8h,得到第一混合浆料;将第一混合浆料在140℃下烘干并过40目筛,1180-1200℃进行预烧3-5h后粉碎,得到CaxBa1-x(SiO3)y(Al2O4)1-y
实施例1-10和对比例1的配方对比如表1:
表1
Figure BDA0002568823850000081
Figure BDA0002568823850000091
实验例1
实验方法:将实施例1-10制备得到的低温烧结微波介质陶瓷材料,以及对比例1提供的CaxBa1-x(SiO3)y(Al2O4)1-y,采用Agilient8722ET网络分析仪测试其介电常数(εr)、介质损耗因数(tgδ)和容量温度系数(αc),测试结果见表2:
表2
Figure BDA0002568823850000092
Figure BDA0002568823850000101
由表2数据可知,对比实施例1和对比例10可以看出,在主晶相CaxBa1-x(SiO3)y(Al2O4)1-y添加了Zn-B-Si-Al玻璃粉共同烧结制备得到的低温烧结微波介质陶瓷材料,虽然其介电损耗稍有增加,但其综合介电性能相较于单独的CaxBa1-x(SiO3)y(Al2O4)1-y有显著提升,尤其是烧结温度有显著下降,其介电常数增加,容量温度系数在0±30ppm/℃内。对比实施例2-10和对比例1可以看出,SrTiO3的加入能够提高介电性能。尤其是在本实施例中,主晶相粉、Zn-B-Si-Al玻璃粉和SrTiO3粉三者的配比范围内,能够在960-1050℃之间进行烧结制得低温烧结微波介质陶瓷材料,烧结温度显著降低,且介电常数提高至9.4-12.6,1MHz下介质损耗2.3-3.8×10-4,容量温度系数0±30ppm/℃,介电性能显著提升。
综上所述,采用本发明提供的低温烧结微波介质陶瓷材料及其制备方法;该低温烧结微波介质陶瓷材料的烧结温度显著降低,能耗减少,且介电性能显著提高,具有优异的介电性能,应用范围广泛,性能稳定,可用于制造制造谐振器、滤波器、介质陶瓷基板等微波元器件;该制备方法工艺简单,绿色环保,可实现产业化批量生产。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种低温烧结微波介质陶瓷材料,其特征在于:其原料包括主晶相和Zn-B-Si-Al玻璃粉;所述主晶相的化学式为CaxBa1-x(SiO3y(Al2O41-y,其中0.95≤x≤0.975,0.965≤y≤0.983;
按重量份数计,所述主晶相为74.77-93.02份,所述Zn-B-Si-Al玻璃粉为6.98-9.8份;
所述Zn-B-Si-Al玻璃粉的原料包括质量比为28.46-31.72:36.13-38.08:17.81-18.86:14.10-15.42的ZnO、H3BO3、Al2O3和SiO2
2.根据权利要求1所述的低温烧结微波介质陶瓷材料,其特征在于:所述原料还包括SrTiO3;按重量份数计,所述SrTiO3小于或等于16.82份。
3.一种如权利要求1所述的低温烧结微波介质陶瓷材料的制备方法,其特征在于:包括:
(1)将CaCO3、BaCO3、SiO2和Al2O3按照所述主晶相的化学式进行配料得到混合料后进行球磨、烘干、过筛,再于1180-1200℃进行预烧3-5h后粉碎,得到主晶相粉;
(2)将所述ZnO、所述H3BO3、所述Al2O3和所述SiO2进行配料,干磨混合,于1250-1350℃熔融后水淬,磨细烘干过320目筛,得到所述Zn-B-Si-Al玻璃粉;
(3)将所述主晶相粉和所述Zn-B-Si-Al玻璃粉进行配料,球磨、过筛、烘干、压制,并于960-1050℃烧结2-3h,制得所述低温烧结微波介质陶瓷材料。
4.根据权利要求3所述的低温烧结微波介质陶瓷材料的制备方法,其特征在于:步骤(1)中,在球磨前,还包括向所述混合料中加入金属氧化物;所述金属氧化物包括镁、锆和钛的氧化物中的至少一种。
5.根据权利要求4所述的低温烧结微波介质陶瓷材料的制备方法,其特征在于:步骤(1)中,所述金属氧化物的质量百分比为0.05-0.7%。
6.一种如权利要求3所述的低温烧结微波介质陶瓷材料的制备方法,其特征在于:包括:
(1)将CaCO3、BaCO3、SiO2和Al2O3按照所述主晶相的化学式进行配料得到混合料后进行球磨、烘干、过筛,再于1180-1200℃进行预烧3-5h后粉碎,得到主晶相粉;
(2)将所述ZnO、所述H3BO3、所述Al2O3和所述SiO2进行配料,干磨混合,于1250-1350℃熔融后水淬,磨细烘干过320目筛,得到所述Zn-B-Si-Al玻璃粉;
(3)将SrCO3、TiO2按摩尔比为1:1进行配料,接着进行球磨、烘干、过筛,于1280-1340℃进行预烧3-5h后粉碎,得到SrTiO3粉;
(4)将所述主晶相粉、所述Zn-B-Si-Al玻璃粉和所述SrTiO3粉进行配料,球磨、过筛、烘干、压制,并于960-1050℃烧结2-3h,制得所述低温烧结微波介质陶瓷材料。
CN202010631188.5A 2020-07-03 2020-07-03 一种低温烧结微波介质陶瓷材料及其制备方法 Active CN111925199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010631188.5A CN111925199B (zh) 2020-07-03 2020-07-03 一种低温烧结微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010631188.5A CN111925199B (zh) 2020-07-03 2020-07-03 一种低温烧结微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111925199A CN111925199A (zh) 2020-11-13
CN111925199B true CN111925199B (zh) 2022-07-01

Family

ID=73316381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010631188.5A Active CN111925199B (zh) 2020-07-03 2020-07-03 一种低温烧结微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111925199B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087518B (zh) * 2021-03-03 2022-04-22 华中科技大学 一种负热膨胀系数微波陶瓷及其3d打印介质谐振器天线
CN113121214B (zh) * 2021-04-22 2022-12-30 苏州中材非金属矿工业设计研究院有限公司 一种石墨尾矿基微波介质陶瓷材料及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041350A (zh) * 1988-09-20 1990-04-18 Tdk株式会社 电介质陶瓷组成物
US5403797A (en) * 1993-01-21 1995-04-04 Tdk Corporation Non-reducing dielectric ceramic composition
US5818686A (en) * 1996-08-05 1998-10-06 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and monolithic ceramic capacitor using the same
JP2000109361A (ja) * 1998-10-02 2000-04-18 Matsushita Electric Ind Co Ltd 誘電体磁器組成物およびこれを用いた積層セラミックコンデンサ
JP2000143342A (ja) * 1998-11-11 2000-05-23 Matsushita Electric Ind Co Ltd 誘電体磁器組成物およびこれを用いた積層セラミックコンデンサ
JP2000191365A (ja) * 1998-12-25 2000-07-11 Kyocera Corp ガラスセラミック焼結体及びセラミックパッケ―ジ
JP2007137747A (ja) * 2005-11-22 2007-06-07 Taiyo Yuden Co Ltd 誘電体磁器及びその製造方法
CN101150165A (zh) * 2002-08-01 2008-03-26 日亚化学工业株式会社 半导体发光元件及发光装置
CN101372419A (zh) * 2008-09-26 2009-02-25 广东风华高新科技股份有限公司 一种低温烧结的高频高介电陶瓷介质材料
JP2011142307A (ja) * 2009-12-08 2011-07-21 Panasonic Corp 電子部品とその製造方法
CN103880412A (zh) * 2012-12-20 2014-06-25 三星电机株式会社 介电组合物
CN103922714A (zh) * 2014-03-18 2014-07-16 福建火炬电子科技股份有限公司 一种低介电常数多层电容器瓷料及其制备方法
DE102014217742A1 (de) * 2013-12-09 2015-06-11 Dong Il Technology Ltd. Dielektrisches material zur temperaturkompensation und verfahren zu dessen herstellung
CN107163936A (zh) * 2017-05-09 2017-09-15 北京交通大学 一种新型白色长余辉发光材料及其制备方法
CN114349496A (zh) * 2022-01-17 2022-04-15 山东国瓷功能材料股份有限公司 电介质材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155697B2 (en) * 2012-03-22 2018-12-18 Holy Stone Enterprise Co., Ltd. Composite dielectric ceramic material having anti-reduction and high temperature stability characteristics and method for preparing same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041350A (zh) * 1988-09-20 1990-04-18 Tdk株式会社 电介质陶瓷组成物
US5403797A (en) * 1993-01-21 1995-04-04 Tdk Corporation Non-reducing dielectric ceramic composition
US5818686A (en) * 1996-08-05 1998-10-06 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and monolithic ceramic capacitor using the same
JP2000109361A (ja) * 1998-10-02 2000-04-18 Matsushita Electric Ind Co Ltd 誘電体磁器組成物およびこれを用いた積層セラミックコンデンサ
JP2000143342A (ja) * 1998-11-11 2000-05-23 Matsushita Electric Ind Co Ltd 誘電体磁器組成物およびこれを用いた積層セラミックコンデンサ
JP2000191365A (ja) * 1998-12-25 2000-07-11 Kyocera Corp ガラスセラミック焼結体及びセラミックパッケ―ジ
CN101150165A (zh) * 2002-08-01 2008-03-26 日亚化学工业株式会社 半导体发光元件及发光装置
JP2007137747A (ja) * 2005-11-22 2007-06-07 Taiyo Yuden Co Ltd 誘電体磁器及びその製造方法
CN101372419A (zh) * 2008-09-26 2009-02-25 广东风华高新科技股份有限公司 一种低温烧结的高频高介电陶瓷介质材料
JP2011142307A (ja) * 2009-12-08 2011-07-21 Panasonic Corp 電子部品とその製造方法
CN103880412A (zh) * 2012-12-20 2014-06-25 三星电机株式会社 介电组合物
DE102014217742A1 (de) * 2013-12-09 2015-06-11 Dong Il Technology Ltd. Dielektrisches material zur temperaturkompensation und verfahren zu dessen herstellung
CN103922714A (zh) * 2014-03-18 2014-07-16 福建火炬电子科技股份有限公司 一种低介电常数多层电容器瓷料及其制备方法
CN107163936A (zh) * 2017-05-09 2017-09-15 北京交通大学 一种新型白色长余辉发光材料及其制备方法
CN114349496A (zh) * 2022-01-17 2022-04-15 山东国瓷功能材料股份有限公司 电介质材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
qinhuangdao.structural analysis of casio3 glass by x-ray diffraction and raman spectroscopy.《journalof non-crystalline solids》.1986, *
岑远清.LTCC低介电常数微波介质陶瓷的研究进展.《电子元件与材料》.2010, *

Also Published As

Publication number Publication date
CN111925199A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN1117708C (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
US10899669B2 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN111689771B (zh) 一种微波介质陶瓷材料及其制备方法
CN111925199B (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN110981439A (zh) 一种微波陶瓷粉料及其制备方法和其在介质滤波器中的应用
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
CN111302787A (zh) 一种具有高Qf高强度的微波介质陶瓷材料及其制备方法
CN111499187B (zh) 一种在20-60GHz高频频段内具有低损耗和低压电系数d33的玻璃材料
CN105254293A (zh) 一种微波介质陶瓷材料及其制备方法
CN111925187A (zh) 一种无铅高压中温烧结的锶铋钛基介质材料及制备方法
JP3737773B2 (ja) 誘電体セラミック組成物
CN111302775A (zh) 一种具有高品质因数低介电常数的陶瓷材料及其制备方法
CN111470776B (zh) 一种高频低损耗玻璃陶瓷材料及其制备方法
CN107805067B (zh) 一种零频率温度系数及超低损耗的低介电常数微波介质陶瓷及其制备方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN110256066A (zh) 一种频率温度特性优异的中温烧结微波介质材料
CN112592160B (zh) 一种复相低温共烧陶瓷材料及其制备方法
CN111423227B (zh) 具有中介电常数高Qf的微波介质陶瓷材料及其制备方法
CN112266238B (zh) 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN112521149A (zh) 高q值微波介质陶瓷粉及微波介质陶瓷、制备方法和应用
CN114804867B (zh) 适合热压烧结的陶瓷介质材料、陶瓷器件及其制备方法
CN102030527B (zh) 一种BaO-TiO 2系微波电容器介质材料及其制备方法
CN111635226A (zh) 一种低介电常数陶瓷材料及其制备方法
CN115959895B (zh) 微波介质陶瓷材料及其制备方法、微波介质陶瓷器件
CN115925415B (zh) 一种离子改性的微波介质陶瓷、其制备方法及微波元器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant