WO2023106132A1 - 熱反射板 - Google Patents

熱反射板 Download PDF

Info

Publication number
WO2023106132A1
WO2023106132A1 PCT/JP2022/043587 JP2022043587W WO2023106132A1 WO 2023106132 A1 WO2023106132 A1 WO 2023106132A1 JP 2022043587 W JP2022043587 W JP 2022043587W WO 2023106132 A1 WO2023106132 A1 WO 2023106132A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
reflector
exterior
heat
film
Prior art date
Application number
PCT/JP2022/043587
Other languages
English (en)
French (fr)
Inventor
智弘 丸子
好裕 石黒
尊信 松村
裕也 大川
Original Assignee
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フルヤ金属 filed Critical 株式会社フルヤ金属
Publication of WO2023106132A1 publication Critical patent/WO2023106132A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present disclosure can be used, for example, in the field of semiconductors and electronic components as a heat reflector for various heat treatment apparatuses for heat-treating wafers, substrates, etc. at low to high temperatures, shorten the time required for one heating/cooling cycle, and More particularly, it relates to a heat reflecting plate capable of saving energy in a heat treatment apparatus and suppressing contamination due to its high reflectance.
  • heat treatment is performed to impart various properties to semiconductor wafers.
  • a semiconductor wafer is housed in a furnace core tube made of high-purity quartz, and a heat treatment operation is performed by controlling the atmosphere in the furnace core tube.
  • a heat insulator (lid body) is placed between the inside of the furnace and the hearth so as to block the opening of the furnace. ) is provided.
  • a heat insulator that closes the opening of the heat treatment chamber and has quartz plates that are stacked apart from each other and exposed to the heat treatment chamber.
  • a gold thin film is formed inside the quartz plate, and the gold thin film is characterized by being formed by gold vapor deposition (see, for example, Patent Document 1).
  • a mixture of platinum (Pt) and an oxide (such as SiO or PbO) is added to a mixture of platinum (Pt) and an oxide (such as SiO or PbO) to form a paste on a quartz plate having a hole for passing a quartz tube through the center and a hole for passing a quartz rod.
  • an oxide such as SiO or PbO
  • a heat shield plate is formed of a reflective film and a transparent quartz layer covering the surface of the reflective film.
  • One method of forming this heat shield plate is to use a pair of circular transparent quartz plates for forming a transparent quartz layer, provide a reflective film on one side of one of the transparent quartz plates, and then place the reflective film on one side of the transparent quartz plate.
  • JP-A-2001-102319 JP-A-9-148315 JP-A-11-97360 JP 2019-217530 A Japanese Patent No. 4172806 Japanese Patent No. 6032667
  • Patent Document 1 the presence of a heat insulator to prevent metal contamination delays the heating and cooling response of the furnace body, and as a result, the heat treatment cycle takes time.
  • the quartz plates must be welded at their outer peripheries to prevent metal contamination. It is necessary to make it small.
  • Patent Document 1 where this is not done, in a heat treatment process having a temperature rise profile, temperature retention profile, and temperature drop profile up to the heat treatment temperature, the response of heating and cooling is delayed, causing a deviation from each desired profile, In addition, there is a problem that the time required for one heat treatment cycle is prolonged, resulting in a decrease in production efficiency.
  • Patent Literature 2 a quartz tube is provided in the center to provide a heater conduction part for use as both a reflector and a heater, but due to this structure, there are places where the radiant heat cannot be completely shielded. For higher energy saving, it is necessary to increase the reflective area ratio, to make the quartz used as the reflector and the exterior thinner, and to lower the heat capacity.
  • Patent Document 3 a method of sandwiching between quartz plates and welding is adopted, but since it is affected by heat, there is a problem that the film will peel off when it is performed with a thin film, so it is necessary to reduce the welding width. is also difficult. Furthermore, it is difficult to weld while maintaining a vacuum inside, and there is an unavoidable risk of damage to the thin film due to an increase in internal pressure during high-temperature use. Also, in the method of pouring transparent quartz, if it is applied to a metal thin film, thermal and physical damage cannot be avoided, and it is difficult to make the transparent quartz thin.
  • the heat shield plate delays the response of heating and cooling in the heat treatment process, causes a deviation from each desired profile, and prolongs the time required for one heat treatment cycle, resulting in As a result, there was a problem of causing a decrease in production efficiency.
  • the present disclosure can ensure a larger reflection area ratio than the conventional method, has a small heat capacity, can save energy, has a high reflectance, suppresses contamination in the furnace, and has a heat with good thermal response.
  • the object is to provide a reflector.
  • the heat reflecting plate according to the present invention comprises a plate-shaped exterior, a plate-shaped exterior arranged inside the plate-shaped exterior so that the outer circumference is completely covered by the plate-shaped exterior, and one side of the plate-shaped exterior. and a reflector that reflects infrared rays incident on a surface, wherein the reflector is a thin film, a plate or a foil, and the heat reflector is a plate-like exterior and a reflector at 1 mm 2 .
  • the total heat capacity in the thickness direction is 0.0004 to 0.0080 (J/K).
  • the surface layer including at least the reflecting surface of the reflector is made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, It is preferably made of an alloy containing at least one of them.
  • the material of the plate-like exterior is silica or silicon.
  • the plate-shaped exterior is a joint portion in which a first exterior plate and a second exterior plate are arranged to face each other, and peripheral edge portions are annularly joined continuously along the peripheral edge. It is preferable to have a structure of a laminated plate having Since the plate-shaped exterior and the reflector can be made thinner, the heat capacity can be reduced.
  • the structure of the laminated plate is provided between the facing surfaces of the first exterior plate and the second exterior plate, and It is preferable that at least one side of the exterior plate has a cavity sealed by a joint portion between the peripheral edge portions, and the reflector is arranged in the cavity. Since the reflector is in the cavity, which is a closed space, stress in the peeling direction caused by the reflector is not applied to the joints between the peripheral edge portions, and contamination in the furnace due to breakage of the reflector can be suppressed. Furthermore, it is possible to avoid damage due to the difference in thermal expansion between the plate-like exterior and the reflector.
  • the heat reflector according to the present invention has the cavity at least on the side of the first exterior plate, and has a thin film formed as the reflector on the surface of the first exterior plate in the cavity, wherein the thin film is and a reflective film as a surface layer including the reflective surface in this order from the surface side of the cavity of the first exterior plate, wherein the reflective film includes Ta, Mo, and Ti.
  • the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, an alloy containing at least one selected from the group consisting of Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, and Cu; It is preferable that the reflective film has a composition different from that of the reflective film.
  • the reflector is formed on the surface inside the cavity of the first armor plate, the stress in the peeling direction due to the reflector is not applied to the joint between the peripheral edge portions, and the damage of the reflector causes the inside of the furnace to be contaminated. can be suppressed. Furthermore, it is possible to avoid damage due to the difference in thermal expansion between the plate-like exterior and the reflector.
  • the first armor plate is flat, has the cavity on the second armor plate side, and has the thin film formed as the reflector on the surface of the first armor plate.
  • the thin film is a laminated film having, in order from the surface side of the first exterior plate, a base film and a reflective film as a surface layer including the reflective surface, and the base film is composed of Ta, Mo, An alloy consisting of Ti, Zr, Nb, Cr, W, Co or Ni, or containing at least one selected from the group consisting of Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni and the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt , Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, and and the reflective film preferably have different compositions. Since the
  • the reflector is a plate or foil, and has Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu It is preferably made of an alloy containing at least one of them. Since the plate or foil serving as the reflector is housed in the cavity, corrosion of the plate or foil is less likely to occur. Furthermore, stress in the peeling direction due to the plate or foil is less likely to be applied to the joints between the peripheral edges.
  • the pressure inside the cavity is reduced below atmospheric pressure.
  • An increase in the internal pressure of the cavity during heat treatment can be suppressed, and contamination in the furnace can be further suppressed.
  • the first exterior plate has a bank portion provided in the peripheral edge portion and a concave portion that is surrounded by the bank portion and forms the cavity
  • the second The exterior plate is flat
  • the first exterior plate is flat
  • the second exterior plate is surrounded by a bank portion provided at the peripheral portion and the bank portion. It is preferable to have a concave portion forming the cavity.
  • the heat reflecting plate has at least one strut portion erected between the facing surfaces of the structure of the laminated plate within the cavity.
  • the joint strength of the laminated plate structure can be increased by the strut portion.
  • the heat reflecting plate according to the present invention includes a form in which the supporting column has a columnar shape or a cylindrical shape.
  • the supporting column has a columnar shape or a cylindrical shape.
  • the heat reflecting plate has a plurality of the strut portions, the strut portions are cylindrical, and the respective strut portions share a part of the cylindrical wall in a three-dimensional space. It is preferred to have a filling structure. By adopting a three-dimensional space-filling structure, the area of the reflector can be increased while increasing the bonding strength, and the strength of the reflector itself can be increased.
  • the three-dimensional space-filling structure includes a honeycomb structure, a rectangular lattice structure, a square lattice structure, or a diamond lattice structure.
  • the opposing surfaces of the first exterior plate and the second exterior plate are flat surfaces, and the reflector is located on the first exterior plate on the side of the second exterior plate.
  • the base film is made of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo, Ti, Zr, Nb , Cr, W, Co and Ni
  • the reflective film comprises Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or an alloy containing at least one selected from the group consisting of Cu, and the underlying film and the reflective film preferably have different compositions. Interference fringes caused by partial contact between the reflector and the second exterior plate can be further suppressed.
  • the heat reflector according to the present invention has the cavity at least on the side of the first exterior plate, and has a thin film formed as the reflector on the surface of the first exterior plate in the cavity, wherein the thin film is , Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re , Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu in an amount of 50% by mass or more.
  • the thin film formed as the reflector may be a single layer film.
  • the first armor plate is flat, has the cavity on the second armor plate side, and has the thin film formed as the reflector on the surface of the first armor plate.
  • the thin film is a film made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt,
  • An alloy film containing 50% by mass or more of Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, or Cu is preferable.
  • the thin film formed as the reflector may be a single layer film.
  • the opposing surfaces of the first exterior plate and the second exterior plate are flat surfaces, and the reflector is located on the first exterior plate on the side of the second exterior plate.
  • An alloy film containing 50% by mass or more of Cu is preferable.
  • the thin film formed as the reflector may be a single layer film.
  • the cavity is provided on the first exterior plate side and the second exterior plate side, and the thin film formed as the reflector is formed on the surface of the first exterior plate within the cavity.
  • the thin film is a film made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt , Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu in an amount of 50 mass % or more.
  • the thin film formed as the reflector may be a single layer film.
  • the thickness of the reflector is preferably 0.01 ⁇ m or more and 5 mm or less. It is possible to reduce the heat capacity of the heat reflecting plate while maintaining the efficiency of reflection of radiant heat by the reflector.
  • the joints between the peripheral edges are surface-activated joints. Radiant heat can be reflected into the furnace more by shortening the joint width compared to the general welding method. Also, the thin film, which is a reflector, is less susceptible to thermal and physical damage due to the bonding process. In addition, the joint strength at the joint is increased, the life of the heat reflector is increased, and the corrosion resistance is enhanced, thereby suppressing contamination in the furnace.
  • the present disclosure it is possible to secure a larger reflection area ratio than the conventional method, have a small heat capacity, can save energy, have a high reflectance, suppress contamination in the furnace, and have a thermal responsiveness.
  • a good heat reflector can be provided.
  • FIG. 1 is a schematic plan view showing an example of a heat reflecting plate according to this embodiment;
  • FIG. 1 is a schematic diagram showing a first example of an AA cross section;
  • FIG. 4 is a schematic diagram showing a second example of an AA cross section;
  • FIG. 10 is a schematic diagram showing a third example of an AA cross section;
  • FIG. 11 is a schematic diagram showing a fourth example of the AA cross section;
  • FIG. 11 is a schematic diagram showing a fifth example of the AA cross section;
  • FIG. 11 is a schematic diagram showing a sixth example of the AA cross section;
  • FIG. 11 is a schematic diagram showing a seventh example of the AA cross section;
  • FIG. 10 is a diagram showing an example of a form in which a support section has a honeycomb structure;
  • FIG. 10 is a diagram showing an example of a form in which a support section has a honeycomb structure;
  • FIG. 10 is a diagram showing an example of a form in which
  • FIG. 11 is a schematic diagram showing an eighth example of the AA cross section;
  • FIG. 11 is a schematic diagram showing a ninth example of the AA cross section;
  • FIG. 10 is a schematic diagram showing a tenth example of the AA cross section;
  • FIG. 11 is a schematic diagram showing an eleventh example of an AA cross section;
  • FIG. 12 is a schematic diagram showing a twelfth example of an AA cross section;
  • FIG. 13 is a schematic diagram showing a thirteenth example of the AA cross section;
  • 4 is a graph showing the reflectance of the reflector of Example 1.
  • FIG. 4 is a graph showing the relationship between the wavelength of blackbody radiation emitted by a substance at 1000° C. and the amount of radiation.
  • 10 is a graph showing the reflectance of the reflector of Example 5.
  • FIG. 10 is a graph showing the reflectance of the reflector of Example 6.
  • FIG. 20 is a schematic diagram showing a 14th example of the AA cross section; 4 is
  • FIG. 1 A heat reflector according to the present embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. The heat reflecting plate 100 according to the present embodiment includes a plate-shaped exterior 1, and is arranged inside the plate-shaped exterior 1 so that the outer circumference is completely covered by the plate-shaped exterior 1, and one side of the plate-shaped exterior 1 and a reflector 5 that reflects infrared rays incident on the surface of the .
  • the direction toward the paper surface is the incident direction of infrared rays.
  • FIG. 2 the direction from top to bottom is the incident direction of infrared rays.
  • the reflector 5 is a thin film, and the surface layer including at least the reflecting surface of the reflector 5 is made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au. , Ag or Cu, or at least selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu It is preferably made of an alloy containing any one of them.
  • FIG. 2 shows a mode in which the reflector 5 is a laminated film, and a reflective film 4 as a surface layer including a reflective surface is formed on the base film 3 . At this time, it is preferable that the reflector 5 has a reflective surface on the entire surface surrounded by the periphery of the reflector without providing through holes or irregularities.
  • the total heat capacity in the thickness direction of the plate-shaped exterior and the reflector in 1 mm 2 is 0.0004 to 0.0080 (J/K), preferably 0.0023 to 0.0023. It is 0.0070 (J/K), more preferably 0.0030 to 0.0060 (J/K).
  • the heat capacity in the thickness direction of the plate-shaped exterior and the reflector at 1 mm 2 is the heat capacity of the heat reflection plate 100 having the reflector 5 and the plate-shaped exterior 1 that completely covers the outer periphery of the reflector 5, and the infrared incident surface equivalent to the value divided by the area of 1 and 2.
  • the incident surface has a surface area as shown in FIG. For example, there is a region where the reflector 5 is visible and a region where the joint 2 between the peripheral edge portions is visible. Refers to the entire area. If the total heat capacity in the thickness direction of the plate-shaped exterior and the reflector in 1 mm 2 is less than 0.0004 (J / K), damage due to insufficient thickness of the plate-shaped exterior, or due to insufficient thickness of the reflector Reflection performance may decrease due to the transmission of infrared rays. Also, the time required for one heat treatment cycle is prolonged, resulting in a decrease in production efficiency.
  • the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 must satisfy the above range.
  • the ratio of the area of the reflector to the plate-shaped exterior in the in-plane direction is large, and the reflectance of the reflective material used for the reflector is more preferred.
  • the heat reflector is designed according to the size of the furnace body and substrate to be used. It is preferable to In addition, it is preferable to make the thickness of the heat reflector as thin as possible, for example, 1 to 3.4 mm, preferably 1 to 3 mm.
  • the reflector it is preferable to provide the reflector so as to have an area as close as possible to the in-plane area of the disk shape or polygonal shape, for example, 80% or more in terms of reflection area ratio.
  • a metal material or an alloy material having a high reflectance for example, a reflectance of 80% or more, as the metal material or alloy material used for the reflector.
  • the "in-plane direction" means a plate surface including the reflecting surface of the heat reflecting plate.
  • the plate-shaped exterior 1 has a joint portion in which a first exterior plate 1a and a second exterior plate 1b are arranged to face each other and the peripheral edges are continuously joined along the peripheral edges in an annular shape. It is preferable to have a structure of a laminated plate having.
  • the first exterior plate 1a and the second exterior plate 1b form a structure of a laminated plate by a joint portion 2 between peripheral edge portions. As shown in FIG. 1 , the joint portion 2 between the peripheral edge portions is annularly continuous along the peripheral edge of the plate-like exterior 1 .
  • the joint 2 between the peripheral edges can be viewed as a boundary between the first and second exterior plates 1a and 1b by seeing through the second exterior plate 1b, and is illustrated as a gray area.
  • the thickness of the plate-shaped outer casing can be reduced, so that the heat capacity can be reduced.
  • the shape of the plate-shaped exterior 1 when the reflector 5 is viewed from the front is, for example, circular, elliptical, rectangular or square, preferably circular.
  • the outer plate surface of the silica plate 1 when the reflector 5 is viewed from the front is preferably a flat surface without any through-holes or irregularities.
  • the circular diameter is, for example, 5-50 cm.
  • the annular width of the joint 2 between the peripheral edges is, for example, 0.5 to 20 mm.
  • the thickness of the plate-shaped exterior 1 is preferably 1 to 3.4 mm, more preferably 1 to 3 mm.
  • the thickness of the first exterior plate 1a is preferably 0.1 to 1.7 mm, more preferably 0.5 to 1.5 mm.
  • the thickness of the second exterior plate 1b is preferably 0.1 to 1.7 mm, more preferably 0.5 to 1.5 mm.
  • the reflection area ratio of the reflector 5 to the plate surface of the plate-shaped exterior 1 when the reflector 5 is viewed from the front is preferably 80% or more, more preferably 87% or more, and 90% or more. is more preferred.
  • the material of the plate-shaped exterior 1 is preferably silica or silicon.
  • Silica is preferable in terms of material strength and ability to transmit infrared rays without absorbing them, and silicon is preferable in terms of low heat capacity.
  • Silica includes forms that are crystalline silica or amorphous silica.
  • the impurity concentration of the plate-like exterior 1 is 100 ppm or less, preferably 90 ppm or less. Note that this embodiment includes a mode in which the material of the plate-shaped exterior 1 is silicon, and a mode in which the surface of silicon is oxidized to form silica.
  • the structure of the laminated plate is provided between the facing surfaces of the first exterior plate 1a and the second exterior plate 1b, and between the first exterior plate 1a side and the second exterior plate 1b side.
  • at least one has a cavity 12 sealed by a joint 2 between the peripheral edges, and the reflector 5 is arranged in the cavity 12 .
  • the cavity 12 may be provided on the first exterior plate 1a side, provided on both sides of the first exterior plate 1a side and the second exterior plate 1b side, or provided on the second exterior plate 1b side.
  • the cavity 12 has shown the form provided in the 1st exterior plate 1a side.
  • a recess is provided on one surface of the first exterior plate 1a, and the second exterior plate 1b is a flat plate without recesses.
  • the cavity 12 is provided on the side of the first exterior plate 1a.
  • the cavity 12 is provided only on the first exterior plate 1a side of the facing surfaces of the first exterior plate 1a and the second exterior plate 1b, and is sealed by the joint 2 between the peripheral edges. Since the reflector 5 is in the cavity 12, which is a closed space, stress in the peeling direction caused by the reflector is not applied to the joint between the peripheral edge portions, and contamination in the furnace due to breakage of the reflector can be suppressed. can. Furthermore, it is possible to avoid damage due to the difference in thermal expansion between the plate-like exterior and the reflector.
  • FIG. 3 shows a form in which the cavity 12 is provided over both sides of the first exterior plate 1a side and the second exterior plate 1b side.
  • a recess is provided on one surface of the first exterior plate 1a
  • a recess is provided on one surface of the second exterior plate 1b. and the laminated plate structure of the second exterior plate 1b.
  • the cavity 12 is provided on both the first exterior plate 1a side and the second exterior plate 1b side of the facing surfaces of the first exterior plate 1a and the second exterior plate 1b.
  • FIG. 4 shows a form in which the cavity 12 is provided on the side of the second exterior plate 1b.
  • the first exterior plate 1a is a flat plate without recesses
  • the second exterior plate 1b is provided with recesses on one surface thereof.
  • the cavity 12 is provided on the side of the second exterior plate 1b.
  • the cavity 12 is provided only on the second exterior plate 1b side of the facing surfaces of the first exterior plate 1a and the second exterior plate 1b.
  • the height of the cavity 12 (length in the vertical direction in FIG. 2) is preferably 0.1 ⁇ m to 5 mm, more preferably 0.1 ⁇ m to 1 mm.
  • the cavity 12 has a configuration in which a recess is provided only on the side of the first exterior plate 1a, a configuration in which recesses are provided in both the side of the first exterior plate 1a and the side of the second exterior plate 1b, and a configuration in which a recess is provided only on the side of the second exterior plate 1b.
  • a bank portion 11 is formed in the peripheral edge portion of the first exterior plate 1a and/or the peripheral edge portion of the second exterior plate 1b by the recess. In the form of FIG.
  • the top surface of the embankment portion 11 formed on the first exterior plate 1a is joined to the flat plate portion of the second exterior plate 1b arranged facing each other to form the joint portion 2 between the peripheral edge portions. be done.
  • the top surfaces of the bank portions 11 of the first exterior plate 1a and the second exterior plate 1b are joined to form a joint portion 2 between the peripheral edge portions.
  • the top surface of the bank portion 11 formed on the second exterior plate 1b is joined to the flat plate portion of the first exterior plate 1a arranged facing each other, and the joint portion 2 between the peripheral edge portions is formed.
  • the recess can be formed by, for example, an etching method.
  • the first exterior plate 1a has a bank portion 11 provided at the peripheral portion and a concave portion which is surrounded by the bank portion 11 and forms a cavity 12. It is preferable that the second exterior plate 1b has a flat plate shape. By providing the concave portion only in the first exterior plate 1a, the cavity 12 can be provided in the plate-like exterior with a simple structure.
  • Heat reflecting plates having such a configuration include the heat reflecting plates 103, 106, 109, and 112 illustrated in FIGS. 5, 8, 12, and 15 in addition to FIG.
  • the first exterior plate 1a is flat plate-shaped
  • the second exterior plate 1b has a bank portion 11 and a bank portion 11 provided on the peripheral portion. and a recess defining the cavity 12 by being surrounded by .
  • the cavity 12 can be provided in the plate-like exterior with a simple structure.
  • FIG. 4 there are heat reflecting plates 105, 108 and 111 illustrated in FIGS.
  • the heat reflecting plates 100 and 101 have the cavity 12 at least on the side of the first exterior plate 1a, and the surface inside the cavity 12 of the first exterior plate 1a has It has a thin film formed as a reflector 5, and the thin film has, in order from the surface side in the cavity 12 of the first exterior plate 1a, a base film 3 and a reflective film 4 as a surface layer including a reflective surface.
  • the underlayer 3 consists of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni.
  • the reflective film 4 is made of an alloy containing at least one selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au , Ag or Cu, or at least selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or at least selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu It is preferable that the base film 3 and the reflective film 4 are made of an alloy containing any one of them and have different compositions.
  • the reflector is formed on the surface inside the cavity of the first armor plate, the stress in the peeling direction due to the reflector is not applied to the joint between the peripheral edge portions, and the damage of the reflector causes the inside of the furnace to be contaminated. can be suppressed. Furthermore, it is possible to avoid damage due to the difference in thermal expansion between the plate-like exterior and the reflector.
  • the reflector 5 is a thin film and the thin film is a laminated film
  • the surface layer of the reflector 5 including at least the reflective surface corresponds to the reflective film 4 .
  • the reflector 5, which is a laminated film is formed on the surface inside the cavity 12 of the first exterior plate 1a, that is, on the bottom surface of the recess.
  • the reflector 5, which is a laminated film, preferably has an area of 50 to 100%, more preferably 80 to 100%, of the total area of the bottom surface of the recess.
  • the film thickness of the reflector 5 is preferably 10 to 1500 nm, more preferably 20 to 400 nm.
  • the underlayer 3 consists of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or is selected from the group consisting of Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni. It is preferably made of an alloy containing at least one of the following. Such a metal or alloy has a high melting point and excellent adhesion to the plate-like exterior.
  • the base film 3 is preferably a thin film obtained by, for example, sputtering film, coating film, CVD, vapor deposition, or the like.
  • the alloy containing at least one selected from the group consisting of Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni is an alloy containing one of these elements in the largest mass.
  • the film thickness of the base film 3 is preferably 5 to 500 nm, more preferably 10 to 100 nm.
  • the base film 3 improves adhesion of the reflective film 4 .
  • the reflective film 4 is preferably deposited on the surface of the base film 3.
  • the reflective film 4 is made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, It is preferably made of an alloy containing at least one selected from the group consisting of Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag and Cu.
  • Such metals or alloys have high melting points and high infrared reflectance. Also, it has little reactivity with the underlying film.
  • the reflective film 4 is preferably a thin film obtained by, for example, sputtering film, coating film, CVD, vapor deposition, or the like.
  • alloys containing at least one selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, and Cu An alloy containing any one of these elements in the largest mass is preferable, and more preferably Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge
  • the film thickness of the reflective film 4 is preferably 5 to 1000 nm, more preferably 10 to 300 nm.
  • Suitable combinations of the base film 3 and the reflective film 4 in the laminated film include a Ta film/Ir film, a Ta film/Pt film, and a Mo film/Ir film.
  • the film thickness of the laminated film is preferably 10 to 1500 nm, more preferably 20 to 400 nm.
  • the thickness of the reflector 5 may be equal to the height of the cavity 12, that is, the reflective film 4 may be in contact with the surface of the second exterior plate 1b. Interference fringes generated by partial contact between the reflective film 4 and the second exterior plate are reduced.
  • the base film 3 is preferably deposited on the surface (bottom surface of the recess) of the cavity 12 of the first exterior plate 1 a , and the reflective film 4 is preferably deposited on the surface of the base film 3 .
  • the reflective film 4 is in contact with the surface of the second exterior plate 1b, it is preferably not formed on the surface of the second exterior plate 1b, that is, not deposited.
  • the first exterior plate 1a is a flat plate
  • the cavity 12 is provided on the side of the second exterior plate 1b
  • the cavity 12 is provided on the surface of the first exterior plate 1a.
  • It has a thin film formed as a reflector 5, and the thin film is a laminated film having a base film 3 and a reflective film 4 as a surface layer including a reflective surface in order from the surface side of the first exterior plate 1a
  • the underlayer 3 consists of Ta, Mo, Ti, Zr, Nb, Cr, W, Co or Ni, or is selected from the group consisting of Ta, Mo, Ti, Zr, Nb, Cr, W, Co and Ni.
  • the reflective film 4 is made of an alloy containing at least one of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu or at least one selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu It is preferably made of an alloy containing
  • the form shown in FIG. 4 is different from the form shown in FIG. 2 or 3 in that the first armor plate 1a is a flat plate and has a cavity 12 on the side of the second armor plate 1b, but the rest is the same. . Since the thin film as a reflector is formed on the flat first exterior plate 1a, the heat reflector can be manufactured with excellent productivity.
  • the thickness of the reflector 5 may be equal to the height of the cavity 12, that is, the reflecting film 4 may be in contact with the surface of the second exterior plate 1b (bottom surface of the recess). . Interference fringes generated by partial contact between the reflective film 4 and the second exterior plate are reduced.
  • the base film 3 is preferably deposited on the surface of the first exterior plate 1 a
  • the reflective film 4 is preferably deposited on the surface of the base film 3 .
  • the form shown in FIG. 7 is different from the form shown in FIG. 5 or 6 in that the first exterior plate 1a is a flat plate and has the cavity 12 on the side of the second exterior plate 1b, but the others are the same. . Since the thin film as a reflector is formed on the flat first exterior plate 1a, the heat reflector can be manufactured with excellent productivity.
  • each of the heat reflectors 106 to 111 has at least one post standing between the opposing surfaces of the laminate structure in the cavity 12. It is preferable to have a portion 6.
  • the struts 6 can increase the joint strength of the structure of the laminated plate.
  • the support pillar 6 extends from the bottom surface of the recess of the first exterior plate 1a, and the top surface of the support 6 is joined to the surface of the flat plate-like second exterior plate 1b. There is a form.
  • the embankment portion 11 is formed by forming the concave portion only in the first exterior plate 1a by etching.
  • the post portion 6 can be formed as a non-etching portion.
  • the support 6 extends from the bottom surface of the recess of the first exterior plate 1a, extends from the bottom of the recess of the second exterior plate 1b, and extends from the top of the support 6. There is a form in which the surfaces are joined together.
  • the first exterior plate 1a and the second exterior plate 1b are etched.
  • the bank portion 11 is formed by forming the concave portion, and at this time, it can be formed by making the post portion 6 a non-etching portion in the same manner as making the bank portion 11 a non-etching portion.
  • the support part 6 extends from the bottom surface of the recess of the second exterior plate 1b, and the top surface of the support part 6 is joined to the surface of the flat first exterior plate 1a.
  • a joint portion 7 indicates a joint portion between the support portion 6 and the first exterior plate 1a or the second exterior plate 1b, or a joint portion between the support portions 6. As shown in FIG.
  • the reflector 5 is the same as the heat reflecting plates 100 to 105 shown in FIGS. At this time, the reflector 5 formed on the outside of the column 6 is not provided with a through hole or unevenness, and the entire surface surrounded by the inner circumference and the peripheral edge of the reflector outside the column 6 is A reflective surface is preferred.
  • the struts 6 may be columnar or tubular.
  • the shape of the cross section of the main axis of the strut 6 is preferably circular, elliptical, or polygonal with more than triangular shape. Polygons that are triangular or larger are preferably squares or regular hexagons.
  • the heat reflecting plate has a plurality of support sections 6, each support section 6 is cylindrical, and each support section 6 shares a part of the cylindrical wall with each other in a three-dimensional space. It is preferred to have a filling structure.
  • Three-dimensional space-filling structures include forms that are honeycomb structures, rectangular lattice structures, square lattice structures or diamond lattice structures.
  • FIG. 9 shows a heat reflecting plate 100 having a honeycomb-structured support.
  • the honeycomb structure is a structure in which hexagonal cylinders are arranged without gaps, preferably regular hexagonal cylinders are arranged without gaps.
  • the rectangular lattice structure is a structure in which square cylinders with rectangular cross sections are arranged without gaps.
  • the square lattice structure is a structure in which rectangular cylinders with a square cross section are arranged without gaps.
  • the rhombus lattice structure is a structure in which square cylinders with a rhombus cross section are arranged without gaps.
  • the tubular shape of the column portion 6 is formed without providing a through hole or unevenness in the formed reflector 5 . It is preferable that the entire surface surrounded by the periphery of the reflector inside is a reflective surface.
  • the opposing surfaces of the first exterior plate 1a and the second exterior plate 1b are flat surfaces, and the reflector 5 is formed on the surface of the second exterior plate 1b. It is a thin film formed in a region inside the annular joint 2 between the peripheral edges of the surface of the first exterior plate 1a on the side, and the thin film is a base film and a base film in order from the surface side of the first exterior plate 1a. and a reflective film as a surface layer including a reflective surface.
  • the reflective film is made of an alloy containing at least one selected from the group consisting of Ti, Zr, Nb, Cr, W, Co and Ni, and the reflective film is made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge , Au, Ag, or Cu, and the base film and the reflective film preferably have different compositions.
  • FIG. 20 illustration of a mode in which the reflector 5 is a laminated film is omitted.
  • the base film is preferably deposited on the surface of the first exterior plate, and the reflective film is preferably deposited on the surface of the base film.
  • the reflective film is in contact with the surface of the second armor plate, it is preferably not formed on the surface of the second armor plate, that is, not deposited.
  • the film thickness of the laminated film is preferably 10 to 500 nm.
  • the heat reflector according to this embodiment has a cavity at least on the side of the first exterior plate, and has a thin film formed as a reflector on the surface of the first exterior plate in the cavity, and the thin film comprises Ir, Pt, A film made of Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re, Hf, Mo, An alloy film containing 50% by mass or more of Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, or Cu is preferable.
  • the heat reflecting plate according to the present embodiment has a laminated film of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, and Co.
  • the cavity 12 is provided on both the first exterior plate 1a side and the second exterior plate 1b side of the facing surfaces of the first exterior plate 1a and the second exterior plate 1b.
  • the direction of incidence of infrared rays on the heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the first armor plate is a flat plate, has a cavity on the second armor plate side, and has a thin film formed as a reflector on the surface of the first armor plate, and the thin film is , Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re , Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu in an amount of 50% by mass or more.
  • the direction of incidence of infrared rays on the heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the opposing surfaces of the first exterior plate and the second exterior plate are flat surfaces, and the reflector is the peripheral edge of the surface of the first exterior plate on the side of the second exterior plate.
  • the thin film includes Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, A film made of Au, Ag or Cu, or 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu It is preferably an alloy film containing A film made of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re, When an alloy film containing 50% by mass or more of Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, or Cu is used, even if the thin film formed as the reflector is a single layer film, good.
  • the reflector 5 is Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or A film made of Cu or an alloy film containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, or Cu It has a permuted structure.
  • the direction of incidence of infrared rays on the heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the heat reflecting plate according to the present embodiment has cavities on the side of the first exterior plate and the side of the second exterior plate, and has a thin film formed as a reflector on the surface in the cavity of the first exterior plate. , Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re , Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu in an amount of 50% by mass or more.
  • the direction of incidence of infrared rays on the heat reflector according to the present embodiment may be either a direction from top to bottom or a direction from bottom to top.
  • the alloy film containing 50% by mass or more of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, or Cu contains Ir,
  • the content of Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu is preferably 50% by mass or more, but 60% by mass. % or more, more preferably 70% by mass or more.
  • the alloy film containing 50% by mass or more of Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu should be formed with the same film thickness as the reflector 5 which is a laminated film. is preferable, and the area ratio of the thin film formed on the bottom surface of the concave portion is preferably formed in the same range as that of the reflector 5 which is a laminated film.
  • the joints 2 between the peripheral edge portions are preferably surface-activated joints.
  • the joint 7 including the strut 6 is preferably a surface-activated joint. Since bonding can be performed at relatively low temperatures, it is possible to bond without thermal or physical damage to the reflective film. As a result, the heat reflector has a longer service life, corrosion resistance is improved, and contamination inside the furnace is suppressed.
  • a surface-activated joint refers to a portion in which at least one of the joints is brought into a surface-activated state, and then the joints are pressed together to integrate the surface texture at the atomic level. . It is more preferable to apply pressure to join the joining sites together after both of the joining sites are in a surface-activated state.
  • Surface activated junctions include cold activated junctions and plasma activated junctions.
  • the room-temperature-activated junction includes, for example, a junction bonded by surface activation using a high-speed atomic beam, a junction bonded by forming a nano-adhesion layer using an active metal such as Si and activating the surface, and ion bonding.
  • Some joints are surface activated using beams.
  • Plasma activated joints include, for example, joints that are surface-activated and bonded using oxygen plasma, and joints that are surface-activated and bonded using nitrogen plasma.
  • joint 2 between the peripheral edges By making the joint 2 between the peripheral edges a surface-activated joint, leakage at the joint can be reduced. For example, by keeping the inside of the cavity vacuum, damage to the plate-like exterior due to an increase in internal pressure at high temperatures can be prevented. can be done. See, for example, US Pat.
  • the pressure inside the cavity 12 is preferably reduced below atmospheric pressure. More preferably, the pressure inside the cavity 12 is 10 ⁇ 2 Pa or less. An increase in the internal pressure of the cavity 12 during heat treatment can be suppressed, and contamination in the furnace can be further suppressed. Also, deterioration of the reflective film at high temperatures can be suppressed.
  • the reflector 8 is a plate, and Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, or Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag or Cu, It is preferably made of an alloy containing at least one selected from the group consisting of.
  • alloys containing at least one selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, and Cu An alloy containing any one of these elements in the largest mass is preferable, and more preferably Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge An alloy containing 50% by mass or more of , Au, Ag or Cu, more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more. system alloy or Pt--Ru system alloy. Since the plate as a reflector is accommodated in the cavity 12, corrosion of the plate is unlikely to occur.
  • the plate reflector 8 preferably has an area of 50 to 100%, more preferably 80 to 100%, of the total area of the bottom surface of the recess. Even in the form in which the reflector is a plate, the heat reflector 112 preferably has a total heat capacity of 0.0004 to 0.0080 (J/K) in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 . is 0.0023 to 0.0070 (J/K), more preferably 0.0030 to 0.0060 (J/K).
  • the reflector is a foil
  • the reflector is Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag. or Cu, or at least one selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, or Cu
  • alloys containing at least one selected from the group consisting of Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge, Au, Ag, and Cu An alloy containing any one of these elements in the largest mass is preferable, and more preferably Ir, Pt, Rh, Ru, Re, Hf, Mo, Al, Mg, Co, Ni, Fe, Sn, Ge An alloy containing 50% by mass or more of , Au, Ag or Cu, more preferably an alloy containing 60% by mass or more, and most preferably an alloy containing 70% by mass or more. system alloy or Pt--Ru system alloy.
  • the reflector which is a foil, preferably has an area of 50 to 100%, more preferably 80 to 100%, of the total area of the bottom surface of the recess. Even in a mode in which the reflector is a foil, the heat reflector 112 preferably has a total heat capacity of 0.0004 to 0.0080 (J/K) in the thickness direction of the plate-shaped exterior and the reflector in 1 mm 2 . is 0.0023 to 0.0070 (J/K), more preferably 0.0030 to 0.0060 (J/K).
  • the thickness of the reflector is preferably 0.01 ⁇ m to 5 mm, more preferably 0.02 ⁇ m to 2 mm.
  • the heat capacity of the heat reflecting plate can be reduced while maintaining the high reflection efficiency of the reflector.
  • the thickness of the reflector is less than 0.01 ⁇ m, it becomes difficult to maintain the reflection efficiency, and when it exceeds 5 mm, the heat quantity of the reflector may become too large.
  • the film thickness of the laminated film is preferably 10 nm or more and 1500 nm or less, more preferably 20 nm or more and 400 nm or less.
  • the plate thickness is preferably 0.5 mm or more and 5.0 mm or less, more preferably 0.5 mm or more and 2.0 mm or less.
  • the thickness of the foil is preferably 3 ⁇ m or more and 2.0 mm or less, more preferably 8 ⁇ m or more and 1.0 mm or less.
  • the value obtained by subtracting the thickness of the reflector from the height of the cavity is 200 ⁇ m or less. is preferred, and 100 ⁇ m or less is more preferred. If the gap in the height direction in the cavity exceeds 200 ⁇ m, the deformation of the plate-shaped exterior due to atmospheric pressure increases, resulting in increased stress applied near the joint, which may cause cracks in the joint.
  • the incident direction of infrared rays is from top to bottom.
  • the incident direction of the infrared rays may be from top to bottom or from bottom to top.
  • the heat insulator is necessary for keeping the temperature of the substrate to be heated, but the heat insulator for the heat reflecting plate according to the present embodiment is not necessarily required. Without the heat insulator, the heat reflecting plate according to the present embodiment can achieve desired profiles without delaying the heating/cooling response in the heat treatment process having a temperature rising profile, a temperature holding profile, and a temperature dropping profile up to the heat treatment temperature. Also, the time required for one heat treatment cycle is not prolonged, and as a result, the production efficiency is not lowered.
  • Example 1 (Embodiment in which the reflector is a laminated film)
  • a heat reflector shown in FIG. 2 is produced. First, two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively. Next, a portion of 10 mm width from the outer periphery of the first armor plate was left as a joint portion with the second armor plate, and the remaining portion was etched to form a concave portion for a cavity with a depth of 1 ⁇ m.
  • a 50 nm Ta base film was formed on the bottom surface of the concave portion of the first exterior plate by sputtering, and a 150 nm Ir reflective film was formed on the base film by sputtering to form a reflector.
  • the reflectance of the reflector was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corp., model: UV-3100PC).
  • FIG. 16 shows the measured reflectance results. The measurement was performed by directing light for measurement onto the surface of the reflector.
  • the relationship between the wavelength of black body radiation emitted by the substance at 1000° C. and the amount of radiation was calculated using (Equation 1). Calculation results are shown in FIG.
  • a high-speed atomic beam is applied to the joint portion of the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • a heat reflector was produced by irradiating to activate the surface and pressing the second armor plate against the first armor plate.
  • the total thickness of the heat reflecting plate in Example 1 was 2.4000 mm, and the reflection area ratio was 93.33%.
  • the total heat capacity in the thickness direction of the plate-thickness exterior and the reflector at 1 mm 2 was calculated to be 0.0055 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 1 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 40. A 22% reduction was achieved.
  • Example 2 (Embodiment in which the reflector is a laminated film)
  • two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively.
  • a 5 mm width portion from the outer periphery of the first exterior plate was masked as a joining portion with the second exterior plate.
  • a 50 nm thick Ta film was formed as a base film on the masked surface of the first exterior plate by a sputtering method, and a 150 nm thick Ir film was formed as a reflective film on the base film by a sputtering method to form a reflector. Then the masking was removed.
  • the reflector was the same as the reflector of Example 1 and had the same reflection properties as shown in FIG.
  • a high-speed atomic beam is applied to the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • a heat reflecting plate was produced by irradiating the joint portion for surface activation and pressing the second armor plate against the first armor plate.
  • the total thickness of the heat reflecting plate in Example 2 was 2.4002 mm, and the reflection area ratio was 96.67%.
  • the total heat capacity in the thickness direction of the plate-thickness exterior and the reflector at 1 mm 2 was calculated to be 0.0055 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 2 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 40. A 22% reduction was achieved.
  • Example 3 (Embodiment in which the reflector is a laminated film)
  • two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively.
  • a 5 mm width portion from the outer periphery of the first exterior plate was masked as a joining portion with the second exterior plate.
  • a 50-nm Ta film was formed as a base film on the masked surface of the first exterior plate by a sputtering method, and a 150-nm film of Ir was formed as a reflective film on the base film by a sputtering method to form a reflector. Then the masking was removed.
  • the reflector was the same as the reflector of Example 1 and had the same reflection properties as shown in FIG.
  • oxygen plasma is brought into contact with the joint portion of the first armor plate to activate the surface, thereby activating the surface of the first armor plate.
  • a heat reflector was produced by pressing the second armor plate against the plate.
  • the total thickness of the heat reflecting plate in Example 3 was 2.4002 mm, and the reflection area ratio was 96.67%.
  • the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 was calculated to be 0.0055 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 3 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 40. A 22% reduction was achieved.
  • Example 4 (A form in which the reflector is a laminated film and has a honeycomb-shaped strut part)
  • a heat reflector shown in FIG. 12 is produced.
  • two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively.
  • a 10 mm width portion was masked from the outer periphery of the first exterior plate, and thereafter, a regular hexagonal honeycomb having a width of 10 mm (one side length was 5.77 mm) and a wall pillar thickness of 0.3 mm was masked.
  • etching was performed to provide recesses for cavities with a depth of 1 ⁇ m.
  • a 50 nm Ta base film was formed by sputtering on the bottom surface of the concave portion of the masked first exterior plate, and a 150 nm Ir reflective film was formed on the base film by sputtering to form a reflector. .
  • the masking was removed.
  • the reflector of this embodiment has a honeycomb structure with respect to the reflector of the first embodiment.
  • the reflectance shown in FIG. 16 indicates the value of the form in which the entire surface is a reflective film.
  • the reflectance characteristic of this embodiment is considered to have a reflectance obtained by multiplying the reflectance shown in FIG. 16 by 0.9434.
  • a fast atom beam is applied to the joint portion 2 of the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • the pillars were irradiated to activate the surface, and the second armor plate was pressed against the first armor plate to bond them together, thereby producing a heat reflector.
  • the total thickness of the heat reflecting plate in Example 4 was 2.4000 mm, and the reflection area ratio was 88.05%.
  • the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 was calculated to be 0.0055 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 4 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 40. A 22% reduction was achieved.
  • Example 5 (Embodiment in which the reflector is a Pt foil) A heat reflecting plate shown in FIG. 15 is produced. First, two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively. Next, a 7 mm width from the outer periphery of the first armor plate was left as a joining portion with the second armor plate, and the rest was cut to form a recess for a cavity with a depth of 0.2 mm. Next, a Pt foil having an outer circumference of 284 mm and a thickness of 100 ⁇ m was placed on the bottom surface of the concave portion of the first armor plate to form a reflector.
  • the reflectance of the reflector was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corp., model: UV-3100PC). The measured reflectance is shown in FIG. The measurement was performed by directing light for measurement onto the surface of the reflector. As a result of FIG. 18, it was confirmed that the reflector in this example had a reflectance of 80% or more at a wavelength of 2000 nm or more at 1000°C.
  • a high-speed atomic beam is applied to the joint portion of the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • the surface was activated by irradiation, and the second armor plate was pressed against the first armor plate to bond them together, thereby producing a heat reflector.
  • the total thickness of the heat reflecting plate in Example 5 was 2.4000 mm, and the reflection area ratio was 95.33%.
  • the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 was calculated to be 0.0056 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 5 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 39.0. A 13% reduction was achieved.
  • Example 6 (Embodiment in which the reflector is a Mo film)
  • two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.2 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively.
  • a 5 mm width portion from the outer periphery of the first exterior plate was masked as a joining portion with the second exterior plate.
  • a 200 nm film of Mo was formed as a reflector on the masked surface of the first exterior plate by a sputtering method. Then the masking was removed.
  • FIG. 19 shows the measured reflectance results.
  • the measurement was performed by directing light for measurement onto the surface of the reflector.
  • the reflector of this example had a reflectance of 80% or more at a wavelength of 2000 nm or more.
  • a high-speed atomic beam is applied to the joint portion of the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • a heat reflector was produced by irradiating to activate the surface and pressing the second armor plate against the first armor plate. At this time, the total thickness of the heat reflecting plate in Example 6 was 2.4002 mm, and the reflection area ratio was 96.67%. After manufacturing the heat reflector, the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 was calculated to be 0.0055 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 6 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 40. A 22% reduction was achieved.
  • Example 7 (Embodiment in which the reflector is a Mo film and the thickness of the quartz plate is 1.7 mm)
  • two plate-like exterior plates having an outer circumference of 300 mm and a thickness of 1.7 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively.
  • a 5 mm width portion from the outer periphery of the first exterior plate was masked as a joining portion with the second exterior plate.
  • a 200 nm film of Mo was formed as a reflector on the masked surface of the first exterior plate by a sputtering method. Then the masking was removed.
  • the reflector was the same as the reflector of Example 6 and had the same reflection properties as shown in FIG.
  • a high-speed atomic beam is applied to the joint portion of the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • a heat reflector was produced by irradiating to activate the surface and pressing the second armor plate against the first armor plate.
  • the total thickness of the heat reflecting plate in Example 7 was 3.4002 mm, and the reflection area ratio was 96.67%.
  • the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 was calculated to be 0.0079 (J/K).
  • the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity. A 13% reduction was achieved.
  • Example 8 (Embodiment in which the reflector is a Mo film and the thickness of the quartz plate is 0.5 mm)
  • two plate-like exterior plates having an outer circumference of 100 mm and a thickness of 0.5 mm were prepared, and used as a first exterior plate and a second exterior plate, respectively.
  • a 5 mm width portion from the outer periphery of the first exterior plate was masked as a joining portion with the second exterior plate.
  • a 200 nm film of Mo was formed as a reflector on the masked surface of the first exterior plate by a sputtering method. Then the masking was removed.
  • the reflector was the same as the reflector of Example 6 and had the same reflection properties as shown in FIG.
  • a high-speed atomic beam is applied to the joint portion of the first armor plate in a vacuum with a degree of vacuum of 10 ⁇ 2 Pa or less.
  • a heat reflector was produced by irradiating to activate the surface and pressing the second armor plate against the first armor plate.
  • the total thickness of the heat reflecting plate in Example 8 was 1.0002 mm, and the reflection area ratio was 90.00%.
  • the total heat capacity in the thickness direction of the plate-like exterior and the reflector in 1 mm 2 was calculated to be 0.0023 (J/K). Since the amount of heat required to raise the temperature of the heat reflector to 1000° C. is proportional to the heat capacity, the heat reflector of Example 8 has higher heat reflectivity than the opaque quartz of Comparative Example 1, and the power consumption is 75.5. 00% reduction.
  • Heat reflector 1 Plate-like exterior 1a First exterior plate 1b Second exterior plate 2 Joint between peripheral edges 3 Underlying film 4 Reflective film 5 Reflector 6 Support 7 Joint including support 8 Reflector 11 Bank 12 Cavity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本開示は、熱容量が小さく省エネルギー化が可能で、高反射率を有し、炉内への汚染が抑制され、熱応答性の良い熱反射板を提供することを目的とする。本開示に係る熱反射板は、板状外装1と、板状外装1の内部に配置されて板状外装1によって外周囲が完全に覆われてなり、かつ、板状外装1の一方の表面に入射した赤外線を反射する反射体5と、を有する熱反射板100であって、反射体5は、薄膜、板又は箔であり、熱反射板100は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004~0.0080(J/K)である。

Description

熱反射板
 本開示は、例えば、半導体・電子部品の分野で、ウエハ、基板等を低温から高温で熱処理する種々の熱処理装置の熱反射板として利用でき、加熱・冷却の1サイクルに要する時間が短く、かつ、高反射率を有することから熱処理装置の省エネルギー化が可能であり、また、汚染を抑制することが可能な熱反射板に関する。
 半導体ウエハの製造または処理工程においては、半導体ウエハに各種の性質を付与するため熱処理作業が行われている。例えば、半導体ウエハを高純度石英製の炉芯管に収納し、炉芯管内の雰囲気を制御して、熱処理作業が行われる。この熱処理工程に使用される熱処理装置では、炉内の高温維持と炉床部への熱放散を防止するため、炉内と炉床との間に炉開口部を塞ぐように保温体(蓋体)が設けられている。
 このような保温体としては、熱処理室の開口部を閉塞し、互いに離間して積層され、かつ熱処理室に露出する石英板を有する保温体があり、石英板は表面が平滑で気泡がなく、石英板の内部に金薄膜が形成されていて、金薄膜は、金蒸着により形成されたという特徴がある(例えば、特許文献1を参照。)。
 また、石英管を中心に通すための孔及び石英ロッドを通すための孔を有する石英板の上に、白金(Pt)及び酸化物(SiOやPbOなど)の混合物に有機物を加えてペースト状にしたものをスクリーン印刷により塗布し、これを焼き固めることにより抵抗発熱体よりなる例えば厚さ5~10ミクロンの反射面を形成する技術の開示がある(例えば、特許文献2を参照。)。
 縦型熱処理炉の断熱構造体が、複数本の支柱と、これら支柱に上下方向に所定間隔で設けられた複数枚の反射性を有する遮熱板とから構成されている技術の開示がある(例えば、特許文献3を参照。)。特許文献3によれば、遮熱板は、反射膜と、この反射膜の表面を被覆する透明石英層とから形成されている。この遮熱板を形成する一つの方法としては、透明石英層を形成する円形の一対の透明石英板を用い、その一方の透明石英板の片方の面に反射膜を設け、この反射膜をもう一方の透明石英板との間で挟み込み、両透明石英板の周縁部を溶接して密封および一体化する方法がある。
特開2001‐102319号公報 特開平9‐148315号公報 特開平11‐97360号公報 特開2019‐217530号公報 特許4172806号公報 特許6032667号公報
 特許文献1では、金属汚染防止の保温体があることで、炉体の加熱・冷却の応答を遅らせてしまい、結果、熱処理サイクルに時間を要してしまう。また、石英板は金属汚染防止のために外周を溶接する必要があり、高い反射率を保持させるためには石英板面積に占める金属膜面積を多くとるために、石英板同士の接合幅を極力小さくすることが必要である。これが行われていない特許文献1では、熱処理温度までの昇温プロファイル、温度保持プロファイル、降温プロファイルを有する熱処理工程において、加熱・冷却の応答を遅らせ、所望の各プロファイルに対してズレを生じさせ、また、熱処理1サイクルに要する時間を長引かせ、結果として生産効率の低下を生じさせるという問題があった。
 特許文献2では、反射板兼ヒーターとしての利用のため、中央に石英管でヒーター導通箇所を設けているが、当構造によって一部輻射熱を遮蔽しきれない箇所が発生する。より高い省エネルギー化のためには、反射面積率を多く取り、尚且つ反射板及び外装となる石英をより薄くし、熱容量を下げる必要がある。
 特許文献3では、石英板で挟み込み、溶接を行う手法がとられているが、熱の影響を受けるため、薄膜で実施する際には膜が剥がれてしまう問題があり、溶接幅を小さくすることも困難である。さらに内部を真空に保ちながら溶接することは難しく、高温使用時の内圧上昇によって薄膜が破損するリスクは避けられない。また透明石英を流し込み作製する手法においても、金属薄膜に実施する場合は熱的、物理的ダメージを避けることはできず、透明石英を薄く作ることも困難である。また、特許文献3においても、遮熱板は、熱処理工程において、加熱・冷却の応答を遅らせ、所望の各プロファイルに対してズレを生じさせ、また、熱処理1サイクルに要する時間を長引かせ、結果として生産効率の低下を生じさせるという問題があった。
 本開示は、従来手法よりも反射面積率をより多く確保することができ、熱容量が小さく省エネルギー化が可能で、高反射率を有し、炉内の汚染が抑制され、熱応答性の良い熱反射板を提供することを目的とする。
 本発明者らは、鋭意検討した結果、熱反射板の1mmにおける板状外装及び反射体の厚さ方向の熱容量を所定範囲にすることによって上記課題が解決されることを見出し、本発明を完成させた。すなわち、本発明に係る熱反射板は、板状外装と、該板状外装の内部に配置されて該板状外装によって外周囲が完全に覆われてなり、かつ、該板状外装の一方の表面に入射した赤外線を反射する反射体と、を有する熱反射板であって、前記反射体は、薄膜、板又は箔であり、前記熱反射板は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004~0.0080(J/K)であることを特徴とする。
 本発明に係る熱反射板では、前記反射体の少なくとも反射面を含む表面層は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。
 本発明に係る熱反射板では、前記板状外装の材質はシリカ又はシリコンであることが好ましい。
 本発明に係る熱反射板では、前記板状外装は、第1外装板と第2外装板とが対向して配置されて周縁部同士が周縁に沿って環状に連続して接合された接合部を有する合わせ板の構造を有することが好ましい。板状外装及び反射体を薄くできるので、熱容量を小さくすることができる。
 本発明に係る熱反射板では、前記合わせ板の構造は、前記第1外装板及び前記第2外装板の対向し合う面の間に設けられ、かつ、前記第1外装板側及び前記第2外装板側の少なくとも一方に前記周縁部同士の接合部によって密閉されているキャビティを有し、該キャビティ内に前記反射体が配置されていることが好ましい。反射体が密閉空間であるキャビティ内にあるため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらに板状外装と反射体の熱膨張差による破損を回避できる。
 本発明に係る熱反射板では、前記キャビティを少なくとも前記第1外装板側に有し、前記第1外装板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、該薄膜は、前記第1外装板の前記キャビティ内の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、前記下地膜と前記反射膜とが異なる組成を有していることが好ましい。第1外装板のキャビティ内の表面上に反射体を形成しているため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらに板状外装と反射体の熱膨張差による破損を回避できる。
 本発明に係る熱反射板では、前記第1外装板が平板であり、前記キャビティを前記第2外装板側に有し、前記第1外装板の表面上に前記反射体として形成した薄膜を有し、該薄膜は、前記第1外装板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、前記下地膜と前記反射膜とが異なる組成を有していることが好ましい。平板である第1外装板に反射体としての薄膜を形成するため、生産性に優れた熱反射板とすることができる。
 本発明に係る熱反射板では、前記反射体が、板又は箔であり、かつ、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。キャビティ内に反射体としての板又は箔が収容された状態となっており、板又は箔の腐食が生じにくい。さらに、周縁部同士の接合部に、板又は箔に起因する剥がす方向の応力がかかりにくい。
 本発明に係る熱反射板では、前記キャビティ内の圧力は、大気圧未満の減圧となっていることが好ましい。熱処理時にキャビティの内圧が高まることを抑制することができ、炉内の汚染をより抑制することができる。
 本発明に係る熱反射板では、(1)前記第1外装板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有し、前記第2外装板は、平板状であるか、又は、(2)前記第1外装板は、平板状であり、前記第2外装板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有することが好ましい。第1外装板に凹部を設けることで、板状外装内にキャビティを簡易な構造で設けることができる。あるいは、第2外装板に凹部を設けることで、板状外装内にキャビティを簡易な構造で設けることができる。
 本発明に係る熱反射板では、前記熱反射板は、前記キャビティ内で前記合わせ板の構造の対向する面同士の間を立設する少なくとも1本の支柱部を有することが好ましい。支柱部によって合わせ板構造の接合強度を高めることができる。
 本発明に係る熱反射板では、前記支柱部が、柱状又は筒状である形態を含む。柱状又は筒状とすることで、接合強度を高めつつ、反射体の面積を広くとることが出来る。
 本発明に係る熱反射板では、前記熱反射板は、前記支柱部を複数有し、該支柱部は筒状であり、かつ、各支柱部は互いに筒壁の一部を共有した3次元空間充填構造を有することが好ましい。3次元空間充填構造とすることで接合強度を高めつつ、反射体の面積を広くとることが出来、さらに反射板そのものの強度を高めることができる。
 本発明に係る熱反射板では、前記3次元空間充填構造は、ハニカム構造、矩形格子構造、方形格子構造又はひし形格子構造である形態を包含する。
 本発明に係る熱反射板では、前記第1外装板及び前記第2外装板の対向し合う面は互いに平坦面であり、前記反射体は、前記第2外装板側の前記第1外装板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、該薄膜は、前記第1外装板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、前記下地膜と前記反射膜とが異なる組成を有していることが好ましい。反射体と第2外装板の部分接触により生じる干渉縞をより抑制することができる。
 本発明に係る熱反射板では、前記キャビティを少なくとも前記第1外装板側に有し、前記第1外装板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。これらの金属膜又はこれらの金属を50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。
 本発明に係る熱反射板では、前記第1外装板が平板であり、前記キャビティを前記第2外装板側に有し、前記第1外装板の表面上に前記反射体として形成した薄膜を有し、該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。これらの金属膜又はこれらの金属を50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。
 本発明に係る熱反射板では、前記第1外装板及び前記第2外装板の対向し合う面は互いに平坦面であり、前記反射体は、前記第2外装板側の前記第1外装板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。これらの金属膜又はこれらの金属を50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。
 本発明に係る熱反射板では、前記キャビティを前記第1外装板側及び前記第2外装板側に有し、前記第1外装板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。これらの金属膜又はこれらの金属を50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。
 本発明に係る熱反射板では、前記反射体の厚さは、0.01μm以上5mm以下であることが好ましい。反射体による輻射熱の反射効率を保持しつつ、熱反射板の熱容量を小さくすることができる。
 本発明に係る熱反射板では、前記周縁部同士の接合部は、表面活性化接合部であることが好ましい。一般的な溶接手法よりも接合幅を短くすることで、より輻射熱を炉内へ反射させることができる。また、反射体である薄膜が接合プロセスによる熱的、物理的ダメージを受けにくい。また、接合部における接合強度が高められており、熱反射板はより長寿命となり、また耐食性が高まり、炉内の汚染が抑制される。
 本開示によれば、従来手法よりも反射面積率をより多く確保することができ、熱容量が小さく省エネルギー化が可能で、高反射率を有し、炉内の汚染が抑制され、熱応答性の良い熱反射板を提供することができる。
本実施形態に係る熱反射板の一例を示す平面概略図である。 A-A断面の第1例を示す概略図である。 A-A断面の第2例を示す概略図である。 A-A断面の第3例を示す概略図である。 A-A断面の第4例を示す概略図である。 A-A断面の第5例を示す概略図である。 A-A断面の第6例を示す概略図である。 A-A断面の第7例を示す概略図である。 支柱部がハニカム構造を有する形態の例を示す図である。 A-A断面の第8例を示す概略図である。 A-A断面の第9例を示す概略図である。 A-A断面の第10例を示す概略図である。 A-A断面の第11例を示す概略図である。 A-A断面の第12例を示す概略図である。 A-A断面の第13例を示す概略図である。 実施例1の反射体の反射率を示すグラフである。 1000℃における物質が放射する黒体放射の波長と放射量との関係を示すグラフである。 実施例5の反射体の反射率を示すグラフである。 実施例6の反射体の反射率を示すグラフである。 A-A断面の第14例を示す概略図である。 比較例1の不透明石英の反射率を示すグラフである。
 以降、本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
(反射体が薄膜である形態)
 図1及び図2を参照して、本実施形態に係る熱反射板について説明する。本実施形態に係る熱反射板100は、板状外装1と、板状外装1の内部に配置されて板状外装1によって外周囲が完全に覆われてなり、かつ、板状外装1の一方の表面に入射した赤外線を反射する反射体5と、を有する。図1においては、紙面に向かう方向が赤外線の入射方向である。図2においては、上から下に向かう方向が赤外線の入射方向である。反射体5は薄膜であり、反射体5の少なくとも反射面を含む表面層は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。図2では、反射体5が積層膜である形態が示されており、下地膜3の上に反射面を含む表面層としての反射膜4が形成されている。このとき、反射体5は貫通孔や凹凸などを設けずに該反射体の周縁に囲まれる全面が反射面であることが好ましい。
 本実施形態に係る熱反射板100は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004~0.0080(J/K)であり、好ましくは0.0023~0.0070(J/K)であり、より好ましくは0.0030~0.0060(J/K)である。1mmにおける板状外装及び反射体の厚さ方向の熱容量は、反射体5と反射体5の外周囲を完全に覆う板状外装1とを有する熱反射板100の熱容量を、赤外線の入射面の面積で除した値に相当する。赤外線の入射面の面積とは、図1及び図2を例として説明すると、図1では熱反射板100における赤外線の入射面の全体が示されているが、入射面には、図2によれば、反射体5が見える領域と周縁部同士の接合部2が見える領域とがあるところ、これら両方を含む領域の面積、すなわち、反射体5を正面に見た板状外装1の板面の面積全体を指す。1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004(J/K)未満であると、板状外装の厚みの不足による破損、または、反射体の厚みの不足による赤外線の透過が発生することで反射性能が低下する可能性があり、0.0080(J/K)を超えると、熱容量の合計が大きすぎて熱処理工程において、加熱・冷却の応答を遅らせ、所望の各プロファイルに対してズレを生じさせ、また、熱処理1サイクルに要する時間を長引かせ、結果として生産効率の低下を生じさせる。
 なお、本実施形態における熱反射板は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が上記範囲を満たすことが必要である。この範囲を満たすことに加えて炉体の熱応答性をさらに良好にするために、面内方向における板状外装に対する反射体の面積の割合が大きいこと及び反射体に用いられる反射材料の反射率が高いことがより好ましい。例えば、使用する炉体及び基板の大きさに合わせて熱反射板を設計するが、熱反射板の大きさは、直径が50mm以上の円板形状もしくは一辺が50mm以上の多角形状における板状外装とすることが好ましい。加えて熱反射板の厚さを、例えば、1~3.4mm、好ましくは1~3mmとなるべく薄くすることが好ましい。加えて前記円板形状もしくは多角形状の面内方向の面積になるべく近い面積、例えば、反射面積率でいえば80%以上となるように反射体を設けることが好ましい。加えて反射体に用いられる金属材料又は合金材料は、高い反射率、例えば80%以上の反射率を持つ金属材料又は合金材料を選定することが好ましい。ここで、「面内方向」の面とは、熱反射板の反射面を含む板面のことをさす。
 熱反射板100では、板状外装1は、第1外装板1aと第2外装板1bとが対向して配置されて周縁部同士が周縁に沿って環状に連続して接合された接合部を有する合わせ板の構造を有することが好ましい。図2において、第1外装板1aと第2外装板1bとは、周縁部同士の接合部2によって、合わせ板の構造を形成している。周縁部同士の接合部2は、図1に示すように、板状外装1の周縁に沿って環状に連続している。図1では、周縁部同士の接合部2は、第2外装板1bを透視して第1外装板1aと第2外装板1bとの境界部としてみることができ、グレーの領域として図示した。合わせ板の構造とすることで、板状外装を薄くできるので、熱容量を小さくすることができる。
 反射体5を正面に見た板状外装1の形状は、例えば、円形、楕円形、長方形又は正方形であり、円形が好ましい。また、反射体5を正面に見たシリカ板1の外側板面は、貫通孔や凹凸などを設けずに平坦面であることが好ましい。円形の直径は、例えば、5~50cmである。周縁部同士の接合部2の環状形状の幅は、例えば0.5~20mmである。板状外装1の肉厚は1~3.4mmであることが好ましく、1~3mmであることがより好ましい。第1外装板1aの肉厚は0.1~1.7mmであることが好ましく、0.5~1.5mmであることがより好ましい。第2外装板1bの肉厚は0.1~1.7mmであることが好ましく、0.5~1.5mmであることがより好ましい。反射体5を正面に見た板状外装1の板面に対する反射体5の反射面積率は、80%以上であることが好ましく、87%以上であることがより好ましく、90%以上であることがさらに好ましい。
 板状外装1の材質はシリカ又はシリコンであることが好ましい。材料強度、また赤外線を吸収せずに透過できる点でシリカが好ましく、熱容量が小さい点でシリコンが好ましい。シリカは、結晶性シリカ又は非晶質シリカである形態を包含する。板状外装1の不純物濃度は、100ppm以下、好ましくは90ppm以下である。なお、本実施形態は、板状外装1の材質がシリコンである形態において、シリコンの表面が酸化されてシリカになっている形態を包含する。
 熱反射板100では、合わせ板の構造は、第1外装板1a及び第2外装板1bの対向し合う面の間に設けられ、かつ、第1外装板1a側及び第2外装板1b側の少なくとも一方に周縁部同士の接合部2によって密閉されているキャビティ12を有し、キャビティ12内に反射体5が配置されていることが好ましい。キャビティ12は、第1外装板1a側に設けられた形態、第1外装板1a側及び第2外装板1b側の両側に設けられた形態及び第2外装板1b側に設けられた形態がある。図2ではキャビティ12が、第1外装板1a側に設けられた形態を示している。この形態では、第1外装板1aの一方の表面に凹部が設けられており、第2外装板1bは凹部がない平板であり、第1外装板1a及び第2外装板1bの合わせ板の構造とすることで、キャビティ12は、第1外装板1a側に設けられる。その結果、キャビティ12は、第1外装板1a及び第2外装板1bの対向し合う面の第1外装板1a側のみに設けられ、かつ、周縁部同士の接合部2によって密閉されている。反射体5が密閉空間であるキャビティ12内にあるため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらに板状外装と反射体の熱膨張差による破損を回避できる。
 図3では、キャビティ12が、第1外装板1a側及び第2外装板1b側の両側にわたって設けられた形態を示している。この形態では、第1外装板1aの一方の表面に凹部が設けられており、第2外装板1bの一方の表面に凹部が設けられており、凹部同士が合わさるように、第1外装板1a及び第2外装板1bの合わせ板の構造とする。その結果、キャビティ12は、第1外装板1a及び第2外装板1bの対向し合う面の第1外装板1a側及び第2外装板1b側の両方に設けられる。
 図4では、キャビティ12が、第2外装板1b側に設けられた形態を示している。この形態では、第1外装板1aは凹部がない平板であり、第2外装板1bの一方の表面に凹部が設けられており、第1外装板1a及び第2外装板1bの合わせ板の構造とすることで、キャビティ12は、第2外装板1b側に設けられる。その結果、キャビティ12は、第1外装板1a及び第2外装板1bの対向し合う面の第2外装板1b側のみに設けられる。
 キャビティ12の高さ(図2では、上下方向の長さ)は、0.1μm~5mmであることが好ましく、0.1μm~1mmであることがより好ましい。キャビティ12は、第1外装板1a側にのみ凹部を設ける形態、第1外装板1a側及び第2外装板1b側の両方に凹部を設ける形態及び第2外装板1b側にのみ凹部を設ける形態の3態様があるが、いずれの形態でも、凹部によって、第1外装板1aの周縁部及び/又は第2外装板1bの周縁部に土手部11が形成される。図2の形態では、第1外装板1aに形成された土手部11の天面は、向い合せに配置される第2外装板1bの平板部分と接合され、周縁部同士の接合部2が形成される。図3の形態では、第1外装板1aと第2外装板1bの土手部11の天面同士が接合され、周縁部同士の接合部2が形成される。また、図4の形態では、第2外装板1bに形成された土手部11の天面は、向い合せに配置される第1外装板1aの平板部分と接合され、周縁部同士の接合部2が形成される。凹部は、例えばエッチング法などによって形成することができる。
 本実施形態に係る熱反射板100では、図2に示すように、第1外装板1aは、周縁部に設けられた土手部11と土手部11で取り囲まれてキャビティ12を構成する凹部とを有し、第2外装板1bは、平板状であることが好ましい。第1外装板1aのみに凹部を設けることで、板状外装内にキャビティ12を簡易な構造で設けることができる。このような形態を有する熱反射板は、図2の他、図5、図8、図12又は図15に例示された熱反射板103,106,109,112がある。
 本実施形態に係る熱反射板102では、図4に示すように、第1外装板1aは、平板状であり、第2外装板1bは、周縁部に設けられた土手部11と土手部11で取り囲まれてキャビティ12を構成する凹部とを有することが好ましい。第2外装板1bのみに凹部を設けることで、板状外装内にキャビティ12を簡易な構造で設けることができる。このような形態を有する熱反射板は、図4の他、図7、図11又は図14に例示された熱反射板105,108,111がある。
 図2又は図3に示すように、本実施形態に係る熱反射板100,101では、キャビティ12を少なくとも第1外装板1a側に有し、第1外装板1aのキャビティ12内の表面上に反射体5として形成した薄膜を有し、薄膜は、第1外装板1aのキャビティ12内の表面側から順に、下地膜3と、反射面を含む表面層としての反射膜4と、を有する積層膜であり、下地膜3は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、反射膜4は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、下地膜3と反射膜4とが異なる組成を有していることが好ましい。第1外装板のキャビティ内の表面上に反射体を形成しているため、周縁部同士の接合部に、反射体に起因する剥がす方向の応力がかかりにくく、反射体の破損による炉内の汚染を抑制することができる。さらに板状外装と反射体の熱膨張差による破損を回避できる。反射体5が薄膜であり、薄膜が積層膜である場合は、反射体5の少なくとも反射面を含む表面層は、反射膜4に対応する。積層膜である反射体5は、第1外装板1aのキャビティ12内の表面、すなわち、凹部の底面に形成されている。積層膜である反射体5は、凹部の底面の全面積に対して50~100%の面積で形成されていることが好ましく、80~100%の面積で形成されていることがより好ましい。反射体5の膜厚は、10~1500nmであることが好ましく、20~400nmであることがより好ましい。
 下地膜3は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。このような金属又は合金は、融点が高く、かつ、板状外装との密着性に優れている。下地膜3は、例えば、スパッタ膜、塗布膜、CVD、蒸着等で得られる薄膜であることが好ましい。Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはTa、Mo、Ti、Zr、Nb、Cr、W、Co又はNiを50質量%以上含有する合金、さらに好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ta‐Mo系合金、Ta‐Cr系合金又はCr‐Co系合金である。下地膜3の膜厚は、5~500nmであることが好ましく、10~100nmであることがより好ましい。下地膜3は反射膜4の密着性を向上させる。
 反射膜4は下地膜3の表面に堆積していることが好ましい。反射膜4は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。このような金属又は合金は、融点が高く、かつ、赤外線の反射率が高い。また下地膜との反応性が少ない。反射膜4は、例えば、スパッタ膜、塗布膜、CVD、蒸着等で得られる薄膜であることが好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含有する合金、さらに好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ir‐Pt系合金、Ir‐Rh系合金又はPt‐Ru系合金である。反射膜4の膜厚は、5~1000nmであることが好ましく、10~300nmであることがより好ましい。
 積層膜としたときの下地膜3と反射膜4の好適な組み合わせとしては、下地膜3/反射膜4は、Ta膜/Ir膜、Ta膜/Pt膜、Mo膜/Ir膜などである。積層膜の膜厚は、10~1500nmであることが好ましく、20~400nmであることがより好ましい。
 図5又は図6に示すように、反射体5の厚さがキャビティ12の高さと等しい、すなわち、反射膜4が第2外装板1bの表面に接触している形態であってもよい。反射膜4と第2外装板が部分的に接触することで発生する干渉縞が低減される。下地膜3は、第1外装板1aのキャビティ12内の表面(凹部の底面)に堆積していることが好ましく、反射膜4は下地膜3の表面に堆積していることが好ましい。反射膜4は第2外装板1bの表面に接触しているが、第2外装板1bの表面に形成されていない、すなわち堆積したものではないことが好ましい。
 図4に示すように、本実施形態に係る熱反射板102では、第1外装板1aが平板であり、キャビティ12を第2外装板1b側に有し、第1外装板1aの表面上に反射体5として形成した薄膜を有し、薄膜は、第1外装板1aの表面側から順に、下地膜3と、反射面を含む表面層としての反射膜4と、を有する積層膜であり、下地膜3は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、反射膜4は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。図4に示した形態は、第1外装板1aが平板であり、キャビティ12を第2外装板1b側に有する点が、図2又は図3に示した形態と異なるが、他は同様である。平板である第1外装板1aに反射体としての薄膜を形成するため、生産性に優れた熱反射板とすることができる。
 図7に示すように、反射体5の厚さがキャビティ12の高さと等しい、すなわち、反射膜4が第2外装板1bの表面(凹部の底面)に接触している形態であってもよい。反射膜4と第2外装板が部分的に接触することで発生する干渉縞が低減される。下地膜3は、第1外装板1aの表面に堆積していることが好ましく、反射膜4は下地膜3の表面に堆積していることが好ましい。図7に示した形態は、第1外装板1aが平板であり、キャビティ12を第2外装板1b側に有する点が、図5又は図6に示した形態と異なるが、他は同様である。平板である第1外装板1aに反射体としての薄膜を形成するため、生産性に優れた熱反射板とすることができる。
 図8、図10~図14に示すように、本実施形態に係る熱反射板106~111は、キャビティ12内で合わせ板の構造の対向する面同士の間を立設する少なくとも1本の支柱部6を有することが好ましい。支柱部6によって合わせ板の構造の接合強度を高めることができる。支柱部6としては、例えば、図8又は図12に示すように、第1外装板1aの凹部の底面から延び、支柱部6の天面が平板状の第2外装板1bの表面と接合された形態がある。支柱部6が第1外装板1aの凹部の底面のみから延びる形態とするためには、例えば、第1外装板1aのみについてエッチングによって凹部を形成することで土手部11を形成するが、このとき、土手部11を非エッチング箇所とするのと同様に支柱部6を非エッチング箇所とすることによって形成することができる。また支柱部6としては、例えば、図10又は図13に示すように、第1外装板1aの凹部の底面から延び、かつ、第2外装板1bの凹部の底面から延び、支柱部6の天面同士が接合された形態がある。支柱部6が第1外装板1aの凹部の底面及び第2外装板1bの凹部の底面の両方から延びる形態とするためには、例えば、第1外装板1a及び第2外装板1bについてエッチングによって凹部を形成することで土手部11を形成するが、このとき、土手部11を非エッチング箇所とするのと同様に支柱部6を非エッチング箇所とすることによって形成することができる。さらに支柱部6としては、例えば、図11又は図14に示すように、第2外装板1bの凹部の底面から延び、支柱部6の天面が平板状の第1外装板1aの表面と接合された形態がある。支柱部6が第2外装板1bの凹部の底面のみから延びる形態とするためには、例えば、第2外装板1bのみについてエッチングによって凹部を形成することで土手部11を形成し、このとき支柱部6を非エッチング箇所とすることによって形成することができる。図中、支柱部6と第1外装板1a若しくは第2外装板1bとの接合部、又は支柱部6同士の接合部を接合部7で示した。
 図8、図10~図14に示した熱反射板106~111について、反射体5については、図2~図7に示した熱反射板100~105と同様である。このとき、支柱部6の外側に形成された反射体5には貫通孔や凹凸などを設けずに支柱部6の外側にある該反射体の内周及び該反射体の周縁に囲まれる全面が反射面であることが好ましい。
 次に支柱部6の形状について説明する。本実施形態に係る熱反射板106~111では、支柱部6が、柱状又は筒状である形態を含む。支柱部6の主軸の横断面の形状は、円形、楕円形又は三角形以上の多角形であることが好ましい。三角形以上の多角形では正方形又は正六角形であることが好ましい。さらに、熱反射板は、図9に示すように、支柱部6を複数有し、支柱部6は筒状であり、かつ、各支柱部6は互いに筒壁の一部を共有した3次元空間充填構造を有することが好ましい。3次元空間充填構造とすることで接合強度を高めつつ、反射体の面積を広くとることが出来、さらに反射板そのものの強度を高めることが可能である。3次元空間充填構造は、ハニカム構造、矩形格子構造、方形格子構造又はひし形格子構造である形態を包含する。図9では、ハニカム構造の支柱部を有する熱反射板100を図示している。ハニカム構造は、六角筒形を隙間なく並べた構造、好ましくは正六角筒形を隙間なく並べた構造である。矩形格子構造は断面長方形の角筒形を隙間なく並べた構造である。方形格子構造は断面正方形の角筒形を隙間なく並べた構造である。ひし形格子構造は断面ひし形の角筒形を隙間なく並べた構造である。ここで、3次元空間充填構造の支柱部6の筒状の内側に反射体5を形成するときは、形成後の反射体5には貫通孔や凹凸などを設けずに支柱部6の筒状の内側にある該反射体の周縁に囲まれる全面が反射面であることが好ましい。
 本実施形態に係る熱反射板では、図20に示すように、第1外装板1a及び第2外装板1bの対向し合う面は互いに平坦面であり、反射体5は、第2外装板1b側の第1外装板1aの表面のうち周縁部同士の環状の接合部2の内側の領域に形成された薄膜であり、薄膜は、第1外装板1aの表面側から順に、下地膜と、反射面を含む表面層としての反射膜と、を有する積層膜であり、下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、下地膜と反射膜とが異なる組成を有していることが好ましい。なお、図20において、反射体5が積層膜である形態の図示は省略した。下地膜は、第1外装板の表面に堆積していることが好ましく、反射膜は下地膜の表面に堆積していることが好ましい。反射膜は第2外装板の表面に接触しているが、第2外装板の表面に形成されていない、すなわち堆積したものではないことが好ましい。このような構造とすることで、生産性に優れた熱反射板とすることができる。また、反射体を第2外装板により密着させることができ、干渉縞をより抑制することができる。積層膜の膜厚は10~500nmであることが好ましい。積層膜の膜厚を小さくすることで、キャビティ12を設けていなくても、第1外装板及び第2外装板の応力変形によって周縁部同士の環状の接合部を設けることができ、積層膜が板状外装内によって外周囲が完全に覆われることが可能となる。反射体5の金属又は合金の選定理由は、図2~図7に示した熱反射板100~105と同様である。
(反射体として形成した薄膜が所定の金属膜又は所定の金属を含む合金膜である形態1)
 本実施形態に係る熱反射板では、キャビティを少なくとも第1外装板側に有し、第1外装板のキャビティ内の表面上に反射体として形成した薄膜を有し、薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係る熱反射板は、図2、図5、図8又は図12において、積層膜である反射体5をIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜に置換した構造を有する。また、図3、図6、図10又は図13の板状外装1のように、キャビティ12が、第1外装板1a側及び第2外装板1b側の両側にわたって設けられた形態であってもよい。この形態では、第1外装板1aの一方の表面に凹部が設けられており、第2外装板1bの一方の表面に凹部が設けられており、凹部同士が合わさるように、第1外装板1a及び第2外装板1bの合わせ板の構造とする。その結果、キャビティ12は、第1外装板1a及び第2外装板1bの対向し合う面の第1外装板1a側及び第2外装板1b側の両方に設けられる。なお、本実施形態に係る熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(反射体として形成した薄膜が所定の金属膜又は所定の金属を含む合金膜である形態2)
 本実施形態に係る熱反射板では、第1外装板が平板であり、キャビティを第2外装板側に有し、第1外装板の表面上に反射体として形成した薄膜を有し、薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係る熱反射板は、図4、図7、図11又は図14において、積層膜である反射体5をIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜に置換した構造を有する。なお、本実施形態に係る熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(反射体として形成した薄膜が所定の金属膜又は所定の金属を含む合金膜である形態3)
 本実施形態に係る熱反射板では、第1外装板及び第2外装板の対向し合う面は互いに平坦面であり、反射体は、第2外装板側の第1外装板の表面のうち周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係る熱反射板は、図20において、反射体5をIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜に置換した構造を有する。なお、本実施形態に係る熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
(反射体として形成した薄膜が所定の金属膜又は所定の金属を含む合金膜である形態4)
 本実施形態に係る熱反射板では、キャビティを第1外装板側及び第2外装板側に有し、第1外装板のキャビティ内の表面上に反射体として形成した薄膜を有し、薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることが好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であるときは、反射体として形成した薄膜が単層膜であってもよい。本実施形態に係る熱反射板は、図3、図6、図10又は図13において、積層膜である反射体5をIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜に置換した構造を有する。なお、本実施形態に係る熱反射板の赤外線の入射方向は、上から下に向かう方向又は下から上に向かう方向のいずれでもよい。
 形態1~4において、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜においてIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuの含有率は、それぞれ50質量%以上であることが好ましいが、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜は、積層膜である反射体5と同様の膜厚で形成されることが好ましく、また、凹部の底面への薄膜の形成の面積比率は、積層膜である反射体5と同様の範囲で形成されることが好ましい。
 本実施形態に係る熱反射板では、周縁部同士の接合部2は、表面活性化接合部であることが好ましい。さらに支柱部6を含む接合部7は表面活性化接合部であることが好ましい。比較的低温での接合が可能な為、反射膜に熱的、物理的ダメージが無く接合することが可能であり、また、内部を真空に保ったまま接合することで接合部における接合強度が高められており、熱反射板はより長寿命となり、また耐食性が高まり、炉内の汚染が抑制される。表面活性化接合部とは、接合し合う部位の少なくとも一方を表面活性化状態とした後、接合部位同士を、押圧をかけて合わせることにより原子レベルで表面組織を一体化して接合した部位をいう。接合し合う部位の両方を表面活性化状態とした後、接合部位同士を、押圧をかけて合わせることがより好ましい。板状外装同士の接合では、シリコン皮膜を製膜した後、表面活性化状態とし、その後、接合部位同士を、押圧をかけて合わせることとしてもよい。表面活性化接合部には、常温活性化接合部とプラズマ活性化接合部とがある。常温活性化接合部には、例えば、高速原子ビームを用いて表面活性化して接合した接合部、Si等の活性金属を用いてナノ密着層を形成して表面活性化して接合した接合部、イオンビームを用いて表面活性化して接合した接合部がある。プラズマ活性化接合部には、例えば、酸素プラズマを用いて表面活性化して接合した接合部、窒素プラズマを用いて表面活性化して接合した接合部がある。周縁部同士の接合部2を表面活性化接合部とすることで、接合部におけるリークを低減でき、例えば、キャビティ内を真空に保つことで高温時の内圧上昇による板状外装の破損を防ぐことができる。表面活性化接合部を形成する方法については、例えば、特許文献4~6を参照できる。
 本実施形態に係る熱反射板では、キャビティ12内の圧力は、大気圧未満の減圧となっていることが好ましい。キャビティ12内の圧力は、10-2Pa以下であることがより好ましい。熱処理時にキャビティ12の内圧が高まることを抑制することができ、炉内の汚染をより抑制することができる。また、高温時の反射膜の劣化を抑制できる。
(反射体が板である形態)
 本実施形態に係る熱反射板112では、図15に示すように、反射体8が板であり、かつ、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含有する合金、さらに好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ir‐Pt系合金、Ir‐Rh系合金又はPt‐Ru系合金である。キャビティ12内に反射体としての板が収容された状態となっており、板の腐食が生じにくい。さらに、周縁部同士の接合部に、板に起因する剥がす方向の応力がかかりにくい。板である反射体8は、凹部の底面の全面積に対して50~100%の面積で形成されていることが好ましく、80~100%の面積で形成されていることがより好ましい。反射体が板である形態においても、熱反射板112は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004~0.0080(J/K)であり、好ましくは0.0023~0.0070(J/K)であり、より好ましくは0.0030~0.0060(J/K)である。
(反射体が箔である形態)
 本実施形態に係る熱反射板では、反射体が箔であり、かつ、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることが好ましい(不図示)。Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金としては、これらの元素のいずれか一種を最多質量にて含む合金であることが好ましく、より好ましくはIr、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含有する合金、より好ましくは60質量%以上含有する合金、最も好ましくは70質量%以上含有する合金であり、例えば、Ir‐Pt系合金、Ir‐Rh系合金又はPt‐Ru系合金である。図15において、反射体8が板である代わりに箔がキャビティ12内に収容された状態となっており、箔の腐食が生じにくい。さらに、周縁部同士の接合部に、箔に起因する剥がす方向の応力がかかりにくい。箔である反射体は、凹部の底面の全面積に対して50~100%の面積で形成されていることが好ましく、80~100%の面積で形成されていることがより好ましい。反射体が箔である形態においても、熱反射板112は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004~0.0080(J/K)であり、好ましくは0.0023~0.0070(J/K)であり、より好ましくは0.0030~0.0060(J/K)である。
 本実施形態に係る熱反射板では、反射体の厚さは0.01μm~5mmであることが好ましく、0.02μm~2mmであることがより好ましい。反射体による高い反射効率を保持しつつ、熱反射板の熱容量を小さくすることができる。反射体の厚さが0.01μm未満であると反射効率の保持が難しくなり、5mmを超えると反射体の熱量が大きくなりすぎる場合がある。そして、反射体が薄膜である場合、積層膜の膜厚は10nm以上1500nm以下であることが好ましく、20nm以上400nm以下であることがより好ましい。反射体が板である場合、板厚は0.5mm以上5.0mm以下であることが好ましく、0.5mm以上2.0mm以下であることがより好ましい。反射体が箔である場合、箔の厚さは3μm以上2.0mm以下であることが好ましく、8μm以上1.0mm以下であることがより好ましい。
 本実施形態では、キャビティを有するとき、キャビティの高さ(図2では、上下方向の長さ)から反射体の厚さを差し引いた値、すなわちキャビティ内の高さ方向の隙間が200μm以下であることが好ましく、100μm以下であることがより好ましい。キャビティ内の高さ方向の隙間が200μmを超えると、大気圧による板状外装の変形が大きくなり、その結果、接合部付近に掛かる応力が大きくなり、結合部の割れが生じるおそれがある。 
 図2~図8、図10~図14においては、赤外線の入射方向は上から下に向かう方向である。図15においては、赤外線の入射方向は上から下に向かう方向又は下から上に向かう方向のいずれでもよい。なお、熱処理装置において、保温体は被加熱基板の温度を保温するために必要ではあるが、本実施形態に係る熱反射板のための保温体は必ずしも必要ではない。保温体がない場合、本実施形態に係る熱反射板は、熱処理温度までの昇温プロファイル、温度保持プロファイル、降温プロファイルを有する熱処理工程において、加熱・冷却の応答を遅らせることなく、所望の各プロファイルに対してズレを生じ難くし、また、熱処理1サイクルに要する時間を長引かせることがなく、結果として生産効率の低下を生じさせない。
 以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。
(比較例1)
 まず、外周300mm、厚み4.0mmの不透明石英を準備した。次に、紫外可視分光光度計((株))島津製作所製 型式:UV-3100PC)を用いて不透明石英の反射率を測定した。測定した反射率の結果を図21示す。1000℃のときに本比較例における不透明石英では2000nm以上の波長において5%以下の反射率を有することが確認できた。このとき、比較例1における熱反射板全体の厚さは4.0000mm、反射面積率は100.00%であった。次に、前記不透明石英の1mmにおける板厚外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0092(J/K)であった。
(実施例1)
(反射体が積層膜である形態)
 図2に示した熱反射板を作製する。まず、外周300mm、厚み1.2mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅10mmを第2外装板との接合部として残し、それ以外の箇所についてはエッチングを行い、深さ1μmのキャビティのための凹部を設けた。次に、第1外装板の凹部の底面に下地膜としてTaをスパッタリング法によって50nm成膜し、下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、紫外可視分光光度計((株)島津製作所製 型式:UV-3100PC)を用いて反射体の反射率を測定した。測定した反射率の結果を図16に示す。測定は、反射体の表面に測定のための光を直接当てて行った。また、(数1)を用いて1000℃における物質が放射する黒体放射の波長と放射量の関係を算出した。算出結果を図17に示す。
Figure JPOXMLDOC01-appb-M000001
但し、hはプランク定数(6.62607015×10-34J・s)、kはボルツマン定数(1.380649×10-23J/K)、cは光速度(299792458m/s)、λは波長(nm)である。図17の結果、1000℃において輻射熱を反射することが必要であり、波長が2000nm~2600nmで放射量が多いことが確認できる。また、図16の結果、1000℃のときに本実施例における反射体では2000nm以上の波長において90%以上の反射率を有することが確認できた。次に、反射体を形成した第1外装板と平板状の第2外装板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1外装板の接合部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで熱反射板を作製した。このとき、実施例1における熱反射板全体の厚さは2.4000mm、反射面積率は93.33%であった。熱反射板を作製後、1mmにおける板厚外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0055(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例1の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を40.22%削減することができた。
(実施例2)
(反射体が積層膜である形態)
 まず、外周300mm、厚み1.2mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅5mm分を第2外装板との接合部としてマスキングした。次に、マスキングした第1外装板の面に下地膜としてTaをスパッタリング法によって50nm成膜し、下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、マスキングを除去した。反射体は実施例1の反射体と同じであり、図16に示した反射特性と同じ特性を有していた。次に、反射体を形成した平板状の第1外装板と平板状の第2外装板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1外装板の接合部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで熱反射板を作製した。このとき、実施例2における熱反射板全体の厚さは2.4002mm、反射面積率は96.67%であった。熱反射板を作製後、1mmにおける板厚外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0055(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例2の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を40.22%削減することができた。
(実施例3)
(反射体が積層膜である形態)
 まず、外周300mm、厚み1.2mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅5mm分を第2外装板との接合部としてマスキングした。次に、マスキングした第1外装板の面に下地膜としてTaをスパッタリング法によって50nm成膜し、前記下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、マスキングを除去した。反射体は実施例1の反射体と同じであり、図16に示した反射特性と同じ特性を有していた。次に、反射体を形成した平板状の第1外装板と平板状の第2外装板を接合するために、酸素プラズマを第1外装板の接合部に接触させて表面活性化し、第1外装板に第2外装板を押し付けることで熱反射板を作製した。このとき、実施例3における熱反射板全体の厚さは2.4002mm、反射面積率は96.67%であった。熱反射板を作製後、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0055(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例3の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を40.22%削減することができた。
(実施例4)
(反射体が積層膜であり、ハニカム形状の支柱部がある形態)
 図12に示した熱反射板を作製する。まず、外周300mm、厚み1.2mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅10mm分をマスキングし、その後、それ以外の箇所で、正六角形の幅10mm(1辺の長さは5.77mm)、壁柱厚み0.3mmのハニカム形状の支柱部に相当する箇所にマスキングをした後、エッチングを行い、深さ1μmのキャビティのための凹部を設けた。次に、マスキングした第1外装板の凹部の底面に下地膜としてTaをスパッタリング法によって50nm成膜し、下地膜の上に反射膜としてIrをスパッタリング法によって150nm成膜し、反射体を形成した。次に、マスキングを除去した。本実施例の反射体は実施例1の反射体に対してハニカム構造を持たせたものである。図16に示した反射率は、全面が反射膜である形態の値を示しているところ、本実施例のハニカム構造を有する反射膜は、全面に対して反射膜部分の面積比率が94.34%であるため、本実施例の反射特性は図16に示す反射率に対して、0.9434を乗じた反射率を有するものと考えられる。次に、反射体を形成した第1外装板と平板状の第2外装板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1外装板の接合部2及び支柱部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで接合し、熱反射板を作製した。このとき、実施例4における熱反射板全体の厚さは2.4000mm、反射面積率は88.05%であった。熱反射板を作製後、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0055(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例4の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を40.22%削減することができた。
(実施例5)
(反射体がPt箔である形態)
 図15に示した熱反射板を作製する。まず、外周300mm、厚み1.2mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅7mmを第2外装板との接合部として残し、それ以外の箇所については切削加工を行い、深さ0.2mmのキャビティのための凹部を設けた。次に、第1外装板の凹部の底面に、外周284mm、厚み100μmのPt箔を配置し、反射体を形成した。次に、紫外可視分光光度計((株)島津製作所製 型式:UV-3100PC)を用いて前記反射体の反射率を測定した。測定した反射率を図18に示す。測定は、反射体の表面に測定のための光を直接当てて行った。図18の結果、1000℃のときに本実施例における反射体では2000nm以上の波長において80%以上の反射率を有することが確認できた。次に、反射体を配置した第1外装板と平板状の第2外装板を接合するために、真空度10-2Pa以下の真空中で、高速原子ビームを第1外装板の接合部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで接合し、熱反射板を作製した。このとき、実施例5における熱反射板全体の厚さは2.4000mm、反射面積率は95.33%であった。熱反射板を作製後、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0056(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例5の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を39.13%削減することができた。
(実施例6)
(反射体がMo膜である形態)
 まず、外周300mm、厚み1.2mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅5mm分を第2外装板との接合部としてマスキングした。次に、マスキングした第1外装板の面に反射体としてMoをスパッタリング法によって200nm成膜した。次に、マスキングを除去した。次に、紫外可視分光光度計((株))島津製作所製 型式:UV-3100PC)を用いて反射体の反射率を測定した。測定した反射率の結果を図19に示す。測定は、反射体の表面に測定のための光を直接当てて行った。また、図19の結果、1000℃のときに本実施例における反射体では2000nm以上の波長において80%以上の反射率を有することが確認できた。次に、反射体を形成した第1外装板と平板状の第2外装板を接合するために、真空度10‐2Pa以下の真空中で、高速原子ビームを第1外装板の接合部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで熱反射板を作製した。このとき、実施例6における熱反射板全体の厚さは2.4002mm、反射面積率は96.67%であった。熱反射板を作製後、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0055(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例6の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を40.22%削減することができた。
(実施例7)
(反射体がMo膜、かつ石英板厚みが1.7mmである形態)
 まず、外周300mm、厚み1.7mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅5mm分を第2外装板との接合部としてマスキングした。次に、マスキングした第1外装板の面に反射体としてMoをスパッタリング法によって200nm成膜した。次に、マスキングを除去した。反射体は実施例6の反射体と同じであり、図19に示した反射特性と同じ特性を有していた。次に、反射体を形成した第1外装板と平板状の第2外装板を接合するために、真空度10‐2Pa以下の真空中で、高速原子ビームを第1外装板の接合部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで熱反射板を作製した。このとき、実施例7における熱反射板全体の厚さは3.4002mm、反射面積率は96.67%であった。熱反射板を作製後、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0079(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例7の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を14.13%削減することができた。
(実施例8)
(反射体がMo膜、かつ石英板厚みが0.5mmである形態)
 まず、外周100mm、厚み0.5mmの板状外装2枚を準備し、それぞれ第1外装板、第2外装板とした。次に、第1外装板の外周から幅5mm分を第2外装板との接合部としてマスキングした。次に、マスキングした第1外装板の面に反射体としてMoをスパッタリング法によって200nm成膜した。次に、マスキングを除去した。反射体は実施例6の反射体と同じであり、図19に示した反射特性と同じ特性を有していた。次に、反射体を形成した第1外装板と平板状の第2外装板を接合するために、真空度10‐2Pa以下の真空中で、高速原子ビームを第1外装板の接合部に照射して表面活性化し、第1外装板に第2外装板を押し付けることで熱反射板を作製した。このとき、実施例8における熱反射板全体の厚さは1.0002mm、反射面積率は90.00%であった。熱反射板を作製後、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計を算出したところ、0.0023(J/K)であった。熱反射板を1000℃まで昇温する際の必要な熱量は熱容量に比例するため、実施例8の熱反射板は、比較例1の不透明石英より熱反射性が高いとともに電力消費量を75.00%削減することができた。
100~112 熱反射板
1 板状外装
1a 第1外装板
1b 第2外装板
2 周縁部同士の接合部
3 下地膜
4 反射膜
5 反射体
6 支柱部
7 支柱部を含む接合部
8 反射体
11 土手部
12 キャビティ

 

Claims (21)

  1.  板状外装と、
     該板状外装の内部に配置されて該板状外装によって外周囲が完全に覆われてなり、かつ、該板状外装の一方の表面に入射した赤外線を反射する反射体と、を有する熱反射板であって、
     前記反射体は、薄膜、板又は箔であり、
     前記熱反射板は、1mmにおける板状外装及び反射体の厚さ方向の熱容量の合計が0.0004~0.0080(J/K)であることを特徴とする熱反射板。
  2.  前記反射体の少なくとも反射面を含む表面層は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることを特徴とする請求項1に記載の熱反射板。
  3.  前記板状外装の材質はシリカ又はシリコンであることを特徴とする請求項1に記載の熱反射板。
  4.  前記板状外装は、第1外装板と第2外装板とが対向して配置されて周縁部同士が周縁に沿って環状に連続して接合された接合部を有する合わせ板の構造を有することを特徴とする請求項1に記載の熱反射板。
  5.  前記合わせ板の構造は、前記第1外装板及び前記第2外装板の対向し合う面の間に設けられ、かつ、前記第1外装板側及び前記第2外装板側の少なくとも一方に前記周縁部同士の接合部によって密閉されているキャビティを有し、
     該キャビティ内に前記反射体が配置されていることを特徴とする請求項4に記載の熱反射板。
  6.  前記キャビティを少なくとも前記第1外装板側に有し、
     前記第1外装板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、前記第1外装板の前記キャビティ内の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、
     前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、
     前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、
     前記下地膜と前記反射膜とが異なる組成を有していることを特徴とする請求項5に記載の熱反射板。
  7.  前記第1外装板が平板であり、
     前記キャビティを前記第2外装板側に有し、
     前記第1外装板の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、前記第1外装板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、
     前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、
     前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、
     前記下地膜と前記反射膜とが異なる組成を有していることを特徴とする請求項5に記載の熱反射板。
  8.  前記反射体が、板又は箔であり、かつ、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなることを特徴とする請求項5に記載の熱反射板。
  9.  前記キャビティ内の圧力は、大気圧未満の減圧となっていることを特徴とする請求項5に記載の熱反射板。
  10.  (1)前記第1外装板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有し、前記第2外装板は、平板状であるか、又は、
     (2)前記第1外装板は、平板状であり、前記第2外装板は、前記周縁部に設けられた土手部と該土手部で取り囲まれて前記キャビティを構成する凹部とを有することを特徴とする請求項5に記載の熱反射板。
  11.  前記熱反射板は、前記キャビティ内で前記合わせ板の構造の対向する面同士の間を立設する少なくとも1本の支柱部を有することを特徴とする請求項5に記載の熱反射板。
  12.  前記支柱部が、柱状又は筒状であることを特徴とする請求項11に記載の熱反射板。
  13.  前記熱反射板は、前記支柱部を複数有し、
     該支柱部は筒状であり、かつ、各支柱部は互いに筒壁の一部を共有した3次元空間充填構造を有することを特徴とする請求項12に記載の熱反射板。
  14.  前記3次元空間充填構造は、ハニカム構造、矩形格子構造、方形格子構造又はひし形格子構造であることを特徴とする請求項13に記載の熱反射板。
  15.  前記第1外装板及び前記第2外装板の対向し合う面は互いに平坦面であり、
     前記反射体は、前記第2外装板側の前記第1外装板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、
     該薄膜は、前記第1外装板の表面側から順に、下地膜と、前記反射面を含む表面層としての反射膜と、を有する積層膜であり、
     前記下地膜は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co又はNiからなるか、又は、Ta、Mo、Ti、Zr、Nb、Cr、W、Co及びNiからなる群から選ばれる少なくともいずれか1種を含む合金からなり、
     前記反射膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなるか、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる群から選ばれる少なくともいずれか1種を含む合金からなり、
     前記下地膜と前記反射膜とが異なる組成を有していることを特徴とする請求項4に記載の熱反射板。
  16.  前記キャビティを少なくとも前記第1外装板側に有し、
     前記第1外装板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることを特徴とする請求項5に記載の熱反射板。
  17.  前記第1外装板が平板であり、
     前記キャビティを前記第2外装板側に有し、
     前記第1外装板の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることを特徴とする請求項5に記載の熱反射板。
  18.  前記第1外装板及び前記第2外装板の対向し合う面は互いに平坦面であり、
     前記反射体は、前記第2外装板側の前記第1外装板の表面のうち前記周縁部同士の環状の接合部の内側の領域に形成された薄膜であり、
     該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることを特徴とする請求項4に記載の熱反射板。
  19.  前記キャビティを前記第1外装板側及び前記第2外装板側に有し、
     前記第1外装板の前記キャビティ内の表面上に前記反射体として形成した薄膜を有し、
     該薄膜は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuからなる膜か、又は、Ir、Pt、Rh、Ru、Re、Hf、Mo、Al、Mg、Co、Ni、Fe、Sn、Ge、Au、Ag又はCuを50質量%以上含む合金膜であることを特徴とする請求項5に記載の熱反射板。
  20.  前記反射体の厚さは、0.01μm以上5mm以下であることを特徴とする請求項1に記載の熱反射板。
  21.  前記周縁部同士の接合部は、表面活性化接合部であることを特徴とする請求項4に記載の熱反射板。
PCT/JP2022/043587 2021-12-09 2022-11-25 熱反射板 WO2023106132A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200022A JP7477491B2 (ja) 2021-12-09 2021-12-09 熱反射板
JP2021-200022 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106132A1 true WO2023106132A1 (ja) 2023-06-15

Family

ID=86730207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043587 WO2023106132A1 (ja) 2021-12-09 2022-11-25 熱反射板

Country Status (3)

Country Link
JP (1) JP7477491B2 (ja)
TW (1) TW202329249A (ja)
WO (1) WO2023106132A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148315A (ja) * 1995-11-20 1997-06-06 Tokyo Electron Ltd 熱処理装置及び処理装置
JPH1197448A (ja) * 1997-09-18 1999-04-09 Kemitoronikusu:Kk 熱処理装置とこれを用いた半導体結晶の熱処理法
JPH11340157A (ja) * 1998-05-29 1999-12-10 Sony Corp 光照射熱処理装置および光照射熱処理方法
JP2000150396A (ja) * 1998-11-16 2000-05-30 Sakaguchi Dennetsu Kk 熱放射リフレクター
JP2010212160A (ja) * 2009-03-11 2010-09-24 Sumitomo Heavy Ind Ltd ヒータ用反射板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185194B2 (ja) 1997-07-31 2008-11-26 コバレントマテリアル株式会社 カーボンヒータ
JP2001102319A (ja) 1999-09-29 2001-04-13 Toshiba Ceramics Co Ltd 熱処理装置
JP2002100462A (ja) 2000-09-25 2002-04-05 Ibiden Co Ltd ホットプレート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148315A (ja) * 1995-11-20 1997-06-06 Tokyo Electron Ltd 熱処理装置及び処理装置
JPH1197448A (ja) * 1997-09-18 1999-04-09 Kemitoronikusu:Kk 熱処理装置とこれを用いた半導体結晶の熱処理法
JPH11340157A (ja) * 1998-05-29 1999-12-10 Sony Corp 光照射熱処理装置および光照射熱処理方法
JP2000150396A (ja) * 1998-11-16 2000-05-30 Sakaguchi Dennetsu Kk 熱放射リフレクター
JP2010212160A (ja) * 2009-03-11 2010-09-24 Sumitomo Heavy Ind Ltd ヒータ用反射板

Also Published As

Publication number Publication date
TW202329249A (zh) 2023-07-16
JP7477491B2 (ja) 2024-05-01
JP2023085792A (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2011161714A1 (ja) シリコン薄膜の結晶化方法およびシリコンtft装置の製造方法
JP3724848B2 (ja) 光学用窓
JP6836360B2 (ja) 無機偏光板及びその製造方法
WO2023106132A1 (ja) 熱反射板
JP7096409B1 (ja) シリカ熱反射板
WO2022145255A1 (ja) シリカ熱反射板
JP2023085792A5 (ja)
JP4962256B2 (ja) エキシマランプ光照射装置
JP5543525B2 (ja) 光学デバイスおよびその製造方法
KR20240091098A (ko) 열반사판
JP7029567B1 (ja) シリカ熱反射板
WO2021065556A1 (ja) 熱反射部材及び熱反射層付きガラス部材の製造方法
CN116457920A (zh) 氧化硅热反射板
KR102001385B1 (ko) 광대역 흡수구조를 갖는 고성능 볼로미터
JP2019168174A (ja) 放射冷却装置
CN112577612B (zh) 黑硅等离激元辅助吸收的热电堆芯片及其制作方法
JP4144268B2 (ja) 縦型熱処理装置
JPH04196364A (ja) 光起電力装置の製造方法
US20220324740A1 (en) Reflective member and glass layered member production method
JP2005070156A (ja) 赤外線反射材、積層型赤外線反射材及びこれらを用いた断熱材
JPH0253001A (ja) 軟x線又は真空紫外線用多層膜の製造方法ならびに光学素子
FR3095281A1 (fr) Réseau de diffraction en réflexion résistant à un flux lumineux à impulsions ultra-courtes de forte puissance crête et son procédé de fabrication
JP3761055B2 (ja) 石英ガラス黒色板状体
TWI791590B (zh) 接合石英件之方法及接合之石英的石英電極及其他裝置
JP2002076401A (ja) ハイブリッド太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904063

Country of ref document: EP

Kind code of ref document: A1