WO2021189602A1 - 一种制备热电厚膜的方法 - Google Patents

一种制备热电厚膜的方法 Download PDF

Info

Publication number
WO2021189602A1
WO2021189602A1 PCT/CN2020/088680 CN2020088680W WO2021189602A1 WO 2021189602 A1 WO2021189602 A1 WO 2021189602A1 CN 2020088680 W CN2020088680 W CN 2020088680W WO 2021189602 A1 WO2021189602 A1 WO 2021189602A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
temperature
rolling
thermoelectric material
thick film
Prior art date
Application number
PCT/CN2020/088680
Other languages
English (en)
French (fr)
Inventor
史迅
仇鹏飞
高治强
陈立东
杨世琪
杨青雨
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to JP2022552928A priority Critical patent/JP7419560B2/ja
Priority to US17/906,937 priority patent/US11963447B2/en
Priority to EP20926661.8A priority patent/EP4129895A1/en
Publication of WO2021189602A1 publication Critical patent/WO2021189602A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the invention relates to a method for preparing a thermoelectric thick film, and belongs to the field of material preparation and material modification.
  • thermoelectric materials can realize the mutual conversion of electrical energy and thermal energy, and have received great attention in the fields of waste heat recovery, solid refrigeration, and wearable devices.
  • Miniature thermoelectric devices can realize the use of some small environmental temperature differences (such as body temperature) to generate electricity to provide power for the system.
  • thermoelectric materials can achieve auxiliary heat dissipation of electronic chips, and local cooling of a small area.
  • pyroelectric materials can be used as chip sensors to achieve high-precision and high-speed measurement of thermal signals. Therefore, thermoelectric materials have broad application prospects in the fields of wearable electronic devices, miniature refrigerators and sensors.
  • thermoelectric device is composed of a specified logarithm of an n-type thermoelectric arm and a p-type thermoelectric arm. Restricted by the application space, the size of the miniature thermoelectric device is small, and the height of each thermoelectric arm ranges from about 0.01 mm to 1 mm.
  • the traditional sintering-cutting "top-down" process is suitable for preparing samples with a height of more than 1 mm. However, when the height of the thermoelectric arm is less than 1 mm, the difficulty of precise cutting is greatly increased, and the sample loss rate is extremely high, which cannot meet the industrial application.
  • thermoelectric arm Compared with the "top-down" process, molecular beam epitaxy, magnetron sputtering, thermal evaporation, chemical vapor deposition, laser pulse deposition and other "bottom-up" processes are suitable for preparation heights below 0.01-
  • the high-density film of 0.05 mm and then the high-density film is prepared into a thermoelectric arm.
  • thermoelectric arms with a height exceeding 0.01-0.05 mm
  • a thermoelectric thick film with a thickness exceeding 0.01-0.05 mm is required.
  • the above-mentioned "bottom-up" film-making method is complicated and time-consuming when preparing thermoelectric thick film, the equipment used is expensive, maintenance is difficult, and it is not suitable for large-scale production.
  • thermoelectric thick films prepared by electrochemical deposition, inkjet printing, 3D printing and other methods have very poor electrical properties due to their low density, and their thermoelectric properties are much lower than bulk thermoelectric materials, making it difficult to realize real applications. Therefore, there is currently no effective method for preparing thermoelectric thick films with a height range of about 0.05 mm to 1 mm.
  • Rolling technology is a processing method widely used in the field of metal processing. It has the advantages of simple equipment, large output and zero loss.
  • the structure diagram of the rolling technology is shown in Figure 1.
  • the material In the rolling process, the material is placed in the gap of the rotating roller, and the material is plastically deformed due to the pressure of the roller, so that the cross section is reduced and the length is extended.
  • thick metal films with a continuously adjustable thickness ranging from 0.001 mm to 10 mm can be prepared.
  • thermoelectric materials are mostly inorganic non-metallic materials at room temperature. At room temperature, inorganic non-metals are often brittle materials and cannot withstand significant plastic deformation (Nature Mater 17, 421–426 (2018)).
  • Ag 2 S-based materials are the only inorganic non-metallic plastic thermoelectric materials at room temperature (Energy Environ Sci 12, 2983-2990 (2019)). In the field of thermoelectricity, there has not been a report on the use of roll pressing to obtain micron-level thick film materials.
  • thermoelectric thick films including:
  • thermoelectric materials Determine the brittle-plastic transition temperature of thermoelectric materials
  • the parameters of the rolling treatment include: the linear velocity of the roller is 0.01-10 mm/s, preferably 0.1 ⁇ 5mm/s, control the pressing amount of each pressing roller to 0.0005 ⁇ 0.1mm, preferably 0.001 ⁇ 0.05mm;
  • thermoelectric thick film with a specified thickness is obtained
  • thermoelectric thick film thermoelectric thick film
  • the annealing treatment temperature is 100-800°C, preferably 300-500°C
  • the annealing treatment time is 10-500 hours, preferably 100-300 hours.
  • the present invention recognizes that the brittleness-plasticity transition temperature of thermoelectric materials can be used, and for the first time proposes rolling treatment in the temperature range above the brittleness-plasticity transition temperature and above and below the melting point of thermoelectric materials, which overcomes the fact that thermoelectric materials are not suitable for rolling due to brittleness. And control the process parameters of the rolling treatment, so that the deformation of the thermoelectric material in the thickness direction can be greater than 99%, and the deformation of the rolling direction can be greater than 1000%, so that the micrometer and the Thermoelectric thick film of millimeter level.
  • the annealing treatment after the rolling treatment of the present invention can restore the thermoelectric properties of the obtained thermoelectric thick film to the equivalent of the bulk thermoelectric material before rolling.
  • the method for determining the plasticity-brittle transition temperature of the thermoelectric material is: a three-point bending mechanics experiment is performed on the thermoelectric material by a universal testing machine for temperature-changing materials, and the test temperature of the mechanics experiment is continuously increased from room temperature until the thermoelectric material The material undergoes plastic deformation, and the lowest experimental temperature corresponding to the thermoelectric material's strain ⁇ 5% is defined as the brittle-plastic transition temperature of the thermoelectric material.
  • the plasticity of all inorganic materials increases with increasing temperature.
  • the transition temperature is the minimum temperature required to reach 5% strain. Rolling can be carried out above the transition temperature and below the melting point.
  • the method for determining the plasticity-brittle transition temperature of the thermoelectric material can also be: performing a rolling treatment on the thermoelectric material, and continuously increasing the temperature of the rolling treatment from room temperature until the thermoelectric material undergoes plastic deformation and does not Fracture is defined as the brittle-plastic transition temperature of thermoelectric materials.
  • the bulk thermoelectric material in the present invention can be selected from one of the following materials:
  • the initial thickness of the bulk thermoelectric material is 0.01-100 mm.
  • the temperature of the roller and the temperature of the thermoelectric material are detected, and both are controlled to be within the brittle-plastic transition temperature range of the thermoelectric material.
  • the thermoelectric material is kept in a plastic state so that it can be continuously rolled and deformed.
  • the rolling treatment 2-100 times, preferably 5-30 times.
  • the required thickness can be obtained in a simple and convenient way by controlling the pressing amount per roll and matching the number of rolls.
  • the atmosphere of the rolling treatment is air atmosphere, nitrogen atmosphere, vacuum atmosphere, or inert atmosphere; the inert atmosphere is argon atmosphere or/and helium atmosphere.
  • the heating rate and or cooling rate of the annealing treatment is 0.01-1000°C/sec, preferably 1-20°C/sec.
  • the thickness of the thermoelectric thick film prepared according to the above method is 0.0001 to 1 mm.
  • the invention provides a feasible and simple preparation method for the thermoelectric thick film of micron level to millimeter level.
  • thermoelectric thick films based on the rolling technology under controlled temperature can realize large rolling deformation of a variety of thermoelectric materials. Even if the thermoelectric material has extremely poor plasticity at room temperature, it can achieve large rolling deformation.
  • the present invention can roll Cu 2 Se and MgAgSb, which have no plasticity at room temperature, into a large-area thick film with a thickness of 0.01 mm.
  • the present invention further performs annealing treatment on the produced thermoelectric thick film through a heat treatment process to obtain a thermoelectric thick film with excellent performance and controllable performance equivalent to that of the bulk thermoelectric material.
  • Figure 1 is a schematic diagram of the structure of a rolling machine
  • Figure 2 is an image of Cu 2 Se thick film (left) and MgAgSb (right) thick film obtained by rolling;
  • Figure 3 shows the room temperature mechanical properties and high temperature mechanical properties of Cu 2 Se
  • 4a and 4b are graphs of thermoelectric properties of Cu 2 Se obtained before, after, and after rolling;
  • Figures 5a and 5b are graphs of thermoelectric properties of Mg 3 Sb 2 obtained before, after and after rolling;
  • Figures 6a and 6b are graphs of thermoelectric properties of MgAgSb obtained before, after and after rolling;
  • Figures 7a and 7b are graphs of thermoelectric properties of Bi 1.5 Sb 0.5 Te 3 obtained before rolling, after rolling, and after annealing;
  • Figure 8 is a picture of Cu 2 Se being rolled at room temperature and the material is broken.
  • thermoelectric material can be subjected to large plastic deformation by rolling, which is a breakthrough
  • the brittleness of materials at room temperature is limited.
  • the thickness deformation of the thermoelectric material can be greater than 99%, and the rolling direction deformation can be greater than 1000%, and finally a thermoelectric thick film with a controllable thickness can be obtained.
  • the method is not only suitable for thermoelectric materials whose compressive strain is greater than 10% at room temperature, but also for thermoelectric materials whose plastic deformation is not obvious at room temperature (that is, the compressive strain is less than 10%).
  • thermoelectric materials that cannot be directly rolled). Examples are as follows.
  • thermoelectric thick film prepared by the invention is excellent, which is equivalent to that of a bulk thermoelectric material.
  • the method is simple, easy to implement, easy to prepare in batches, and suitable for industrialized production.
  • the method for preparing a thermoelectric thick film is illustrated below by way of example.
  • Method 1 Perform a three-point bending mechanics experiment on the thermoelectric material under high temperature conditions, and the experimental instrument is a universal testing machine for variable temperature materials. Starting from room temperature, continue to increase the experimental temperature until the material can undergo significant plastic deformation. The lowest experimental temperature corresponding to the strain ⁇ 5% of the thermoelectric material is regarded as the brittleness-plasticity transition temperature of the material.
  • Method 2 Rolling the thermoelectric material under high temperature conditions. Starting from room temperature, the temperature during the rolling process is continuously increased until the thermoelectric material can be rolled (plastically deformed) without breaking, so as to determine the brittle-plastic transition temperature and rolling temperature of the material.
  • thermoelectric material (or called bulk thermoelectric material) is rolled to obtain a thermoelectric thick film with controllable thickness.
  • the roller press is a commonly used machine that consists of two or more rollers arranged in a certain form and presses and stretches the material into a certain thickness and shape at a certain temperature. Its structure is shown in Figure 1. .
  • the rolling temperature of the bulk thermoelectric material in the rolling process is determined according to the brittleness-plasticity transition temperature of the thermoelectric material used.
  • the block thermoelectric material is heated to the required temperature, and then rolled. It is also possible to heat the roller of the roller press to a desired temperature, and use the roller to heat the block thermoelectric material before and during the rolling process.
  • the rolling temperature can be from room temperature to 400° C., preferably from room temperature to room temperature. 240°C, more preferably room temperature to 200°C.
  • the rolling temperature can be 200-350°C.
  • the rolling temperature can be 200-450°C, preferably 200-430°C (for example, 350°C, 400°C, 430°C Wait).
  • the rolling temperature may be 240-400°C, preferably 300-400°C.
  • the initial thickness of the bulk thermoelectric material may be 0.01 mm to 100 mm, and generally may be 0.2 to 10 mm.
  • the linear velocity of the roller is controlled to be 0.01-10 mm/s, preferably 0.1-5 mm/s. Adjust the pressing amount of each roller pressing down to 0.0005 to 0.1 mm, preferably 0.001 to 0.05 mm. And each time after the roller is pressed down, the block thermoelectric material is rolled 1-100 times, preferably 5-30 times. The number of pressing down includes but is not limited to 1 time. It only needs to roll the bulk thermoelectric material to form a thermoelectric thick film with a thickness between 0.0001 mm and 1 mm.
  • the atmosphere of the rolling treatment can be air, helium, argon, nitrogen, or vacuum.
  • the annealing treatment can control the thermoelectric properties of the rolled thermoelectric film.
  • the resulting thermoelectric thick film can be optionally subjected to annealing treatment and other modifications to adjust the material properties.
  • heat treatment annealing treatment
  • the temperature range of the heat treatment may be 100-800°C, preferably 300-500°C, and the holding time may be 10-500 hours, 100-300 hours.
  • the heating rate and the cooling rate of the heat treatment may be between 0.01° C./s and 1000° C./s, preferably 1-20° C./s.
  • the annealing temperature may preferably be 300 to 500°C.
  • the annealing temperature may preferably be 300-500°C.
  • the annealing temperature may preferably be 300-400°C.
  • the annealing temperature may preferably be 300 to 400°C.
  • the material can be processed through a multi-stage heating and heat preservation process and multiple heat treatments.
  • thermoelectric thick film (0.0 ⁇ x ⁇ 1.0) as an example to illustrate the preparation method of the thermoelectric thick film.
  • the ductile-brittle transition temperature of Cu 2 Se 1-x S x (0.0 ⁇ x ⁇ 1.0) material is between 60 ⁇ 400°C.
  • the bulk Cu 2 Se 1-x S x material is heated above the ductile-brittle transition temperature and kept for 60 min ⁇ 200 min before rolling.
  • the linear speed of the roller is between 10 mm/s and 0.01 mm/s, and the pressing amount of each roller is between 0.1 mm and 0.0005 mm. After each roller is pressed, the material is rolled 1 to 100 times.
  • thermoelectric thick film During the rolling process, a contact or infrared camera is used to monitor the temperature of the material. When the temperature of the bulk thermoelectric material is less than 5°C of the heating temperature, the rolling is stopped and the bulk thermoelectric material is reheated. After the rolling is completed, heat treatment (annealing) and other modifications can be performed on the resulting thermoelectric thick film to further control the properties of the thermoelectric thick film. In other words, the present invention can effectively control the thermoelectric performance of the thermoelectric thick film through heat treatment.
  • the temperature range of the heat treatment may be 100 to 800°C, preferably 300 to 500°C.
  • the holding time of the heat treatment can be 10 to 500 hours, 100 to 300 hours.
  • the heating rate and the cooling rate of the heat treatment may also be between 0.01° C./s and 1000° C./s, preferably 1-20° C./s.
  • the material can be processed through a multi-stage heating and heat preservation process and multiple heat treatments.
  • Example 1 Cu 2 Se was used as the rolling material. Cu 2 Se exhibits extremely limited plasticity at room temperature, and large rolling deformation is difficult to proceed.
  • the rolling treatment was performed under high temperature conditions. First, the Cu 2 Se block is cut into a block thermoelectric material with a thickness of 1 to 5 mm, and the specific shape is not limited. The obtained block thermoelectric material is polished and smoothed. According to the variable temperature mechanical experiment (Figure 3), it is known that Cu 2 Se has good plasticity at 120 to 240 °C. Therefore, the temperature of the roller of the roller press is raised to 200°C. Adjust the distance of the rollers, clamp the Cu 2 Se block, and start rolling after holding the temperature for 60 min.
  • the linear speed of the roller is 0.1 ⁇ 2.8 mm/s.
  • a contact thermometer to measure the temperature of the roller and an infrared thermometer to measure the temperature of the material.
  • thermoelectric thick films After rolling, a series of thermoelectric thick films with thicknesses of 1 mm, 0.5 mm, 0.05 mm, and 0.001 mm can be obtained.
  • the electrical properties of the 0.05mm thick thermoelectric thick film are measured. The results showed that the electrical conductivity of the thermoelectric thick film increased, while the Seebeck decreased ( Figure 4a).
  • the 0.05 mm thick thermoelectric thick film was annealed at a temperature of 400 °C and an annealing time of 120 h. After annealing, the electrical properties of the thermoelectric thick film, including electrical conductivity and Seebeck coefficient, are basically the same as the bulk material (Figure 4a).
  • thermoelectric figure of merit (zT value) of the material obtained at room temperature shows that the zT value of the material after rolling decreased from 0.3 to 0.23, and after annealing, the zT value of the material reached 0.34 ( Figure 4b). It shows that for Cu 2 Se, rolling and annealing are beneficial to the improvement of material properties.
  • Mg 3 Sb 2 was used as the rolling material. First, cut the Mg 3 Sb 2 block into a block with a thickness of 1 to 6 mm (the specific shape is not limited). Polish the block smoothly. Mg 3 Sb 2 was rolled at 100°C, 150°C, 200°C, 300°C, and 350°C, respectively, and it was found that the material would not be broken unless it was rolled at 300°C and 350°C. According to the results of this experiment, Mg 3 Sb 2 has better plasticity at 300°C and above. Therefore, the block is heated to 300°C with a roller (the 300°C is the lowest rolling temperature measured according to the method described in paragraph 0009.
  • a slight increase in temperature can make the material plasticity better, which will speed up the rolling and reduce Material loss is good. As long as it does not exceed the melting point and the machine can withstand it, it is ok. Of course, the temperature is lower and the energy consumption can be lower). Adjust the distance of the rollers to quickly clamp the block. Control the pressing amount of 0.001 to 0.005 mm each time, and then roll down 7 to 15 times after pressing down again. The linear speed of the roller is 0.1 mm/s. In the process of rolling, always use a contact thermometer to measure the temperature of the roller and an infrared thermometer to measure the temperature of the material. After several times of rolling, a thermoelectric thick film with a thickness of 0.1 mm was obtained.
  • thermoelectric thick film The electrical properties of a 0.1mm thick thermoelectric thick film were measured, and the electrical properties of the resulting thermoelectric thick film decreased (Figure 5a). Subsequently, the 0.1 mm thick thermoelectric thick film was annealed at a temperature of 350 °C and an annealing time of 200 h. After annealing, the electrical properties of the material returned to the level of an unrolled block ( Figure 5a).
  • the final thermoelectric figure of merit (zT value) of the material at room temperature shows that the zT value of the material after rolling decreased from 0.012 to 0.008, and after annealing, the zT value of the material reached 0.017 ( Figure 5b). It shows that for Mg 3 Sb 2 , rolling and annealing are beneficial to the improvement of material properties.
  • MgAgSb was used as the rolling material.
  • the MgAgSb block (the preparation method is not limited) is cut into a block with a thickness of 0.5-2 mm, and the specific shape is not limited. Polish the block smoothly. Try to roll the material at different temperatures (200 °C, 300 °C, 400 °C, 430 °C), it is found that the rolling temperature can be 400 °C, the thermoelectric material undergoes plastic deformation and does not break. Adjust the distance between the rollers and clamp the block. Each time the pressing amount is 0.02 ⁇ 0.01 mm, after pressing down, roll pressing 5 ⁇ 7 times and press down again. The linear speed of the roller is 0.2 mm/s.
  • thermoelectric films with thicknesses of 1 mm, 0.5 mm, 0.08 mm, and 0.05 mm were obtained.
  • thermoelectric thick film The electrical performance of the 0.08mm thick thermoelectric thick film is measured, and it is obvious that the electrical performance of the thermoelectric thick film has decreased (Figure 6a). Subsequently, the 0.08 mm thick thermoelectric thick film was annealed at a temperature of 350°C and an annealing time of 200 h. After annealing, the electrical properties of the thermoelectric thick film recovered to the level of the unrolled block ( Figure 6a). The final thermoelectric figure of merit (zT value) of the material obtained at room temperature shows that the zT value of the material after rolling decreased from 0.31 to 0.3, and after annealing, the zT value of the material reached 0.32 ( Figure 6b). It shows that for MgAgSb, rolling and annealing have a beneficial effect on the material properties.
  • Example 4 Bi 1.5 Sb 0.5 Te 3 was used as the rolling material.
  • the block material is cut into blocks with a thickness of 0.5 to 1 mm. Polish the block smoothly. Attempts to roll the material at different temperatures (200 °C, 240 °C, 280 °C, 320 °C), and learned that at a rolling temperature of 280 °C, the thermoelectric material undergoes plastic deformation and does not break.
  • the temperature of the roller is raised to 280°C, the distance of the roller is adjusted, and the block thermoelectric material is clamped.
  • the amount of pressing is 0.01 ⁇ 0.005 mm each time, and after pressing, it is rolled 10-15 times and pressed again.
  • the linear speed of the roller is 0.2 mm/s.
  • thermoelectric figure of merit (zT value) of the material at room temperature shows that the zT value of the material after rolling decreased from 1.2 to 1.1, and after annealing, the zT value of the material reached 1.24 ( Figure 7a, 7b). It shows that for Bi 1.5 Sb 0.5 Te 3 , rolling and annealing can slightly improve the properties of the material.
  • the Cu 2 Se was set at room temperature and subjected to rolling treatment as Comparative Example 1.
  • the Cu 2 Se bulk material is cut and polished into a bulk with a thickness of 0.5 mm. Adjust the distance between the rollers and clamp the block. Each time the pressing amount is 0.001 mm, after pressing down, roll down 10-15 times and press down again. The linear speed of the roller is 0.1 mm/s. It is found that Cu 2 Se can be slightly deformed under rolling at room temperature, the thickness is compressed from 0.5 mm to 0.497 mm, and the deformation amount is 0.6%. However, under further rolling, the material was severely broken and shattered (Figure 8).
  • materials such as Cu 2 Se 1-x S x (0.0 ⁇ x ⁇ 1.0) at room temperature are brittle materials, which cannot withstand large plastic deformations, and can only be used for small plastic deformations of less than 1% by rolling.
  • thermoelectric thick films There is no potential for preparing thermoelectric thick films.
  • the brittleness limit of the material is broken, and the plasticity of materials such as Cu 2 Se 1-x S x (0.0 ⁇ x ⁇ 1.0) has been greatly improved.
  • the three-point bending experiment at room temperature and high temperature shows that the temperature is increased to 120
  • the plasticity of Cu 2 Se is greatly improved after °C ( Figure 3), but there is basically no plastic deformation in the material at room temperature.

Abstract

一种制备热电厚膜的方法,包括:确定热电材料的脆性-塑性转变温度;将块状热电材料在其脆性-塑性转变温度及其以上且熔点以下的温度区间内进行辊压处理;所述辊压处理的参数包括:辊筒的线速度为0.01~10mm/s、优选0.1~5mm/s,控制每次下压辊筒的下压量为0.0005~0.1mm、优选0.001~0.05mm;重复辊压处理直至得到规定厚度的热电厚膜;以及将所得热电厚膜进行退火处理;所述退火处理的温度为100~800℃,优选300~500℃;所述退火处理的时间为10~500小时,优选为100~300小时。

Description

一种制备热电厚膜的方法 技术领域
本发明涉及一种制备热电厚膜的方法,属于材料制备和材料改性领域。
背景技术
热电材料能够实现电能和热能的相互转换,并在废热回收、固体制冷和可穿戴器件等领域受到很大的关注。微型热电器件可实现利用一些较小的环境温差(如体温)来产生电能,从而为***提供动力。或者,热电材料可实现对电子芯片的辅助散热,以及对某个微小区域的局部制冷等。又或者,热电材料作为芯片式传感器实现热学信号的高精度高速测量。因此,热电材料在可穿戴电子器件、微型制冷器和传感器等领域具有广阔的应用前景。
热电器件由指定对数的n型热电臂和p型热电臂构成。受制于应用空间,微型热电器件的尺寸较小,每个热电臂的高度范围约为0.01毫米至1毫米。传统的烧结-切割的“自上而下”的工艺适用于制备高度1毫米以上的样品。但是,当热电臂的高度低于1毫米时,精确切割的难度大幅度增加,且样品损耗率极大,无法满足工业应用。
相较于“自上而下”的工艺,分子束外延、磁控溅射、热蒸镀、化学气相沉积、激光脉冲沉积等“自下而上”的工艺,适用于制备高度低于0.01-0.05毫米的高致密度薄膜,进而将高致密度薄膜制备成热电臂。但是,制备高度超过0.01-0.05毫米的热电臂,需要厚度超过0.01-0.05毫米的热电厚膜。然而上述“自下而上”的制膜方法在制备热电厚膜时工艺流程复杂且耗时长,所用的设备价格昂贵,维护困难,不适合规模化生产。另外,电化学沉积、喷墨打印、3D打印等方法制备的热电厚膜,由于致密度较低,电性能非常差,热电性能远低于块体热电材料,难以实现真正应用。因此,目前尚缺少制备高度范围约为0.05毫米至1毫米的热电厚膜的有效方法。
技术问题
辊压技术是一种在金属加工领域广泛应用的加工方法,具有设备简单、产量大和零损耗等优点。辊压技术的结构示意图如图1所示。在辊压过程中,将材料置于旋转的辊筒的间隙之中,因受辊筒的压力,材料发生塑性变形,以使其截面减小和长度延长。虽然利用辊压技术,可以制备厚度在0.001毫米至10毫米范围连续可调的金属厚膜。但是,由于在室温下热电材料多为无机非金属材料。室温下,无机非金属常为脆性材料,不能承受显著的塑性变形 (Nature Mater 17, 421–426 (2018))。目前室温下,Ag 2S基材料是仅有的无机非金属塑性热电材料(Energy Environ Sci 12, 2983-2990 (2019))。在热电领域中,尚未有利用辊压制备得到微米级厚膜材料的报道。
技术解决方案
针对上述问题,本发明提供了一种简单易行的制备热电厚膜的方法,包括:
确定热电材料的脆性-塑性转变温度;
将块状热电材料在其脆性-塑性转变温度及其以上且熔点以下的温度区间内进行辊压处理;
所述辊压处理的参数包括:辊筒的线速度为0.01~10 mm/s,优选0.1~5mm/s,控制每次下压辊筒的下压量为0.0005~0.1mm,优选0.001~0.05mm;
重复辊压处理所述直至得到规定厚度的热电厚膜;
以及将所得热电厚膜进行退火处理;所述退火处理的温度为100~800℃,优选300~500℃;所述退火处理的时间为10~500小时,优选为100~300小时。
本发明认识到可利用热电材料的脆性-塑性转变温度,首次提出在其脆性-塑性转变温度及其以上且熔点以下的温度区间内进行辊压处理,克服了通常热电材料由于脆性不适合辊压的技术偏见,并控制辊压处理的工艺参数,使得热电材料的厚度方向的形变量可大于99%,辊压方向的形变量可大于1000%,从而可以通过简单的辊压法获得微米级及毫米级的热电厚膜。此外,本发明辊压处理后再进行退火处理,可使获得的热电厚膜的热电性能回复至与辊压前的块状热电材料相当。
较佳的,所述确定热电材料的塑性-脆性转变温度的方法为:采用变温材料万能试验机对热电材料进行三点弯曲力学实验,从室温开始不断地升高力学实验的测试温度,直到热电材料发生塑性变形,并定义当热电材料的应变量≥5% 时所对应的最低实验温度作为热电材料的脆性-塑性转变温度。所有的无机材料的塑性,随着温度升高而升高。转变温度是达到5%应变量所需最低温度,辊压在转变温度以上,熔点以下均可进行。
较佳的,所述确定热电材料的塑性-脆性转变温度的方法也可以为:对热电材料进行辊压处理,且从室温开始不断地升高辊压处理的温度直至热电材料发生塑性形变且不破裂,定义该温度作为热电材料的脆性-塑性转变温度。
本发明中所述块状热电材料可选自下述材料中的一种:
(1)Cu wAg 2-wS xSe yTe z及其掺杂、固溶和改性产物,其中,0≤w≤2,0≤x≤1,0≤y≤1,0≤z≤1,且x+y+z=1;
(2)Bi 2-cSb cTe 3-dSe d及其掺杂、固溶和改性产物,其中,0≤c≤2,0≤d≤3;
(3)MgAgSb及其掺杂、固溶和改性产物;
(4)Mg 3Sb 2及其掺杂、固溶和改性产物。
较佳的,所述块状热电材料的初始厚度为0.01~100 mm。
较佳的,在所述辊压处理中,检测滚筒的温度和热电材料的温度,并控制两者均处于该热电材料的脆性-塑性转变温度范围内。借助于此,在整个辊压处理中,保持热电材料处于塑性状态,使其持续可以辊压变形。
又,较佳的,重复所述辊压处理2~100 次,优选为5~30次。控制每次辊压下压量并配合辊压次数可以以简便的方法获得所需的厚度。
较佳的,所述辊压处理的气氛为空气气氛、氮气气氛、真空气氛、或惰性气氛;所述惰性气氛为氩气气氛或/和氦气气氛。
较佳的,所述退火处理的升温速度和或降温速度在0.01~1000℃/秒,优选1~20℃/秒。
根据上述的方法制备的热电厚膜的厚度为0.0001~1毫米。本发明为微米级至毫米级热电厚膜提供一种可行的简易的制备方法。
有益效果
本发明提供的基于控制温度下的辊压技术制备热电厚膜的方法,可以实现多种热电材料的大辊压变形。即使热电材料在室温下的塑性极差,也能够实现大辊压变形。如图2,本发明能够将室温下不具有塑性的Cu 2Se和MgAgSb辊压为厚度为0.01 mm的大面积厚膜。而且,本发明进一步通过热处理工艺,将制得的热电厚膜进行退火处理,得到性能优异、可控的与块状热电材料性能相当的热电厚膜。
附图说明
图1为辊压机器的结构示意图;
图2为辊压得到的Cu 2Se厚膜(左)和MgAgSb(右)厚膜的图像;
图3为Cu 2Se的室温力学性能和高温力学性能;
图4a和图4b为辊压前、辊压后和退火后所得Cu 2Se的热电性能图;
图5a和图5b为辊压前、辊压后和退火后所得Mg 3Sb 2的热电性能图;
图6a和图 6b为辊压前、辊压后和退火后所得MgAgSb的热电性能图;
图7a和图7b为辊压前、辊压后和退火后所得Bi 1.5Sb 0.5Te 3的热电性能图;
图8为室温下对Cu 2Se进行辊压,材料破裂的图。
本发明的最佳实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,本发明人对多种热电材料的温度-塑性关系做了深入的研究,首次发现了在控制温度的条件下,可以用辊压对多种热电材料进行大的塑性变形,突破材料室温脆性的限制。该热电材料的厚度形变量可大于99%,辊压方向形变量可大于1000%,最终得到厚度可控的热电厚膜。
在可选的实施方式中,该方法不仅适用于室温下压缩应变量大于10 %能较为显著变形的热电材料,也适用于室温下塑性变形不明显的热电材料(即、压缩应变量小于10%,不能直接辊压的热电材料)。现举例如下,需理解,本发明所适用的材料包括以下材料,但不限于以下材料:(1) Ag wCu 2-wS xSe yTe z及其掺杂、固溶和改性产物,其中,0≤w≤2,0≤x≤1,0≤y≤1,0≤z≤1,且x+y+z=1;(2) Bi 2-cSb cTe 3-dSe d及其掺杂、固溶和改性产物,其中,0≤c≤2,0≤d≤3);(3) MgAgSb及其掺杂、固溶和改性产物;(4) Mg 3Sb 2及其掺杂、固溶和改性产物。
本发明所制备的热电厚膜的性能优良,与块体热电材料相当。且该方法简单易行、易于批量化制备,适合于工业化生产。以下示例性地说明制备热电厚膜的方法。
首先,确定所要辊压热电材料的脆性-塑性转变温度,具体做法有两种:方法一:在高温条件下对热电材料进行三点弯曲力学实验,实验仪器为变温材料万能试验机。从室温开始,不断地升高实验温度,直到材料能够发生显著的塑性变形。将热电材料的应变量≥5% 对应的最低实验温度,作为材料的脆性-塑性转变温度。方法二:在高温条件下对热电材料进行辊压处理。从室温开始,不断地升高辊压处理时的温度,直到热电材料能被辊压(发生塑性形变),而不破裂,以此定出材料的脆性-塑性转变温度和辊压温度。
利用辊压机,在辊压温度≥脆性-塑性转变温度的条件下,对块状热电材料(或称块体热电材料)进行辊压处理,得到厚度可控的热电厚膜。
其中,辊压机是一种常用的由两个或两个以上的辊筒,按一定形式排列,在一定温度下,将材料压制延展成一定厚度和形状的机器,其结构如图1所示。
在可选的实施方式中,块状热电材料在辊压过程中的辊压温度根据所用热电材料的脆性-塑性转变温度而定。在辊压处理过程中,将块状热电材料加热到所需温度后,再进行辊压。也可以将辊压机的辊筒升温至所需温度,在辊压前和辊压过程中利用辊筒对该块体热电材料进行加热。例如,当块状热电材料的组分为Ag wCu 2-wS xSe yTe z及其掺杂、固溶和改性产物时,辊压温度可为室温~400℃,优选为室温~240℃,更优选为室温~200℃。当块状热电材料的组分为Bi 2-cSb cTe 3-dSe d及其掺杂、固溶和改性产物时,辊压温度可为200~350℃。当块状热电材料的组分为MgAgSb及其掺杂、固溶和改性产物时,辊压温度可为200~450℃,优选为200~430℃(例如,350℃、400℃、430℃等)。当块状热电材料的组分为Mg 3Sb 2及其掺杂、固溶和改性产物时,辊压温度可为240~400℃,优选为300~400℃。
在可选的实施方式中,块体热电材料的初始厚度可为0.01毫米到100毫米,一般可为0.2~10 mm。
在辊压过程中,控制辊筒的线速度在0.01~10 mm/s,优选0.1~5mm/s。调节每次辊筒下压的下压量在0.0005~0.1mm,优选0.001~0.05mm。且每次辊筒下压之后,对块体热电材料辊压1~100 次,优选为5~30次。下压的次数包括但不仅限于1次。只需将该块体热电材料辊压处理形成厚度在0.0001毫米到1毫米之间的热电厚膜即可。辊压处理的气氛可以是空气、氦气、氩气、氮气、或真空。
本发明,通过对退火工艺的大量研究,首次发现退火处理可调控辊压热电薄膜的热电性能。具体来说,在辊压后,可选择对所得热电厚膜进行退火处理和其它改性,对材料性能进行调控。其中,热处理(退火处理)能够有效调控热电厚膜的热电性能。热处理的温度范围可为100~800℃,优选300~500℃,保温时间为10~500小时,100~300小时。热处理的升温速率和降温速率可在0.01℃/s到1000℃/s之间,优选1~20℃/秒。例如,当块状热电材料的组分为Cu wAg 2-wS xSe yTe z及其掺杂、固溶和改性产物时,退火温度可优选为300~500℃。当块状热电材料的组分为Bi 2-cSb cTe 3-dSe d及其掺杂、固溶和改性产物时,退火温度可优选为300~500℃。当块状热电材料的组分为MgAgSb及其掺杂、固溶和改性产物时,退火温度可优选为300~400℃。当块状热电材料的组分为Mg 3Sb 2及其掺杂、固溶和改性产物时,退火温度可优选为300~400℃。进一步地,可以通过多段升温保温工艺和多次热处理对材料进行处理。
以下以Cu 2Se 1-xS x (0.0≤x≤1.0 )为例,示例性地说明热电厚膜的制备方法。
取块体Cu 2Se 1-xS x (0.0≤x≤1.0)材料,进行变温力学试验,得到材料的韧脆转变温度。按S含量的不同,Cu 2Se 1-xS x (0.0≤x≤1.0)材料的韧脆转变温度在60~400℃之间。
依上实验结果,将块体Cu 2Se 1-xS x材料加热韧脆转变温度以上,保温60 min~200 min,开始辊压。辊筒线速度在10 mm/s到0.01 mm/s之间,每次辊筒下压量在0.1 mm到0.0005 mm之间,每次辊筒下压之后,对材料辊压1~100次。
在辊压过程中,利用接触式或红外线相机对材料的温度进行监视,当块体热电材料的温度小于加热温度5℃时,停止辊压,并对该块体热电材料进行重新加热。在辊压完成后,可选择对所得热电厚膜进行热处理(退火)和其它改性,进一步对热电厚膜的性能进行调控。也就是说,本发明通过热处理能够有效调控热电厚膜的热电性能。热处理的温度范围可为100~800℃,优选300~500℃。热处理的保温时间可为10~500小时,100~300小时。在一个优选的实施方式中,热处理的升温速率和降温速率还可在0.01℃/s到1000℃/s之间,优选1~20℃/秒。进一步地,可以通过多段升温保温工艺和多次热处理对材料进行处理。
本发明的实施方式
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例 1
本实施例1用Cu 2Se作为辊压材料。室温下Cu 2Se表现出极为有限的塑性,大的辊压变形难以进行。本实施例1中在高温条件下进行辊压处理。首先将Cu 2Se块体切割成为厚度1~5 mm的块体热电材料,具体形状不限。将所得块体热电材料打磨平整。按照变温力学实验(图3)可知,Cu 2Se在120到240 ℃有良好的塑性。因此,将辊压机辊筒升温至200 ℃。调整辊筒距离,将Cu 2Se块体夹住,保温60 min后开始辊压。每次下压量0.001 mm,下压后辊压10 次再次下压。辊筒线速度0.1~2.8 mm/s。在辊压过程中始终用接触式测温计,测量辊筒温度,用红外测温仪测量材料温度。
经过辊压,可以得到厚度分别为 1 mm、0.5 mm、0.05 mm、0.001 mm的一系列热电厚膜。对0.05mm厚的热电厚膜,进行电学性能测量。结果显示,热电厚膜的电导率增大,塞贝克降低(图4a)。随后对0.05 mm厚的热电厚膜进行退火,退火温度为400℃,退火时间为120 h。退火后,热电厚膜的电学性能,包括电导率和塞贝克系数基本和块体材料无差别 (图4a)。最后得到的材料室温热电优值 (zT值)表明辊压后材料的zT值由0.3下降到0.23,退火后,材料的zT值达到0.34 (图4b)。说明对于Cu 2Se,辊压,退火有利于材料性能的提高。
实施例 2
本实施例2用Mg 3Sb 2作为辊压材料。首先将Mg 3Sb 2块体切割成为厚度1~6 mm的块体(具体形状不限)。将块体打磨平整。分别在100℃,150 ℃,200℃,300 ℃、350℃下辊压Mg 3Sb 2,发现只有在300℃、350℃时辊压处理,材料才不会破裂。依照此实验结果,Mg 3Sb 2在300℃及其以上拥有较好的塑性。因此,将块体用辊轮加热到300℃(该300℃为根据第0009段所述方法测出来的最低辊压温度。稍微升高温度,可以让材料塑性更好,对加快辊压,减少材料损失有好处。只要不超过熔点,且机器能够承受,都是可以的。当然温度低些,能耗可以低些)。调整辊筒距离,将块体迅速夹住。控制每次下压量0.001~0.005 mm,下压后辊压7~15 次再次下压。辊筒线速度0.1 mm/s。在辊压过程中始终用接触式测温计,测量辊筒温度,用红外测温仪测量材料温度。经过多次辊压,得到厚度为0.1 mm的热电厚膜。
对0.1mm厚的热电厚膜,进行电学性能测量,所得热电厚膜的电学性能有所下降(图5a)。随后对0.1 mm厚的热电厚膜进行退火,退火温度为350℃,退火时间为200 h。退火后,材料的电学性能恢复到未辊压的块体的水平(图5a)。最后得到的材料室温热电优值 (zT值)表明辊压后材料的zT值由0.012下降到0.008,退火后,材料的zT值达到0.017 (图5b)。说明对于Mg 3Sb 2,辊压,退火有利于材料性能的提高。
实施例 3
本实施例3用MgAgSb作为辊压材料。首先将MgAgSb块体(制备方式不限)切割成为厚度0.5~2 mm的块体,具体形状不限。将块体打磨平整。尝试在不同温度(200 ℃、300 ℃、400 ℃、430℃)下对材料进行辊压处理,得知其辊压温度可以为400 ℃,该热电材料发生塑性形变且不破裂。调整辊筒距离,将块体夹住。每次下压量0.02~0.01 mm,下压后辊压5~7 次再次下压。辊筒线速度为0.2 mm/s。在辊压过程中始终用接触式测温计,测量辊筒温度,用红外测温仪测量材料温度。经过辊压,得到厚度分别为 1 mm、0.5 mm、0.08 mm、0.05 mm的热电厚膜。
对0.08mm厚的热电厚膜,进行电学性能测量,显然热电厚膜的电学性能有所下降(图6a)。随后对0.08 mm厚的热电厚膜进行退火,退火温度为350℃,退火时间为200 h。退火后,热电厚膜的电学性能恢复到未辊压的块体的水平(图6a)。最后得到的材料室温热电优值 (zT值)表明辊压后材料的zT值由0.31下降到0.3,退火后,材料的zT值达到0.32 (图6b)。说明对于MgAgSb,辊压,退火对材料性能有有益作用。
实施例 4
本实施例4用Bi 1.5Sb 0.5Te 3作为辊压材料。首先将块体材料切割成为厚度0.5~1 mm的块体。将块体打磨平整。尝试在不同温度(200 ℃、240 ℃、280 ℃、320℃)下对材料进行辊压,得知其在280 ℃的辊压温度下,该热电材料发生塑性形变且不破裂。将辊筒升温至280℃,调整辊筒距离,将块体热电材料夹住。每次下压量0.01~0.005 mm,下压后辊压10~15 次再次下压。辊筒线速度为0.2 mm/s。在辊压过程中始终用接触式测温计,测量辊筒温度,用红外测温仪测量材料温度。经过辊压,得到厚度分别为0.08 mm、0.01 mm的热电厚膜。对0.08 mm厚的热电厚膜进行退火,退火温度为350℃,退火时间为100 h。得到的材料室温热电优值 (zT值)表明辊压后材料的zT值由1.2下降到1.1,退火后,材料的zT值达到1.24 (图7a,7b)。说明对于Bi 1.5Sb 0.5Te 3,辊压,退火对材料性能有轻微的改善作用。
对比例 1
为了进行对比,体现本发明优秀的技术效果,设置在室温下对Cu 2Se进行辊压处理作为对比例1。首先将Cu 2Se块体材料切割,打磨成为厚度0.5 mm的块体。调整辊筒距离,将块体夹住。每次下压量0.001 mm,下压后辊压10~15 次再次下压。辊筒线速度为0.1 mm/s。发现室温下,辊压下Cu 2Se能发生轻微的变形,厚度由0.5mm被压缩至0.497 mm,形变量为0.6%。但是在进一步辊压下,材料发生严重的破裂,粉碎(图8)。
类似地,将Bi 1.5Sb 0.5Te 3,MgAgSb,Mg 3Sb 2,在室温下进行辊压,材料厚度1 mm, 辊压线速度为0.01mm/s,下压量为0.01mm。当进行辊压时,第一次进行下压,这些材料全部发生如图8一样的严重的破裂,粉碎。这种现象证明,室温下的辊压没有将室温脆性材料制备为热电厚膜的潜力。
在本发明中,室温下Cu 2Se 1-xS x (0.0≤x≤1.0)等材料为脆性材料,不能承受大的塑性变形,只能用辊压进行小的,小于1%的塑性变形,没有制备出热电厚膜的潜力。通过升温,突破了材料脆性的限制,Cu 2Se 1-xS x (0.0≤x≤1.0)等材料的塑性得到极大的提高,室温和高温的三点弯曲实验,对比显示,升温到120℃后Cu 2Se的塑性大幅提高(图3),但材料在室温区基本不存在塑性形变。升温到材料的塑性形变温度后,才能进行有意义的辊压,且在辊压过程中材料不破裂,不损失。由图2,以上众多实施例和对比实验所示,通过升温辊压,可以将室温下塑性极差,无法辊压为厚膜的Cu 2Se,Bi 1.5Sb 0.5Te 3,MgAgSb等材料,辊压为厚度小于0.05 mm的厚膜。需指出,以上举例只用于对本发明的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (10)

  1. 一种制备热电厚膜的方法,其特征在于,包括:
    确定热电材料的脆性-塑性转变温度;
    将块状热电材料在其脆性-塑性转变温度及其以上且熔点以下的温度区间内进行辊压处理;
    所述辊压处理的参数包括:辊筒的线速度为0.01~10 mm/s、优选0.1~5mm/s,控制每次下压辊筒的下压量为0.0005~0.1mm、优选0.001~0.05mm;
    重复辊压处理所述直至得到规定厚度的热电厚膜;
    以及将所得热电厚膜进行退火处理;所述退火处理的温度为100~800℃,优选300~500℃;所述退火处理的时间为10~500小时,优选为100~300小时。
  2. 根据权利要求1所述的方法,其特征在于,所述确定热电材料的塑性-脆性转变温度的方法为:采用变温材料万能试验机对热电材料进行三点弯曲力学实验,从室温开始不断地升高力学实验的测试温度,直到热电材料发生塑性变形,并定义当热电材料的应变量≥5% 时所对应的最低实验温度作为热电材料的脆性-塑性转变温度。
  3. 根据权利要求1所述的方法,其特征在于,所述确定热电材料的塑性-脆性转变温度的方法也可以为:对热电材料进行辊压处理,且从室温开始不断地升高辊压处理的温度直至热电材料发生塑性形变且不破裂,定义该温度作为热电材料的脆性-塑性转变温度。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述块状热电材料选自下述材料中的一种:
    (1)Cu wAg 2-wS xSe yTe z及其掺杂、固溶和改性产物,其中,0≤w≤2,0≤x≤1,0≤y≤1,0≤z≤1,且x+y+z=1;
    (2)Bi 2-cSb cTe 3-dSe d及其掺杂、固溶和改性产物,其中,0≤c≤2,0≤d≤3;
    (3)MgAgSb及其掺杂、固溶和改性产物;
    (4)Mg 3Sb 2及其掺杂、固溶和改性产物。
  5. 根据权利要求1-4所述的方法,其特征在于,所述块状热电材料的初始厚度为0.01~100 mm。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,在所述辊压处理中,检测辊压轮的温度和热电材料的温度,并控制两者均处于该热电材料的脆性-塑性转变温度之上。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,重复所述辊压处理2~100 次,优选为5~30次。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述辊压处理的气氛为空气气氛、氮气气氛、真空气氛、或惰性气氛;所述惰性气氛为氩气气氛或/和氦气气氛。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述退火处理中,升温速度和/或降温速度在0.01~1000℃/秒,优选地,1~20℃/秒。
  10. 一种根据权利要求1-9中任一项所述的方法制备的热电厚膜,其特征在于,所述热电厚膜的厚度为0.0001~1毫米。
PCT/CN2020/088680 2020-03-23 2020-05-06 一种制备热电厚膜的方法 WO2021189602A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022552928A JP7419560B2 (ja) 2020-03-23 2020-05-06 熱電厚膜の製造方法
US17/906,937 US11963447B2 (en) 2020-03-23 2020-05-06 Method for preparing thermoelectric thick film
EP20926661.8A EP4129895A1 (en) 2020-03-23 2020-05-06 Method for preparing thermoelectric thick film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010207506.5A CN113437208B (zh) 2020-03-23 2020-03-23 一种制备热电厚膜的方法
CN202010207506.5 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021189602A1 true WO2021189602A1 (zh) 2021-09-30

Family

ID=77752386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088680 WO2021189602A1 (zh) 2020-03-23 2020-05-06 一种制备热电厚膜的方法

Country Status (4)

Country Link
EP (1) EP4129895A1 (zh)
JP (1) JP7419560B2 (zh)
CN (1) CN113437208B (zh)
WO (1) WO2021189602A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120312343A1 (en) * 2011-04-12 2012-12-13 Nanocomp Technologies, Inc. Nanostructured material based thermoelectric generators and methods of generating power
CN104772361A (zh) * 2014-01-15 2015-07-15 中国科学院宁波材料技术与工程研究所 一种非晶合金纤维的制备方法及实现该制备方法的设备
CN107910431A (zh) * 2017-10-27 2018-04-13 北京石油化工学院 一种调控Cu2Se基块体热电材料性能的方法
CN108242500A (zh) * 2016-12-26 2018-07-03 中国科学院上海硅酸盐研究所 一种铜硒基纳米复合热电材料及其制备方法
CN109319748A (zh) * 2018-11-30 2019-02-12 武汉理工大学 一种具有室温柔性的Cu2X块体热电材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211024B (zh) * 2013-06-04 2016-02-10 中国科学院上海硅酸盐研究所 P型可逆相变高性能热电材料及其制备方法
CN105024007B (zh) * 2015-06-24 2018-09-25 中山大学 一种热电厚膜制备的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120312343A1 (en) * 2011-04-12 2012-12-13 Nanocomp Technologies, Inc. Nanostructured material based thermoelectric generators and methods of generating power
CN104772361A (zh) * 2014-01-15 2015-07-15 中国科学院宁波材料技术与工程研究所 一种非晶合金纤维的制备方法及实现该制备方法的设备
CN108242500A (zh) * 2016-12-26 2018-07-03 中国科学院上海硅酸盐研究所 一种铜硒基纳米复合热电材料及其制备方法
CN107910431A (zh) * 2017-10-27 2018-04-13 北京石油化工学院 一种调控Cu2Se基块体热电材料性能的方法
CN109319748A (zh) * 2018-11-30 2019-02-12 武汉理工大学 一种具有室温柔性的Cu2X块体热电材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENERGY ENVIRON SCI, vol. 12, 2019, pages 2983 - 2990
NATURE MATER, vol. 17, 2018, pages 421 - 426
TYAGI KRITI, GAHTORI, BHASKER, BATHULA, SIVAIAH, JAYASIMHADRI, M., SHARMA, SAKSHI, SINGH, NIRAJ KUMAR, HARANATH, D., SRIVASTAVA, A: "Crystal Structure and Mechanical Properties of Spark Plasma Sintered Cu2Se: An Efficient Photovoltaic and Thermoelectric Material", SOLID STATE COMMUNICATIONS, vol. 207, 1 April 2015 (2015-04-01), pages 21 - 25, XP055853645, DOI: 10.1016/j.ssc.2015.02.004 *

Also Published As

Publication number Publication date
US20230380287A1 (en) 2023-11-23
CN113437208A (zh) 2021-09-24
CN113437208B (zh) 2023-12-26
EP4129895A1 (en) 2023-02-08
JP7419560B2 (ja) 2024-01-22
JP2023517022A (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
CN1230377C (zh) 一种碲化铋基热电材料的制备方法
CN1974079A (zh) 一种碲化铋基热电材料的制备方法
CN104409623A (zh) 一种提高n型碲化铋基粉末烧结块体热电材料性能的加工方法
CN1962416A (zh) 一种碲化铋基热电材料的制备工艺
CN107354415B (zh) 一种制备优良热电性能合金的方法及优良热电性能合金
Liu et al. Resistance heating superplastic forming and influence of current on deformation mechanism of TA15 titanium alloy
WO2021189602A1 (zh) 一种制备热电厚膜的方法
CN112436062B (zh) 用于碲锌镉辐射探测器的复合电极及其制备方法
CN107267901A (zh) 一种高强度无铁磁性织构Ni‑W合金基带的制备方法
US11963447B2 (en) Method for preparing thermoelectric thick film
CN108067519B (zh) 一种具有超细晶组织的tc16钛合金丝材的制备方法
CN102002673A (zh) 纳米晶硅-氧化铝/氧化硅热电薄膜材料的制备方法
CN101570321A (zh) 一种高性能纳米结构BixSbyTe3-z热电材料的制备方法
CN106350773B (zh) 一种增大层状钴基氧化物薄膜高温热电势的方法
CN109604546A (zh) 一种高强度、强立方织构镍钨基带的制备方法
US5200392A (en) Composite for making superconducting wires or tapes
JP3979290B2 (ja) 熱電材料及びその製造方法
KR101814105B1 (ko) 배향성이 증가된 열전재료 제조방법
CN112897522A (zh) 一种超薄导热石墨膜及其制备方法
CN108103336B (zh) Bi1-xSbx热电材料及其制备方法
CN114750265B (zh) 一种陶瓷辊压装置和方法
WO2022198661A1 (zh) 一种超薄导热石墨膜及其制备方法
CN111360145A (zh) 一种超细晶金属箔材电脉冲辅助微拉伸工艺
WO2007007587A1 (ja) 配向制御したCo酸化物多結晶体
CN114182128A (zh) 一种高强高导石墨烯/铜铝复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020926661

Country of ref document: EP

Effective date: 20221024