WO2022198661A1 - 一种超薄导热石墨膜及其制备方法 - Google Patents

一种超薄导热石墨膜及其制备方法 Download PDF

Info

Publication number
WO2022198661A1
WO2022198661A1 PCT/CN2021/083389 CN2021083389W WO2022198661A1 WO 2022198661 A1 WO2022198661 A1 WO 2022198661A1 CN 2021083389 W CN2021083389 W CN 2021083389W WO 2022198661 A1 WO2022198661 A1 WO 2022198661A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
graphite
temperature
graphitization
graphite film
Prior art date
Application number
PCT/CN2021/083389
Other languages
English (en)
French (fr)
Inventor
周志强
叶从亮
Original Assignee
浙江华熔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华熔科技有限公司 filed Critical 浙江华熔科技有限公司
Priority to PCT/CN2021/083389 priority Critical patent/WO2022198661A1/zh
Publication of WO2022198661A1 publication Critical patent/WO2022198661A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation

Definitions

  • the invention relates to the field of graphite film production, in particular to an ultra-thin thermally conductive graphite film and a preparation method thereof.
  • Graphite thermal conductive film is a new type of heat dissipation material developed in recent years using the excellent thermal conductivity of graphite.
  • This product is a sheet-like material with extremely high thermal conductivity, which is made by repeatedly heat-treating the polymer film based on carbon material under special sintering conditions.
  • Graphite film has a unique grain orientation, which can conduct heat evenly in two directions, and the lamellar structure can be well adapted to any surface, which can improve the performance of consumer electronic products while shielding heat sources and components.
  • the conventional method for the production of graphite thermal conductive film is to cut the polyimide film first, and then enter the carbonization furnace.
  • the temperature is kept at about 2900 degrees Celsius for half an hour, then the temperature is lowered to room temperature, and then the finished product is obtained after rolling and densification. Due to the thinness of the product, when the thickness of the graphite film is less than 10 microns, the enthalpy of the semi-finished product after carbonization is low.
  • the degree of graphitization of the product can only reach about 30%.
  • the degree of graphitization is basically not changed by heat preservation or heating, so its thermal conductivity is poor and it is basically unusable. At the same time, its general hardness is high and it is not easy to process.
  • the thickness of the mainstream graphite thermal conductive film on the market can only be above 17 microns, and the thickness of 10 microns or less is rarely used.
  • a preparation method of an artificial graphite film and a graphite film material comprises: subjecting the polyimide film to be calcined to a first staged temperature rise according to a preset size , the polyimide film is reacted, and then cooled to obtain a semi-finished film; the semi-finished film is heated in stages under the protection of inert gas for the second time, so that the semi-finished film is reacted, and then cooled to obtain a graphite film.
  • the invention uses polyimide film as raw material, through designing two subsection heating processes, using the first subsection heating process to form an appropriate dynamic temperature field to obtain a structure with high crystallinity, and then in the first subsection heating process On the basis of the second stage heating process, the two stage heating processes cooperate with each other to form a graphite film with high orientation, high crystallinity and high conductivity, but the graphite film with high thermal conductivity prepared by this method The thickness and thermal conductivity of the film need to be further improved.
  • the present invention provides an ultra-thin thermally conductive graphite film and a preparation method thereof in order to overcome the defects of the conventional thermally conductive graphite film, which generally have large thickness, high hardness and difficult processing and poor thermal conductivity.
  • An ultra-thin thermally conductive graphite film is between 1 and 10 ⁇ m, and the thermal conductivity is greater than 2800 W/(m ⁇ K).
  • the graphitization degree of the graphite film is 100%.
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • the polyimide film is cut into pieces, and water-based graphite emulsion is sprayed on its surface, and after drying, a polyimide film with graphite micropowder attached to the surface is obtained.
  • step (1) The polyimide film obtained in step (1) is placed in a carbonization furnace for carbonization treatment to obtain a carbonized film.
  • the carbonized film is placed in a graphitization furnace for multiple segmented graphitization, and then rolled to obtain an ultra-thin thermally conductive graphite film after being lowered to room temperature.
  • the thickness of the aqueous graphite milk in the step (S.1) is 0.5-5 ⁇ m.
  • the solid content of the aqueous graphite milk in the step (S.1) is 10-30%.
  • the drying temperature in the step (S.1) is 55-70°C.
  • the carbonization treatment step in the step (S.2) is as follows: in a vacuum state, through a heating program of 8 to 12 hours, until the temperature in the furnace is 1200 ° C, then stop heating and cool down to room temperature to obtain a carbonized film.
  • the multi-stage graphitization procedure in the step (S.3) is as follows.
  • the present invention has the following advantageous effects.
  • the graphite film in the present invention has an ultra-thin thickness and a great thermal conductivity, which can effectively adapt to the increasingly thin demand and trend of consumer electronic products, and also has good softness, which is beneficial to the follow-up. processing operations.
  • the water-based graphite emulsion is sprayed on the surface of the polyimide film, so that the graphite fine powder in it can enter the pores generated during the decomposition of the polyimide, so that the obtained carbonized film has a compact and complete structure. Therefore, in the graphitization process, the carbon atoms of the turbostratic structure can be guided to transform into the graphite crystal structure in an orderly manner, so that the structure of the obtained graphite crystallites is more complete.
  • the thermally conductive graphite film of the present invention undergoes multiple segmented graphitization during the preparation process, and can perform multiple carbon arrangements on the part that can be graphitized in the future during the graphitization process, thereby effectively improving the graphitization degree of the graphite film. , so that the final product can reach 100% graphitization.
  • the degree of graphitization of the graphite film in the present invention can reach 100%, so the size of the graphite crystallites in the microstructure is larger, and the crystallite structure is more complete, so that the average speed of the internal phonon motion, sound
  • the mean free path of the particles reaches the maximum, so that the thermal conductivity of the graphite film in the present invention can be effectively improved compared with the ordinary graphite film in the prior art.
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • step (2) Put the polyimide film obtained in step (1) in a carbonization furnace, and in a vacuum state, after a uniform temperature rise of 10h, the temperature in the furnace is raised to about 1200°C, and then the heating is stopped and the temperature is lowered. At room temperature, a carbonized film was obtained.
  • the thermal conductivity of the ultra-thin thermally conductive graphite film prepared in this example reaches 2905 W/(m•K).
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • step (2) The polyimide film obtained in step (1) is placed in a carbonization furnace, and in a vacuum state, the temperature in the furnace is raised to about 1200°C after a constant temperature rise of 8 hours, and then the heating is stopped and the temperature is lowered. At room temperature, a carbonized film was obtained.
  • the thermal conductivity of the ultra-thin thermally conductive graphite film prepared in this example reaches 2852 W/(m•K).
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • step (2) Put the polyimide film obtained in step (1) in a carbonization furnace, and in a vacuum state, after a constant temperature rise of 12 hours, the temperature in the furnace is raised to about 1200 ° C, and then the heating is stopped and the temperature is lowered. At room temperature, a carbonized film was obtained.
  • the thermal conductivity of the ultra-thin thermally conductive graphite film prepared in this example reaches 2825W/(m•K).
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • step (2) Put the polyimide film obtained in step (1) in a carbonization furnace, and in a vacuum state, after a uniform temperature rise of 10h, the temperature in the furnace is raised to about 1200°C, and then the heating is stopped and the temperature is lowered. At room temperature, a carbonized film was obtained.
  • the thermal conductivity of the ultra-thin thermally conductive graphite film prepared in this example reaches 2905 W/(m•K).
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • step (2) The polyimide film obtained in step (1) is placed in a carbonization furnace, and in a vacuum state, after a constant temperature rise for 9 hours, the temperature in the furnace is raised to about 1200 °C, and then the heating is stopped and the temperature is increased. The temperature was lowered to normal temperature to obtain a carbonized film.
  • the thermal conductivity of the ultra-thin thermally conductive graphite film prepared in this example reaches 2853W/(m•K).
  • a preparation method of an ultra-thin thermally conductive graphite film comprising the following steps.
  • step (2) Put the polyimide film obtained in step (1) in a carbonization furnace, and in a vacuum state, after a uniform temperature rise of 10h, the temperature in the furnace is raised to about 1200°C, and then the heating is stopped and the temperature is lowered. At room temperature, a carbonized film was obtained.
  • the thermal conductivity of the ultra-thin thermally conductive graphite film prepared in this example reaches 2856 W/(m•K).
  • the graphite film in the present invention has an ultra-thin thickness and a great thermal conductivity, which can effectively adapt to the increasingly thin demand and trend of consumer electronic products, and also has good softness, which is beneficial to the follow-up. processing operations.
  • the water-based graphite emulsion is sprayed on the surface of the polyimide film, so that the graphite micropowder in it can enter the pores generated during the decomposition of the polyimide, so that the obtained carbonized film has a compact and complete structure. Therefore, in the graphitization process, the carbon atoms of the turbostratic structure can be guided to transform into the graphite crystal structure in an orderly manner, so that the structure of the obtained graphite crystallites is more complete.
  • the thermally conductive graphite film of the present invention undergoes multiple segmented graphitization during the preparation process, and can perform multiple carbon arrangements on the part that can be graphitized in the future during the graphitization process, thereby effectively improving the graphitization degree of the graphite film. , so that the final product can reach 100% graphitization.
  • the degree of graphitization of the graphite film in the present invention can reach 100%, so the size of the graphite crystallites in the microstructure is larger, and the crystallite structure is more complete, so that the average speed of the internal phonon motion, sound
  • the mean free path of the particles reaches the maximum, so that the thermal conductivity of the graphite film in the present invention can be effectively improved compared with the ordinary graphite film in the prior art.

Abstract

本发明涉及石墨膜生产领域,尤其涉及一种超薄导热石墨膜,该石墨膜的厚度在1~10μm之间,导热系数大于2800 W/(m·K),其制备方法如下:将聚酰亚胺薄膜分切成片,并在其表面喷涂水性石墨乳,烘干后得到表面附着有石墨微粉的聚酰亚胺薄膜,然后将其置于炭化炉中进行碳化处理,得到碳化膜,最后将碳化膜置于石墨化炉中进行多次分段石墨化,降至室温后压延得到超薄导热石墨膜。本发明克服了现有技术中的导热石墨膜通常具有厚度较大,硬度偏高难以加工以及导热系数较差的缺陷,制备得到的石墨膜具有超薄的厚度、良好的柔软度以及极大的导热系数,其能够有效的适应消费类电子产品越来越薄的需求以及趋势。

Description

一种超薄导热石墨膜及其制备方法 技术领域
本发明涉及石墨膜生产领域,尤其涉及一种超薄导热石墨膜及其制备方法。
背景技术
石墨导热膜是近年利用石墨的优异导热性能开发的新型散热材料。该产品是在特殊烧结条件下,对基于碳材料的高分子薄膜反复进行热处理加工,而制成的导热率极高的片状材料。石墨膜具有独特的晶粒取向,能够沿着两个方向均匀导热,片层状的结构可以很好的适应任何表面,能够在屏蔽热源与组件的同时改进消费类电子产品的性能。
石墨导热膜生产的常规方法是将聚酰亚胺薄膜先进行分切,然后进入碳化炉,在真空状态下,经过10小时左右的升温到1200℃左右,然后降温至常温,然后进入石墨化炉进行石墨化,经过15小时升温,在2900摄氏度左右保温半小时,然后降温至室温,然后再进行压延增密后即可得到成品。由于产品薄,当石墨膜的厚度低于10微米时,碳化完以后的半成品焓值低,在石墨化的时候,虽然温度达到2900摄氏度,但是产品的石墨化程度只能达到30%左右,再保温或者升温,对石墨化的程度基本上没有大的变化,因此其导热系数较差,基本无法使用,同时其普遍硬度高,不易加工。
因此,目前市场上主流的石墨导热膜的厚度只能在17微米以上,而10微米厚度及以内的则很少应用。
申请号为CN201910455339.3的一种人工石墨膜的制备方法以及石墨膜材料,所述人工石墨膜的制备方法包括:将待焙烧的聚酰亚胺薄膜按照预设尺寸进行第一次分段升温,使聚酰亚胺薄膜发生反应,然后冷却得到半成品膜;将半成品膜在惰性气体保护下进行第二次分段升温,使半成品膜发生反应,然后冷却得到石墨膜。该发明以聚酰亚胺薄膜为原材料,通过设计两次分段升温过程,利用第一次分段升温过程形成恰当的动态温度场,获得具有高结晶度结构,然后在第一次分段升温的基础上,进一步借助于第二次分段升温过程,使两次分段升温过程相互配合,形成高取向、高结晶度、高传导性能的石墨膜,但是通过该方法制备得到的高导热石墨膜的厚度与导热性均有待进一步提升。
技术问题
本发明是为了克服现有技术中的导热石墨膜通常具有厚度较大,硬度偏高难以加工以及导热系数较差的缺陷,提供了一种超薄导热石墨膜及其制备方法。
技术解决方案
为实现上述发明目的,本发明通过以下技术方案实现。
一种超薄导热石墨膜,所述石墨膜的厚度在1~10μm之间,导热系数大于2800 W/(m•K)。
作为优选,所述石墨膜的石墨化程度为100%。
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,并在其表面喷涂水性石墨乳,烘干后得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中进行碳化处理,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,降至室温后压延得到超薄导热石墨膜。
作为优选,所述步骤(S.1)中水性石墨乳的厚度为0.5~5μm。
作为优选,所述步骤(S.1)中水性石墨乳的固含量为10~30%。
作为优选,所述步骤(S.1)中烘干温度为55~70℃。
作为优选,所述步骤(S.2)中碳化处理步骤如下:在真空状态下,经过8~12h的升温程序,直到炉内温度1200℃,然后停止加热并降温至常温,得到碳化膜。
作为优选,所述步骤(S.3)中多次分段石墨化程序如下。
(S.3.1)真空状态下,将石墨炉在5~8h内升温至2800℃,保温0.5~2h。
(S.3.2)降温至2300℃,然后再次升高温度至2900℃,保温0.5~2h。
(S.3.3)降温至2400℃,然后再次升高温度至2900℃,保温0.25~1h。
有益效果
本发明具有以下有益效果。
(1)本发明中的石墨膜具有超薄的厚度以及极大的导热系数,其能够有效的适应消费类电子产品越来越薄的需求以及趋势,同时还具有良好的柔软度,有利于后续的加工操作。
(2)本发明通过在聚酰亚胺薄膜表面喷涂水性石墨乳,从而其中的石墨微粉能够进入到聚酰亚胺分解过程中产生的孔洞中,从而使得得到的碳化膜具有紧密完整的结构。从而便于在石墨化过程中,能够引导乱层结构的碳原子向石墨晶体结构的有序转化,从而得到的石墨微晶的结构更加完整。
(3)本发明的导热石墨膜在制备过程中通过多次的分段石墨化,能够在石墨化过程中对未来得及石墨化排列的部分进行多次碳排列,有效提升石墨膜的石墨化程度,使得最终的产品能够达到100%的石墨化。
(4)本发明中的石墨膜的石墨化程度能够达到100%,因此其微观结构中的石墨微晶尺寸较大,且微晶结构更为完整,使得其内部声子运动的平均速度、声子的平均自由程达到最大,从而使得本发明中的这种石墨膜相较于现有技术中普通石墨膜而言,其导热系数能够得到有效提升。
本发明的最佳实施方式
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,然后将市购的水性石墨乳用纯水稀释至固含量为20%,后,装入石墨乳喷枪储液罐(石墨乳雾化器)中,通过0.4Mpa压缩空气,对模具进行雾状喷涂,从而在其表面形成1μm厚度的喷涂水性石墨乳,待喷涂完成将聚酰亚胺薄膜放入烘箱,60℃摄氏度温度烘干,得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中,在真空状态下,经过10h小时的匀速升温,将炉内温度升温到1200℃左右,然后停止加热并降温至常温,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,具体如下。
(S.3.1)真空状态下,将石墨炉在7h内匀速升温至2800℃,保温1h,此时产品石墨化程度约在30%左右。
(S.3.2)然后降温至2300℃,让未石墨化的产品,在2300℃的时候重新进行碳排列,然后再次在3h内匀速升温至2900℃,保温1h,此时石墨化程度在70%左右。
(S.3.3)降温至2400℃,让未石墨化部分重新进行碳排列,然后再次在2h内匀速升高温度至2900℃,保温0.5h,此时石墨化程度为100%,从而完成石墨化,随即降至室温后,对其压延得到5μm厚的超薄导热石墨膜。
经过测试,通过本实施例制备得到的超薄导热石墨膜的导热系数测量达到2905 W/(m•K)。
本发明的实施方式
下面结合具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1。
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,然后将市购的水性石墨乳用纯水稀释至固含量为30%,后,装入石墨乳喷枪储液罐(石墨乳雾化器)中,通过0.2Mpa压缩空气,对模具进行雾状喷涂,从而在其表面形成0.5μm厚度的喷涂水性石墨乳,待喷涂完成将聚酰亚胺薄膜放入烘箱,55℃摄氏度温度烘干,得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中,在真空状态下,经过8h小时的匀速升温,将炉内温度升温到1200℃左右,然后停止加热并降温至常温,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,具体如下。
(S.3.1)真空状态下,将石墨炉在5h内匀速升温至2800℃,保温0.5h,此时产品石墨化程度约在25%左右。
(S.3.2)然后降温至2300℃,让未石墨化的产品,在2300℃的时候重新进行碳排列,然后再次在1h内匀速升温至2900℃,保温0.5h,此时石墨化程度在60%左右。
(S.3.3)降温至2400℃,让未石墨化部分重新进行碳排列,然后再次在5h内匀速升高温度至2900℃,保温1h,此时石墨化程度为100%,从而完成石墨化,随即降至室温后,对其压延得到1μm之间厚的超薄导热石墨膜。
经过测试,通过本实施例制备得到的超薄导热石墨膜的导热系数测量达到2852 W/(m•K)。
实施例2。
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,然后将市购的水性石墨乳用纯水稀释至固含量为10%,后,装入石墨乳喷枪储液罐(石墨乳雾化器)中,通过0.5Mpa压缩空气,对模具进行雾状喷涂,从而在其表面形成5μm厚度的喷涂水性石墨乳,待喷涂完成将聚酰亚胺薄膜放入烘箱, 70℃摄氏度温度烘干,得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中,在真空状态下,经过12h小时的匀速升温,将炉内温度升温到1200℃左右,然后停止加热并降温至常温,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,具体如下。
(S.3.1)真空状态下,将石墨炉在8h内匀速升温至2800℃,保温2h,此时产品石墨化程度约在40%左右。
(S.3.2)然后降温至2300℃,让未石墨化的产品,在2300℃的时候重新进行碳排列,然后再次在5h内匀速升温至2900℃,保温2h,此时石墨化程度在75%左右。
(S.3.3)降温至2400℃,让未石墨化部分重新进行碳排列,然后再次在3h内匀速升高温度至2900℃,保温0.25h,此时石墨化程度为100%,从而完成石墨化,随即降至室温后,对其压延得到10μm之间厚的超薄导热石墨膜。
经过测试,通过本实施例制备得到的超薄导热石墨膜的导热系数测量达到2825W/(m•K)。
实施例3。
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,然后将市购的水性石墨乳用纯水稀释至固含量为20%,后,装入石墨乳喷枪储液罐(石墨乳雾化器)中,通过0.4Mpa压缩空气,对模具进行雾状喷涂,从而在其表面形成1μm厚度的喷涂水性石墨乳,待喷涂完成将聚酰亚胺薄膜放入烘箱,60℃摄氏度温度烘干,得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中,在真空状态下,经过10h小时的匀速升温,将炉内温度升温到1200℃左右,然后停止加热并降温至常温,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,具体如下。
(S.3.1)真空状态下,将石墨炉在7h内匀速升温至2800℃,保温1h,此时产品石墨化程度约在30%左右。
(S.3.2)然后降温至2300℃,让未石墨化的产品,在2300℃的时候重新进行碳排列,然后再次在3h内匀速升温至2900℃,保温1h,此时石墨化程度在70%左右。
(S.3.3)降温至2400℃,让未石墨化部分重新进行碳排列,然后再次在2h内匀速升高温度至2900℃,保温0.5h,此时石墨化程度为100%,从而完成石墨化,随即降至室温后,对其压延得到5μm厚的超薄导热石墨膜。
经过测试,通过本实施例制备得到的超薄导热石墨膜的导热系数测量达到2905 W/(m•K)。
实施例4。
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,然后将市购的水性石墨乳用纯水稀释至固含量为25%,后,装入石墨乳喷枪储液罐(石墨乳雾化器)中,通过0.3Mpa压缩空气,对模具进行雾状喷涂,从而在其表面形成2μm厚度的喷涂水性石墨乳,待喷涂完成将聚酰亚胺薄膜放入烘箱,65℃摄氏度温度烘干,得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中,在真空状态下,经过9 h小时的匀速升温,将炉内温度升温到1200℃左右,然后停止加热并降温至常温,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,具体如下。
(S.3.1)真空状态下,将石墨炉在6 h内匀速升温至2800℃,保温1h,此时产品石墨化程度约在30%左右。
(S.3.2)然后降温至2300℃,让未石墨化的产品,在2300℃的时候重新进行碳排列,然后再次在4h内匀速升温至2900℃,保温1.5h,此时石墨化程度在75%左右。
(S.3.3)降温至2400℃,让未石墨化部分重新进行碳排列,然后再次在2h内匀速升高温度至2900℃,保温1h,此时石墨化程度为100%,从而完成石墨化,随即降至室温后,对其压延得到3μm厚的超薄导热石墨膜。
经过测试,通过本实施例制备得到的超薄导热石墨膜的导热系数测量达到2853W/(m•K)。
实施例5。
一种超薄导热石墨膜的制备方法,包括以下步骤。
(S.1)将聚酰亚胺薄膜分切成片,然后将市购的水性石墨乳用纯水稀释至固含量为18%,后,装入石墨乳喷枪储液罐(石墨乳雾化器)中,通过0.4Mpa压缩空气,对模具进行雾状喷涂,从而在其表面形成2μm厚度的喷涂水性石墨乳,待喷涂完成将聚酰亚胺薄膜放入烘箱,60℃摄氏度温度烘干,得到表面附着有石墨微粉的聚酰亚胺薄膜。
(S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中,在真空状态下,经过10h小时的匀速升温,将炉内温度升温到1200℃左右,然后停止加热并降温至常温,得到碳化膜。
(S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,具体如下。
(S.3.1)真空状态下,将石墨炉在6h内匀速升温至2800℃,保温1h,此时产品石墨化程度约在30%左右。
(S.3.2)然后降温至2300℃,让未石墨化的产品,在2300℃的时候重新进行碳排列,然后再次在5h内匀速升温至2900℃,保温1h,此时石墨化程度在70%左右。
(S.3.3)降温至2400℃,让未石墨化部分重新进行碳排列,然后再次在2h内匀速升高温度至2900℃,保温1h,此时石墨化程度为100%,从而完成石墨化,随即降至室温后,对其压延得到6μm厚的超薄导热石墨膜。
经过测试,通过本实施例制备得到的超薄导热石墨膜的导热系数测量达到2856 W/(m•K)。
工业实用性
(1)本发明中的石墨膜具有超薄的厚度以及极大的导热系数,其能够有效的适应消费类电子产品越来越薄的需求以及趋势,同时还具有良好的柔软度,有利于后续的加工操作。
 (2)本发明通过在聚酰亚胺薄膜表面喷涂水性石墨乳,从而其中的石墨微粉能够进入到聚酰亚胺分解过程中产生的孔洞中,从而使得得到的碳化膜具有紧密完整的结构。从而便于在石墨化过程中,能够引导乱层结构的碳原子向石墨晶体结构的有序转化,从而得到的石墨微晶的结构更加完整。
 (3)本发明的导热石墨膜在制备过程中通过多次的分段石墨化,能够在石墨化过程中对未来得及石墨化排列的部分进行多次碳排列,有效提升石墨膜的石墨化程度,使得最终的产品能够达到100%的石墨化。
 (4)本发明中的石墨膜的石墨化程度能够达到100%,因此其微观结构中的石墨微晶尺寸较大,且微晶结构更为完整,使得其内部声子运动的平均速度、声子的平均自由程达到最大,从而使得本发明中的这种石墨膜相较于现有技术中普通石墨膜而言,其导热系数能够得到有效提升。

Claims (8)

  1. 一种超薄导热石墨膜,其特征在于,所述石墨膜的厚度在1~10μm之间,导热系数大于2800 W/(m·K)。
  2. 根据权利要求1所述的一种超薄导热石墨膜,其特征在于,所述石墨膜的石墨化程度为100%。
  3. 一种如权利要求1或2所述超薄导热石墨膜的制备方法,其特征在于,包括以下步骤:
    (S.1)将聚酰亚胺薄膜分切成片,并在其表面喷涂水性石墨乳,烘干后得到表面附着有石墨微粉的聚酰亚胺薄膜;
    (S.2)将步骤(1)得到的聚酰亚胺薄膜置于炭化炉中进行碳化处理,得到碳化膜;
    (S.3)将碳化膜置于石墨化炉中进行多次分段石墨化,降至室温后压延得到超薄导热石墨膜。
  4. 根据权利要求3所述的一种超薄导热石墨膜的制备方法,其特征在于,所述步骤(S.1)中水性石墨乳的厚度为0.5~5μm。
  5. 根据权利要求3或4所述的一种超薄导热石墨膜的制备方法,其特征在于,所述步骤(S.1)中水性石墨乳的固含量为10~30%。
  6. 根据权利要求5所述的一种超薄导热石墨膜的制备方法,其特征在于,所述步骤(S.1)中烘干温度为55~70℃。
  7. 根据权利要求3所述的一种超薄导热石墨膜的制备方法,其特征在于,所述步骤(S.2)中碳化处理步骤如下:在真空状态下,经过8~12h的升温程序,直到炉内温度1200℃,然后停止加热并降温至常温,得到碳化膜。
  8. 根据权利要求3所述的一种超薄导热石墨膜的制备方法,其特征在于,所述步骤(S.3)中多次分段石墨化程序如下:
    (S.3.1)真空状态下,将石墨炉在5~8h内升温至2800℃,保温0.5~2h;
    (S.3.2)降温至2300℃,然后再次升高温度至2900℃,保温0.5~2h;
    (S.3.3)降温至2400℃,然后再次升高温度至2900℃,保温0.25~1h。
PCT/CN2021/083389 2021-03-26 2021-03-26 一种超薄导热石墨膜及其制备方法 WO2022198661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083389 WO2022198661A1 (zh) 2021-03-26 2021-03-26 一种超薄导热石墨膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083389 WO2022198661A1 (zh) 2021-03-26 2021-03-26 一种超薄导热石墨膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2022198661A1 true WO2022198661A1 (zh) 2022-09-29

Family

ID=83395108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083389 WO2022198661A1 (zh) 2021-03-26 2021-03-26 一种超薄导热石墨膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2022198661A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663444A (zh) * 2013-12-17 2014-03-26 张家港康得新光电材料有限公司 一种散热用石墨烯复合膜及其制备方法
CN104293308A (zh) * 2014-09-09 2015-01-21 湖南南方搏云新材料有限责任公司 一种高导热石墨膜及其制备工艺
CN104445174A (zh) * 2014-12-12 2015-03-25 碳元科技股份有限公司 一种超薄高导热石墨膜及其制备方法
CN104812204A (zh) * 2014-01-26 2015-07-29 斯迪克新型材料(江苏)有限公司 用于石墨散热片的制造工艺
CN107090275A (zh) * 2017-05-27 2017-08-25 杭州高烯科技有限公司 一种高导热的石墨烯/聚酰亚胺复合碳膜及其制备方法
US20180061517A1 (en) * 2016-08-30 2018-03-01 Nanotek Instruments, Inc. Highly Conductive Graphitic Films and Production Process
CN109575885A (zh) * 2018-11-28 2019-04-05 宁波墨西新材料有限公司 石墨烯导热膜及其制备方法
CN110092374A (zh) * 2019-05-28 2019-08-06 宇冠芯龙(武汉)科技有限公司 一种人工石墨膜的制备方法以及石墨膜材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663444A (zh) * 2013-12-17 2014-03-26 张家港康得新光电材料有限公司 一种散热用石墨烯复合膜及其制备方法
CN104812204A (zh) * 2014-01-26 2015-07-29 斯迪克新型材料(江苏)有限公司 用于石墨散热片的制造工艺
CN104293308A (zh) * 2014-09-09 2015-01-21 湖南南方搏云新材料有限责任公司 一种高导热石墨膜及其制备工艺
CN104445174A (zh) * 2014-12-12 2015-03-25 碳元科技股份有限公司 一种超薄高导热石墨膜及其制备方法
US20180061517A1 (en) * 2016-08-30 2018-03-01 Nanotek Instruments, Inc. Highly Conductive Graphitic Films and Production Process
CN107090275A (zh) * 2017-05-27 2017-08-25 杭州高烯科技有限公司 一种高导热的石墨烯/聚酰亚胺复合碳膜及其制备方法
CN109575885A (zh) * 2018-11-28 2019-04-05 宁波墨西新材料有限公司 石墨烯导热膜及其制备方法
CN110092374A (zh) * 2019-05-28 2019-08-06 宇冠芯龙(武汉)科技有限公司 一种人工石墨膜的制备方法以及石墨膜材料

Similar Documents

Publication Publication Date Title
US10961124B2 (en) Method for continuously preparing graphene heat-conducting films
CN113213458A (zh) 一种高性能低缺陷石墨烯散热膜的制备方法
CN111957975B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN107022739A (zh) 溅射镀膜用钼旋转靶材的制造方法
CN113354415A (zh) 一种超高导热石墨烯膜的制备方法
US11535567B2 (en) Polyimide-based composite carbon film with high thermal conductivity and preparation method therefor
CN109940158B (zh) 一种细晶钼板的快速制备工艺
CN109518107B (zh) 一种高性能钛带材的深冷轧制与热处理制备方法
CN112897522B (zh) 一种超薄导热石墨膜的制备方法
CN114751403A (zh) 高导热石墨烯膜及其制备方法
CN113058999B (zh) 一种极薄铼箔的制造方法
CN104828808B (zh) 一种石墨烯薄膜的制备方法
CN110655056A (zh) 一种多孔纳米硅碳复合材料的制备方法
WO2022198661A1 (zh) 一种超薄导热石墨膜及其制备方法
CN115231557B (zh) 石墨烯薄膜及其制备方法
CN109160809A (zh) 一种亚微米结构超薄氧化铝陶瓷基片及制备方法
CN106892663B (zh) 一种片层状氮化物陶瓷颗粒及其制备方法
CN108543947B (zh) 一种钼坯的制备方法
CN110342502B (zh) 一种石墨片原位生长石墨烯复合碳材料的制备方法
CN112279239A (zh) 一种批量化制备石墨烯膜的方法以及由此制得的石墨烯膜
CN116606144B (zh) 一种化学预还原制备石墨烯导热厚膜的方法
CN110562971A (zh) 超薄高导热石墨膜的制备方法
CN114657404B (zh) 一种高致密度超细晶钼镧合金及其制备方法
CN114988397A (zh) 一种高度有序且致密的石墨烯导热薄膜的制备方法
CN113150748B (zh) 一种石墨烯散热复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932282

Country of ref document: EP

Kind code of ref document: A1