WO2007007587A1 - 配向制御したCo酸化物多結晶体 - Google Patents

配向制御したCo酸化物多結晶体 Download PDF

Info

Publication number
WO2007007587A1
WO2007007587A1 PCT/JP2006/313288 JP2006313288W WO2007007587A1 WO 2007007587 A1 WO2007007587 A1 WO 2007007587A1 JP 2006313288 W JP2006313288 W JP 2006313288W WO 2007007587 A1 WO2007007587 A1 WO 2007007587A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
coo
temperature
oxide
crystal structure
Prior art date
Application number
PCT/JP2006/313288
Other languages
English (en)
French (fr)
Inventor
Hiroshi Fukutomi
Eisuke Iguchi
Original Assignee
National University Corporation Yokohama National University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Yokohama National University filed Critical National University Corporation Yokohama National University
Priority to JP2007524581A priority Critical patent/JPWO2007007587A1/ja
Publication of WO2007007587A1 publication Critical patent/WO2007007587A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Definitions

  • the present invention relates to ceramics manufactured by controlling crystal orientation, and more specifically, (00
  • Ceramics generally cause plastic deformation even when a large force is applied for the purpose of plastic deformation because the number of independent slip systems necessary for plastic deformation of a polycrystalline body having a high Peierls potential cannot be secured sufficiently. It is normal to destroy without. Therefore, unlike metal materials, ceramics did not have an orientation control technology by plastic working.
  • thermoelectric conversion ceramics by orientation control, a method has been proposed in which a part of the raw material is partially melted while being uniaxially pressed and then gradually cooled (Patent Document 1).
  • anisotropically shaped powders such as needles and plates are present in the molded body at a relatively high degree of orientation, and this anisotropically shaped powder is used as a template or a reactive template for the growth and oxidation of oxides. It is also possible to adjust the orientation by synthesis and / or sintering. The usefulness of rolling in a slurry state is also presented (Non-Patent Literature)
  • thermoelectric characteristic a ceramic represented by the general formula Bi Pb Sr Y Co O as a thermoelectric characteristic.
  • Non-Patent Document 1 (Non-Patent Document 1).
  • Patent Document 1 JP 2001-19544 (Patent No. 3089301)
  • Patent Document 2 JP 2003-282965 A
  • Patent Document 3 J. Phys. D: Appl. Phys. 34 (2001) 1017-1024
  • An object of the present invention is to provide a method for controlling the crystal orientation of a ceramic and a ceramic produced by controlling the crystal orientation.
  • the ceramic orientation whose crystal orientation is controlled has anisotropy, and in the case of thermoelectric conversion ceramics, it can be used as thermoelectric conversion ceramics with improved performance index by utilizing the direction of low electrical resistance.
  • the present invention relates to a polycrystalline body of cobalt oxide having an incommensurate crystal structure, and the crystals are oriented in a certain direction due to slip deformation in the (001) plane of the polycrystalline crystal. It is a Co acid complex polycrystal.
  • the polycrystal is compressed at a strain rate of 1.0 X 10 _5 to 1.0 X 10 _3 s _1 at a temperature range of 800 ° C or higher and a temperature of 30 ° C below the melting point of the crystal.
  • This slip deformation can be caused by performing the above.
  • plastic processing methods such as uniaxial compression processing, plane strain compression processing, rolling, and extrusion processing may be used.
  • the present invention is, 1. 0 X 10 _5 at a temperature range up to a temperature of 30 ° C under the melting point of the Co Sani ⁇ of polycrystalline whether we said crystals 800 ° C or higher with a mismatched crystal structure ⁇ 1.0 X 10 " 3 s"
  • This is a process for producing Co oxides with a mismatched crystal structure with slip deformation in the (001) plane consisting of compression processing at a strain rate of 1 .
  • the present invention has made it possible to provide a ceramic in which the orientation is aligned in a certain direction by plastically deforming a polycrystalline ceramic having a crystal grain force whose orientation direction is random.
  • the Co oxide having an incommensurate crystal structure of the present invention undergoes plastic deformation by high-temperature processing, realizing densification and texture formation, and as a result, improved thermoelectric properties.
  • the material of the present invention is a high-temperature thermoelectric conversion material that can be used up to around 700 ° C.
  • heat generated by combustion in factories and garbage incinerators can be removed.
  • the highly oriented polycrystalline ceramic of the present invention is a Co oxide having a mismatch crystal structure.
  • “Incommensurate crystal structure” refers to C composed of multiple layers including CoO electron conducting layers.
  • o Oxide is a stack of layers in the c-axis direction, with the a and b axes in the vertical direction, and the ratio of the lattice constant of the CoO layer in the b-axis direction to the lattice constant of the other layers in contact with this layer above and below Is an irrational number
  • This ceramic has a layered crystal structure and is more than 10 times the maximum value of the average density in the positive pole figure measured by the Schulz reflection method.
  • the layered crystal structure includes a first sublattice made of a Co 2 O layer and a layer different from Co 2 O.
  • the incommensurate crystal structure can be confirmed by X-ray diffractometry, but can be confirmed more accurately by neutron beam analysis.
  • composition can be confirmed by the EDX measurement method, and more accurately, it is generally difficult to determine the amount of oxygen that can be confirmed by wet analysis using either method.
  • Bi Pb Sr Y Co O (wherein x
  • Polycrystal is a collection of a large number of the above single crystals having a size of about 1 to about L0 m in various directions. This polycrystal can be obtained by assembling and sintering powders of this composition.
  • compression processing is a plastic processing method in which a shape is changed by applying a compression force to a target object.
  • Single-axis compression processing is a plastic processing method in which a uniaxial compression force is applied.
  • ⁇ Plane strain compression processing '' prevents deformation in one direction among deformations in the direction perpendicular to the compression force of the target object when a uniaxial compression force is applied, and deformation in only one direction. This is a compression processing method that allows
  • the temperature of this compressive force is over 800 ° C.
  • the temperature range is up to 30 ° C below the melting point of the crystal.
  • the temperature 30 ° C below the melting point of the crystal indicates the temperature at which the crystal close to the melting point of the crystal is in a solid state.
  • the melting point of the crystal is measured by thermal analysis.
  • the strain rate of the compression processing is obtained by dividing the compression rate by the height of the object to be compressed, and is 1.0 X 10 _5 to 1.0 X 10 _3 s _1 , preferably 2.0 X 10 _5 to 8 OX 10 _5 s _1 .
  • distortion If the speed is less than 1.0 X 10 _5 s _1 , the main deformation mechanism, which takes a long time to give sufficient strain, changes to crystal slip deformation force diffusion creep, and the crystal orientation is sufficiently aligned. If the strain rate is greater than 1.0 X 10 _4 s _1 , the contribution of diffusion to alleviate the lack of the slip system is insufficient.
  • Annealing is performed to remove lattice defects such as dislocations that have proliferated during crystal slip deformation, and in a temperature range of 800 ° C or higher up to 30 ° C below the melting point of the crystal. Heat. By annealing after the processing, recovery of dislocations and the like occurs, and the electrical resistance can be further reduced.
  • the measurement method was the Schulz reflection method, using CuKo; wire, tube voltage 40 kV, tube current 30 mA.
  • Tissue photographs were taken using a scanning electron microscope (SEM). The unsintered specimen was thinly cut with a diamond cutter and the surface of the specimen was also observed, and the finished specimen was observed on a surface perpendicular to the compression surface of the specimen.
  • SEM scanning electron microscope
  • the electrical resistance was measured by a four-terminal method after attaching an electrode to the sample, connecting a copper wire to the sample with a silver paste.
  • the measurement procedure was as follows. Place the prepared sample in a single bottle (manufactured by OXFORD), draw a vacuum with an oil rotary pump, and apply a current of 10 mA when rising from about 80 K to 340 K using liquid nitrogen as a medium. The voltage value of the hour (workpiece is 100mA) was measured under GP-IB control at a temperature interval of 1K. The temperature was measured using a copper-constantan thermocouple.
  • Bi 0 purity 99.9%, Wako Pure Chemical Industries, Ltd.
  • PbO purity 97%, Nakarai Desk Co., Ltd.
  • Sr 0 purity 99.9%, Wako Pure Chemical Industries, Ltd.
  • PbO purity 97%, Nakarai Desk Co., Ltd.
  • Sr 0 purity 97%, Nakarai Desk Co., Ltd.
  • this mixture was dry-mixed for 60 minutes using an agate ball mill and a milling machine (SPEX, CertiPrep).
  • the sample was put in an alumina boat and calcined at 790 ° C for 12 hours in a pine furnace.
  • the powder was refined by dry grinding using an agate mortar.
  • the obtained powder was formed into a cylinder having a diameter of about 11 mm and a height of about 4 mm, placed in an alumina boat, and baked in air at 840 ° C for 24 hours in a Matsufur furnace.
  • the resulting crystal is a Co oxide with a mismatch crystal structure with a composition of Bi Pb Sr Y Co O.
  • the sample produced in Production Example 1 was sandwiched between magnesia plates at right angles to the axial direction of the cylinder using a 2t autograph (manufactured by Shimadzu Corporation) and heated in an infrared image furnace. While the temperature rose to 840 ° C, the temperature of the sample was measured using a thermocouple. Even after the target temperature was reached, the jig continued to expand, so the temperature was held for about 70 minutes until it stopped.
  • Fig. 4 and Fig. 4 show the diffraction pattern of the plane perpendicular to the cylinder axis of the test specimen and the positive dot diagram. Shown in 5.
  • Imax was measured by taking a positive point map of this peak. From this positive pole figure, it can be seen that the (001) plane is oriented parallel to the compression plane and rotated around the normal of the (001) plane by various angles.
  • a cross-sectional photograph (SEM) in the direction parallel to the cylinder axis of the obtained specimen is shown in FIG. From this photograph, it can be seen that the dimensions of the crystal grains differ between the direction perpendicular to the compression direction (longitudinal direction in the figure) and the direction parallel to the direction, and plastic deformation occurred in the compression direction.
  • the maximum value of the pole density in the (001) pole figure (Fig. 8) determined by Schulz's reflection method was 1.0 before calorie, but increased to 11.7 as the amount of strain increased. As shown in Fig. 9, the resistance decreases monotonously with increasing strain ( ⁇ ) due to processing up to true strain of 1.87. In addition, materials manufactured by plane strain compression show a lower specific resistance than workpieces with true strains up to 1.87. Furthermore, the electrical resistance of the material created by this method remains low even at high temperatures.
  • Example 4 The sample that had been subjected to the compression check in Example 2 (with a strain of 1.87) was annealed in air at 840 ° C for 24 hours in a Matsufur furnace. Figure 9 shows the resistivity. Annealing further reduced the electrical resistance, down to a maximum of 20: 1. That is, by realizing high orientation by the orientation control technology of the present invention, the figure of merit of thermoelectric characteristics has been dramatically improved by 20 times.
  • a magnesia plate used for uniaxial compression was cut into a strip of 5 mm width, which was then manufactured
  • a high-temperature plane strain compressive force test was performed by applying a pressure vertically from the axial direction of the cylinder of the sample prepared in 1.
  • Example 2 As in Example 1, at 840 ° C along the axial direction of the sample cylinder at 2t autograph cross-head speed constant (5.0 X 10- 3 mm / min , the strain rate 2.0 X 10- 5 s-1 High-temperature plane strain compression processing was performed. The results are shown in Table 2.
  • a cylindrical base material was made by press molding and then sintered at 920 ° C for 24 hours.
  • Example 6 The electrical resistance of Example 6 was measured by a four-terminal method after attaching an electrode to the sample and then connecting a copper wire to the sample with a silver paste. The results are shown in Figs.
  • Figure 14 shows the measurement results of the specific resistance of [Ca CoO] CoO. b Sr Y Co O results in low resistivity, -1.87 force-working material and plane strain compression material
  • CoO is the result of heating and cooling.
  • the result of 0 is shown enlarged.
  • the electrical resistivity reaches a minimum of 2 m ⁇ cm or less.
  • Example 2 (Bi-Sr-Co-O) and Example 5 and Example 6 (Ca-Co-0), which are layered oxides having a misfit structure, are also shown in FIG. Shown in
  • Figure 17 shows the results of confirming the crystal structure of [Ca CoO] CoO by X-ray diffraction.
  • CoO is a material in which Ca in [Ca CoO] CoO is partially substituted with Sr.
  • the crystal structure is the same as [Ca CoO] CoO.
  • Example 2 four layers of insulation between CoO layers
  • the crystal orientation can be controlled by this method even when V, V, and misalignment.
  • FIG. 1 is a diagram showing a crystal structure of Bi Pb Sr Y Co 2 O. In the figure, vertical direction (crystal c
  • the atomic plane whose normal is (axial direction) is the (001) plane.
  • FIG. 2 is a diagram showing a diffraction pattern of a polycrystal prepared in Production Example 1.
  • FIG. 3 is a cross-sectional photograph (SEM) of a polycrystal prepared in Production Example 1.
  • FIG. 4 is a diagram showing a diffraction pattern of a crystal subjected to high-temperature uniaxial compression processing in Example 1.
  • FIG. 5 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Example 1.
  • the concentric curve indicates the position where the average pole density is 1, 2, 3, 4, 5 or 6 times higher from the outside.
  • FIG. 6 is a cross-sectional photograph (SEM) of a crystal subjected to high-temperature uniaxial compression processing in Example 1.
  • the vertical direction in the figure is the compression direction.
  • FIG. 7 is a graph showing changes in density of crystals subjected to high-temperature uniaxial compression processing in Example 2.
  • the vertical axis represents density (g / cm 2 ), and the horizontal axis represents strain.
  • FIG. 8 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Example 2.
  • FIG. 9 is a graph showing the resistivity of crystals subjected to high-temperature uniaxial compression processing in Example 2.
  • FIG. 10 is a diagram showing a diffraction pattern of a crystal subjected to high-temperature plane strain compression processing in Example 4.
  • FIG. 11 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature plane strain compression processing in Example 4. Concentric curves indicate the positions where the average pole density is 1, 2, 3, 4, 5, 6, 7 times as many as the order from the outside.
  • FIG. 12 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Example 5.
  • FIG. 13 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Example 6.
  • FIG. 14 is a graph showing the results of measuring electrical resistance of the crystal prepared in Example 6.
  • FIG. 15 is a diagram showing the results of measuring electrical resistance of the crystal prepared in Example 6.
  • FIG. 1 A first figure.
  • FIG. 17 A diagram showing an X-ray diffraction pattern of a polycrystal prepared in Production Example 3.

Description

明 細 書
配向制御した Co酸化物多結晶体
技術分野
[0001] この発明は、結晶配向制御により製造されたセラミックスに関し、より詳細には、 (00
1)面内のすべり変形が生じ塑性変形した不整合結晶構造を持つ Co酸化物に関す る。
背景技術
[0002] セラミックスは一般にパイエルスポテンシャルが高ぐ多結晶体の塑性変形に必要 な独立すベり系の数が十分に確保できないために、塑性変形を目的として大きな力 をカロえても塑性変形を生ずることなく破壊するのが通常である。それゆえセラミックス には金属材料と異なり塑性加工による配向制御技術は存在しな力つた。
一方、熱電変換セラミックスの性能指数を配向制御により増大させるために、成形 体を一軸加圧しながら原料の一部を部分溶融させ、そして徐冷する方法が提示され ている (特許文献 1)。また、針状や板状等の異方形状粉末を成形体中に相対的に 高 、配向度で存在させ、この異方形状粉末をテンプレートまたは反応性テンプレート として用いて酸ィ匕物の成長および/または合成ならびにその焼結を行い、配向を整え ることも行われて ヽる。スラリー状態での圧延の有用性も提示されて ヽる (非特許文献
2)。
なお、本発明者らは一般式 Bi Pb Sr Y Co O で表されるセラミックスが熱電特
2-x X 3-y y 2 9- δ
性を有することを報告して 、る (非特許文献 1)。
[0003] 特許文献 1:特開 2001-19544 (特許第 3089301号)
特許文献 2:特開 2003-282965
特許文献 3 : J. Phys. D: Appl. Phys. 34 (2001) 1017-1024
発明の開示
発明が解決しょうとする課題
[0004] 従来のセラミックスの結晶配向制御技術は、再結晶によって所望の結晶が得られる 物質系や組成のみに適用が限定されていたり、異方形状粉末の作製やスラリー化な ど複雑な工程を必要とする等の難点があった。
金属材料では、圧延などの塑性加工技術により大きな塑性変形を加えて結晶配向 を整える多様な集合組織制御技術が確立されているが、セラミックスにおいても、結 晶性の材料を特定の結晶面に沿ったすべり、即ち結晶すベり変形により、大きく塑性 変形させることができれば、結晶の配向を整えることができると考えられる。
本発明は、セラミックスの結晶配向を制御する方法及び結晶配向制御により製造さ れたセラミックスを提供することを目的とする。このように結晶配向制御されたセラミツ タスは異方性を持ち、熱電変換セラミックスの場合には、電気抵抗が低い方向を利用 することにより、性能指数の向上した熱電変換セラミックスとして利用することができる 課題を解決するための手段
[0005] 本発明が対象とする不整合結晶構造 (misfit structure)を持つ Co酸化物 (層状の 結晶構造を有するセラミックス)では、(001)面内に最隣接原子間距離の短い方向が あり、融点に近 、温度まで昇温すればパイエルスポテンシャルを乗り越えて完全転 位を活動させることができる。この場合、(001)面内には独立なすべり系が 2つしか存 在しな 、ので、多結晶体を大きく変形させることは困難である。
本発明においては、拡散による結晶粒間の変形の緩和が生じうる温度と歪み速度 を選定することにより大歪み加工を達成することができることを見出し、本発明を完成 させるに至った。
[0006] 即ち、本発明は、不整合結晶構造を持つ Co酸ィ匕物の多結晶体であって、該多結 晶の(001)面内でのすべり変形によって一定方向に結晶が配向した Co酸ィ匕物多結 晶体である。この多結晶を 800°C以上カも該結晶の融点の 30°C下の温度までの温 度範囲にて 1. 0 X 10_5〜1. 0 X 10_3s_1の歪み速度で圧縮力卩ェを行うことによりこ のすベり変形を生じさせることができる。
この圧縮加工は、単軸圧縮加工、平面ひずみ圧縮加工、圧延、押出加工等の塑性 加工法を用いてもよい。
また本発明は、不整合結晶構造を持つ Co酸ィ匕物から成る多結晶を 800°C以上か ら該結晶の融点の 30°C下の温度までの温度範囲にて 1. 0 X 10_5〜1. 0 X 10"3s" 1の歪み速度で圧縮加工を行うことから成る(001)面内のすべり変形が生じた不整合 結晶構造を持つ Co酸ィ匕物の製法である。
この不整合結晶構造を持つ Co酸ィ匕物に、更に、 800°C以上カも該結晶の融点の 3 0°C下の温度までの温度範囲にて 12〜50時間の焼鈍をカ卩えてもよい。
発明の効果
[0007] 本発明は、配向方向がランダムな結晶粒力 成る多結晶のセラミックスを塑性変形 することにより、配向を一定方向にそろえたセラミックスを提供することを可能にした。 本発明の不整合結晶構造を持つ Co酸化物は、高温加工によって塑性変形が進行 し、緻密化と集合組織形成が実現され、その結果、熱電特性が向上した。
また、本発明の材料は、 700°C近傍まで使用できる高温用熱電変換材料として、化 石燃料熱電変換発電機はもとより、工場ゃゴミ焼却場等における燃焼で生じ従来廃 棄されてきた熱を直接電気エネルギーに変換するエネルギー供給装置に利用できる 発明を実施するための最良の形態
[0008] 本発明の高配向性多結晶体セラミックスは、不整合結晶構造を持つ Co酸化物であ る。
「不整合結晶構造」とは、 CoO電子伝導層を含む複数の層の積層で構成される C
2
o酸ィ匕物は c軸方向に層が積み重なり、それと垂直方向に aおよび b軸があり、 b軸方 向の CoO層の格子定数とこの層と上と下で接する他の層の格子定数の比が無理数
2
である構造を意味する。ただし、総ての層の a軸方向の格子定数は等しい。
このセラミックスは、層状結晶構造を有し、シュルツの反射法で測定した正極点図に おける極密度の最大値力 平均極密度の 10倍以上である。この層状結晶構造とは、 例えば図 1に示すように Co O層からなる第 1副格子と、 Co Oとは異なる層からなる
2 2
第 2副格子が所定の周期で堆積した構造を 、う。
不整合結晶構造は、 X線回折法で確認できるが、中性子線解析によりより精確に確 認することができる。
また、組成は EDX測定法により確認することができ、より精確には湿式分析で確認 できる力 酸素量の決定はいずれの方法を用いても一般には困難である。 [0009] この不整合結晶構造を持つ Co酸化物として、 Bi Pb Sr Y Co O (式中、 x
2-x x 3-y y 2 9_ δ
=0. 4〜0. 8、 y=0. 4〜0. 8、 δ =0. 2〜0. 6)、 [Ca CoO ] CoO (式中、 x=0.2
2 3-x 1-y 2-z
〜0、 y=0.4〜0、 z=0.2〜0)、 [ (Ca Sr ) CoO ] CoO (式中、 x=0.2〜0、 y=0.2
1-x x 2 3-y 1-z 2-w
〜0、 ζ=0·4〜0、 w=0.2〜0)、 [(Ca (Co、 Cu) O ) CoO (式中、 x=- 0·1〜0·
2 2-x 4-y 0. 63-z 2-w
l、y=0.3〜0、z=- 0.1〜0.1、w=0.2〜0)又は [Bi Sr O ] CoO (式中、 x=
1. 74-x 2-y 4-z 0. 25-w 2~v
- 0.05〜0.05、 y=- 0.05〜0.05、 z=0.2〜0、 w=0.05〜0、 V=0.2〜0)等が挙げられるが、 本発明の実施上、 [ (Ca Sr ) CoO ] CoO (式中、 x=0.2〜0、 y=0.2〜0、 z=0.4
1-x x 2 3-y 1-z 2-w
〜0、 w=0.2〜0)及び [Ca CoO ] CoO (式中、 χ=0·2〜0、 y=0.4〜0、 ζ=0·2〜0)
2 3-x 1-y 2-z
が重要である。
[0010] 「多結晶」は、サイズは約 1〜: L0 m程度の上記の多数の単結晶が様々な方向をも つて集合したものである。この多結晶はこの組成の粉末を集合させて燒結することに より得ることがでさる。
[0011] 「圧縮加工」は、対象となる物体に圧縮力を加えて形状を変える塑性加工法である。
本願発明の"不整合結晶構造を持つ Co酸化物の多結晶体"に圧縮加工を施すと、 この Co酸ィ匕物多結晶体を構成し様々な方向を向いた結晶粒の(001)面上ですベり 変形が生じる。すべり変形によって、多結晶体の圧縮方向の長さが減少する塑性変 形が生ずる。このすベり変形の結果、各結晶の(001)面が圧縮面に平行になる位置 まで回転する。すなわち、多結晶体を構成する結晶粒の(001)面の法線方向力 圧 縮加工を加えた方向と一致するように結晶が回転する。
[0012] 「単軸圧縮加工」は、一軸の圧縮力を作用させる塑性加工法である。
「平面ひずみ圧縮加工」は、一軸の圧縮力を作用させる際、対象となる物体における 圧縮力と直交する方向への変形のうち、一方向への変形を阻止し、残る一方向のみ への変形を許す圧縮加工法である。
この圧縮力卩ェの温度は 800°C以上力 該結晶の融点の 30°C下の温度までの温度 範囲である。結晶の融点の 30°C下の温度とは、この結晶の融点に近ぐ結晶が固体 状態である温度を示す。なお、結晶の融点は、熱分析により測定する。
この圧縮加工の歪み速度は、圧縮速度を被圧縮物の高さで除したものをいい、 1. 0 X 10_5〜1. 0 X 10_3s_1、好ましくは 2. 0 X 10_5〜8. O X 10_5s_1である。歪み 速度が 1. 0 X 10_5s_1以下では、十分な歪みを与えるのに多大な時間がかかるだけ でなぐ主たる変形機構が結晶すベり変形力 拡散クリープに変化し、結晶配向が十 分整わない多結晶体となり、歪み速度が 1. 0 X 10_4s_1以上では、すべり系の不足 を緩和するための拡散の寄与が不足する。
[0013] 焼鈍は、結晶すベり変形の際に増殖した転位等の格子欠陥の除去のために行い、 800°C以上カも該結晶の融点の 30°C下の温度までの温度範囲で加熱する。加工後 に焼鈍を施すことにより、転位等の回復が生じ、電気抵抗をさらに低減させることがで きる。
[0014] 以下、実施例にて本発明を例証するが本発明を限定することを意図するものでは ない。
以下の実施例で X線回折は、半自動ディフラタトメーター(マックサイエンス社製)を 用いて、 α =0度 (板材面法線方向)〜 75度の範囲で測定を行い、得られた回折強度 より正極点図を得た。測定方法は、 Schulz反射法であり、 CuK o;線、管電圧 40kV、管 電流 30mAで行った。
また、組織写真は走査型電子顕微鏡 (SEM)を用いて行った。未加工の焼結体の 試料はダイアモンドカッターで薄く切り取って力もその表面を、加工済みの試料は試 験片の圧縮面に対して垂直な面を観察した。
電気抵抗は、試料に電極を取り付けた後、銀ペーストで銅線を試料に接続し、四端 子法で測定した。測定の手順は、作製した試料をデュア一瓶 (OXFORD製)にセット し、油回転ポンプで真空を引き、その状態で液体窒素を媒体として約 80Kから 340K までの上昇時に、電流を 10mA印加した時 (加工材は 100mA)の電圧値を 1Kの温度間 隔で GP— IB制御のもと測定した。温度は銅ーコンスタンタン熱電対を用いて測定し た。
[0015] 製造例 1
Bi 0 (純度 99.9%、和光純薬工業 (株))、 PbO (純度 97%、ナカライデスク (株))、 Sr 0 (
2 3 2 2 3 純度 99.9%、添川理化学 (株))、 Y 0 (純度 99.9%、和光純薬工業 (株))および Co 0 (純
2 3 3 4 度 99.9%、添川理ィ匕学 (株))、をモル比を 45:30:51:15:40として総重量 15g程度になるよ うに秤量し、メノウ乳鉢を使用して、メタノールを用いて湿式混合を行った。混合時間 は 1時間 30分であった。
次に、この混合物を、メノウ製のボールミルとミリング機 (SPEX社製 CertiPrep)を用い て 60分間乾式混合を行った。
次に、試料をアルミナボートに入れて、マツフル炉で 790°Cで 12時間の仮焼を行つ た。
仮焼の終了した試料は粒成長して 、るために、メノウ乳鉢を用いて乾燥粉碎するこ とによって粉末を微細化させた。
得られた粉末を、直径約 l lmm、高さ約 4mmの円柱に成形し、アルミナボート内に 入れて、空気中でマツフル炉で 840°Cで 24時間焼成した。
得られた結晶は、組成が Bi Pb Sr Y Co O の不整合結晶構造を持つ Co酸化
1.5 0.5 1.7 0.5 2 9 - δ
物であり、約 1〜10 μ πι程度の結晶粒が集合した多結晶であった。その X線回折パ ターンを図 2に、結晶の断面写真(SEM)を図 3に示す。この結晶の融点は 930°Cで めつ 7こ。
実施例 1
製造例 1で作製した試料を、 2tオートグラフ(島津製作所製)を使用して、円柱の軸 方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が 84 0°Cまで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても 治具の熱膨張が続くので収まるまで約 70分間、温度を保持した。
温度保持後、 2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード 一定(5.0 X 10— 3mm/min、歪み速度 2.0 X 10— 5s— 1に相当する。)で圧縮することにより、 高温単軸圧縮加工を行った。結果を表 1に示す。
[表 1]
Figure imgf000007_0001
得られた試験片の円柱の軸に垂直面の回折パターンとその正極点図を図 4及び図 5に示す。回折パターンにおいて 30度付近に飛びぬけて大きなピークが確認できた のでこのピークの正極点図をとり、 Imaxを測定した。この正極点図から、(001)面が圧 縮面に平行に配向し、(001)面の法線回りに様々な角度回転していることが分かる。 得られた試験片の円柱の軸に平行方向の断面写真(SEM)を図 6に示す。この写 真から圧縮方向(図の縦方向)に垂直な方向と平行な方向とで結晶粒の寸法が異な つており、圧縮方向に塑性変形が生じたことがわかる。
実施例 2
[0017] 最終歪が 0.47、 0.9、 1.27、 1.87となるよう実施例 1と同様の操作を行った。その密度 を図 7に示し、正極点図を図 8に示し、抵抗率を図 9に示す。
図 7の密度変化から、歪みが 0.9付近まで密度が単調に増大し、焼結体が緻密化し ていることがわかる。この段階までが従来技術で採用されているホットプレスの工程で ある。本技術では、加工条件を上記のように設定することにより、さらに圧縮を継続し 、最大で真歪み 1.87までの塑性カ卩ェを達成した。この時製品にはクラックなどは認め られず、健全材であることが確認できた。
シュルツの反射法により定めた (001)極点図(図 8)における極密度の最大値は、カロ ェ前には 1.0であるが歪み量の増大とともに 11.7まで増大し、高い配向が実現された 電気抵抗は、図 9に示す様に、真歪み 1.87までの加工によって、歪み量( ε )の増 大と共に単調に低下している。また、平面歪み圧縮で製造された素材は真歪み 1.87 までの加工材よりも低い比抵抗を示している。さら〖こ、本方法で作成された素材の電 気抵抗は、高温域でも低い値を維持している。
実施例 3
[0018] 実施例 2で圧縮カ卩ェした試料 (歪み 1.87のもの)をマツフル炉により空気中 840°Cで 24 時間焼鈍処理を行った。その抵抗率を図 9に示す。焼鈍により電気抵抗がさらに低 減し、最高で二十分の一まで低下した。すなわち、本発明の配向制御技術によって 高配向化を実現することにより、熱電特性の性能指数が 20倍と飛躍的に向上した。 実施例 4
[0019] 単軸圧縮で用いたマグネシアプレートを幅 5mmの短冊状に切り取り、それを製造例 1で作製した試料の円柱の軸方向から垂直にあてがって加圧することにより、高温平 面ひずみ圧縮力卩ェを行った。
実施例 1と同様に、 840°Cにて 2tオートグラフで試料の円柱の軸方向に沿ってクロ スヘッドスピード一定(5.0 X 10— 3mm/min、歪み速度 2.0 X 10— 5s— 1に相当する。)で圧縮 することにより、高温平面ひずみ圧縮加工を行った。結果を表 2に示す。
[表 2]
Figure imgf000009_0001
[0020] また、得られた試験片の円柱の軸に垂直面の回折パターンとその正極点図を図 10 及び図 11に示す。実施例 1 (高温単軸圧縮加工)の正極点図(図 5)においては、 (0 01)面が揃っている力 その方向は揃っていなかったが、本実施例(高温平面ひず み圧縮加工)においては、正極点図から、(001)面が面法線に対して同心円状には分 布しておらず、この面が圧縮面に平行に配向しているだけでなぐ特定の方向に揃つ ていることを示しており、平面ひずみ圧縮によって面と方向を揃えることができたと考 えられる。つまり単結晶に近い組織の方向性を持った材料ができたと考えられ、優れ た熱電特性を持つと考えられる。
[0021] 製诰例 2
CaCO (和光純薬工業 (株)製、純度 99. 9%)、 Co 0 (レアメタリック株式会社製、純度
3 3 4
99· 9%)、 SrCO (和光純薬工業 (株)製、純度 99· 9%)の原料粉末を [(Ca Sr ) CoO
3 0.9 0.1 2 3
] CoOになるよう秤量し、湿式混合後 920°Cで 12時間仮焼きした。仮焼き後粉砕し
0.62 2
て粉末化した後一辺が 6mmの立方体形状にプレス成形し、 920°Cで 24時間焼結した 。さらに酸素雰囲気中 700°Cで 12時間最終焼鈍を行った。この結晶の融点は 1350 1400°Cであった。
実施例 5
[0022] 製造例 2で作製した試料を、 2tオートグラフ(島津製作所製)を使用して、角柱の軸 方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が 88 0°Cまで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても 治具の熱膨張が続くので収まるまで約 70分間、温度を保持した。
温度保持後、 2tオートグラフで試料の角柱の軸方向に沿ってクロスヘッドスピード 一定(2.0 X 10— 2mm/min、歪み速度 5.5 X 10— 5s— 1に相当する。)で真歪み— 1.14まで圧 縮することにより、高温単軸圧縮加工を行った。この試料について計測した (001)正 極点図を図 12に示す。投影面は圧縮面、平均極密度を 1としている。図の中心、す なわち圧縮面法線位置に最大極密度が 12を越える高い極密度の集積が確認される 。また、同心円状に極密度の集積が広がっている。この結果は実施例 2と同様である
[0023] 製诰例 3
[Ca CoO ] CoO粉末 (セイミケミカル株式会社製)を用いて直径 11mm高さ 5mmの
2 3 0.62 2
円柱状母材をプレス成形で作成した後、 920°Cで 24時間焼結した。
実施例 6
[0024] 製造例 3で作製した試料を、 2tオートグラフ(島津製作所製)を使用して、円柱の軸 方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が 92 0°Cまで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても 治具の熱膨張が続くので、収まるまで約 70分間、温度を保持した。
温度保持後、 2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード 一定(2.0 X 10— 2mm/min、歪み速度 6.7 X 10— 5s— 1に相当する。)で真歪み— 1.01まで圧 縮することにより、高温単軸圧縮加工を行った。この試料について計測した (001)正 極点図を図 13に示す。投影面は圧縮面、平均極密度を 1としている。図の中心、す なわち圧縮面法線位置に最大極密度が 17を越える高い極密度の集積が確認される 。また、同心円状に極密度の集積が広がっている。この結果は実施例 2及び 5と同様 で、電導面が圧縮面に平行に頻度高く配向して 、ることを示して 、る。
実施例 6の電気抵抗を、試料に電極を取り付けた後、銀ペーストで銅線を試料に接 続し、四端子法で測定した。その結果を図 14と図 15に示す。
図 14は [Ca CoO ] CoOの比抵抗の測定結果を、比較のため、図 9に示した Bi P b Sr Y Co O の結果の中で比抵抗値が低い、 -1.87力卩工材と平面歪み圧縮材
0.5 1.7 0.5 2 9 - δ
の結果ともに示したものである。 [Ca CoO ] CoOについては加熱時と冷却時の結
2 3 0.62 2
果を示してある。配向が制御された [Ca CoO ] CoOは Bi Pb Sr Y Co O の数
2 3 0.62 2 1.5 0.5 1.7 0.5 2 9- δ 分の一となる、低い電気比抵抗値を 1000Kまで示している。図 15は [Ca CoO ] Co
2 3 0.62
0の結果を拡大して示したものである。電気比抵抗は最小で 2m Ω cm以下に達して
2
いる。
[0025] Vヽずれもミスフィット構造を持つ層状酸化物である実施例 2 (Bi-Sr-Co-O)及び実施 例 5と実施例 6(Ca-Co-0)の結晶構造を図 16に示す。
図 17は X線回折により [Ca CoO ] CoOの結晶構造を確かめた結果である。 [(Ca
2 3 0.62 2 0
Sr ) CoO ] CoOは [Ca CoO ] CoOの Caを Srで一部置換した材料であるので
.9 0.1 2 3 0.62 2 2 3 0.62 2
、結晶構造は [Ca CoO ] CoOと同じである。実施例 2では CoO層間に 4層の絶縁
2 3 0.62 2 2
体層、実施例 5及び 6では CoO層間に 3層の絶縁体層が存在している違いはあるが
2
、 V、ずれにつ 、ても本手法による結晶配向制御が可能である。
図面の簡単な説明
[0026] [図 l]Bi Pb Sr Y Co O の結晶構造を示す図である。図中、上下方向(結晶の c
1.5 0.5 1.7 0.5 2 9- δ
軸方向)を法線とする原子面が(001)面である。
[図 2]製造例 1で作成した多結晶の回折パターンを示す図である。
[図 3]製造例 1で作成した多結晶の断面写真 (SEM)である。
[図 4]実施例 1で高温単軸圧縮加工を行った結晶の回折パターンを示す図である。
[図 5]実施例 1で高温単軸圧縮加工を行った結晶の正極点図を示す図である。同心 円状の曲線は外側から順に平均極密度が 1,2,3,4,5,6倍の極密度が存在する位置を 示す。
[図 6]実施例 1で高温単軸圧縮加工を行った結晶の断面写真(SEM)である。図の縦 方向が圧縮加工方向である。
[図 7]実施例 2で高温単軸圧縮加工を行った結晶の密度変化を示す図である。縦軸 は密度 (g/cm2)を示し、横軸は歪み量を示す。
[図 8]実施例 2で高温単軸圧縮加工を行った結晶の正極点図を示す図である。
[図 9]実施例 2で高温単軸圧縮加工を行った結晶の抵抗率を示す図である。 [図 10]実施例 4で高温平面ひずみ圧縮加工を行った結晶の回折パターンを示す図 である。
[図 11]実施例 4で高温平面ひずみ圧縮加工を行った結晶の正極点図を示す図であ る。同心円状の曲線は外側から順に平均極密度が 1,2,3,4,5,6,7倍の極密度が存在 する位置を示す。
[図 12]実施例 5で高温単軸圧縮加工を行った結晶の正極点図を示す図である。
[図 13]実施例 6で高温単軸圧縮加工を行った結晶の正極点図を示す図である。
[図 14]実施例 6で作成した結晶の電気抵抗測定結果を示す図である。
[図 15]実施例 6で作成した結晶の電気抵抗測定結果を示す図である。
[図 16]実施例 2で作成した Bi Pb Sr Y Co O (右図)と実施例 5で作成した [(Ca
1.5 0.5 1.7 0.5 2 9- δ (
Sr ) CoO ] CoOと実施例 6で作成した [Ca CoO ] CoO (左図)の結晶構造を
.9 0.1 2 3 0.62 2 2 3 0.62 2
示す図である。
圆 17]製造例 3で作成した多結晶の X線回折パターンを示す図である。

Claims

請求の範囲
[1] 不整合結晶構造を持つ Co酸ィヒ物の多結晶体であって、該多結晶の(001)面内で のすベり変形によって一定方向に結晶が配向した Co酸ィ匕物多結晶体。
[2] 前記すベり変形が、前記多結晶を 800°C以上から該結晶の融点の 30°C下の温度ま での温度範囲にて 1. 0 X 10一5〜 1. 0 X 10_3s_ 1の歪み速度で圧縮力卩ェを行うこと により生じた請求項 1に記載の不整合結晶構造を持つ Co酸ィ匕物。
[3] 前記圧縮加工が単軸圧縮加工である請求項 1又は 2に記載の不整合結晶構造を持 つ Co酸化物。
[4] 前記圧縮加工が平面ひずみ圧縮加工である請求項 1又は 2に記載の不整合結晶構 造を持つ Co酸化物。
[5] 更に、 800°C以上カも該結晶の融点の 30°C下の温度までの温度範囲にて 12〜50 時間の焼鈍を加えられた請求項 1〜4のいずれか一項に記載の不整合結晶構造を 持つ Co酸化物。
[6] 前記不整合結晶構造を持つ Co酸化物が、 Bi Pb Sr Y Co O (式中、 x=0.
2-x x 3-y y 2 9_ δ
4〜0. 8、 y=0. 4〜0. 8、 δ =0. 2〜0. 6)、 [Ca CoO ] CoO (式中、 χ=0·2〜0
2 3-x 1-y 2-z
、 y=0.4〜0、 z=0.2〜0)、 [ (Ca Sr ) CoO ] CoO (式中、 x=0.2〜0、 y=0.2〜0
1-x x 2 3-y 1-z 2-w
、 z=0.4〜0、 w=0.2〜0)、 [(Ca (Co、 Cu) O ] CoO (式中、 x=- 0.1〜0.1、
2 2-x 4-y 0. 63-z 2-w
y=0.3〜0、 z=- 0.1〜0.1、 w=0.2〜0)又は [Bi Sr O ] CoO (式中、 x=- 0.
1. 74- x 2-y 4-z 0. 25-w 2- v
05〜0.05、 y=- 0.05〜0.05、 z=0.2〜0、 w=0.05〜0、 V=0.2〜0)である請求項 1〜5のい ずれか一項に記載の不整合結晶構造を持つ Co酸ィ匕物。
[7] 請求項 1〜6の!、ずれか一項に記載の不整合結晶構造を持つ Co酸化物から成る熱 電変換材料。
[8] 不整合結晶構造を持つ Co酸ィ匕物力も成る多結晶を 800°C以上カも該結晶の融点 の 30°C下の温度までの温度範囲にて 1. 0 X 10_5〜1. 0 X 10_3s_ 1の歪み速度で 圧縮加工を行うことから成る(001)面内のすべり変形が生じた不整合結晶構造を持 つ Co酸化物の製法。
[9] 更に、 800°C以上カも該結晶の融点の 30°C下の温度までの温度範囲にて 12〜50 時間の焼鈍を加えることから成る請求項 8に記載の製法。
PCT/JP2006/313288 2005-07-07 2006-07-04 配向制御したCo酸化物多結晶体 WO2007007587A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524581A JPWO2007007587A1 (ja) 2005-07-07 2006-07-04 配向制御したCo酸化物多結晶体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-198764 2005-07-07
JP2005198764 2005-07-07

Publications (1)

Publication Number Publication Date
WO2007007587A1 true WO2007007587A1 (ja) 2007-01-18

Family

ID=37636983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313288 WO2007007587A1 (ja) 2005-07-07 2006-07-04 配向制御したCo酸化物多結晶体

Country Status (2)

Country Link
JP (2) JPWO2007007587A1 (ja)
WO (1) WO2007007587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004630A2 (de) 2011-07-01 2013-01-10 Alzchem Ag Verfahren zur erzeugung von ammoniak aus einer ammoniakvorläufersubstanz zur reduzierung von stickoxiden in abgasen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218329B2 (ja) * 1999-12-06 2001-10-15 経済産業省産業技術総合研究所長 カオリン粘土を用いたムライト基セラミック基板の熱間加工法
JP4013245B2 (ja) * 2001-04-26 2007-11-28 株式会社豊田中央研究所 結晶配向セラミックス及びその製造方法、結晶配向セラミックス製造用板状粉末、並びに熱電変換素子
JP4168628B2 (ja) * 2001-12-13 2008-10-22 株式会社豊田中央研究所 熱電変換材料及びその使用方法
JP4139884B2 (ja) * 2002-03-25 2008-08-27 独立行政法人産業技術総合研究所 金属酸化物焼結体の製造方法
DE602004027152D1 (de) * 2003-10-08 2010-06-24 Nat Inst Of Advanced Ind Scien Ischen umwandlungsmaterials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUKUTOMI H.: "Sankabutsu Netsuden Henkan Zairyo Bi1.5Pb0.5Sr1.7Y0.5Co2O9-delta no Shugo Soshiki Seigyo ni yoru Tokusei Kaizen", ZAIRYO SHUGO SOSHIKI KENKYUKAI SHIRYO, vol. 4, 2004, pages 17 - 18, XP003007668 *
GUILMEAU E. ET AL.: "Synthesis and thermoelectric properties of Bi2.5Ca2.5Co2Ox layered cobaltites", J. MATER. RES., vol. 20, no. 4, 2005, pages 1002 - 1008, XP003007669 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004630A2 (de) 2011-07-01 2013-01-10 Alzchem Ag Verfahren zur erzeugung von ammoniak aus einer ammoniakvorläufersubstanz zur reduzierung von stickoxiden in abgasen

Also Published As

Publication number Publication date
JP5656961B2 (ja) 2015-01-21
JPWO2007007587A1 (ja) 2009-01-29
JP2013063906A (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
Kim et al. Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting
CN109037759B (zh) 制备致密石榴石型锂离子固体电解质的烧结方法
US20130052438A1 (en) Max-phase oriented ceramic and method for producing the same
Prevel et al. Thermoelectric properties of sintered and textured Nd-substituted Ca3Co4O9 ceramics
WO2019189378A1 (ja) 窒化アルミニウム板
JP4360110B2 (ja) ランタンガレート系焼結体およびそれを固体電解質として用いた固体電解質型燃料電池
Gao et al. Effect of different templates on microstructure of textured Na0. 5Bi0. 5TiO3–BaTiO3 ceramics with RTGG method
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN114315346A (zh) 一种双模板织构的大应变无铅压电织构化陶瓷的制备方法
CN109970443B (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
JP5656961B2 (ja) 配向制御したCo酸化物多結晶体の製法
JP4592209B2 (ja) 結晶配向バルクZnO系焼結体材料の製造方法およびそれにより製造された熱電変換デバイス
JP2009004542A (ja) 熱電材料及び熱電材料の製造方法
JP2007335504A (ja) 熱電変換材料およびその製造方法
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
Lu et al. Improved Thermoelectric Properties of Ca3-xBaxCo4O9 (x= 0~ 0.4) Bulks by Sol-Gel and SPS Method
CN113683409B (zh) 具有优异温度稳定性的四方相a和b位共取代无铅压电织构陶瓷及其制备方法和应用
CN113929450B (zh) 一种高压电性能的CaBi4Ti4O15陶瓷的制备方法
CN115433008B (zh) 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法
CN116768626B (zh) 一种PbNb2O6基压电陶瓷材料及其制备方法
CN110723970B (zh) 一种温度稳定性强的高温电子陶瓷材料及制备方法
Saint Macary et al. Size effects on varistor properties made from zinc oxide nanoparticles by low temperature spark plasma sintering
KR20120029806A (ko) 열전 소자용 다결정 세라믹의 제조 방법
CN117510199A (zh) 一种高织构度的铅基高温压电织构陶瓷材料及其制备方法
EP2975659A1 (en) Ceramic material for a thermoelectric element, thermoelectric element comprising the ceramic material, thermoelectric generator comprising the thermoelectric element and method for producing the ceramic material

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524581

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767819

Country of ref document: EP

Kind code of ref document: A1