WO2020262640A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2020262640A1
WO2020262640A1 PCT/JP2020/025322 JP2020025322W WO2020262640A1 WO 2020262640 A1 WO2020262640 A1 WO 2020262640A1 JP 2020025322 W JP2020025322 W JP 2020025322W WO 2020262640 A1 WO2020262640 A1 WO 2020262640A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
optical element
intensity
reflects
Prior art date
Application number
PCT/JP2020/025322
Other languages
English (en)
French (fr)
Inventor
享司 渋谷
翔太 ▲濱▼内
大樹 西貝
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2021527788A priority Critical patent/JP7473546B2/ja
Priority to CN202080036382.7A priority patent/CN113841041A/zh
Priority to EP20832792.4A priority patent/EP3992614A4/en
Priority to US17/615,548 priority patent/US20220236180A1/en
Publication of WO2020262640A1 publication Critical patent/WO2020262640A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J2003/423Spectral arrangements using lasers, e.g. tunable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3148Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using three or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0691Modulated (not pulsed supply)

Definitions

  • the present invention relates to an analyzer that uses three or more light sources.
  • an analyzer using a light source such as a laser, in order to measure a plurality of components contained in a sample, a measurement cell in which the sample is housed and a plurality of lasers having different wavelengths for irradiating the measurement cell with laser light. And an optical detector that detects the light transmitted through the measurement cell.
  • a light source such as a laser
  • a coupled optical element such as a dichroic mirror is used to irradiate the measurement cell with laser light from a plurality of lasers in a common optical path.
  • a plurality of lasers are arranged side by side in a straight line so that the light emission directions face the same direction.
  • the coupling optical elements are arranged in a straight line on the light emitting side of the above. In such an optical arrangement, the laser light emitted from one laser passes through two or more coupled optical elements provided corresponding to the other lasers and irradiates the measurement cell.
  • the present invention has been made to solve the above problems, and in an analyzer that irradiates a cell with light from three or more light sources, the main problem is to prevent a decrease in the amount of light of each light source. is there.
  • the analyzer according to the present invention is an analyzer that irradiates a cell into which a sample is introduced with light, detects the light transmitted through the cell, and analyzes the component to be measured contained in the sample.
  • a plurality of light sources including at least a first light source, a second light source, and a third light source, and an optical system for guiding the light of each light source to the cell are provided, and the optical system reflects the light of the first light source and at the same time.
  • the optical element for the second light source that transmits the light of the second light source, the light of the first light source that reflects the optical element for the second light source, and the light of the transmitted second light source are reflected and the first. It is characterized by including an optical element for a third light source that transmits light from the three light sources.
  • the light of the first light source is reflected and guided to the measurement cell without passing through the optical element for the second light source and the optical element for the third light source, so that the amount of light of the light of the first light source is reduced. Can be prevented.
  • the light of the second light source is only transmitted through the optical element for the second light source, and thereafter, it is reflected without being transmitted through the optical element for the third light source and guided to the measurement cell. It is possible to prevent a decrease in the amount of light.
  • since the light of the third light source is guided to the measurement cell only by passing through the optical element for the third light source, it is possible to prevent a decrease in the amount of light of the third light source.
  • the present invention is not a transmission type optical system in which the laser light emitted from one laser passes through two or more optical elements provided corresponding to another laser and irradiates the measurement cell. It is a reflection type optical system in which the laser light emitted from one laser reflects an optical element provided corresponding to another laser and irradiates the measurement cell, and it is possible to prevent a decrease in the amount of light from each light source. it can.
  • each light source uses the optical element. Since it is transmitted only once, the difficulty of adjusting the optical axis due to the refraction of light is alleviated.
  • the second light source that reflects the light of the first light source that reflects the optical element for the second light source and the light of the second light source that has passed through. It is desirable that the optical element for the third light source further includes a reflection mirror for the purpose of reflecting the light of the first light source and the light of the second light source reflected by the reflection mirror for the second light source.
  • the optical system further includes a reflection mirror for the first light source that reflects the light of the first light source, and is used for the second light source. It is desirable that the optical element reflects the light of the first light source that has reflected the reflection mirror for the first light source.
  • the optical system is the optical for the third light source. It is further desirable to further include a reflection mirror for a third light source that reflects the light of the first light source that reflects the element, the light of the second light source, and the light of the third light source that has passed through.
  • the reflection mirrors and the optical elements are arranged so that the incident angle of the reflected light is less than 45 degrees.
  • the first light source, the second light source, and the third light source have different wavelengths of emitted light.
  • each light source and each optical element the first light source, the second light source, and the third light source are arranged in ascending order of the wavelength of the emitted light, and the optical element for the second light source. Is intended to transmit light having a wavelength equal to or higher than that of the second light source, and it is desirable that the optical element for the third light source transmits light having a wavelength equal to or higher than that of the third light source.
  • the optical element for the second light source and the optical element for the third light source can be a long-pass filter (short wavelength cut filter) that blocks wavelengths shorter than the wavelength of light from the corresponding light source. The design of the optical element becomes easy.
  • each light source and each optical element the first light source, the second light source, and the third light source are arranged in descending order of the wavelength of the emitted light, and are used for the second light source. It is desirable that the optical element transmits light having a wavelength equal to or lower than that of the second light source, and the optical element for the third light source transmits light having a wavelength equal to or lower than that of the third light source.
  • the second light source optical element and the third light source optical element can be used as a short pass filter (long wavelength cut filter) that blocks wavelengths longer than the wavelength of light from the corresponding light source. , The design of the optical element becomes easy.
  • each of the light sources is a laser light source and emits modulated light whose wavelength is modulated at a predetermined modulation frequency.
  • the component to be measured can be analyzed by using the intensity-related signal obtained by emitting modulated light whose wavelength is modulated at a predetermined modulation frequency. As a result, the influence of the interference component on the concentration of the component to be measured can be reduced.
  • the analyzer of the present invention defines a photodetector that detects the intensity of light transmitted through the cell, an intensity-related signal related to the intensity of light detected by the photodetector, and an intensity-related signal. It is desirable to include a correlation value calculation unit that calculates a sample correlation value that is a correlation value with a feature signal that obtains the correlation of the above, and a concentration calculation unit that calculates the concentration of the component to be measured using the sample correlation value. .. With this configuration, the sample correlation value between the intensity-related signal and the feature signal related to the intensity of the light transmitted through the cell is calculated, and the concentration of the component to be measured is calculated using the calculated sample correlation value.
  • the characteristics of the absorbed signal can be captured with dramatically fewer variables without converting the absorbed signal into an absorption spectrum, and the concentration of the component to be measured can be measured by a simple calculation without complicated spectrum calculation processing.
  • the concentration of the component to be measured can be measured by a simple calculation without complicated spectrum calculation processing.
  • the number of data points used in general spectrum fitting is required to be several hundred, but in the present invention, the concentration can be calculated with the same accuracy by using a few to several tens of correlation values at most.
  • the load of arithmetic processing can be dramatically reduced, an advanced arithmetic processing apparatus becomes unnecessary, the cost of the analyzer can be reduced, and the size can be reduced.
  • the analyzer of the present invention is n times the modulation frequency from the light detector that detects the intensity of the light transmitted through the cell and the intensity-related signal related to the light intensity detected by the light detector.
  • a frequency component extraction unit that extracts a frequency component (n is an integer of 1 or more), and a second calculation unit that calculates the concentration or absorbance of the component to be measured based on the frequency component extraction result by the frequency component extraction unit. It is desirable to further prepare.
  • the value obtained by the frequency component extraction unit is directly proportional to the concentration of the component to be measured, so that the spectrum calculation processing for concentration quantification required in the conventional wavelength modulation method can also be performed. Since it is unnecessary and the modulation frequency may be single, the system becomes simpler and less costly.
  • the analyzer 100 of the present embodiment includes components to be measured (here, for example, CO, CO 2 , N 2 O, NO, NO 2 , H 2 O, SO) contained in a sample gas such as exhaust gas from an internal combustion engine. 2 , CH 4 , NH 3, etc.) is a concentration measuring device that measures the concentration.
  • components to be measured here, for example, CO, CO 2 , N 2 O, NO, NO 2 , H 2 O, SO
  • a sample gas such as exhaust gas from an internal combustion engine. 2 , CH 4 , NH 3, etc.
  • the analyzer 100 is from a cell 11 into which a sample gas is introduced, a plurality of laser light sources 12 that emit laser light to be irradiated to the cell 11, and a plurality of laser light sources 12.
  • the optical system 13 that guides the light to the cell 11, the light detector 14 that is provided on the optical path of the sample light that is the laser light transmitted through the cell 11 and receives the sample light, and the output signal of the light detector 14 are received.
  • a signal processing device 15 for calculating the concentration of the component to be measured based on the value is provided.
  • the cell 11 is made of a transparent material such as quartz, calcium fluoride, or barium fluoride, which absorbs almost no light in the absorption wavelength band of the component to be measured, and has an inlet and an outlet for light. Although not shown, the cell 11 is provided with an inlet port for introducing the sample gas into the inside and an outlet port for discharging the sample gas inside, and the sample gas is a cell from the inlet port. It is introduced into 11 and sealed.
  • the plurality of laser light sources 12 are quantum cascade lasers (QCL: Quantum Cascade Laser), which is a kind of semiconductor laser 12, and oscillate mid-infrared (4 to 12 ⁇ m) laser light.
  • the laser light source 12 can modulate (change) the oscillation wavelength by a given current (or voltage). As long as the oscillation wavelength is variable, another type of laser may be used, and the temperature may be changed in order to change the oscillation wavelength.
  • a configuration having four semiconductor lasers 121 to 124 is illustrated, but the configuration is not limited to three or more.
  • the optical system 13 irradiates the cell 11 with a common optical path of laser light emitted from a plurality of semiconductor lasers 121 to 124.
  • the plurality of semiconductor lasers 121 to 124 will be referred to as a first laser 121, a second laser 122, a second laser 123, and a fourth laser 124 from the left in FIG. 2A.
  • the optical system 13 includes a first light source reflection mirror M1 (hereinafter, first reflection mirror M1) provided corresponding to the first laser 121 and a second reflection mirror M1 provided corresponding to the second laser 122.
  • Optical element for light source E2 hereinafter, second optical element E2
  • reflection mirror M2 for second light source hereinafter, second reflection mirror M2
  • optical element for third light source provided corresponding to the third laser 123.
  • E3 hereinafter, third optical element E3
  • third light source reflection mirror M3 hereinafter, third reflection mirror M3
  • fourth light source optical element E4 hereinafter, optical element E4 provided corresponding to the fourth laser 124.
  • fourth optical element E4 It includes a fourth optical element E4) and a fourth light source reflection mirror M4 (hereinafter, fourth reflection mirror M4).
  • fourth reflection mirror M4 As shown in FIG. 2B, wedged optical elements E2 to E4 may be used in order to prevent the influence of stray light interference due to multiple reflections in the optical elements.
  • the wedge angle is, for example, about 0.3 to 0.5 degrees.
  • the first reflection mirror M1 reflects the light of the first laser 121 (hereinafter, the first laser light).
  • the first laser beam reflected by the first reflection mirror M1 goes toward the second optical element E2.
  • the second optical element E2 reflects the light of the first laser beam and transmits the light of the second light source (hereinafter, the second laser beam).
  • the first laser beam reflected by the second optical element E2 and the second laser beam transmitted through the second optical element E2 pass through the same optical path and head toward the second reflection mirror M2.
  • the second reflection mirror M2 reflects the first laser beam reflected from the second optical element E2 and the second laser beam transmitted through the second optical element E2. Then, the first laser beam and the second laser beam reflected by the second reflection mirror M2 pass through the same optical path and head toward the third optical element E3.
  • the third optical element E3 reflects the first laser beam and the second laser beam, and also transmits the light of the third light source (hereinafter, the third laser beam).
  • the first laser beam and the second laser beam reflected by the third optical element E3 and the third laser beam transmitted through the third optical element E3 pass through the same optical path and head toward the third reflection mirror M3. ..
  • the third reflection mirror M3 reflects the first laser beam and the second laser beam reflected from the third optical element E3, and the third laser beam transmitted through the third optical element E3. Then, the first to third laser beams reflected by the third reflection mirror M3 pass on the same optical path and head toward the fourth optical element E4.
  • the fourth optical element E4 reflects the first to third laser beams and transmits the light of the fourth light source (hereinafter referred to as the fourth laser beam).
  • the first to third laser beams reflected by the fourth optical element E4 and the fourth laser beam transmitted through the fourth optical element E4 pass through the same optical path and head toward the fourth reflection mirror M4.
  • the fourth reflection mirror M4 reflects the first to third laser beams reflected from the fourth optical element E4 and the fourth laser beam transmitted through the fourth optical element E4. Then, the first to fourth laser beams reflected by the fourth reflection mirror M4 pass on the same optical path and head toward the cell 11.
  • the first laser beam is transmitted by the first reflection mirror M1, the second optical element E2, the second reflection mirror M2, the third optical element E3, the third reflection mirror M3, the fourth optical element E4, and the fourth.
  • the reflection mirror M4 is reflected in this order and the cell 11 is irradiated.
  • the second laser beam After passing through the second optical element E2, the second laser beam reflects the second reflection mirror M2, the third optical element E3, the third reflection mirror M3, the fourth optical element E4, and the fourth reflection mirror M4 in this order.
  • the cell 11 is irradiated.
  • the third laser beam is reflected by the third reflection mirror M3, the fourth optical element E4, and the fourth reflection mirror M4 in this order to irradiate the cell 11.
  • the fourth laser beam passes through the fourth optical element E4, is reflected by the fourth reflection mirror M4, and is irradiated to the cell 11.
  • the first laser 121, the second laser 122, the third laser 123, and the fourth laser 124 emit wavelengths of laser light from the side where the optical path from the cell 11 becomes long (left side of the paper in FIG. 2A).
  • the second optical element E2 is a long-pass filter (short-wavelength cut filter) that transmits laser light having a wavelength equal to or higher than that of the second laser 122 and reflects the first laser light.
  • the third optical element E3 is a long-pass filter (short wavelength cut filter) that transmits laser light having a wavelength equal to or higher than that of the third laser 123 and reflects the first laser light and the second laser light.
  • the fourth optical element E4 is a long pass filter (short wavelength cut filter) that transmits laser light having a wavelength equal to or higher than that of the fourth laser 124 and reflects the first to third laser light.
  • the first laser 121, the second laser 122, the third laser 123, and the fourth laser 124 are arranged side by side and in a straight line so that the light emitting directions face the same direction. Have been placed. Then, at least the first to third reflection mirrors M1 to M3 are arranged side by side and in a straight line on the light emitting side of the corresponding lasers 121, 122, and 123. The fourth reflection mirror M4 directs the reflected laser light toward the cell 11, and its position is appropriately set.
  • At least the first to third reflection mirrors M1 to M3 and the optical elements E2 to E4 are arranged so that the incident angle of the reflected laser light is less than 45 degrees. That is, at least the first to third reflection mirrors M1 to M3 and the optical elements E2 to E4 are arranged so that the angle formed by the incident light and the reflected light is less than 90 degrees.
  • the photodetector 14 uses a relatively inexpensive thermal type photodetector such as a thermopile, but other types such as quantum photoelectric devices such as HgCdTe, InGaAs, InAsSb, and PbSe with good responsiveness are used. An element may be used.
  • the signal processing device 15 includes an analog electric circuit composed of a buffer, an amplifier, etc., a digital electric circuit composed of a CPU, a memory, etc., and an AD converter, a DA converter, etc. that mediate between the analog / digital electric circuits.
  • a light source control unit 16 that controls the output of the semiconductor laser 12 and an optical detector are provided by the cooperation of the CPU and its peripheral devices according to a predetermined program stored in a predetermined area of the memory. It exhibits a function as a signal processing unit 17 that receives an output signal from 14 and calculates the value thereof to calculate the concentration of the component to be measured.
  • the light source control unit 16 controls the current source (or voltage source) of each semiconductor laser 12 by outputting a current (or voltage) control signal. Specifically, the light source control unit 16 changes the drive current (or drive voltage) of each semiconductor laser 12 at a predetermined frequency, and modulates the oscillation wavelength of the laser light output from the semiconductor laser 12 at a predetermined frequency with respect to the center wavelength. Let me. Further, the light source control unit 16 controls the plurality of semiconductor lasers 121 to 124 so that they have oscillation wavelengths corresponding to different measurement target components. Further, the light source control unit 16 controls the plurality of semiconductor lasers 121 to 124 so as to output laser light at different timings.
  • the light source control unit 16 changes the drive current in a triangular wave shape and modulates the oscillation frequency in a triangular wave shape (see “oscillation wavelength” in FIG. 5).
  • the drive current is modulated by another function so that the oscillation frequency has a triangular wave shape.
  • the oscillation wavelength of the laser beam is modulated with the peak of the light absorption spectrum of the component to be measured as the center wavelength.
  • the light source control unit 16 may change the drive current into a sinusoidal shape, a sawtooth shape, or an arbitrary function shape, and modulate the oscillation frequency into a sinusoidal shape, a sawtooth shape, or an arbitrary function shape.
  • the signal processing unit 17 includes a logarithmic calculation unit 171, a correlation value calculation unit 172, a storage unit 173, a concentration calculation unit 174, and the like.
  • the logarithmic calculation unit 171 performs logarithmic calculation on the light intensity signal which is the output signal of the photodetector 14.
  • the function I (t) indicating the change over time of the light intensity signal obtained by the photodetector 14 becomes as shown in the “light intensity I (t)” of FIG. 5, and by performing a logarithmic calculation, the function I (t) of FIG. Logarithmic strength L (t) ”.
  • the correlation value calculation unit 172 calculates the correlation value of each of the intensity-related signal related to the intensity of the sample light and a plurality of predetermined feature signals.
  • the feature signal is a signal for extracting the waveform feature of the intensity-related signal by correlating with the intensity-related signal.
  • the feature signal for example, a sine wave signal or various signals according to the waveform feature to be extracted from other intensity-related signals can be used.
  • the correlation value calculation unit 172 is a correlation value between an intensity-related signal related to the intensity of the sample light and a plurality of feature signals having a correlation different from that of the sinusoidal signal (sine function) with respect to the intensity-related signal. Is calculated.
  • the correlation value calculation unit 172 uses the logarithmically calculated light intensity signal (logarithmic intensity L (t)) as the intensity-related signal.
  • a plurality of sample correlation values S i (t) are calculated. Note that T in Equation 1 is the modulation period.
  • the correlation value calculation unit 162 calculates the sample correlation value
  • the correlation value S between the intensity-related signal L (t) of the sample light and the plurality of feature signals Fi (t) is as shown in the above equation (Equation 1).
  • the correlation value calculation unit 162 is a reference correlation value R which is a correlation value between the intensity-related signal L 0 (t) of the reference light and the plurality of feature signals Fi (t) as in the above equation (Equation 1).
  • the correlation value calculator 162 calculates the sample correlation values S i 'obtained by subtracting the reference correlation values R i from the correlation value S i.
  • the offset included in the sample correlation value can be removed, and the correlation value becomes proportional to the concentration of the measurement target component and the interference component, and the measurement error can be reduced.
  • the configuration may be such that the reference correlation value is not subtracted.
  • the acquisition timing of the reference light is simultaneous with the sample light, before and after the measurement, or at an arbitrary timing.
  • the intensity-related signal of the reference light or the reference correlation value may be acquired in advance and stored in the storage unit 173.
  • the modulated light from the semiconductor laser 12 is split by a beam splitter or the like, one is used for sample light measurement, and the other is used as a reference. It can be used for optical measurement.
  • the correlation value calculation unit 172 uses a function as a plurality of feature signals Fi (t) that makes it easier to capture a waveform feature having a logarithmic intensity L (t) than a sine function.
  • a sample gas containing a component to be measured for example, SO 2
  • one interference component for example, H 2 O
  • the two feature signals F 1 (t) and F 2 (t) for example, a function based on the Lorentz function close to the shape of the absorption spectrum and a differential function of the function based on the Lorentz function are used. Can be considered.
  • a function based on the Voigt function, a function based on the Gaussian function, or the like can be used instead of the function based on the Lorentz function.
  • a function based on the Voigt function a function based on the Gaussian function, or the like can be used instead of the function based on the Lorentz function.
  • the offset of the feature signal so that the DC component is removed, that is, it becomes zero when integrated in the modulation period.
  • the DC component of the intensity-related signal may be removed, or the DC component of both the feature signal and the intensity-related signal may be removed.
  • the measured value of the absorption signal of the component to be measured and / or the interference component, or a signal imitating them may be used.
  • the features of the logarithmic intensity L (t) can be more efficiently characterized. It can be extracted, and the concentration obtained by the simultaneous equations described later can be made accurate.
  • the storage unit 173 has a unit concentration of each of the measurement target component and each interference component obtained from the respective intensity-related signals and the plurality of feature signals Fi (t) when the measurement target component and each interference component are present independently. It stores the single correlation value, which is the per-correlation value.
  • a plurality of feature signals F i used to determine the single correlation value (t) is the same as the plurality of feature signals F i to be used in the correlation value calculation section 172 (t).
  • the storage unit 173 when the storage unit 173 stores the single correlation value, the storage unit 173 subtracts the reference correlation value from the correlation value when the measurement target component and each interference component exist independently, and then corrects the conversion per unit concentration. It is desirable to store the single correlation value. As a result, the offset included in the single correlation value can be removed, and the correlation value becomes proportional to the concentration of the measurement target component and the interference component, and the measurement error can be reduced.
  • the configuration may be such that the reference correlation value is not subtracted.
  • the concentration calculation unit 174 calculates the concentration of the component to be measured using a plurality of sample correlation values obtained by the correlation value calculation unit 172.
  • the concentration calculation unit 174 calculates the concentration of the component to be measured based on the plurality of sample correlation values obtained by the correlation value calculation unit 172 and the plurality of single correlation values stored in the storage unit 173. It is a thing. More specifically, the concentration calculation unit 174 includes a plurality of sample correlation values obtained by the correlation value calculation unit 172, a plurality of single correlation values stored in the storage unit 173, a measurement target component, and each interference component. The concentration of the component to be measured is calculated by solving a simultaneous equation consisting of the concentration.
  • the sample gas contains one measurement target component (for example, SO 2 ) and one interference component (for example, H 2 O).
  • one measurement target component for example, SO 2
  • one interference component for example, H 2 O
  • the light source control unit 16 controls each of the semiconductor lasers 121 to 124, and modulates the wavelength of the laser light at the modulation frequency and centering on the peak of the absorption spectrum of the component to be measured.
  • the reference measurement using span gas the reference measurement using zero gas may be performed and the reference correlation value may be measured.
  • the span gas gas having a known component concentration
  • the reference measurement is performed in each of the span gas in which the component to be measured is present alone and the span gas in which the interference component is present alone.
  • the logarithmic calculation unit 171 receives the output signal of the photodetector 14 and calculates the logarithmic intensity L (t). Then, the correlation value calculation unit 172 calculates the correlation value between the logarithmic intensity L (t) and the two feature signals F 1 (t) and F 2 (t), and subtracts the reference correlation value from the correlation value.
  • the correlation value calculation unit 172 calculates the correlation value between the logarithmic intensity L (t) and the two feature signals F 1 (t) and F 2 (t), and subtracts the reference correlation value from the correlation value.
  • the correlation value calculation unit 172 calculates the correlation values S 1t and S 2t of the measurement target component (see FIG. 6).
  • S 1t is a correlation value with the first feature signal
  • S 2t is a correlation value with the second feature signal.
  • the correlation value calculation section 162 those correlation values S 1t, by dividing the span gas concentration c t of the measurement target component minus the S reference correlation value from 2t R i, alone correlation value s 1t, the s 2t calculate.
  • span gas concentration c t of the measurement target component is preliminarily input by the user or the like to the signal processing section 17.
  • the correlation value calculation unit 172 calculates the correlation values S 1i and S 2i of the interference component (see FIG. 6).
  • S 1i is a correlation value with the first feature signal
  • S 2i is a correlation value with the second feature signal.
  • the correlation value calculation section 172 those correlation values S 1i, divided by the span gas concentration c i of the interference components minus the reference correlation values from S 2i, alone correlation value s 1i, calculates the s 2i.
  • span gas concentration c i of the interference component is input in advance by the user or the like to the signal processing section 17.
  • the single correlation values s 1t , s 2t , s 1i , and s 2i calculated as described above are stored in the storage unit 173.
  • this reference measurement may be performed before the product is shipped, or may be performed regularly.
  • the light source control unit 16 controls each of the semiconductor lasers 121 to 124, and modulates the wavelength of the laser light at the modulation frequency and centering on the peak of the absorption spectrum of the component to be measured.
  • the sample gas is introduced into the cell 11 by the operator or automatically, and the sample measurement is performed.
  • the logarithmic calculation unit 171 receives the output signal of the photodetector 14 and calculates the logarithmic intensity L (t). Then, correlation value calculation unit 172, the log intensity L (t) and a plurality of feature signals F 1 (t), F 2 calculates the sample correlation value (t), the reference correlation values R i from the correlation value sample correlation values S 1 minus ', S 2' is calculated (see FIG. 6).
  • the concentration calculating unit 174, a sample correlation value S 1 is the correlation value calculating section 172 calculated ', S 2' and, alone correlation value s 1t storing part 173, s 2t, s 1i, and s 2i, measured component and the interference components each concentration C tar, solving the following binary simultaneous equations consisting of a C int.
  • the concentration Tar of the component to be measured from which the interference effect has been removed can be determined by a simple and reliable calculation of solving the simultaneous equations of the above equation (Equation 2).
  • the interference effect can be similarly affected by adding a single correlation value for the number of interference components and solving a simultaneous equation with the same number of elements as the number of component species.
  • the concentration of the removed component to be measured can be determined.
  • Equation 3 the concentration of each gas of the measurement target component and the interference component can be determined.
  • the laser light emitted from each of the lasers 121 to 124 passes through only one optical element E2 to E4 at the maximum, and thus is emitted from each of the lasers 121 to 124. It is possible to prevent a decrease in the amount of laser light. As a result, it is possible to suppress variations in the amount of light of the lasers 121 to 124 caused by passing through the optical elements E2 to E4, and it is possible to improve the measurement accuracy of each measurement target component in the analyzer 100. Further, even when an optical element with a wedge is used, each laser beam passes through the optical element only once, so that the difficulty of adjusting the optical axis due to the refraction of light is alleviated.
  • the analyzer 100 according to the second embodiment of the present invention has a different configuration of the signal processing unit 17 from the first embodiment.
  • the signal processing unit 17 of the second embodiment includes an intensity ratio logarithm calculation unit 175, a frequency component extraction unit 176, a concentration calculation unit 177, and the like.
  • the intensity ratio logarithm calculation unit 175 includes the light intensity of the laser light (hereinafter, also referred to as transmitted light) transmitted through the cell 11 in a state where the sample gas is sealed and the light absorption by the component to be measured in the sample gas is generated, and the light.
  • the logarithm of the ratio of the laser light (hereinafter, also referred to as reference light) transmitted through the cell 11 in the state where the absorption is substantially zero to the light intensity (hereinafter, also referred to as the intensity ratio logarithm) is calculated.
  • both the light intensity of the transmitted light and the light intensity of the reference light are measured by the light detector 14, and the measurement result data is stored in a predetermined area of the memory.
  • the intensity ratio logarithmic calculation unit 175 The intensity ratio logarithm (hereinafter, also referred to as intensity-related signal) is calculated with reference to this measurement result data.
  • the absorbance signal may be used as the intensity-related signal.
  • sample measurement is, of course, performed for each sample gas.
  • reference measurement may be performed either before or after the sample measurement, or at an appropriate timing, for example, only once, and the result is stored in the memory for each sample. It may be commonly used for measurement.
  • zero gas optical absorption is substantially zero, for example, N 2
  • the gas is sealed in the cell 11, other gas may be used, or the inside of the cell 11 may be evacuated.
  • a cell for reference measurement may be provided separately from the cell 11 for sample measurement, and the modulated light from the semiconductor laser 12 may be branched by a half mirror or the like and introduced into the two cells.
  • the frequency component extraction unit 176 locks in the intensity-related signal calculated by the intensity ratio logarithmic calculation unit 175 with a sinusoidal signal (reference signal) having a frequency n times the modulation frequency (n is an integer of 1 or more). Therefore, the frequency component of the reference signal is extracted from the intensity-related signal to generate a synchronous detection signal.
  • the lock-in detection may be performed by digital calculation or calculation by an analog circuit. Further, the extraction of the frequency component may be performed not only by lock-in detection but also by a method such as Fourier series expansion.
  • the concentration calculation unit 177 calculates the concentration of the component to be measured based on the synchronous detection result by the frequency component extraction unit 176.
  • the light source control unit 16 controls each of the semiconductor lasers 121 to 124, and modulates the wavelength of the laser light at the modulation frequency and centering on the peak of the absorption spectrum of the component to be measured.
  • the intensity ratio logarithm calculation unit 175 that detects this performs reference measurement.
  • the output signal from the photodetector 14 in the state where the zero gas is sealed in the cell 11 is received, and the value is stored in the measurement result data storage unit.
  • the value of the output signal of the photodetector 14 in this reference measurement that is, the reference light intensity is represented by a time series graph as shown in FIG. 8A. That is, only the change in the optical output due to the modulation of the laser drive current (voltage) appears in the output signal of the photodetector 13.
  • the intensity ratio logarithm calculation unit 175 performs the sample measurement. Specifically, it receives an output signal from the photodetector 14 in a state where the sample gas is sealed in the cell 11, and stores the value in a predetermined area of the memory.
  • the value of the output signal of the photodetector 14 in this sample measurement, that is, the transmitted light intensity is represented by a time series graph as shown in FIG. 8 (b). It can be seen that a peak due to absorption appears every half cycle of modulation.
  • the intensity ratio logarithm calculation unit 175 synchronizes each measurement data with the modulation cycle, and calculates the intensity ratio logarithm (intensity-related signal) between the light intensity of the transmitted light and the light intensity of the reference light. Specifically, the calculation equivalent to the following equation (Equation 4) is performed.
  • D m (t) is the transmitted light intensity
  • D z (t) is the reference light intensity
  • a (t) is the intensity ratio logarithm (intensity-related signal).
  • FIG. 8C shows a graph showing this intensity-related signal with time as the horizontal axis.
  • the logarithm may be obtained after calculating the ratio of the transmitted light intensity to the reference light intensity, or the logarithm of the transmitted light intensity and the logarithm of the reference light intensity may be obtained and subtracted from each other.
  • the frequency component extraction unit 176 extracts a lock-in detection of the intensity-related signal with a reference signal having a frequency twice the modulation frequency, that is, a frequency component twice the modulation frequency, and the synchronous detection signal (hereinafter referred to as the synchronous detection signal). , Also called lock-in data) is stored in a predetermined area of the memory.
  • the value of this lock-in data becomes a value proportional to the concentration of the component to be measured, and the concentration calculation unit 177 calculates a concentration indicated value indicating the concentration of the component to be measured based on the value of this lock-in data.
  • a value a n in the formula (5) is proportional to the concentration of the measurement target component concentration calculation unit 177 to calculate the concentration indication value indicating the concentration of the measurement target component based on this value a n.
  • f m is the modulation frequency
  • n represents a multiple with respect to the modulation frequency
  • a (t) is also expressed by the above formula (Equation 1).
  • the above is an operation example of the sample analyzer 100 when the sample gas does not contain an interference component other than the component to be measured.
  • one or more interfering compounds e.g., H 2 O
  • one or more interfering compounds will be described operation example of the sample analysis device 100 when contained in a sample gas having a light absorption peak light absorption wavelength of the measurement target component.
  • the principle will be described. Since the light absorption spectra of the component to be measured and the interference component have different shapes, the intensity-related signal when each component exists alone has a different waveform, and the ratio of each frequency component is different (linearly independent). Taking advantage of this, by solving simultaneous equations using the value of each frequency component of the measured intensity-related signal and the relationship between each frequency component of the intensity-related signal of the measurement target component and the interference component obtained in advance. , It is possible to obtain the concentration of the component to be measured with the interference effect corrected.
  • the intensity-related signals per unit concentration are Am (t) and Ai (t), respectively, and the frequency components of the respective intensity-related signals are nm . Assuming that it is an ni , the following equations (Equation 7 and Equation 8) hold.
  • Measurement target component, the concentration of the interference component C m respectively, intensity related signal value A when present in C i (t) is the linearity of the absorbance is represented by the following equation (9).
  • the analyzer 100 operates based on the above-mentioned principle. That is, in this case, the analyzer 100 has the frequency of each intensity-related signal when the measurement target component and the interference component are present independently, for example, by flowing span gas in advance in a predetermined area of the memory and measuring in advance.
  • the components a 1m , a 2m , a 1i , and a 2i are stored. Specifically, as in the previous example, for each of the measurement target component and the interference component, the measurement target light intensity and the reference light intensity are measured, their intensity ratio logarithm (intensity-related signal) is calculated, and the intensity ratio logarithm is used.
  • the frequency components a 1m , a 2m , a 1i , and a 2i are obtained by lock-in detection or the like, and these are stored.
  • the not the frequency component, the intensity related signal A m per unit concentration (t), and stores the A i (t), the equation (7, 8) frequency from component a 1m, a 2m, a 1i and a2i may be calculated.
  • the analyzer 100 identifies the measurement target component and the interference component by input from the operator or the like.
  • the intensity ratio logarithm calculation unit 175 calculates the intensity ratio logarithm A (t) according to the equation (Equation 4). Then, the frequency component extraction unit 176, and lock-in detection with the reference signal having a frequency 2f m of the intensity ratio logarithmic modulation frequency f m and twice, each frequency component a 1, a 2 a (lock-in data) Extract and store in a predetermined area of memory.
  • the concentration calculation unit 177 applies the values of the lock-in data a 1 and a 2 and the values of the frequency components a 1 m , a 2 m , a 1i , and a 2i stored in the memory to the above equation (Equation 10), or Performing an equal calculation to this, the concentration (or concentration indicated value) C m indicating the concentration of the measurement target gas from which the interference effect has been removed is calculated. At this time, the concentration of each interference component (or concentration indicated value) may be calculated C i.
  • the second optical element E2 may be directly irradiated with the light of the first light source 121 without using the first reflection mirror.
  • the second optical element E2 may be irradiated with the above reflection mirror.
  • the fourth reflection mirror M4 corresponding to the light source having the shortest optical path to the cell 11 may not be used.
  • the cell 11 is directly irradiated with the light of the first to third light sources 121 to 123 reflected by the fourth optical element E4 and the light of the fourth light source 124 transmitted through the fourth optical element E4.
  • the configuration has four light sources, but any light source may be used as long as it has three or more light sources.
  • the configuration shown in FIG. 11 can be considered as the configuration that simplifies the optical system 13 in the configuration having three light sources.
  • the optical system 13 reflects the light of the first light source 121 and transmits the light of the second optical element E2 that transmits the light of the second light source 122 and the light of the first light source 121 that reflects the second optical element E2. It has a third optical element E3 that reflects the light of the second light source 122 and transmits the light of the third light source 123. Then, the light of the first light source 121 and the light of the second light source 122 reflected from the third optical element E3 and the light of the second light source 122 transmitted through the third optical element are irradiated to the cell 11.
  • the analyzer 100 may use, for example, the NDIR method, the FTIR method, or the NDUV method.
  • the logarithmic calculation unit 161 of the first embodiment performs logarithmic calculation of the light intensity signal of the photodetector 13, but the light intensity signal of the photodetector 13 is used to calculate the intensity and reference of the sample light.
  • the logarithmic ratio (so-called absorbance) of the ratio to the intensity of modulated light, which is light, may be calculated.
  • the logarithm calculation unit 161 may calculate the logarithm of the intensity of the sample light, calculate the logarithm of the intensity of the reference light, and then subtract them to calculate the absorbance, or the intensity of the sample light and the reference light.
  • the absorbance may be calculated by taking the logarithm of the ratio after obtaining the ratio with the intensity of.
  • the correlation value calculation unit 62 of the first embodiment calculates the correlation value between the intensity-related signal and the feature signal, but calculates the inner product value of the intensity-related signal and the feature signal. You may.
  • the storage unit 173 stores the single correlation value corrected by using the reference correlation value, but the storage unit 173 stores the single correlation value before correction and the concentration.
  • the calculation unit 174 may be configured to subtract the reference correlation value from the single correlation value before correction and then obtain the corrected single correlation value converted per unit concentration.
  • the plurality of feature signals are not limited to the first embodiment, and may be functions different from each other. Further, as the feature signal, for example, a function showing a waveform (measured spectrum) of light intensity, logarithmic intensity, or absorbance obtained by flowing a span gas having a known concentration may be used. Further, when measuring the concentration of one component to be measured, at least one feature signal is sufficient.
  • the light source control unit 16 of the above embodiment continuously oscillates the semiconductor laser (CW), but as shown in FIG. 12, it may oscillate pseudo-continuously (pseudo-CW).
  • the light source control unit 16 controls the current source (or voltage source) of each of the semiconductor lasers 121 to 124 by outputting a current (or voltage) control signal, and drives the current source (or voltage source).
  • Drive voltage is set to be equal to or higher than a predetermined threshold value for pulse oscillation.
  • the light source control unit 16 oscillates pseudo-continuously by pulse oscillation having a predetermined pulse width (for example, 10 to 50 ns, duty ratio 5%) repeated in a predetermined period (for example, 1 to 5 MHz).
  • the light source control unit 16 changes the temperature by changing the drive current (drive voltage) of the current source (or voltage source) at a predetermined frequency with a wavelength sweeping value that is less than the threshold value for pulse oscillation. Is generated to sweep the oscillation wavelength of the laser beam.
  • the modulation signal that modulates the drive current varies in a triangular wave shape, a saw wave shape, or a sinusoidal shape, and its frequency is, for example, 1 to 100 Hz.
  • the light intensity signal obtained by the photodetector 14 by oscillating the semiconductor lasers 121 to 124 in a pseudo-continuous manner is as shown in FIG. In this way, the absorption spectrum can be acquired for the entire pulse train.
  • Pseudo-continuous oscillation requires less power consumption of the light source than continuous oscillation, facilitates exhaust heat treatment, and can extend the life of the light source.
  • the light source control unit 16 controls the plurality of semiconductor lasers 121 to 124 so that they have oscillation wavelengths corresponding to different measurement target components, and has the same oscillation period and different oscillation timings. Pulse oscillates.
  • the light source control unit 16 controls the current source (or voltage source) of each of the semiconductor lasers 121 to 124 by outputting a current (or voltage) control signal.
  • the light source control unit 16 of the present embodiment repeats each semiconductor laser 121 to 124 in a predetermined period (for example, 1 to 5 MHz) with a predetermined pulse width (for example, 10 to 100 ns, duty ratio 5). %) Pulse oscillation is used for pseudo continuous oscillation (pseudo CW).
  • the light source control unit 16 causes a temperature change by changing the drive current (drive voltage) of the current source (or voltage source) at a predetermined frequency to sweep the oscillation wavelength of the laser beam. Is to do.
  • the oscillation wavelength of the laser light in each semiconductor laser is modulated around the peak of the light absorption spectrum of the component to be measured.
  • the modulation signal that changes the drive current is a signal that changes in a triangular wave shape, a saw wave shape, or a sinusoidal shape, and whose frequency is, for example, 1 to 100 Hz.
  • FIG. 12 shows an example in which the modulated signal changes in a triangular wave shape.
  • the light intensity signal obtained by the photodetector 3 by oscillating one semiconductor laser 2 in a pseudo-continuous manner is as shown in FIG. In this way, the absorption spectrum can be acquired for the entire pulse train.
  • the light source control unit 5 oscillates a plurality of semiconductor lasers 2 at different timings. Specifically, as shown in FIG. 14, a plurality of semiconductor lasers 2 sequentially pulse oscillate, and one pulse of each of the other semiconductor lasers 2 is included in one cycle of pulse oscillation in one semiconductor laser 2. That is, one pulse of each of the other semiconductor lasers 2 is included in the pulses of one semiconductor laser 2 adjacent to each other. At this time, the pulses of the plurality of semiconductor lasers 2 are oscillated so as not to overlap each other.
  • the signal processing device 15 further includes a signal separation unit 18 that separates signals for each of the semiconductor lasers 121 to 124 from the light intensity signal obtained by the photodetector 14.
  • the signal separation unit 18 separates the signals of the plurality of semiconductor lasers 121 to 124 from the light intensity signal obtained by the photodetector 14.
  • the signal separation unit 18 of the present embodiment includes a plurality of sample hold circuits provided corresponding to the plurality of semiconductor lasers 121 to 124, and an AD converter that digitally converts the light intensity signal separated by the sample hold circuits. have.
  • the sample hold circuit and the AD converter may be one common to the plurality of semiconductor lasers 121 to 124.
  • the sample hold circuit uses a sampling signal synchronized with the current (or voltage) control signal of the corresponding semiconductor lasers 121 to 124 at a timing synchronized with the pulse oscillation timing of the semiconductor lasers 121 to 124.
  • the signals of the corresponding semiconductor lasers 121 to 124 are separated and held from the light intensity signal of the photodetector 14.
  • the sample hold circuit is configured to separate and hold the signal corresponding to the latter half of the pulse oscillation of the semiconductor lasers 121 to 124.
  • the AD converter may have a slow processing speed.
  • a plurality of light absorption signals obtained for each of the semiconductor lasers 121 to 124 may be used by time averaging.
  • the signal processing unit 17 calculates the concentration of the measurement target component corresponding to the semiconductor lasers 121 to 124.
  • the signal processing unit 17 calculates the concentration of the component to be measured in the same manner as in the above embodiment.
  • sample gas may be not only exhaust gas but also the atmosphere, or may be liquid or solid.
  • present invention can be applied not only to gas but also to liquid or solid as the component to be measured.
  • the light source may be any other type of laser regardless of the semiconductor laser, and any light source is used as long as it is a single-wavelength light source having a half-value width sufficient to ensure measurement accuracy and can even perform wavelength modulation. You may. Further, it can be used not only for the absorbance of light transmitted through the measurement target but also for the calculation of the absorbance due to reflection.
  • an analyzer that irradiates a cell with light from three or more light sources, it is possible to prevent a decrease in the amount of light of each light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、3つ以上の光源からセルに光を照射する分析装置において、各光源の光量低下を防止するものであり、少なくとも第1光源121、第2光源122及び第3光源123と、各光源121~123の光をセル11に導く光学系13とを備え、光学系13は、第1光源121の光を反射するとともに、第2光源122の光を透過する第2光源用光学素子E2と、第2光源用光学素子E2を反射した第1光源121の光及び透過した第2光源122の光を反射するとともに、第3光源123の光を透過する第3光源用光学素子E3とを備える。

Description

分析装置
 本発明は、3つ以上の光源を用いた分析装置に関するものである。
 従来、レーザ等の光源を用いた分析装置では、サンプルに含まれる複数の成分を測定するために、サンプルが収容される測定セルと、当該測定セルにレーザ光を照射する波長の異なる複数のレーザと、測定セルを透過した光を検出する光検出器とを備えている。
 このとき、複数のレーザからのレーザ光を共通の光路にして測定セルに照射するためには、ダイクロイックミラー等の結合光学素子が用いられている。具体的には、3つ以上のレーザを用いる構成の場合には、光学系を小型化するために、光射出方向が同じ向きを向くように複数のレーザを横並びに直線状に配置し、それらの光射出側に複数のレーザと同様に結合光学素子を直線上に配置する構成としている。このような光学配置では、1つのレーザから出たレーザ光は、別のレーザに対応して設けられた2つ以上の結合光学素子を透過して測定セルに照射される構成となる。
 しかしながら、上記の透過型の光学系では、結合光学素子を透過するごとにレーザ光の光量が低下してしまうという問題がある。また、結合光学素子の透過率を広帯域に亘って高くすることが難しいため、レーザの数が増えると、光量低下の問題が顕著になる。また、結合光学素子内での多重反射による迷光の干渉の影響を防ぐために、ウェッジ付きの結合光学素子を用いる場合、結合光学素子を透過する度にレーザ光が屈折するため、結合光学素子の数が増すと光軸調整が非常に困難となる。
特許第6255022号公報
 そこで本発明は上記問題点を解決すべくなされたものであり、3つ以上の光源からセルに光を照射する分析装置において、各光源の光量低下を防止することをその主たる課題とするものである。
 すなわち本発明に係る分析装置は、サンプルが導入されたセルに光を照射し、当該セルを透過した光を検出して、前記サンプル中に含まれる測定対象成分を分析する分析装置であって、少なくとも第1光源、第2光源及び第3光源を含む複数の光源と、前記各光源の光を前記セルに導く光学系とを備え、前記光学系は、前記第1光源の光を反射するとともに、前記第2光源の光を透過する第2光源用光学素子と、前記第2光源用光学素子を反射した前記第1光源の光及び透過した前記第2光源の光を反射するとともに、前記第3光源の光を透過する第3光源用光学素子とを備えることを特徴とする。
 本発明によれば、第1光源の光は、第2光源用光学素子及び第3光源用光学素子を透過することなく反射して測定セルに導かれるので、第1光源の光の光量低下を防ぐことができる。また、第2光源の光は、第2光源用光学素子を透過するだけで、それ以降は第3光源用光学素子を透過することなく反射して測定セルに導かれるので、第2光源の光の光量低下を防ぐことができる。さらに、第3光源の光は、第3光源用光学素子を透過するだけで測定セルに導かれるので、第3光源の光の光量低下を防ぐことができる。このように本発明は、1つのレーザから出たレーザ光が別のレーザに対応して設けられた2つ以上の光学素子を透過して測定セルに照射される透過型の光学系ではなく、1つのレーザから出たレーザ光が別のレーザに対応して設けられた光学素子を反射して測定セルに照射される反射型の光学系であり、各光源からの光量低下を防止することができる。
 また、各光学素子内での多重反射による迷光の干渉の影響を防ぐために、ウェッジの付いた光学素子を用いることが望ましく、この場合、反射型の光学系にすることで各光源は光学素子を1度しか透過しないため、光の屈折による光軸調整の困難さが緩和される。
 光源の配置の自由度を増して分析装置を小型化するためには、前記第2光源用光学素子を反射した前記第1光源の光及び透過した前記第2光源の光を反射する第2光源用反射ミラーをさらに備え、前記第3光源用光学素子は、前記第2光源用反射ミラーを反射した前記第1光源の光及び前記第2光源の光を反射するものであることが望ましい。
 また、光源の配置の自由度を増して分析装置を小型化するためには、前記光学系は、前記第1光源の光を反射する第1光源用反射ミラーをさらに備え、前記第2光源用光学素子は、前記第1光源用反射ミラーを反射した前記第1光源の光を反射するものであることが望ましい。
 分析装置における光源、各反射ミラー及び各光学素子の配置の自由度を増して、所望の方向に各光源の光を照射できるようにするためには、前記光学系は、前記第3光源用光学素子を反射した前記第1光源の光及び前記第2光源の光並びに透過した前記第3光源の光を反射する第3光源用反射ミラーをさらに備えることが望ましい。
 光学系を小型化するためには、前記各反射ミラー及び前記各光学素子は、反射する光の入射角度が45度未満となるように配置されていることが望ましい。
 具体的には、前記第1光源、前記第2光源及び前記第3光源は、射出する光の波長が互いに異なることが望ましい。
 各光源及び各光学素子の具体的な実施の態様としては、前記第1光源、前記第2光源及び前記第3光源は、射出する光の波長が短い順に配置され、前記第2光源用光学素子は、前記第2光源の波長以上の光を透過させるものであり、前記第3光源用光学素子は、前記第3光源の波長以上の光を透過させるものであることが望ましい。
 この構成であれば、第2光源用光学素子及び第3光源用光学素子を、対応する光源からの光の波長よりも短い波長を遮断するロングパスフィルタ(短波長カットフィルタ)とすることができ、光学素子の設計が容易となる。
 また、各光源及び各光学素子の具体的な実施の態様としては、前記第1光源、前記第2光源及び前記第3光源は、射出する光の波長が長い順に配置され、前記第2光源用光学素子は、前記第2光源の波長以下の光を透過させるものであり、前記第3光源用光学素子は、前記第3光源の波長以下の光を透過させるものであることが望ましい。
 この構成であれば、第2光源用光学素子及び第3光源用光学素子を、対応する光源からの光の波長よりも長い波長を遮断するショートパスフィルタ(長波長カットフィルタ)とすることができ、光学素子の設計が容易となる。
 また、前記各光源は、レーザ光源であり、所定の変調周波数で波長が変調された変調光を射出するものであることが考えられる。
 この構成であれば、所定の変調周波数で波長が変調された変調光を射出して得られた強度関連信号を用いることにより測定対象成分を分析することができる。その結果、測定対象成分の濃度に与える干渉成分の影響を低減することができる。
 本発明の分析装置は、前記セルを透過した光の強度を検出する光検出器と、前記光検出器により検出された光の強度に関連する強度関連信号と、当該強度関連信号に対して所定の相関が得られる特徴信号との相関値であるサンプル相関値を算出する相関値算出部と、前記サンプル相関値を用いて前記測定対象成分の濃度を算出する濃度算出部とを備えることが望ましい。
 この構成であれば、セルを透過した光の強度に関連する強度関連信号と特徴信号とのサンプル相関値を算出し、算出されたサンプル相関値を用いて測定対象成分の濃度を算出するので、吸収信号を吸収スペクトルへ変換することなく、吸収信号の特徴を劇的に少ない変数で捉えることができ、複雑なスペクトル演算処理をすることなく、測定対象成分の濃度を簡単な演算で測定できる。例えば一般的なスペクトルフィッティングで用いるデータ点数は数百点必要だが、本発明ではせいぜい数個から数十個程度の相関値を使えば同等の精度で濃度の算出が可能となる。その結果、演算処理の負荷を劇的に小さくすることができ、高度な演算処理装置が不要となり、分析装置のコストを削減することができるとともに、小型化が可能となる。
 そして、本発明の分析装置は、前記セルを透過した光の強度を検出する光検出器と、前記光検出器により検出された光の強度に関連する強度関連信号から、前記変調周波数のn倍(nは1以上の整数)の周波数成分を抽出する周波数成分抽出部と、前記周波数成分抽出部による周波数成分抽出結果に基づいて、前記測定対象成分の濃度又は吸光度を算出する第2算出部とをさらに備えることが望ましい。
 この構成であれば、周波数成分抽出部によって得られた値が直接、測定対象成分の濃度に比例した値となるため、従来の波長変調方式で必要であった濃度定量のためのスペクトル演算処理も不要となり、かつ、変調周波数も単一でよいので、システムがより簡便、低コストになる。
 以上に述べた本発明によれば、3つ以上の光源からセルに光を照射する分析装置において、各光源からの光量低下を防止することができる。
本発明の一実施形態に係る分析装置の全体模式図である。 同実施形態の光学系の詳細を示す模式図である。 同実施形態における変形例の光学系の詳細を示す模式図である。 同実施形態における信号処理装置の機能ブロック図である。 同実施形態におけるレーザ発振波長の変調方法を示す模式図である。 同実施形態における発振波長、光強度I(t)、対数強度L(t)、特徴信号F(t)、相関値Sの一例を示す時系列グラフである。 同実施形態の単独相関値及びサンプル相関値を用いた濃度算出の概念図を示す図である。 第2実施形態における信号処理装置の機能ブロック図である。 第2実施形態における変調信号、光検出器の出力信号、測定結果の一例を示す時系列グラフである。 光学系の変形例を示す模式図である。 光学系の変形例を示す模式図である。 光学系の変形例を示す模式図である。 疑似連続発振における駆動電流(電圧)及び変調信号を示す図である。 疑似連続発振による測定原理を示す模式図である。 変形実施形態における複数の半導体レーザのパルス発振タイミング及び光強度信号の一例を示す模式図である。 変形実施形態における信号処理装置の機能ブロック図である。
100・・・分析装置
11 ・・・セル
121・・・第1光源
122・・・第2光源
123・・・第3光源
13 ・・・光学系
M1 ・・・第1光源用反射ミラー
E2 ・・・第2光源用光学素子
M2 ・・・第2光源用反射ミラー
E3 ・・・第3光源用光学素子
M3 ・・・第3光源用反射ミラー
14 ・・・光検出器
172・・・相関値算出部
174・・・濃度算出部
176・・・周波数成分抽出部
177・・・濃度算出部
<第1実施形態>
 以下、本発明の第1実施形態に係る分析装置100について、図面を参照しながら説明する。
 本実施形態の分析装置100は、例えば内燃機関からの排ガスなどのサンプルガス中に含まれる測定対象成分(ここでは、例えばCO、CO、NO、NO、NO、HO、SO、CH、NHなど)の濃度を測定する濃度測定装置である。
 具体的に分析装置100は、図1に示すように、サンプルガスが導入されるセル11と、セル11に照射されるレーザ光を射出する複数のレーザ光源12と、複数のレーザ光源12からの光をセル11に導く光学系13と、セル11を透過したレーザ光であるサンプル光の光路上に設けられてサンプル光を受光する光検出器14と、光検出器14の出力信号を受信し、その値に基づいて測定対象成分の濃度を算出する信号処理装置15とを備えている。
 各部11~15を説明する。
 セル11は、測定対象成分の吸収波長帯域において光の吸収がほとんどない石英、フッ化カルシウム、フッ化バリウム等の透明材質で光の入射口及び出射口が形成されたものである。このセル11には、図示しないが、サンプルガスを内部に導入するためのインレットポートと、内部のサンプルガスを排出するためのアウトレットポートとが設けられており、サンプルガスは、このインレットポートからセル11内に導入されて封入される。
 複数のレーザ光源12は、ここでは半導体レーザ12の一種である量子カスケードレーザ(QCL:Quantum Cascade Laser)であり、中赤外(4~12μm)のレーザ光を発振する。このレーザ光源12は、与えられた電流(又は電圧)によって、発振波長を変調(変える)ことが可能なものである。なお、発振波長が可変でさえあれば、他のタイプのレーザを用いても良く、発振波長を変化させるために、温度を変化させる等しても構わない。本実施形態では4つの半導体レーザ121~124を有する構成を例示しているが、3つ以上であれば、これに限られない。
 光学系13は、図2Aに示すように、複数の半導体レーザ121~124から射出されるレーザ光の光路を共通にしてセル11に照射するものである。なお、以下において、複数の半導体レーザ121~124を、図2Aにおいて左から、第1レーザ121、第2レーザ122、第2レーザ123、及び第4レーザ124という。
 具体的に光学系13は、第1レーザ121に対応して設けられた第1光源用反射ミラーM1(以下、第1反射ミラーM1)と、第2レーザ122に対応して設けられた第2光源用光学素子E2(以下、第2光学素子E2)及び第2光源用反射ミラーM2(以下、第2反射ミラーM2)と、第3レーザ123に対応して設けられた第3光源用光学素子E3(以下、第3光学素子E3)及び第3光源用反射ミラーM3(以下、第3反射ミラーM3)と、第4レーザ124に対応して設けられた第4光源用光学素子E4(以下、第4光学素子E4)及び第4光源用反射ミラーM4(以下、第4反射ミラーM4)と、を備えている。なお、各光学素子E2~E4は、光学素子内の多重反射による迷光の干渉の影響を防ぐため、図2Bに示すように、ウェッジ付きのものを用いても良い。ここで、ウェッジの角度としては、例えば0.3~0.5度程度とすることが考えられる。
 第1反射ミラーM1は、第1レーザ121の光(以下、第1レーザ光)を反射するものである。第1反射ミラーM1により反射された第1レーザ光は、第2光学素子E2に向かう。
 第2光学素子E2は、第1レーザ光を反射するとともに、第2光源の光(以下、第2レーザ光)を透過するものである。第2光学素子E2により反射された第1レーザ光と、第2光学素子E2を透過した第2レーザ光とは、互いに同じ光路上を通って、第2反射ミラーM2に向かう。
 第2反射ミラーM2は、第2光学素子E2を反射した第1レーザ光、及び、第2光学素子E2を透過した第2レーザ光を反射するものである。そして、第2反射ミラーM2により反射された第1レーザ光及び第2レーザ光は、互いに同じ光路上を通って、第3光学素子E3に向かう。
 第3光学素子E3は、第1レーザ光及び第2レーザ光を反射するとともに、第3光源の光(以下、第3レーザ光)を透過するものである。第3光学素子E3により反射された第1レーザ光及び第2レーザ光と、第3光学素子E3を透過した第3レーザ光とは、互いに同じ光路上を通って、第3反射ミラーM3に向かう。
 第3反射ミラーM3は、第3光学素子E3を反射した第1レーザ光及び第2レーザ光、並びに、第3光学素子E3を透過した第3レーザ光を反射するものである。そして、第3反射ミラーM3により反射された第1~第3レーザ光は、互いに同じ光路上を通って、第4光学素子E4に向かう。
 第4光学素子E4は、第1~第3レーザ光を反射するとともに、第4光源の光(以下、第4レーザ光)を透過するものである。第4光学素子E4により反射された第1~第3レーザ光と、第4光学素子E4を透過した第4レーザ光とは、互いに同じ光路上を通って、第4反射ミラーM4に向かう。
 第4反射ミラーM4は、第4光学素子E4を反射した第1~第3レーザ光、及び第4光学素子E4を透過した第4レーザ光を反射するものである。そして、第4反射ミラーM4により反射された第1~第4レーザ光は、互いに同じ光路上を通って、セル11に向かう。
 この光学系13により、第1レーザ光は、第1反射ミラーM1、第2光学素子E2、第2反射ミラーM2、第3光学素子E3、第3反射ミラーM3、第4光学素子E4、第4反射ミラーM4をこの順で反射してセル11に照射される。第2レーザ光は、第2光学素子E2を透過した後、第2反射ミラーM2、第3光学素子E3、第3反射ミラーM3、第4光学素子E4、第4反射ミラーM4をこの順で反射してセル11に照射される。第3レーザ光は、第3光学素子E3を透過した後、第3反射ミラーM3、第4光学素子E4、第4反射ミラーM4をこの順で反射してセル11に照射される。第4レーザ光は、第4光学素子E4を透過した後、第4反射ミラーM4で反射してセル11に照射される。
 本実施形態では、第1レーザ121、第2レーザ122、第3レーザ123及び第4レーザ124は、セル11からの光路が長くなる側(図2Aの紙面左側)から、射出するレーザ光の波長が短い順に配置されている。そして、第2光学素子E2は、第2レーザ122の波長以上のレーザ光を透過させるとともに、第1レーザ光を反射するロングパスフィルタ(短波長カットフィルタ)である。また、第3光学素子E3は、第3レーザ123の波長以上のレーザ光を透過させるとともに、第1レーザ光及び第2レーザ光を反射するロングパスフィルタ(短波長カットフィルタ)である。さらに、第4光学素子E4は、第4レーザ124の波長以上のレーザ光を透過させるとともに、第1~第3レーザ光を反射するロングパスフィルタ(短波長カットフィルタ)である。
 また、本実施形態では、図2Aに示すように、第1レーザ121、第2レーザ122、第3レーザ123及び第4レーザ124は、光射出方向が同じ向きを向くように横並びに直線上に配置されている。そして、少なくとも第1~第3反射ミラーM1~M3は、対応するレーザ121、122、123と同様に、それらの光射出側に横並びに直線上に配置されている。なお、第4反射ミラーM4は、反射したレーザ光をセル11に向かわせるものであり、その位置は適宜設定される。
 さらに、本実施形態では、少なくとも第1~第3反射ミラーM1~M3及び各光学素子E2~E4は、反射するレーザ光の入射角度が45度未満となるように配置されている。つまり、少なくとも第1~第3反射ミラーM1~M3及び各光学素子E2~E4において入射光と反射光とのなす角度が90度未満となるように配置されている。このように各反射ミラーM1~M3及び各光学素子E2~E4を配置することによって、光学系13を小型化することができる。
 再び、図1に戻り、光検出器14及び信号処理装置15について説明する。
 光検出器14は、ここでは、比較的安価なサーモパイル等の熱型のものを用いているが、その他のタイプのもの、例えば、応答性がよいHgCdTe、InGaAs、InAsSb、PbSe等の量子型光電素子を用いても構わない。
 信号処理装置15は、バッファ、増幅器等からなるアナログ電気回路と、CPU、メモリ等からなるデジタル電気回路と、それらアナログ/デジタル電気回路間を仲立ちするADコンバータ、DAコンバータ等とを具備したものであり、前記メモリの所定領域に格納した所定のプログラムに従ってCPUやその周辺機器が協働することによって、図3に示すように、半導体レーザ12の出力を制御する光源制御部16や、光検出器14からの出力信号を受信し、その値を演算処理して測定対象成分の濃度を算出する信号処理部17としての機能を発揮する。
 以下に各部を詳述する。
 光源制御部16は、電流(又は電圧)制御信号を出力することによって各半導体レーザ12の電流源(又は電圧源)を制御するものである。具体的に光源制御部16は、各半導体レーザ12の駆動電流(又は駆動電圧)を所定周波数で変化させ、半導体レーザ12から出力されるレーザ光の発振波長を中心波長に対して所定周波数で変調させる。また、光源制御部16は、複数の半導体レーザ121~124がそれぞれ異なる測定対象成分に対応した発振波長となるように制御する。さらに、光源制御部16は、複数の半導体レーザ121~124がそれぞれ異なるタイミングでレーザ光を出力するように制御する。
 この実施形態においては、光源制御部16は駆動電流を三角波状に変化させ、発振周波数を三角波状に変調する(図5の「発振波長」参照)。実際には、発振周波数が三角波状になるように、駆動電流の変調を別の関数で行う。また、レーザ光の発振波長は、図4に示すように、測定対象成分の光吸収スペクトルのピークを中心波長として変調されるようにしてある。その他、光源制御部16は、駆動電流を正弦波状や鋸波状、または任意の関数状に変化させ、発振周波数を正弦波状や鋸波状、または任意の関数状に変調してもよい。
 図3を参照して、信号処理部17は、対数演算部171、相関値算出部172、格納部173、濃度算出部174等からなる。
 対数演算部171は、光検出器14の出力信号である光強度信号に対数演算を施すものである。光検出器14により得られる光強度信号の継時変化を示す関数I(t)は、図5の「光強度I(t)」のようになり、対数演算を施すことにより、図5の「対数強度L(t)」のようになる。
 相関値算出部172は、サンプル光の強度に関連する強度関連信号と複数の所定の特徴信号とのそれぞれの相関値を算出するものである。特徴信号とは、強度関連信号と相関を取ることで、強度関連信号の波形特徴を抽出するための信号である。特徴信号としては、例えば正弦波信号や、それ以外の強度関連信号から抽出したい波形特徴に合わせた様々な信号を用いることができる。
 以下では、特徴信号に正弦波信号以外のものを用いた場合の例を説明する。相関値算出部172は、サンプル光の強度に関連する強度関連信号と、当該強度関連信号に対して正弦波信号(正弦関数)とは異なる相関が得られる複数の特徴信号とのそれぞれの相関値を算出する。ここでは、相関値算出部172は、対数演算された光強度信号(対数強度L(t))を強度関連信号として用いる。
 また、相関値算出部172は、測定対象成分の種類数及び干渉成分の種類数を合わせた数以上の数の特徴信号F(t)(i=1,2,・・・,n)を用いて、下式(数1)により、複数のサンプル相関値S(t)を算出するものである。なお、数1におけるTは、変調の周期である。
Figure JPOXMLDOC01-appb-M000001
 相関値算出部162は、サンプル相関値を算出する時、上式(数1)のように、サンプル光の強度関連信号L(t)と複数の特徴信号F(t)との相関値Sを求める。また、相関値算出部162は、上式(数1)のように、リファレンス光の強度関連信号L(t)と複数の特徴信号F(t)との相関値であるリファレンス相関値Rを求める。そして、相関値算出部162は、上式(数1)のように、相関値Sからリファレンス相関値Rを差し引いたサンプル相関値S’を算出する。これにより、サンプル相関値に含まれるオフセットを除去し、測定対象成分及び干渉成分の濃度に比例した相関値となり、測定誤差を低減できる。なお、リファレンス相関値を差し引かない構成であっても良い。
 ここで、リファレンス光の取得タイミングは、サンプル光と同時、測定の前後又は任意のタイミングである。リファレンス光の強度関連信号又はリファレンス相関値は、予め取得して格納部173に記憶させておいても良い。また、リファレンス光を同時に取得する方法は、例えば、光検出器14を2つ設けて、半導体レーザ12からの変調光をビームスプリッタなどにより分岐させて、一方をサンプル光測定用とし、他方をリファレンス光測定用とすることが考えられる。
 本実施形態では、相関値算出部172は、複数の特徴信号F(t)として、正弦関数よりも対数強度L(t)の波形特徴を捉えやすい関数を用いている。測定対象成分(例えばSO)及び1つの干渉成分(例えばHO)を含むサンプルガスの場合には、2つ以上の特徴信号F(t)、F(t)を用いることが考えられ、2つの特徴信号F(t)、F(t)としては、例えば、吸収スペクトルの形に近いローレンツ関数に基づいた関数と、当該ローレンツ関数に基づいた関数の微分関数とを用いることが考えられる。また、特徴信号としては、ローレンツ関数に基づいた関数の代わりに、フォークト関数に基づいた関数、又はガウス関数に基づいた関数等を用いることもできる。このような関数を特徴信号に用いることで、正弦関数を用いた時よりもより大きな相関値を得ることができ、測定精度を向上させることができる。
 ここで、特徴信号は、直流成分を除去、すなわち変調周期で積分した時にゼロになるようにオフセットを調整することが望ましい。こうすることで、光強度の変動による強度関連信号にオフセットが乗った時の影響を除去することができる。なお、特徴信号の直流成分を除去する代わりに、強度関連信号の直流成分を除去してもよいし、特徴信号と強度関連信号の両方とも直流成分を除去してもよい。その他、特徴信号として、測定対象成分及び/又は干渉成分の吸収信号の実測値、またはそれらを模したものをそれぞれ用いてもよい。
 なお、2つの特徴信号F(t)、F(t)を互いに直交する直交関数列又は直交関数列に近い関数列とすることにより、対数強度L(t)の特徴をより効率的に抽出することができ、後述する連立方程式により得られる濃度を精度良くすることができる。
 格納部173は、測定対象成分及び各干渉成分が単独で存在する場合のそれぞれの強度関連信号と複数の特徴信号F(t)とから求められた測定対象成分及び各干渉成分それぞれの単位濃度当たりの相関値である単独相関値を格納するものである。この単独相関値を求めるのに用いる複数の特徴信号F(t)は、相関値算出部172で用いる複数の特徴信号F(t)と同一である。
 ここで、格納部173は、単独相関値を格納する時、測定対象成分及び各干渉成分が単独で存在する場合の相関値からリファレンス相関値を差し引いた上で、単位濃度当たりに換算する補正をした単独相関値を格納することが望ましい。これにより、単独相関値に含まれるオフセットを除去し、測定対象成分及び干渉成分の濃度に比例した相関値となり、測定誤差を低減できる。なお、リファレンス相関値を差し引かない構成であっても良い。
 濃度算出部174は、相関値算出部172により得られた複数のサンプル相関値を用いて測定対象成分の濃度を算出するものである。
 具体的に濃度算出部174は、相関値算出部172により得られた複数のサンプル相関値と、格納部173に格納された複数の単独相関値とに基づいて、測定対象成分の濃度を算出するものである。より詳細には、濃度算出部174は、相関値算出部172により得られた複数のサンプル相関値と、格納部173に格納された複数の単独相関値と、測定対象成分及び各干渉成分それぞれの濃度とからなる連立方程式を解くことにより、測定対象成分の濃度を算出するものである。
 次に、前記各部の詳細説明を兼ねて、この分析装置100の動作の一例を説明する。以下では、サンプルガス中に1つの測定対象成分(例えばSO)と1つの干渉成分(例えばHO)とが含まれる場合を想定している。
<リファレンス測定>
 まず、光源制御部16が、各半導体レーザ121~124を制御し、変調周波数で且つ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。なお、スパンガスを用いたリファレンス測定の前に、ゼロガスを用いたリファレンス測定を行い、リファレンス相関値の測定を行ってもよい。
 次に、オペレータにより又は自動的に、セル11内にスパンガス(成分濃度既知のガス)が導入されて、リファレンス測定が行われる。このリファレンス測定は、測定対象成分が単独で存在するスパンガスと、干渉成分が単独で存在するスパンガスとのそれぞれにおいて行われる。
 具体的には、リファレンス測定において、対数演算部171が光検出器14の出力信号を受信して対数強度L(t)を算出する。そして、相関値算出部172は、その対数強度L(t)と2つの特徴信号F(t)、F(t)との相関値を算出し、その相関値からリファレンス相関値を差し引いたものをスパンガスの濃度で割ることにより、単位濃度当たりの各スパンガスの相関値である単独相関値を算出する。なお、単位濃度あたりの単独相関値を算出する代わりに、スパンガス濃度と当該スパンガスの単独相関値との関係を記憶させておいても良い。
 具体的には以下の通りである。
 測定対象成分が単独で存在するスパンガスをセル1内に導入することにより、相関値算出部172により測定対象成分の相関値S1t、S2tを算出する(図6参照)。ここで、S1tは、第1の特徴信号との相関値であり、S2tは、第2の特徴信号との相関値である。そして、相関値算出部162は、それら相関値S1t、S2tからリファレンス相関値Rを差し引いたものを測定対象成分のスパンガス濃度cで割ることにより、単独相関値s1t、s2tを算出する。なお、測定対象成分のスパンガス濃度cは、予めユーザ等により信号処理部17に入力される。
 また、干渉成分が単独で存在するスパンガスをセル1内に導入することにより、相関値算出部172により干渉成分の相関値S1i、S2iを算出する(図6参照)。ここで、S1iは、第1の特徴信号との相関値であり、S2iは、第2の特徴信号との相関値である。そして、相関値算出部172は、それら相関値S1i、S2iからリファレンス相関値を差し引いたものを干渉成分のスパンガス濃度cで割ることにより、単独相関値s1i、s2iを算出する。なお、干渉成分のスパンガス濃度cは、予めユーザ等により信号処理部17に入力される。
 上記により算出された単独相関値s1t、s2t、s1i、s2iは、格納部173に格納される。なお、このリファレンス測定は、製品出荷前に行うようにしても良いし、定期的に行うようにしてもよい。
<サンプル測定>
 光源制御部16が、各半導体レーザ121~124を制御し、変調周波数で且つ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。
 次に、オペレータにより又は自動的に、セル11内にサンプルガスが導入されて、サンプル測定が行われる。
 具体的には、サンプル測定において、対数演算部171が光検出器14の出力信号を受信して対数強度L(t)を算出する。そして、相関値算出部172は、その対数強度L(t)と複数の特徴信号F(t)、F(t)とのサンプル相関値を算出し、その相関値からリファレンス相関値Rを差し引いたサンプル相関値S’、S’を算出する(図6参照)。
 そして、濃度算出部174は、相関値算出部172が算出したサンプル相関値S’、S’と、格納部173の単独相関値s1t、s2t、s1i、s2iと、測定対象成分及び各干渉成分それぞれの濃度Ctar、Cintとからなる以下の二元連立方程式を解く。
Figure JPOXMLDOC01-appb-M000002
 これにより、上式(数2)の連立方程式を解くという簡単かつ確実な演算により、干渉影響が取り除かれた測定対象成分の濃度Ctarを決定することができる。
 なお、干渉成分が2以上存在すると想定し得る場合でも、干渉成分の数だけ、単独相関値を追加して、成分種の数と同じ元数の連立方程式を解くことで、同様に干渉影響が取り除かれた測定対象成分の濃度を決定することができる。
 すなわち、一般に測定対象成分と干渉成分を合わせてn種のガスが存在する場合、m番目の特徴信号におけるk番目のガス種の単独相関値をsmk、k番目のガス種の濃度をC、m番目の特徴信号F(t)におけるサンプル相関値をS’とすると、以下の式(数3)が成り立つ。
Figure JPOXMLDOC01-appb-M000003
 この式(数3)で表されるn元連立方程式を解くことで、測定対象成分及び干渉成分の各ガスの濃度を決定することができる。
<第1実施形態の効果>
 このように構成した本実施形態の分析装置100であれば、各レーザ121~124から射出されたレーザ光は最大でも1つの光学素子E2~E4しか通過しないので、各レーザ121~124から射出されたレーザ光の光量低下を防ぐことができる。その結果、光学素子E2~E4を通過することにより生じる各レーザ121~124の光量のばらつきを抑えることができ、分析装置100における各測定対象成分の測定精度を向上させることができる。またウェッジ付きの光学素子を用いた場合でも各レーザ光は光学素子を1度しか通過しないため、光の屈折による光軸調整の困難さが緩和されている。
<第2実施形態>
 次に、本発明の第2実施形態に係る分析装置100について説明する。第2実施形態の分析装置100は、前記第1実施形態とは信号処理部17の構成が異なる。
 第2実施形態の信号処理部17は、図7に示すように、強度比対数算出部175、周波数成分抽出部176、濃度算出部177等からなる。
 強度比対数算出部175は、サンプルガスが封入され、その中の測定対象成分による光吸収が生じる状態でのセル11を透過したレーザ光(以下、透過光ともいう。)の光強度と、光吸収が実質的にゼロ状態でのセル11を透過したレーザ光(以下、リファレンス光ともいう。)の光強度との比の対数(以下、強度比対数ともいう。)を算出するものである。
 より詳細に説明すると、透過光の光強度及びリファレンス光の光強度のいずれも光検出器14により測定され、その測定結果データはメモリの所定領域に格納されるところ、強度比対数算出部175は、この測定結果データを参照して強度比対数(以下、強度関連信号ともいう。)を算出する。このように本実施形態では、強度関連信号として吸光度信号を用いてもよい。
 しかして、前者の測定(以下、サンプル測定ともいう。)は、当然のことながら、サンプルガスごとに都度行われる。後者の測定(以下、リファレンス測定ともいう。)は、サンプル測定の前後にいずれかに都度行ってもよいし、適宜のタイミングで、例えば1回だけ行い、その結果をメモリに記憶させて各サンプル測定に共通に用いてもよい。
 なお、この実施形態においては、光吸収が実質的にゼロとなる状態とするために、測定対象成分の光吸収がみられる波長帯域において、光吸収が実質的にゼロとなるゼロガス、例えばNガスをセル11に封入しているが、その他のガスでもよいし、セル11内を真空にしても構わない。また、サンプル測定を行うセル11とは別に参照測定を行うセルを設けて、半導体レーザ12からの変調光をハーフミラーなどにより分岐させて、2つのセルに導入してもよい。
 周波数成分抽出部176は、強度比対数算出部175が算出した強度関連信号を、変調周波数のn倍(nは1以上の整数)の周波数を有する正弦波信号(リファレンス信号)でロックイン検波して、当該強度関連信号からリファレンス信号の有する周波数成分を抽出して、同期検波信号を生成するものである。なお、ロックイン検波は、デジタル演算で行ってもよいし、アナログ回路による演算で行ってもよい。また、周波数成分の抽出は、ロックイン検波のみならず、例えばフーリエ級数展開といった方式を用いても構わない。
 濃度算出部177は、周波数成分抽出部176による同期検波結果に基づいて、測定対象成分の濃度を算出するものである。
 次に、上記各部の詳細説明を兼ねて、この分析装置100の動作の一例を説明する。
 まず、光源制御部16が、各半導体レーザ121~124を制御し、前記変調周波数で、かつ測定対象成分の吸収スペクトルのピークを中心に、レーザ光の波長を変調する。
 次に、オペレータにより又は自動的に、セル11内にゼロガスが封入されると、これを検知した強度比対数算出部175は、リファレンス測定を行う。
 具体的には、ゼロガスがセル11に封入された状態での光検出器14からの出力信号を受信し、その値を測定結果データ格納部に格納する。このリファレンス測定における光検出器14の出力信号の値、すなわちリファレンス光強度を時系列グラフで表すと、図8(a)のようになる。すなわち、レーザの駆動電流(電圧)の変調による光出力の変化のみが光検出器13の出力信号に表れている。
 そこで、オペレータにより又は自動的にセル11内にサンプルガスが封入されると、強度比対数算出部175は、サンプル測定を行う。具体的には、サンプルガスがセル11に封入された状態での光検出器14からの出力信号を受信し、その値をメモリの所定領域に格納する。このサンプル測定における光検出器14の出力信号の値、すなわち透過光強度を時系列グラフで表すと、図8(b)のようになる。変調の半周期ごとに吸収によるピークが現れることがわかる。
 次に、強度比対数算出部175は、各測定データを変調周期に同期させ、透過光の光強度と、リファレンス光の光強度との強度比対数(強度関連信号)を算出する。具体的には、以下の式(数4)と均等な演算を行う。
Figure JPOXMLDOC01-appb-M000004
 ここで、D(t)は透過光強度、D(t)はリファレンス光強度、A(t)は強度比対数(強度関連信号)である。この強度関連信号を時間を横軸にとってグラフに表すと図8(c)のようになる。
 このとき、透過光強度とリファレンス光強度との比を算出してからその対数を求めてもよいし、透過光強度の対数及びリファレンス光強度の対数をそれぞれ求め、それらを差し引いても構わない。
 次に、周波数成分抽出部176が、強度関連信号を変調周波数の2倍の周波数を有するリファレンス信号でロックイン検波、すなわち、変調周波数の2倍の周波数成分を抽出し、その同期検波信号(以下、ロックインデータともいう。)を、メモリの所定領域に格納する。
 このロックインデータの値が、測定対象成分の濃度に比例した値となり、濃度算出部177が、このロックインデータの値に基づいて、測定対象成分の濃度を示す濃度指示値を算出する。
 しかして、このような構成によれば、何らかの要因でレーザ光強度が変動したとしても前述した強度比対数には、一定のオフセットが加わるだけで、波形は変化しない。したがって、これをロックイン検波して算出された各周波数成分の値は変化せず、濃度指示値は変化しないため、精度のよい測定が期待できる。
 その理由を詳細に説明すると以下のとおりである。
 一般的に、強度関連信号A(t)をフーリエ級数展開すると、次式(数5)で表される。
 なお、式(数5)におけるaが測定対象成分の濃度に比例する値であり、この値aに基づいて濃度算出部177が測定対象成分の濃度を示す濃度指示値を算出する。
Figure JPOXMLDOC01-appb-M000005
 ここで、fは変調周波数であり、nは変調周波数に対する倍数である。
 一方、A(t)は、前記式(数1)とも表される。
 次に、測定中に何らかの要因でレーザ光強度がα倍変動した場合の、強度関連信号A’(t)は、以下の式(数6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 この式(数6)から明らかなように、A’(t)は、レーザ光強度の変動のない場合の強度関連信号A(t)に一定値である-ln(α)が加わるだけとなり、レーザ光強度が変化しても各周波数成分の値aは変化しないことがわかる。
 よって、変調周波数の2倍の周波数成分の値に基づいて決定している濃度指示値には影響はでない。
 以上が、サンプルガスに測定対象成分以外の干渉成分が含まれていない場合の試料分析装置100の動作例である。
 次に、測定対象成分のピーク光吸収波長に光吸収を有する1又は複数の干渉成分(例えばHO)がサンプルガスに含まれている場合の試料分析装置100の動作例について説明する。
 まず、原理を説明する。
 測定対象成分と干渉成分の光吸収スペクトルは形状が違うため、それぞれの成分が単独で存在する場合の強度関連信号は波形が異なり、各周波数成分の割合が異なる(線形独立)。このことを利用し、測定された強度関連信号の各周波数成分の値と、あらかじめ求めた測定対象成分と干渉成分の強度関連信号の各周波数成分との関係を用いて、連立方程式を解くことにより、干渉影響が補正された測定対象成分の濃度を得ることができる。
 測定対象成分、干渉成分のそれぞれが単独で存在する場合の単位濃度当たりの強度関連信号をそれぞれA(t)、A(t)とし、それぞれの強度関連信号の各周波数成分をanm、aniとすると、以下の式(数7、数8)が成り立つ。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 測定対象成分、干渉成分の濃度がそれぞれC、Cで存在する場合の強度関連信号値A(t)は、各吸光度の線形性により、以下の式(数9)で表される。
Figure JPOXMLDOC01-appb-M000009
 ここで、A(t)のfと2fの周波数成分をそれぞれa、aとすれば、上式(数9)より、以下の連立方程式(数10)が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 測定対象成分、干渉成分のそれぞれが単独で存在する場合の各周波数成分anm、ani(nは自然数、ここではn=1,2)は、あらかじめ、各スパンガスを流して求めておくことができるので、上式(数10)の連立方程式を解くという簡単かつ確実な演算により、干渉影響が取り除かれた測定対象ガスの濃度Cを決定することができる。
 上述した原理に基づいて分析装置100は動作する。
 すなわち、この場合の分析装置100は、メモリの所定領域に、例えば事前にスパンガスを流して予め測定するなどして、測定対象成分及び干渉成分が単独で存在する場合のそれぞれの強度関連信号の周波数成分a1m、a2m、a1i、a2iを記憶している。具体的には、前例同様、測定対象成分及び干渉成分それぞれにおいて、測定対象光強度とリファレンス光強度とを測定して、それらの強度比対数(強度関連信号)を算出し、この強度比対数からロックイン検波するなどして周波数成分a1m、a2m、a1i、a2iを求め、これらを記憶する。なお、前記周波数成分ではなく、単位濃度当たりの強度関連信号A(t)、A(t)を記憶して、前記式(数7、数8)から周波数成分a1m、a2m、a1i、a2iを算出するようにしてもよい。
 そして、該分析装置100は、オペレータからの入力などによって、測定対象成分及び干渉成分を特定する。
 次に、強度比対数算出部175が、式(数4)に従って強度比対数A(t)を算出する。
 その後、周波数成分抽出部176が、強度比対数を変調周波数f及びその2倍の周波数2fを有するリファレンス信号でロックイン検波して、各周波数成分a、a(ロックインデータ)を抽出し、メモリの所定領域に格納する。
 そして、濃度算出部177が、ロックインデータの値a、a及びメモリに記憶された周波数成分a1m、a2m、a1i、a2iの値を前記式(数10)に当てはめ、あるいはこれと均等な演算を行って、干渉影響が取り除かれた測定対象ガスの濃度を示す濃度(又は濃度指示値)Cを算出する。このとき、各干渉成分の濃度(又は濃度指示値)Cを算出してもよい。
 なお、干渉成分が2以上存在すると想定し得る場合でも、干渉成分の数だけ、より高次の周波数成分を追加して、成分種の数と同じ元数の連立方程式を解くことで、同様に干渉影響が取り除かれた測定対象成分の濃度を決定することができる。
 すなわち、一般に測定対象成分と干渉成分を合わせてn種のガスが存在する場合、k番目のガス種のi×fの周波数成分を、aik、k番目のガス種の濃度をCとすると、以下の式(数11)が成り立つ。
Figure JPOXMLDOC01-appb-M000011
 この式(数11)で表されるn元連立方程式を解くことで、測定対象成分及び干渉成分の各ガスの濃度を決定することができる。
 またnより大きい次数の高調波成分も追加して、ガス種の数より大きい元数の連立方程式を作り、最小二乗法で、各ガス濃度を決定してもよく、こうすることで、より測定ノイズに対しても誤差の小さい濃度決定が可能となる。
<その他の実施形態>
 なお、本発明は前記実施形態に限られるものではない。
 例えば、光学系13に関して言えば、第1反射ミラーを用いることなく、図9に示すように、第1光源121の光を第2光学素子E2に直接照射するようにしてもよいし、2つ以上の反射ミラーを用いて第2光学素子E2に照射するようにしても良い。
 また、光学系13において、図10に示すように、セル11までの光路が最も短い光源(前記実施形態では第4光源124)に対応する第4反射ミラーM4を用いない構成としても良い。この場合、第4光学素子E4により反射された第1~第3光源121~123の光及び第4光学素子E4を透過した第4光源124の光を直接セル11に照射する構成となる。
 前記実施形態では、4つの光源を有する構成であったが、3つ以上の光源を有するものであれば良い。
 3つの光源を有する構成において光学系13を最も簡単にする構成としては、図11に示すものが考えられる。この光学系13は、第1光源121の光を反射するとともに、第2光源122の光を透過する第2光学素子E2と、第2光学素子E2を反射した第1光源121の光及び透過した第2光源122の光を反射するとともに、第3光源123の光を透過する第3光学素子E3とを有する。そして、第3光学素子E3を反射した第1光源121の光及び第2光源122の光並びに第3光学素子を透過した第2光源122の光は、セル11に照射される。
 前記実施形態の測定原理の他に、分析装置100は例えばNDIR法、FTIR法やNDUV法を用いたものであっても良い。
 例えば、前記第1実施形態の対数演算部161は、光検出器13の光強度信号を対数演算するものであったが、光検出器13の光強度信号を用いて、サンプル光の強度とリファレンス光である変調光の強度との比の対数(いわゆる吸光度)を算出するものであってもよい。このとき、対数演算部161は、サンプル光の強度の対数を演算し、リファレンス光の強度の対数を演算した後にそれらを差し引くことで吸光度を算出しても良いし、サンプル光の強度とリファレンス光の強度との比を求めた後にその比の対数を取ることで吸光度を算出してもよい。
 また、前記第1実施形態の相関値算出部62は、強度関連信号と特徴信号との相関値を算出するものであったが、強度関連信号と特徴信号との内積値を算出するものであってもよい。
 また、前記第1実施形態では、格納部173はリファレンス相関値を用いて補正した単独相関値を格納するものであったが、格納部173に補正前の単独相関値を格納しておき、濃度算出部174が、補正前の単独相関値からリファレンス相関値を差し引いた上で、単位濃度当たりに換算する補正をした単独相関値を求める構成としても良い。
 複数の特徴信号は、前記第1実施形態に限られず、互いに異なる関数であれば良い。また、特徴信号として、例えば濃度既知のスパンガスを流して得られた光強度や対数強度又は吸光度の波形(実測スペクトル)を示す関数を用いてもよい。また、1つの測定対象成分の濃度を測定する場合には、特徴信号は少なくとも1つあれば良い。
 前記実施形態の光源制御部16は半導体レーザを連続発振(CW)させるものであったが、図12に示すように、疑似連続発振(疑似CW)させるものであってもよい。この場合、光源制御部16は、電流(又は電圧)制御信号を出力することによって各半導体レーザ121~124の電流源(又は電圧源)を制御して、電流源(又は電圧源)の駆動電流(駆動電圧)をパルス発振させるための所定のしきい値以上とする。具体的に光源制御部16は、所定の周期(例えば1~5MHz)で繰り返される所定のパルス幅(例えば10~50ns、Duty比5%)のパルス発振で疑似連続発振させるものである。そして、光源制御部16は、電流源(又は電圧源)の駆動電流(駆動電圧)を前記パルス発振用のしきい値未満である波長掃引用の値で、所定周波数で変化させることにより温度変化を発生させてレーザ光の発振波長の掃引を行うものである。駆動電流を変調させる変調信号としては、三角波状、鋸波状又は正弦波状で変化するとともに、その周波数は例えば1~100Hzである。
 このように半導体レーザ121~124を疑似連続発振させて光検出器14により得られる光強度信号は、図13のようになる。このようにパルス列全体で吸収スペクトルを取得することができる。疑似連続発振は連続発振に比べて光源の消費電力が小さく排熱処理も容易となり、さらに光源の長寿命化もできる。
 このとき、光源制御部16は、複数の半導体レーザ121~124がそれぞれ異なる測定対象成分に対応した発振波長となるように制御するとともに、互いに同じ発振周期で且つそれらの発振タイミングが互いに異なるようにパルス発振する。
 具体的に光源制御部16は、電流(又は電圧)制御信号を出力することによって各半導体レーザ121~124の電流源(又は電圧源)を制御する。本実施形態の光源制御部16は、図4に示すように、各半導体レーザ121~124を、所定の周期(例えば1~5MHz)で繰り返される所定のパルス幅(例えば10~100ns、Duty比5%)のパルス発振で疑似連続発振(疑似CW)させるものである。
 また、光源制御部16は、図12に示すように、電流源(又は電圧源)の駆動電流(駆動電圧)を所定周波数で変化させることにより温度変化を発生させてレーザ光の発振波長の掃引を行うものである。各半導体レーザにおけるレーザ光の発振波長は、図4に示すように、測定対象成分の光吸収スペクトルのピークを中心にして変調される。駆動電流を変化させる変調信号としては、三角波状、鋸波状又は正弦波状で変化するとともに、その周波数が例えば1~100Hzの信号である。なお、図12には、変調信号が三角波状で変化する例を示している。
 このように1つの半導体レーザ2を疑似連続発振させて光検出器3により得られる光強度信号は、図13のようになる。このようにパルス列全体で吸収スペクトルを取得することができる。
 また、光源制御部5は、複数の半導体レーザ2を互いに異なるタイミングでパルス発振する。具体的には、図14に示すように、複数の半導体レーザ2が順次パルス発振し、1つの半導体レーザ2におけるパルス発振の1周期内にその他の半導体レーザ2それぞれの1パルスが含まれる。つまり、1つの半導体レーザ2の互いに隣り合うパルス内にその他の半導体レーザ2それぞれの1パルスが含まれる。このとき、複数の半導体レーザ2のパルスは、互いに重複しないように発振される。
 そして、この信号処理装置15は、図15に示すように、光検出器14により得られた光強度信号から半導体レーザ121~124毎の信号を分離する信号分離部18を更に備えている。
 信号分離部18は、光検出器14により得られた光強度信号から、複数の半導体レーザ121~124それぞれの信号を分離するものである。本実施形態の信号分離部18は、複数の半導体レーザ121~124それぞれに対応して設けられた複数のサンプルホールド回路と当該サンプルホールド回路により分離された光強度信号をデジタル変換するAD変換器とを有している。なお、サンプルホールド回路及びAD変換器は、複数の半導体レーザ121~124に共通の1つのものとしても良い。
 サンプルホールド回路は、図14に示すように、対応する半導体レーザ121~124の電流(又は電圧)制御信号と同期されたサンプリング信号により、半導体レーザ121~124のパルス発振のタイミングと同期したタイミングで、光検出器14の光強度信号から、対応する半導体レーザ121~124の信号を分離して保持する。サンプルホールド回路は、半導体レーザ121~124のパルス発振の後半部分に対応する信号を分離して保持するように構成されている。この信号分離部18により分離された各半導体レーザ121~124の複数の信号を集めることにより1つの光吸収信号となり、1つの半導体レーザ121~124を疑似連続発振させた場合に得られる光吸収信号よりも波長分解能の良い光吸収信号を得ることができる。ここで、パルス内の吸収変化位置が変調信号により変化するので、パルス発振に対して同じタイミングで信号を採取することで、波形を再現できる。また、サンプルホールド回路によりパルス発振の一部分に対応する信号を分離しているので、AD変換器は処理速度の遅いものであってもよい。各半導体レーザ121~124毎に得られた複数の光吸収信号を時間平均して用いても良い。
 このように信号分離部18により分離された各半導体レーザ121~124の吸収信号を用いて信号処理部17は、各半導体レーザ121~124に対応する測定対象成分の濃度を算出する。なお、信号処理部17による測定対象成分の濃度の算出は前記実施形態と同様である。
 また、サンプルガスは、排ガスのみならず大気などでもよいし、液体や固体でも構わない。その意味では、測定対象成分もガスのみならず液体や固体でも本発明を適用可能である。
 光源も、半導体レーザに関わらず、他のタイプのレーザでもよいし、測定精度を担保するに十分な半値幅をもつ単波長光源であって、波長変調さえできるものなら、どのような光源を用いてもよい。また、測定対象を貫通透過した光の吸光度のみならず、反射による吸光度算出にも用いることができる。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明によれば、3つ以上の光源からセルに光を照射する分析装置において、各光源の光量低下を防止することができる。

Claims (11)

  1.  サンプルが導入されたセルに光を照射し、当該セルを透過した光を検出して、前記サンプル中に含まれる測定対象成分を分析する分析装置であって、
     少なくとも第1光源、第2光源及び第3光源を含む複数の光源と、
     前記各光源の光を前記セルに導く光学系とを備え、
     前記光学系は、
     前記第1光源の光を反射するとともに、前記第2光源の光を透過する第2光源用光学素子と、
     前記第2光源用光学素子を反射した前記第1光源の光及び透過した前記第2光源の光を反射するとともに、前記第3光源の光を透過する第3光源用光学素子とを備える、分析装置。
  2.  前記各光学素子の少なくとも1つがウェッジ付きの光学素子である、請求項1記載の分析装置。
  3.  前記第2光源用光学素子を反射した前記第1光源の光及び透過した前記第2光源の光を反射する第2光源用反射ミラーをさらに備え、
     前記第3光源用光学素子は、前記第2光源用反射ミラーを反射した前記第1光源の光及び前記第2光源の光を反射するものである、請求項1又は2記載の分析装置。
  4.  前記光学系は、前記第1光源の光を反射する第1光源用反射ミラーをさらに備え、
     前記第2光源用光学素子は、前記第1光源用反射ミラーを反射した前記第1光源の光を反射するものである、請求項1乃至3の何れか一項に記載の分析装置。
  5.  前記光学系は、前記第3光源用光学素子を反射した前記第1光源の光及び前記第2光源の光並びに透過した前記第3光源の光を反射する第3光源用反射ミラーをさらに備える、請求項1乃至4の何れか一項に記載の分析装置。
  6.  前記各反射ミラー及び前記各光学素子は、反射する光の入射角度が45度未満となるように配置されている、請求項1乃至5の何れか一項に記載の分析装置。
  7.  前記第1光源、前記第2光源及び前記第3光源は、射出する光の波長が互いに異なる、請求項1乃至6の何れか一項に記載の分析装置。
  8.  前記第1光源、前記第2光源及び前記第3光源は、射出する光の波長が短い順に配置され、
     前記第2光源用光学素子は、前記第2光源の波長以上の光を透過させるものであり、
     前記第3光源用光学素子は、前記第3光源の波長以上の光を透過させるものである、請求項1乃至7の何れか一項に記載の分析装置。
  9.  前記第1光源、前記第2光源及び前記第3光源は、射出する光の波長が長い順に配置され、
     前記第2光源用光学素子は、前記第2光源の波長以下の光を透過させるものであり、
     前記第3光源用光学素子は、前記第3光源の波長以下の光を透過させるものである、請求項1乃至7の何れか一項に記載の分析装置。
  10.  前記セルを透過した光の強度を検出する光検出器と、
     前記光検出器により検出された光の強度に関連する強度関連信号と、当該強度関連信号と所定の相関が得られる特徴信号との相関値を算出する相関値算出部と、
     前記相関値を用いて前記測定対象成分の濃度を算出する濃度算出部とを備える、請求項1乃至9の何れか一項に記載の分析装置。
  11.  前記各光源は、所定の変調周波数で変調された変調光を射出するものであり、
     前記分析装置は、
     前記セルを透過した光の強度を検出する光検出器と、
     前記光検出器により検出された光の強度に関連する強度関連信号から、前記変調周波数のn倍(nは1以上の整数)の周波数成分を抽出する周波数成分抽出部と、
     前記周波数成分抽出部による周波数成分抽出結果に基づいて、前記測定対象成分の濃度を算出する濃度算出部とをさらに備える、請求項1乃至9の何れか一項に記載の分析装置。
PCT/JP2020/025322 2019-06-27 2020-06-26 分析装置 WO2020262640A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021527788A JP7473546B2 (ja) 2019-06-27 2020-06-26 分析装置
CN202080036382.7A CN113841041A (zh) 2019-06-27 2020-06-26 分析装置
EP20832792.4A EP3992614A4 (en) 2019-06-27 2020-06-26 Analysis device
US17/615,548 US20220236180A1 (en) 2019-06-27 2020-06-26 Analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120161 2019-06-27
JP2019-120161 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262640A1 true WO2020262640A1 (ja) 2020-12-30

Family

ID=74060591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025322 WO2020262640A1 (ja) 2019-06-27 2020-06-26 分析装置

Country Status (5)

Country Link
US (1) US20220236180A1 (ja)
EP (1) EP3992614A4 (ja)
JP (1) JP7473546B2 (ja)
CN (1) CN113841041A (ja)
WO (1) WO2020262640A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451147A (en) * 1981-08-31 1984-05-29 Karel Dobes Refractometer
JPS6255022B2 (ja) 1980-11-29 1987-11-18 Ricoh Kk
JP2001066250A (ja) * 1999-08-30 2001-03-16 Toyota Central Res & Dev Lab Inc ガス検出装置
JP2005502870A (ja) * 2001-09-11 2005-01-27 エンバイロンメンタル システムズ プロダクツ ホールディングス インコーポレイテッド 排気不透明度測定装置
JP2009115654A (ja) * 2007-11-07 2009-05-28 Toyota Motor Corp 炭化水素濃度測定装置および炭化水素濃度測定方法
US20110028824A1 (en) * 2007-08-28 2011-02-03 Bryan Edward Cole Scanning terahertz probe
US20150099303A1 (en) * 2013-10-03 2015-04-09 Rosemount Analytical Inc. Multiple wavelength light source for colorimetric measurement
JP2016515196A (ja) * 2013-02-22 2016-05-26 ケーエルエー−テンカー コーポレイション 光計測において照明を提供するためのシステム
JP2018531395A (ja) * 2015-07-21 2018-10-25 フルイドセンス インターナショナル インコーポレイテッド 液体中または空気中の粒子検出システムおよび方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369893B1 (en) * 1998-05-19 2002-04-09 Cepheid Multi-channel optical detection system
US6433929B1 (en) * 2000-06-12 2002-08-13 Olympus Optical Co., Ltd. Scanning optical microscope and method of acquiring image
JP2001147341A (ja) 2000-09-25 2001-05-29 Fdk Corp 光回路モジュール
GB0215557D0 (en) * 2002-07-05 2002-08-14 Renishaw Plc Laser calibration apparatus
JPWO2006134675A1 (ja) 2005-06-14 2009-01-08 日本電信電話株式会社 光合分波器およびその組み立て装置
DE102005054184B4 (de) * 2005-11-14 2020-10-29 Carl Zeiss Microscopy Gmbh Multispektrale Beleuchtungsvorrichtung und Messverfahren
JP4899648B2 (ja) * 2006-06-05 2012-03-21 株式会社ニコン スペクトル観察方法及びスペクトル観察システム
WO2008014553A1 (en) * 2006-08-01 2008-02-07 Photonic Detection Systems Pty Ltd Optical sensing system and optical devices therefor
JP5861895B2 (ja) * 2012-02-06 2016-02-16 株式会社ニコン 分光器及び顕微分光システム
CN105940292B (zh) * 2013-12-04 2020-12-08 艾瑞斯国际有限公司 流式细胞仪
CN108604775B (zh) * 2016-02-03 2020-10-30 古河电气工业株式会社 激光装置
CN108072979B (zh) * 2016-11-18 2022-03-11 湖北工业株式会社 光合波/分波器、光收发器
JP6513762B2 (ja) * 2016-12-15 2019-05-15 株式会社堀場製作所 分析装置、分析装置用プログラム及び分析方法
CN109596538B (zh) * 2017-10-03 2023-08-25 株式会社堀场制作所 分析装置和分析方法
CN111684337B (zh) 2018-02-09 2022-04-26 三菱电机株式会社 光合分波器的制造方法
CN109856078B (zh) * 2019-01-16 2022-12-23 深圳供电局有限公司 光学气体检测***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255022B2 (ja) 1980-11-29 1987-11-18 Ricoh Kk
US4451147A (en) * 1981-08-31 1984-05-29 Karel Dobes Refractometer
JP2001066250A (ja) * 1999-08-30 2001-03-16 Toyota Central Res & Dev Lab Inc ガス検出装置
JP2005502870A (ja) * 2001-09-11 2005-01-27 エンバイロンメンタル システムズ プロダクツ ホールディングス インコーポレイテッド 排気不透明度測定装置
US20110028824A1 (en) * 2007-08-28 2011-02-03 Bryan Edward Cole Scanning terahertz probe
JP2009115654A (ja) * 2007-11-07 2009-05-28 Toyota Motor Corp 炭化水素濃度測定装置および炭化水素濃度測定方法
JP2016515196A (ja) * 2013-02-22 2016-05-26 ケーエルエー−テンカー コーポレイション 光計測において照明を提供するためのシステム
US20150099303A1 (en) * 2013-10-03 2015-04-09 Rosemount Analytical Inc. Multiple wavelength light source for colorimetric measurement
JP2018531395A (ja) * 2015-07-21 2018-10-25 フルイドセンス インターナショナル インコーポレイテッド 液体中または空気中の粒子検出システムおよび方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992614A4

Also Published As

Publication number Publication date
JPWO2020262640A1 (ja) 2020-12-30
JP7473546B2 (ja) 2024-04-23
US20220236180A1 (en) 2022-07-28
EP3992614A4 (en) 2023-06-28
EP3992614A1 (en) 2022-05-04
CN113841041A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
JP7061546B2 (ja) 分析装置及び分析方法
CN108226064B (zh) 分析装置、计算机可读存储介质和分析方法
JP7075862B2 (ja) 分析装置
US20120188550A1 (en) Gas Concentration Measurement Device
KR100747768B1 (ko) 파장 변조 방법을 이용한 유해 가스 측정 장치
JP6886507B2 (ja) 分析装置、分析装置用プログラム及び分析方法
JP6791214B2 (ja) 分光分析装置
WO2020262640A1 (ja) 分析装置
JP2011043461A (ja) ガス分析装置
JP7461937B2 (ja) 試料分析装置
US11243116B2 (en) Spectrometry device and spectrometry method
JP2014142299A (ja) ガス濃度測定装置
WO2023106196A1 (ja) 分析装置及び分析方法
US20230204498A1 (en) Analysis device, program for analysis device, and analysis method
KR102340037B1 (ko) 가스 식별 장치 및 식별 방법
WO2023095876A1 (ja) 分析装置及び分析方法
WO2023095864A1 (ja) 分析装置、分析装置用プログラム及び分析方法
CN118251589A (zh) 分析装置以及分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020832792

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020832792

Country of ref document: EP

Effective date: 20220127