WO2020195059A1 - 差動装置 - Google Patents

差動装置 Download PDF

Info

Publication number
WO2020195059A1
WO2020195059A1 PCT/JP2020/002041 JP2020002041W WO2020195059A1 WO 2020195059 A1 WO2020195059 A1 WO 2020195059A1 JP 2020002041 W JP2020002041 W JP 2020002041W WO 2020195059 A1 WO2020195059 A1 WO 2020195059A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
differential case
differential
boss
axis
Prior art date
Application number
PCT/JP2020/002041
Other languages
English (en)
French (fr)
Inventor
裕久 小田
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Priority to US17/424,724 priority Critical patent/US20210388892A1/en
Priority to CN202080017223.2A priority patent/CN113518874A/zh
Priority to DE112020001548.3T priority patent/DE112020001548T5/de
Publication of WO2020195059A1 publication Critical patent/WO2020195059A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • F16H2048/085Differential gearings with gears having orbital motion comprising bevel gears characterised by shafts or gear carriers for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • F16H2048/087Differential gearings with gears having orbital motion comprising bevel gears characterised by the pinion gears, e.g. their type or arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/387Shields or washers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • F16H2048/405Constructional details characterised by features of the rotating cases characterised by features of the bearing of the rotating case

Definitions

  • the present invention mainly relates to a differential device mounted on a vehicle, particularly a ring gear driven by meshing with a drive gear connected to a prime mover, a differential case that rotates around the first axis together with the ring gear, and a mechanism chamber of the differential case.
  • the present invention relates to a differential device including a bevel gear type differential mechanism, which is housed in a vehicle and distributes and transmits the driving force of the ring gear to the first and second drive shafts arranged on the first axis.
  • the differential case is made of a light alloy such as an Al alloy or Mg alloy having a smaller specific gravity than that of a general steel one. Has been done.
  • the differential case since light alloy has lower rigidity than steel, when the differential case is made of light alloy, it can withstand the thrust load generated in the meshing part of both gears, especially when the ring gear is driven by the drive gear connected to the prime mover.
  • the challenge is to provide the differential case with the high rigidity to be obtained. Simply increasing the wall thickness to obtain the high rigidity of the differential case impairs the advantage of making the differential case made of a light alloy and reducing its weight. Therefore, without increasing the weight of the light metal differential case as much as possible, It is required to increase its rigidity.
  • the differential case is made of light alloy
  • the differential gear made of steel gears of the differential mechanism generates heat due to the operation of the differential mechanism. Due to the difference in thermal expansion between the differential case and the gears, there is a concern that the backlash between the meshing gears will increase. Therefore, in order to suppress the thermal expansion of the light alloy differential case as much as possible, it is also an issue to improve the heat dissipation.
  • the present invention has been made in view of such circumstances.
  • the weight increase of the differential case is suppressed as much as possible.
  • the purpose is to increase its rigidity and at the same time to improve its heat dissipation.
  • the present invention uses a ring gear driven by meshing with a drive gear connected to a prime mover, a differential case made of a light alloy that rotates around the first axis together with the ring gear, and a mechanism chamber of the differential case. It is provided with a differential mechanism in which the gears are made of steel, which is housed and distributes and transmits the driving force of the ring gear to the first and second drive shafts arranged on the first axis. Is rotatably supported by a pinion shaft arranged on a second axis orthogonal to the first axis in the mechanism chamber, and the back surface is a first gear bearing portion on the inner surface of the mechanism chamber.
  • the differential case has a pinion gear that is supported by the pinion gear and a side gear that is connected to the first and second drive shafts while meshing with the pinion gear, and whose back surface is supported by a second gear bearing portion on the inner surface of the mechanism chamber.
  • the differential case has a differential case body that defines the mechanism chamber and a gear mounting portion that is integrally connected to the outer peripheral portion of the differential case body and is fastened by a plurality of bolts in which the ring gears are arranged in the circumferential direction. Is integrally connected to both sides of the differential case body, and is rotatably supported by the transmission case along the first axis and rotatably supports the first and second drive shafts.
  • a differential device having first and second bearing bosses, the plurality of screw hole bosses having screw holes into which the plurality of bolts are screwed and raised on the other side surface of the flange, and the plurality of screw hole bosses.
  • a first rib is formed to integrally connect the screw hole bosses of the above, and on the outer surface of the differential case, the screw hole boss and the first side of the other side surface side of the flange pass through the flange and the differential case body.
  • a plurality of second ribs integrally connected to the bearing boss are formed, and the peripheral wall of the differential case body includes the first gear support portion and covers the meshing portion of the pinion gear and the side gear of the peripheral wall.
  • a first thick portion having a thickness thicker than that portion is formed, and the first bearing boss includes the second gear support portion and covers the meshing portion of the pinion gear and the side gear on the peripheral wall.
  • the first feature is that a second thick portion having a thicker wall thickness is formed.
  • the first thick portion is formed on the outer peripheral portion of the differential case body on the second axis and receives the end portion of the pinion shaft.
  • the second feature is that the second ribs are arranged on both sides of the second axis in a side view of the differential case.
  • the first thick wall portion includes the shaft hole boss and the side wall of the shaft hole boss on the second rib side. It is composed of the flange formed integrally with the boss, and the ring gear and the pinion shaft are connected to each other so as to be able to transmit torque to each other, while the shaft hole of the shaft hole boss and the pinion shaft received by the shaft hole.
  • the third feature is that a gap is provided between them.
  • the thrust load acting on the ring gear from the drive gear is transmitted from the bolt near the point of action to the screw hole boss, and is transmitted through the first rib. Since it is transmitted to a plurality of other screw hole bosses and at the same time to a plurality of second ribs and a first bearing boss, these screw hole bosses, the first rib, the second rib and the first bearing boss cooperate. It works to support the thrust load, and the differential case can be effectively reinforced.
  • the light alloy differential case especially the differential case body, can be provided with high rigidity that can withstand the thrust load while suppressing the weight increase as much as possible, and the drive gear can be suppressed from falling due to the thrust load. And the proper meshing state of the ring gear can be maintained.
  • the frictional heat generated in the first gear support portion due to the rotation of the pinion gear is absorbed by the first thick portion.
  • the temperature does not rise excessively in the first thick part with a large heat capacity.
  • the heat absorbed by the first thick portion is quickly dissipated by the heat radiation fin functions of the second rib and the first rib connected to the first thick portion via the differential case body.
  • the second gear support portion is included in the second thick portion having a large heat capacity in the first bearing boss, the frictional heat generated in the second gear support portion due to the rotation of the side gear is transferred to the second thick portion.
  • the first thick wall portion includes a shaft hole boss formed on the outer peripheral portion of the differential case body on the second axis and receiving the end portion of the pinion shaft, and the side view of the differential case. Since the second ribs are arranged on both sides of the second axis line, at least two second ribs are close to the shaft hole boss, and the second rib from the shaft hole boss including the first gear bearing portion. The heat transfer to the differential case is improved, and the heat dissipation of the differential case can be further improved.
  • the flange and the shaft hole boss are integrated so that the flange includes one side wall of the shaft hole boss to form the first thick portion, so that the first thick portion is , It has a large heat capacity and can effectively absorb the frictional heat of the first gear support portion. Moreover, it is not necessary to uselessly increase the thickness for forming the first thick portion having a large heat capacity, which can contribute to the weight reduction of the differential case.
  • the lubricating oil in the differential case flows out of the differential case through the gap provided between the pinion shaft and the shaft hole boss, so that the lubrication of the pinion gear and the first gear support portion, which are particularly close to the gap, becomes good, and the first While suppressing the heat generation of the gear support portion, heat is exhausted to the outside of the differential case through the lubricating oil, so that the heat dissipation of the differential case can also be improved.
  • FIG. 5 is a vertical sectional view (FIG. 1-1 sectional view of FIG. 2) showing a state in which the differential device according to the first embodiment of the present invention is incorporated in a transmission case of an automobile.
  • Example 1 As an embodiment of the present invention, Example 1 will be described below with reference to the accompanying drawings.
  • the differential device D of the present invention is housed in the transmission case 1 of an automobile.
  • the differential device D is housed in a ring gear 3 that meshes with a drive gear 2 that is an output gear of the transmission, a differential case 4 that rotates around the first axis X together with the ring gear 3, and a mechanism chamber 5 of the differential case 4.
  • the main component is the differential mechanism 6 that distributes and transmits the driving force of the ring gear 3 to the first and second drive shafts 7 and 8 arranged on the first axis X.
  • the drive gear 2 and the ring gear 3 are composed of helical gears.
  • the ring gear 3 is composed of a rim 3a having teeth formed on the outer periphery thereof and an annular web 3b protruding from the central portion in the width direction of the inner peripheral surface of the rim 3a.
  • the differential case 4 is made of a light alloy (for example, Al alloy) integrally molded by casting such as gravity casting or die casting, and has a differential case body 10 having a spherical internal mechanism chamber 5 and a ring gear 3 attached to the differential case 4. Therefore, a flange 11 integrally connected to the outer peripheral portion of the differential case body 10 and projecting in the radial direction, and an outer circumference of the differential case body 10 on the second axis Y orthogonal to the first axis X at the center of the mechanism chamber 5.
  • a pair of shaft hole bosses 12 (see FIG.
  • first and second bearing bosses 13 that are integrally projected on both left and right sides of the differential case body 10 and lined up on the first axis X.
  • 14, and these first and second bearing bosses 13 and 14 are rotatably supported by the mission case 1 via the first and second ball bearings 15 and 16, respectively, and their respective bearings.
  • the first and second drive shafts 7 and 8 are rotatably supported in the holes 13a and 14a.
  • the differential mechanism 6 includes a pinion shaft 18 arranged in a mechanism chamber 5 through a shaft hole 12a of the shaft hole boss 12, a pair of bevel type pinion gears 19 rotatably supported by the pinion shaft 18, and these pinion gears. It is composed of a pair of bevel type side gears 20 that mesh with 19.
  • the back surfaces of the pinion gear 19 and the side gear 20 both form a spherical surface corresponding to the inner surface of the spherical mechanism chamber 5, and washers 23, respectively, are formed on the first and second gear support portions 21 and 22 on the inner surface of the mechanism chamber 5. It is supported so as to be rotatable and slidable via 24.
  • the pinion shaft 18, the pinion gear 19, and the side gear 20 are made of steel.
  • the first gear support portion 21 is set in an annular area on the inner surface of the mechanism chamber 5 that surrounds the open end of the shaft hole 12a of the shaft hole boss 12 (see FIG. 5). Further, the second gear bearing portion 22 is set in an annular area surrounding the open ends of the bearing holes 13a and 14a of the first and second bearing bosses 13 and 14 on the inner surface of the mechanism chamber 5 (see also FIG. 5). ).
  • Lubricating oil in the mission case 1 is applied to the inner peripheral surfaces of the bearing holes 13a and 14a of the first and second bearing bosses 13 and 14 by the forward rotation of the differential case 4 when the vehicle moves forward.
  • a spiral groove 25 for scraping into the mechanism chamber 5 through the 15 and 16 is provided.
  • the flange 11 is composed of a pair of arc-shaped flange pieces 11a protruding radially outward from the shaft hole boss 12 in opposite directions along the second axis Y from the outer peripheral surface of the differential case body 10. Both end surfaces 11b of the flange pieces 11a are flat surfaces parallel to the second axis Y.
  • each flange piece 11a has a plurality of openings opened in the gear mounting surface 11c (4 in the illustrated example).
  • the screw holes 28 are provided so as to be arranged at equal pitches along the circumferential direction of the flange 11. These screw holes 28 may be bottomed screw holes as well as through-type screw holes as shown in the illustrated example. Further, on the outer circumference of the differential case body 10, a positioning cylindrical surface 27 concentric with the first axis X extending in the axial direction from the root of the gear mounting surface 11c is formed.
  • the web 3b is overlapped with the gear attachment surface 11c while fitting the inner peripheral surface of the web 3b of the ring gear 3 to the positioning cylindrical surface 27.
  • the web 3b is provided with a plurality of bolt holes 29 that match the plurality of screw holes 28 of the flange piece 11a, and the plurality of bolts 30 inserted through the bolt holes 29 are screwed into the screw holes 28 and tightened.
  • the ring gear 3 is attached to the pair of flange pieces 11a at a position concentric with the first axis X.
  • the ring gear 3 is arranged so that the web 3b is located on the second axis Y.
  • each flange piece 11a As shown in FIGS. 1, 2, 4, and 6, a plurality of screws having the screw holes 28 and projecting on the other side surface of each flange piece 11a, that is, the side surface opposite to the gear mounting surface 11c.
  • the hole boss 31 and the arc-shaped first rib 32 extending in the circumferential direction of the flange piece 11a are formed so as to integrally connect the screw hole boss 31 to each other.
  • a plurality of screw hole bosses 31 are radially arranged so as to be integrally connected to the first bearing boss 13 via the flange piece 11a and the differential case body 10.
  • the second rib 33 of the plurality of articles and the fourth article is formed.
  • the second rib 33 of the four articles is symmetrically arranged on both sides of the second axis Y where the shaft hole boss 12 is arranged in the side view of the differential case 4 (FIGS. 2 and 2). (See FIG. 6).
  • each of the second ribs 33 is formed to have a divergent wall thickness on the outer side in the radial direction, and is connected not only to the screw hole boss 31 but also to the first rib 32. There is.
  • a notch-shaped connecting recess 35 is provided on the inner peripheral surface of the web 3b of the ring gear 3, while the pinion shaft 18 projects to the outside of the shaft hole boss 12.
  • Missing circular connecting portions 18a having a pair of flat surfaces 36 are provided at both ends, and the connecting portions 18a are connected recesses so that the flat surfaces 36 of these connecting portions 18a abut on the inner side surface of the connecting recess 35. Engage with 35.
  • a gap g for avoiding contact between the pinion shaft 18 and the shaft hole 12a of the shaft hole boss 12 that receives the pinion shaft 18 is formed. It has become.
  • a notch 37 for defining an oil pool is provided on the outer peripheral surface of the pinion shaft 18 with the inner peripheral surface of the pinion gear 19.
  • the pair of flange pieces 11a has a wall thickness thicker than the wall thickness of the pair of shaft hole bosses 12, and is on the second rib 33 side of the shaft hole boss 12. It is formed integrally with the shaft hole boss 12 so as to include one side wall.
  • the shaft hole boss 12 and the flange piece 11a form a first thick portion 40 including the first gear bearing portion 21.
  • the first thick portion 40 is thicker than the portion 10a (see FIG. 1) that covers the meshing portions of the pinion gear 19 and the side gear 20 on the peripheral wall of the differential case body 10.
  • the first bearing boss 13 includes a large-diameter boss portion 13b that protrudes from one side of the differential case body 10 so as to include the second gear support portion 22, and a small-diameter boss that protrudes from the end surface of the large-diameter boss portion 13b. It is composed of a portion 13c, and the second rib 33 is connected to a large-diameter boss portion 13b. Further, the first bearing boss 13 is supported by the mission case 1 in the small diameter boss portion 13c via the first ball bearing 15.
  • the large-diameter boss portion 13b forming the base of the first bearing boss 13 is a second thick portion including the second gear support portion 22, and is a pinion gear 19 and a side gear 20 on the peripheral wall of the differential case body 10.
  • the wall thickness is thicker than the portion 10a that covers the meshing portion of the above.
  • the second bearing boss 14 is symmetrically configured with the first bearing boss 13.
  • a pair of semi-elliptical important notch holes 41 arranged along the third axis Z orthogonal to the first axis X and the second axis Y are formed on the peripheral wall of the differential case body 10.
  • the major axis of the important notch hole 41 is provided in a direction parallel to the second axis Y.
  • the flat both end surfaces 11b of both flange pieces 11a are provided with semicircular small notch holes 42 communicating with the important notch holes 41.
  • the radius of the small notch hole 42 is smaller than the minor diameter of the important notch hole 41.
  • the small notch hole 42 is mainly used to insert a tool into the mechanism chamber 5 along the third axis Z for machining the spherical inner surface of the mechanism chamber 5, and the work window 43 is a mechanism. It is used to accommodate the pinion gear 19, the side gear 20, and the washers 23 and 24 in the chamber 5.
  • the pinion gear 19 and the side gear 20 are housed in the mechanism chamber 5 through the work window 43, and then the pinion shaft 18 is fitted into the pair of pinion gears 19 through the shaft holes 12a of one shaft hole boss 12. Then, it is passed through the shaft hole 12a of the other shaft hole boss 12, and the connecting portions 18a at both ends of the pinion shaft 18 are made to protrude to the outside of both shaft hole bosses 12.
  • the pair of connecting recesses 35 of the web 3b are engaged with the connecting portion 18a of the pinion shaft 18. That is, the inner surface of the connecting recess 35 and the flat surface 36 of the connecting portion 18a are brought into contact with each other. Then, the web 3b is overlapped with the gear mounting surface 11c of the pair of flange pieces 11a, and the plurality of bolts 30 passed through the plurality of bolt holes 29 of the web 3b are screwed into the plurality of screw holes 28 of the flange piece 11a and tightened. As a result, the ring gear 3 is fixed to the flange piece 11a. Thus, by engaging the connecting recess 35 and the connecting portion 18a, the ring gear 3 and the pinion shaft 18 are connected to each other so as to be able to transmit torque, and the axial movement of the pinion shaft 18 is prevented.
  • the first and second bearing bosses 13 and 14 of the differential case 4 are supported by the mission case 1 via the first and second ball bearings 15 and 16. Then, the first and second drive shafts 7 and 8 fitted in the bearing holes 13a and 14a of the first and second bearing bosses 13 and 14 are connected to the pair of side gears 20 by spline fitting.
  • the drive gear 2 drives the ring gear 3 by the power of the prime mover while driving the automobile
  • the drive torque of the ring gear 3 is directly transmitted to the pinion shaft 18 connected to the ring gear 3 so as to be torque-transmissible, as described above, and It is transmitted to the pinion gear 19 and the side gear 20, and further transmitted to the first and second drive shafts 7 and 8 to drive them. Therefore, torque is not exchanged between the pinion shaft 18 and the shaft hole boss 12 through which the pinion shaft 18 penetrates. That is, since the differential case body 10 having the shaft hole boss 12 integrally exists outside the transmission path of the driving torque and is released from the driving torque, the thickness and weight of the differential case can be reduced accordingly.
  • the flat end surfaces 11b of the pair of flange pieces 11a constituting the flange 11 are closer to the mechanism chamber 5 than the outer peripheral surfaces of the flange pieces 11a. Therefore, providing a small notch hole 42 in each end surface 11b for inserting a tool for machining the inner surface of the mechanism chamber 5 minimizes the amount of overhang of the tool from the machining machine and makes the mechanism chamber as short as possible. It is effective in improving the accuracy of the inner surface processing of 5.
  • the thrust load is transmitted from the bolt 30 near the moving point of action to the screw hole boss 31, and is transmitted to the other screw hole bosses via the first rib 32, and at the same time, a plurality of screw hole bosses. Since it is also transmitted to the second rib 33 and the first bearing boss 13, the screw hole boss 31, the first rib 32, the second rib 33 and the first bearing boss 13 cooperate to support the thrust load. Become.
  • each of the second ribs 33 has a divergent wall thickness on the outer side in the radial direction and is directly connected to both the screw hole boss 31 and the first rib 32.
  • the differential case 4 is made of a light alloy, the thrust load that moves by being effectively reinforced by the screw hole boss 31, the first rib 32, the second rib 33, and the first bearing boss 13. It is possible to secure a large rigidity that can withstand the above, and it is possible to suppress the fall of the ring gear 3 due to the thrust load and maintain an appropriate meshing state of the drive gear 2 and the ring gear 3.
  • the differential mechanism 6 allows a rotation difference between the first and second drive shafts 7 and 8, such as when the vehicle is turning, the pair of pinion gears 19 rotate around the pinion shaft 18 in opposite directions. Rotational sliding frictional heat is generated in the first gear bearing portion 21 on the inner surface of the mechanism chamber 5 that supports the back surface of the pinion gear 19.
  • a first thick portion 40 composed of a shaft hole boss 12 and a flange piece 11a is formed in a portion of the peripheral wall of the differential case body 10 including the first gear support portion 21, and the first thick portion 40 is the differential case. Since the wall thickness is thicker than the portion 10a covering the meshing portion of the pinion gear 19 and the side gear 20 on the peripheral wall of the body 10, and therefore the heat capacity is large, the frictional heat generated in the first gear support portion 21 is transferred to the first thick portion 40. Although it is absorbed, the temperature does not rise excessively in the first thick portion 40 having a large heat capacity.
  • the heat absorbed by the first thick portion 40 is quickly generated by the heat dissipation fin function of the plurality of second ribs 33 connected to the first thick portion 40 via the differential case body 10 and the first rib 32 connected thereto. Be dissipated.
  • the first thick portion 40 includes a shaft hole boss 12 formed on the outer peripheral portion of the differential case body 10 on the second axis Y, and second ribs 33 on both sides of the second axis Y in a side view of the differential case 4. Is arranged, at least two second ribs 33 on both sides of the second axis Y are arranged close to the shaft hole boss 12, and heat transfer from the first thick portion 40 is effective. It can receive good heat dissipation function.
  • a large-diameter boss portion 13b of the first bearing boss 13 is formed as a second thick-walled portion on the peripheral wall of the differential case body 10 including the second gear support portion 22, and the large-diameter boss portion 13b is the differential case. Since the wall thickness is thicker than the portion 10a covering the meshing portion of the pinion gear 19 and the side gear 20 on the peripheral wall of the body 10, and therefore the heat capacity is large, the frictional heat generated in the second gear bearing portion 22 with the rotation of the side gear 20 is large. It is absorbed by the diameter boss portion 13b and is quickly dissipated by the heat radiation fin function of all the second ribs 33 connected to the large diameter boss portion 13b and the first rib 32 connected to them.
  • the wall thickness can be positively reduced, which can contribute to the weight reduction of the differential case 4.
  • the lubricating oil stored in the bottom of the mission case 1 passes through the first and second ball bearings 15 and 16 supporting the first and second bearing bosses 13 and 14, and then the bearing holes 13a. , 14a is transferred to the mechanism chamber 5 by the spiral groove 25 on the inner peripheral surface, lubricates each part of the differential mechanism 6, and then the work window 43, the pinion shaft 18, and the shaft hole are generated by the centrifugal force generated by the rotation of the differential case 4. Through the gap g between the bosses 12, it is returned to the outside of the differential case body 10, that is, into the mission case 1, and the circulation is repeated.
  • the sliding portions of the pinion gear 19 and the first gear support portion 21 near the gap g are well lubricated by the lubricating oil toward the gap g, heat generation due to the sliding friction is suppressed, and the lubricating oil is supplied. Since heat is exhausted to the outside of the differential case body 10 through the heat dissipation, the heat dissipation of the differential case 4 can be improved.
  • the second bearing boss 14 is configured symmetrically with the first bearing boss 13, the large-diameter boss portion thereof also supports the second gear in the same manner as the large-diameter boss portion 13b of the first bearing boss 13. It functions as a second thick portion including the portion 24.
  • the large-diameter boss portion of the second bearing boss 14 is connected to a thick peripheral portion (see FIG. 5) of the work window 43 of the differential case body 10 to increase the heat capacity around the large-diameter boss portion. Therefore, the frictional heat generated in the second gear bearing portion 22 on the second bearing boss 14 side is absorbed by the large-diameter boss portion of the second bearing boss 14 and the thick peripheral portion, and flows out from the work window 43. The heat is exhausted by the lubricating oil, which also enhances the heat dissipation of the differential case 4.
  • the differential case body 10 in order to thin the portion 10a of the peripheral wall of the differential case body 10 that covers the meshing portion of the pinion gear 19 and the side gear 20, forming a recess on the outer surface of the differential case body 10 increases the surface area of the differential case body 10. , It is effective in improving the heat dissipation. Moreover, since the differential case 4 is made of a light metal having a higher thermal conductivity than steel, its heat dissipation is promoted.
  • the present invention is not limited to the above-mentioned Example 1, and various design changes can be made without departing from the gist thereof.
  • the first and second drive shafts 7 and 8 connected to the pair of side gears 20 are directly supported by the bearing holes 13a and 14a of the first and second bearing bosses 13 and 14 in the first embodiment.
  • the bearing holes 13a and 14a can be supported by a sleeve integrally formed or connected to the hub of the side gear 20 (see Japanese Patent Application Laid-Open No. 2015-145702).
  • the flange 11 can be formed in the shape of a single disk instead of the pair of flange pieces 11a.
  • the differential case 4 may be divided by, for example, a dividing surface including the second axis Y. Further, the differential case 4 is not limited to casting, but may be manufactured by forging, machining, or the like.
  • D Differential device X ... 1st axis Y ... 2nd axis g ... Gap 1 ... Mission case 2 ... Drive gear 3 ... Ring gear 4 ... Diff case 5 ... Mechanism room 6 ... Differential mechanism 7 ... 1st drive shaft 8 ... 2nd drive shaft 10 ... Diff case body 10a ... Diff case body The part that covers the meshing part of the pinion gear and the side gear 11 ... Flange 11a ... Flange piece 11c ... Gear mounting part (gear mounting surface) 12 ... Shaft hole boss 12a ... Shaft hole 13 ... First bearing boss 13b ... Large diameter boss part (second thick part) 13c ... Small diameter boss 14 ... 2nd bearing boss 18 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

デフケースを軽合金製とし,差動機構のギヤ類を鉄鋼製とした差動装置において,デフケースの剛性及び放熱性を高める。フランジ(11)の側面には,リングギヤ締結用の複数のボルト(30)が螺合するねじ孔(28)を有する複数のねじ孔ボス(31)と,これらねじ孔ボス(31)を相互に一体に連結する第1リブ(32)とが突設され,デフケース4の外側面には,ねじ孔ボス(31)と第1軸受ボス(13)との間を一体に連結する複数条の第2リブ(33)が形成される。デフケースボディ(10)の周壁には,ピニオンギヤ(19)の背面を支承する第1ギヤ支承部(21)を含む第1厚肉部(40)が形成され,第1軸受ボス(13)には,サイドギヤ(20)の背面支承する第2ギヤ支承部(22)を含む第2厚肉部(13b)が形成される。

Description

差動装置
 本発明は,主に車両に搭載される差動装置,特に,原動機に連なる駆動ギヤに噛合して駆動されるリングギヤと,このリングギヤと共に第1軸線周りに回転するデフケースと,このデフケースの機構室に収容されて,前記リングギヤの駆動力を第1軸線上に並ぶ第1及び第2ドライブ軸に分配,伝達するベベルギヤ式の差動機構とを備える差動装置に関する。
 従来,デフケースの軽量化のために,これを一般の鉄鋼製のものより比重が小さいAl合金,Mg合金等の軽合金製とすることが,特許文献1に記載されているように,既に知られている。
特開平9-229163号公報
 ところで,軽合金は,鉄鋼よりも剛性が低いため,デフケースを軽合金製とした場合には,特に,原動機に連なる駆動ギヤによるリングギヤの駆動時,両ギヤの噛合部に発生するスラスト荷重に耐え得る高剛性をデフケースに付与することが課題となる。デフケースの高剛性を得るために,単純にその肉厚を厚くするだけでは,デフケースを軽合金製として,その軽量化を図る利点が損なわれので,軽金属製デフケースの重量を極力増加させずに,その剛性を高めることが求められる。
 また,軽合金は鉄鋼よりも熱膨張率が高いため,デフケースを軽合金製とする一方,差動機構のギヤ類を鉄鋼製とした差動装置では,差動機構の作動に伴う発熱時,デフケースとギヤ類との熱膨張差により,噛合するギヤ間のバックラッシュが大きくなる不安がある。したがって,軽合金製デフケースの熱膨張を極力抑制すべく,その放熱性を良好にすることも課題となる。
 本発明は,かゝる事情に鑑みてなされたもので,デフケースを軽合金製とする一方,差動機構のギヤ類を鉄鋼製とした差動装置において,前記デフケースの重量増加を極力抑えつつその剛性を高め,同時にその放熱性をも高めることを目的とする。
 上記目的を達成するために,本発明は,原動機に連なる駆動ギヤに噛合して駆動されるリングギヤと,該リングギヤと共に第1軸線周りに回転する軽合金製のデフケースと,該デフケースの機構室に収容されて,前記リングギヤの駆動力を前記第1軸線上に並ぶ第1及び第2ドライブ軸に分配,伝達する,ギヤ類を鉄鋼製とした差動機構とを備えてなり,前記差動機構は,前記機構室で前記第1軸線と直交する第2軸線上に配置されるピニオン軸と,該ピニオン軸に回転可能に支持されると共に,背面を前記機構室の内面の第1ギヤ支承部に支承されるピニオンギヤと,該ピニオンギヤと噛合しながら前記第1及び第2ドライブ軸とそれぞれ連結されると共に,背面を前記機構室の内面の第2ギヤ支承部に支承されるサイドギヤとを有し,前記デフケースは,前記機構室を画成するデフケースボディと,該デフケースボディの外周部に一体に連設され,前記リングギヤがその周方向に並ぶ複数のボルトにより締結されるギヤ取り付け部を一側面に有するフランジと,前記デフケースボディの両側部に一体に連設され,前記第1軸線上に並んでミッションケースに回転可能に支持されると共に前記第1及び第2ドライブ軸を回転可能に支持する第1及び第2軸受ボスとを有する差動装置であって,前記フランジの他側面には,前記複数のボルトが螺合するねじ孔を有して***する複数のねじ孔ボスと,該複数のねじ孔ボスを相互に一体に連結する第1リブとが形成され,また前記デフケースの外側面には,前記フランジ及びデフケースボディを経て前記ねじ孔ボスと前記フランジの他側面側の前記第1軸受ボスとの間を一体に連結する複数条の第2リブが形成され,前記デフケースボディの周壁には,前記第1ギヤ支承部を含み,且つ前記周壁の前記ピニオンギヤ及びサイドギヤの噛合部を覆う部分よりも肉厚を厚くする第1厚肉部が形成され,また,前記第1軸受ボスには,前記第2ギヤ支承部を含み,且つ前記周壁の前記ピニオンギヤ及びサイドギヤの噛合部を覆う部分よりも肉厚を厚くする第2厚肉部が形成されることを特徴とすることを第1の特徴とする。
 また,本発明は,第1の特徴に加えて,前記第1厚肉部は,前記第2軸線上で前記デフケースボディの外周部に形成されて前記ピニオン軸の端部を受容する軸孔ボスを含み,デフケースの側面視で前記第2軸線の両側に前記第2リブが配置されることを第2の特徴とする。
 さらに,本発明は,第1又は第2の特徴に加えて,前記第1厚肉部は,前記軸孔ボスと,該軸孔ボスの前記第2リブ側の側壁を含むように該軸孔ボスと一体に形成される前記フランジとで構成され,前記リングギヤ及びピニオン軸が相互にトルク伝達可能に連結される一方,前記軸孔ボスの軸孔と,これに受容される前記ピニオン軸との間には隙間が設けられることを第3の特徴とする。
 本発明の第1の特徴によれば,駆動ギヤによるリングギヤの駆動時,駆動ギヤからリングギヤに作用するスラスト荷重は,その作用点近傍のボルトからねじ孔ボスに伝達し,そして第1リブを介して他の複数のねじ孔ボスに伝達し,また同時に複数条の第2リブ及び第1軸受ボスにも伝達するので,これらねじ孔ボス,第1リブ,第2リブ及び第1軸受ボスが協働して上記スラスト荷重を支持することになり,デフケースを効果的に補強することができる。こうして,軽合金製のデフケース,特にデフケースボディには,重量増加を極力抑えながら,前記スラスト荷重に耐え得る高剛性を付与することができると共に,前記スラスト荷重によるリングギヤの倒れを抑制して駆動ギヤ及びリングギヤの適正な噛合状態を保持することができる。
 また,第1ギヤ支承部は,デフケースボディにおいて熱容量が大きい第1厚肉部に含まれるので,ピニオンギヤの回転に伴い第1ギヤ支承部に発生する摩擦熱は,第1厚肉部に吸収されるが,熱容量が大きい第1厚肉部では過度の温度上昇を来さない。しかも,第1厚肉部が吸収した熱は,第1厚肉部にデフケースボディを介して連なる第2リブ及び第1リブの放熱フィン機能により速やかに放散される。また,第2ギヤ支承部は,第1軸受ボスにおいて熱容量が大きい第2厚肉部に含まれるので,サイドギヤの回転に伴い第2ギヤ支承部に発生する摩擦熱は,第2厚肉部に吸収され,そして第1軸受ボスに連なる第2リブ及び第1リブの放熱フィン機能により速やかに放散される。こうして,軽合金製のデフケースには良好な放熱性を付与することができ,差動機構の作動に伴う発熱によるデフケースの膨張を抑制することができる。
 本発明の第2の特徴によれば,第1厚肉部は,第2軸線上でデフケースボディの外周部に形成されてピニオン軸の端部を受容する軸孔ボスを含み,デフケースの側面視で上記第2軸線の両側に第2リブが配置されるので,少なくとも2条の第2リブが,軸孔ボスに近接することになり,第1ギヤ支承部を含む軸孔ボスから第2リブへの熱伝達が良好となり,デフケースの放熱性をより高めることができる。
 本発明の第3の特徴によれば,フランジ及び軸孔ボスは,フランジが軸孔ボスの一側壁を含むように一体化されて第1厚肉部を構成するので,第1厚肉部は,大なる熱容量を有して第1ギヤ支承部の摩擦熱を効果的に吸収することができる。しかも,熱容量が大なる第1厚肉部の形成のために無駄な増肉を行う必要がなく,デフケースの軽量化に寄与することができる。
 また,リングギヤの駆動トルクは,ピニオン軸に伝達し,そしてピニオンギヤ及びサイドギヤに伝達するので,ピニオン軸及び軸孔ボス間ではトルクの授受は行われない。即ち,軸孔ボスを一体に有するデフケースは,上記駆動トルクの伝達経路外に存在し,上記駆動トルクから解放されるので,その分,デフケースの薄肉,軽量化を図ることができる。 
 さらに,デフケース内の潤滑オイルは,ピニオン軸及び軸孔ボス間に設けた隙間を通して,デフケース外に流出することにより,特に上記隙間に近いピニオンギヤ及び第1ギヤ支承部の潤滑が良好となり,第1ギヤ支承部の発熱を抑えると共に,潤滑オイルを介してデフケース外への排熱が生じるので,これによってもデフケースの放熱性を高めことができる。
発明の実施例1に係る差動装置を自動車のミッションケースに組み込んだ状態で示す縦断面図(図2の1-1線断面図)。 図1の2矢視図。 図1の3矢視図。 図3の4矢視図でデフケースのみを示す。 図3の5-5線断面図でデフケースのみを示す。 図1の6矢視図でデフケースのみを示す。 ピニオン軸の斜視図。
 本発明の実施の形態として,実施例1を添付図面に基づいて以下に説明する。
 先ず,図1~図3において,自動車のミッションケース1内に本発明の差動装置Dが収容される。この差動装置Dは,変速装置の出力ギヤたる駆動ギヤ2に噛合するリングギヤ3と,このリングギヤ3と共に第1軸線X周りに回転するデフケース4と,このデフケース4の機構室5に収容されて,前記リングギヤ3の駆動力を第1軸線X上に並ぶ第1及び第2ドライブ軸7,8に分配,伝達する差動機構6とを主たる構成要素とする。
 駆動ギヤ2及びリングギヤ3はヘリカルギヤで構成される。リングギヤ3は,外周に歯部を形成したリム3aと,このリム3aの内周面の幅方向中央部より張り出す環状のウェブ3bとで構成されている。
 前記デフケース4は,重力鋳造,ダイカスト鋳造等の鋳造により一体成形された軽合金(例えばAl合金)製であって,内部を球状の前記機構室5とするデフケースボディ10と,前記リングギヤ3を取り付けるため,デフケースボディ10の外周部に一体に連設されて半径方向に張り出すフランジ11と,機構室5の中心部で前記第1軸線Xと直交する第2軸線Y上でデフケースボディ10の外周部に一体に連設される一対の軸孔ボス12(図6参照)と,デフケースボディ10の左右両側部に一体に突設されて第1軸線X上に並ぶ第1及び第2軸受ボス13,14とよりなっており,これら第1及び第2軸受ボス13,14は,それぞれ第1及び第2ボールベアリング15,16を介してミッションケース1に回転可能に支持されると共に,それぞれの軸受孔13a,14aにおいて前記第1及び第2ドライブ軸7,8を回転可能に支持するようになっている。
 前記差動機構6は,前記軸孔ボス12の軸孔12aを通して機構室5に配置されるピニオン軸18と,このピニオン軸18に回転可能に支持される一対のベベル型ピニオンギヤ19と,これらピニオンギヤ19と噛合する一対のベベル型サイドギヤ20とより構成される。ピニオンギヤ19及びサイドギヤ20の背面は,何れも球状の機構室5の内面に対応して球面をなしていて,機構室5の内面の第1及び第2ギヤ支承部21,22にそれぞれワッシャ23,24を介して回転摺動可能に支承される。以上において,ピニオン軸18,ピニオンギヤ19及びサイドギヤ20は,鉄鋼製である。
 上記第1ギヤ支承部21は,機構室5の内面において,軸孔ボス12の軸孔12aの開口端を囲繞する環状区域に設定される(図5参照)。また上記第2ギヤ支承部22は,機構室5の内面において,第1及び第2軸受ボス13,14の軸受孔13a,14aの開口端を囲繞する環状区域に設定される(同じく図5参照)。
 第1及び第2軸受ボス13,14の軸受孔13a,14aの内周面には,車両の前進時,デフケース4の正転により,ミッションケース1内の潤滑オイルを第1及び第2ボールベアリング15,16を通して機構室5内に掻き込むための螺旋溝25が設けられる。
 前記フランジ11は,デフケースボディ10の外周面より第2軸線Yに沿って互いに反対方向へ軸孔ボス12よりも半径方向外方に長く張り出した一対の円弧状のフランジ片11aよりなっており,これらフランジ片11aの両端面11bは,第2軸線Yと平行する平坦面になっている。
 これらフランジ片11aでは,第2軸受ボス14側の一側面がギヤ取り付け部としてのギヤ取り付け面11cとなっており,各フランジ片11aには,ギヤ取り付け面11cに開口する複数(図示例では4つ)のねじ孔28がフランジ11の周方向に沿って等ピッチで配列するように設けられる。これらねじ孔28は図示例のような貫通型ねじ孔は勿論,底付き型ねじ孔でもよい。また,デフケースボディ10の外周には,ギヤ取り付け面11cの根元から軸方向に延びる,第1軸線Xと同心の位置決め円筒面27が形成される。
 而して,リングギヤ3の一対のフランジ片11aへの取り付けに当たっては,リングギヤ3のウェブ3bの内周面を前記位置決め円筒面27に嵌合しながら,ウェブ3bをギヤ取り付け面11cに重ねる。ウェブ3bには,前記フランジ片11aの複数のねじ孔28と合致する複数のボルト孔29が設けられており,これらボルト孔29に挿通した複数本のボルト30をねじ孔28に螺合,緊締することにより,リングギヤ3は,第1軸線Xとの同心位置で一対のフランジ片11aに取り付けられる。その際,リングギヤ3は,そのウェブ3bが第2軸線Y上に位置するよう配置される。
 図1,図2,図4及び図6に示すように,各フランジ片11aの他側面,即ちギヤ取り付け面11cと反対側の側面には,前記ねじ孔28を有して突出する複数のねじ孔ボス31と,これらねじ孔ボス31を相互に一体に連結するように,フランジ片11aの周方向に延びる円弧状の第1リブ32とが形成される。
 また,デフケース4の,上記第1リブ32側の側面には,複数のねじ孔ボス31を,フランジ片11a及びデフケースボディ10を経て第1軸受ボス13に一体に連結するように,放射状に配列する複数条,図示例では4条の第2リブ33が形成される。その際,各フランジ片11aにおいて,4条の第2リブ33は,デフケース4の側面視で前記軸孔ボス12が配置される第2軸線Yの両側に対称的に配置される(図2,図6参照)。
 また,図2に示すように,各第2リブ33は,半径方向外方側の肉厚が末広状に厚く形成されていて,ねじ孔ボス31のみならず,第1リブ32とも連結している。
 図1,図3及び図7に示すように,リングギヤ3のウェブ3bの内周面には,切欠き状の連結凹部35が設けられる一方,ピニオン軸18の,軸孔ボス12外に突出する両端には,一対の平坦面36を有する欠円状の連結部18aが設けられ,これら連結部18aの平坦面36が前記連結凹部35の内側面に当接するように,連結部18aは連結凹部35に係合される。その際,図1及び図6に示すように,ピニオン軸18と,これを受容する軸孔ボス12の軸孔12aとの間には,両者の当接を回避するための隙間gが生じるようになっている。
 また,図1及び図7に示すように,ピニオン軸18の外周面には,ピニオンギヤ19の内周面との間にオイル溜まりを画成するための切欠き部37が設けられる。
 図1及び図6に示すように,前記一対のフランジ片11aは,前記一対の軸孔ボス12の肉厚よりも厚い肉厚を有していて,軸孔ボス12の,第2リブ33側の一側壁を含むようにして軸孔ボス12と一体に形成される。これら軸孔ボス12及びフランジ片11aは,前記第1ギヤ支承部21を含む第1厚肉部40を構成する。この第1厚肉部40は,デフケースボディ10の周壁のピニオンギヤ19及びサイドギヤ20の噛合部を覆う部分10a(図1参照)よりも肉厚が厚い。
 一方,前記第1軸受ボス13は,前記第2ギヤ支承部22を含むようにしてデフケースボディ10の一側部より突出する大径ボス部13bと,この大径ボス部13bの端面より突出する小径ボス部13cとで構成され,前記第2リブ33は,大径ボス部13bに接続される。また,第1軸受ボス13は,小径ボス部13cにおいて第1ボールベアリング15を介してミッションケース1に支持される。
 而して,第1軸受ボス13の基部をなす大径ボス部13bは,前記第2ギヤ支承部22を含む第2厚肉部となるもので,デフケースボディ10の周壁のピニオンギヤ19及びサイドギヤ20の噛合部を覆う部分10aよりも肉厚が厚い。
 尚,第2軸受ボス14は,上記第1軸受ボス13と対称的に構成される。
 図3~図5に示すように,前記デフケースボディ10の周壁には,第1軸線X及び第2軸線Yに直交する第3軸線Zに沿って並ぶ一対の半楕円状の大切欠き孔41が設けられ,この大切欠き孔41の長径は第2軸線Yと平行する方向に向けられている。また,両フランジ片11aの平坦な両端面11bには,上記大切欠き孔41と連通する半円状の小切欠き孔42が設けられる。小切欠き孔42の半径は,大切欠き孔41の短径よりも小さい。これら大切欠き孔41及び小切欠き孔42は,前記機構室5を外に開放する作業窓43を構成する。
 而して,小切欠き孔42は,主として,機構室5の球状内面の加工のため,工具を第3軸線Zに沿って機構室5に挿入することに用いられ,作業窓43は,機構室5にピニオンギヤ19,サイドギヤ20及びワッシャ23,24を収容することに用いられる。
 次に,この実施例1の作用について説明する。
 差動装置Dの組立てに当たっては,ピニオンギヤ19やサイドギヤ20等を作業窓43を通して機構室5に収容した後,ピニオン軸18を一方の軸孔ボス12の軸孔12aを通して一対のピニオンギヤ19に嵌挿し,次いで他方の軸孔ボス12の軸孔12aに通し,ピニオン軸18の両端の連結部18aを両軸孔ボス12外に突出した状態にする。
 次に,リングギヤ3のウェブ3bをデフケース4の位置決め円筒面27に嵌合しながら,ウェブ3bの一対の連結凹部35をピニオン軸18の連結部18aに係合する。即ち,連結凹部35の内側面と連結部18aの平坦面36とを当接させる。そして,ウェブ3bを一対のフランジ片11aのギヤ取り付け面11cに重ね,ウェブ3bの複数のボルト孔29に通した複数のボルト30をフランジ片11aの複数のねじ孔28に螺合,緊締することにより,リングギヤ3をフランジ片11aに固着する。かくして,上記連結凹部35及び連結部18aの係合により,リングギヤ3及びピニオン軸18は相互にトルク伝達可能に連結されると共に,ピニオン軸18の軸方向移動が阻止される。
 次に,自動車の組立ラインにおいて,デフケース4の第1及び第2軸受ボス13,14をミッションケース1に第1及び第2ボールベアリング15,16を介して支持させる。そして,第1及び第2軸受ボス13,14の軸受孔13a,14aに嵌挿した第1及び第2ドライブ軸7,8を一対のサイドギヤ20にスプライン嵌合により連結する。
 自動車の運転中,原動機の動力により駆動ギヤ2がリングギヤ3を駆動するとき,リングギヤ3の駆動トルクは,前述のように,リングギヤ3とトルク伝達可能に連結したピニオン軸18に直接伝達し,そしてピニオンギヤ19及びサイドギヤ20に伝達し,さらに第1及び第2ドライブ軸7,8へと伝達して,それらを駆動する。したがって,ピニオン軸18及び,これが貫通する軸孔ボス12間ではトルクの授受は行われない。即ち,軸孔ボス12を一体に有するデフケースボディ10は,上記駆動トルクの伝達経路外に存在し,上記駆動トルクから解放されるので,その分,デフケースの薄肉,軽量化を図ることができる。
 フランジ11を構成する一対のフランジ片11aの平坦な両端面11bは,フランジ片11aの外周面の方よりも,機構室5に近い。したがって,その各端面11bに,機構室5の内面加工用の工具を挿入するための小切欠き孔42が設けられることは,加工機械からの上記工具のオーバハング量を極力短くして,機構室5の内面加工の精度を高める上で有効である。
 駆動ギヤ2及びリングギヤ3はヘリカルギヤであるため,それらのトルク伝達時には,両ギヤ2,3の噛合部においてスラスト荷重が発生し,そのスラスト荷重のリングギヤ3に対する作用点は,リングギヤ3の回転に応じて移動する。
 而して,上記スラスト荷重は,その移動する作用点近傍のボルト30からねじ孔ボス31に伝達し,そして第1リブ32を介して他の複数のねじ孔ボスに伝達し,また同時に複数の第2リブ33及び第1軸受ボス13にも伝達するので,これらねじ孔ボス31,第1リブ32,第2リブ33及び第1軸受ボス13が協働して上記スラスト荷重を支持することになる。
 特に,各第2リブ33が,半径方向外方側の肉厚を末広状に厚くして,ねじ孔ボス31及び第1リブ32の両者と直接連結することは,ねじ孔ボス31,第1リブ32及び第2リブ33の3者の結合力を高めて,ねじ孔ボス31に作用する上記スラスト荷重を第1リブ32及び第2リブ33に効果的に伝達,支持させることができる。
 こうして,デフケース4は軽合金製であるにも拘らず,ねじ孔ボス31,第1リブ32,第2リブ33及び第1軸受ボス13により効果的に補強されることで,移動する前記スラスト荷重に耐える得る大なる剛性を確保することができると共に,前記スラスト荷重によるリングギヤ3の倒れを抑制して駆動ギヤ2及びリングギヤ3の適正な噛合状態を保持することができる。
 自動車の旋回走行時など,差動機構6が第1及び第2ドライブ軸7,8の回転差を許容するとき,一対のピニオンギヤ19は,ピニオン軸18周りに互いに反対方向へ回転することにより,これらピニオンギヤ19の背面を支承する機構室5内面の第1ギヤ支承部21に回転摺動摩擦熱が発生する。
 しかしながら,デフケースボディ10の周壁の第1ギヤ支承部21を含む部分には,軸孔ボス12及びフランジ片11aよりなる第1厚肉部40が形成され,この第1厚肉部40は,デフケースボディ10の周壁のピニオンギヤ19及びサイドギヤ20の噛合部を覆う部分10aよりも肉厚が厚く,したがって熱容量が大きいので,第1ギヤ支承部21に発生する摩擦熱は,第1厚肉部40に吸収されるが,熱容量が大きい第1厚肉部40では過度の温度上昇を来さない。しかも,第1厚肉部40が吸収した熱は,第1厚肉部40にデフケースボディ10を介して連なる複数条の第2リブ33及び,それに連なる第1リブ32の放熱フィン機能により速やかに放散される。特に,第1厚肉部40は,第2軸線Y上でデフケースボディ10の外周部に形成される軸孔ボス12を含み,デフケース4の側面視で第2軸線Yの両側に第2リブ33が配置されるので,第2軸線Yの両側の少なくとも2条の第2リブ33は,軸孔ボス12に近接配置されることになり,第1厚肉部40からの熱の伝達を効果的に受け,良好な放熱機能を発揮することができる。
 一方,デフケースボディ10の周壁の第2ギヤ支承部22を含む部分には,第1軸受ボス13の大径ボス部13bが第2厚肉部として形成され,その大径ボス部13bは,デフケースボディ10の周壁のピニオンギヤ19及びサイドギヤ20の噛合部を覆う部分10aよりも肉厚が厚く,したがって熱容量が大きいので,サイドギヤ20の回転に伴い第2ギヤ支承部22に発生する摩擦熱は,大径ボス部13bに吸収され,そして大径ボス部13bに接続される全第2リブ33,及びそれらに連なる第1リブ32の放熱フィン機能により速やかに放散される。
 このようにして,軽合金製のデフケース4には良好な放熱性を付与することができて,差動機構6の作動に伴う発熱によるデフケース4の膨張を抑制することができる。
 尚,デフケースボディ10の周壁の,ピニオンギヤ19及びサイドギヤ20の噛合部を覆う部分10aでは,上記噛合部との摺動摩擦が生じないので,第1厚肉部40及び第2厚肉部(大径ボス部13b)のように熱容量を増加させる必要がないことから,その肉厚を積極的に薄くすることが可能となり,デフケース4の軽量化に資することができる。
 また,自動車の運転中,ミッションケース1の底部に貯留する潤滑オイルは,第1及び第2軸受ボス13,14を支持する第1及び第2ボールベアリング15,16を通過した後,軸受孔13a,14aの内周面の螺旋溝25によって機構室5に移送され,差動機構6の各部を潤滑した後,デフケース4の回転に伴い生じる遠心力により作業窓43や,ピニオン軸18及び軸孔ボス12間の隙間gを通して,デフケースボディ10外,即ちミッションケース1内へと戻され,その循環を繰り返す。
 その間,特に,上記隙間gに近いピニオンギヤ19及び第1ギヤ支承部21の摺動部では,上記隙間gに向かう潤滑オイルによって良好に潤滑され,その摺動摩擦による発熱が抑えられると共に,潤滑オイルを介してデフケースボディ10外への排熱が生じるので,これによってもデフケース4の放熱性を高めることができる。
 前述のように,第2軸受ボス14は第1軸受ボス13と対称的に構成されるので,その大径ボス部も,第1軸受ボス13の大径ボス部13bと同様に第2ギヤ支承部24を含む第2厚肉部として機能する。この第2軸受ボス14の大径ボス部には,デフケースボディ10の作業窓43の厚肉周縁部(図5参照)が連なっていて,上記大径ボス部周りの熱容量を増加させている。したがって,第2軸受ボス14側の第2ギヤ支承部22で発生した摩擦熱は,第2軸受ボス14の大径ボス部及び上記厚肉周縁部に吸収され,そして,作業窓43から流出する潤滑オイルにより排熱されることになり,これによってもデフケース4の放熱性を高めることができる。
 また,デフケースボディ10の周壁の,ピニオンギヤ19及びサイドギヤ20の噛合部を覆う部分10aを薄肉にするために,デフケースボディ10の外面に凹部を形成することは,デフケースボディ10の表面積を増加させて,その放熱性を高める上で有効である。しかも,デフケース4が,鉄鋼よりも熱伝導率が高い軽金属製であることで,その放熱性は促進される。
 本発明は,上記実施例1に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。
 例えば,一対のサイドギヤ20に連結される第1及び第2ドライブ軸7,8は,上記実施例1では,第1及び第2軸受ボス13,14の軸受孔13a,14aに直接支持させているが,サイドギヤ20のハブに一体に形成,或いは連結されるスリーブを介して軸受孔13a,14aに支持させることもできる(特開2015-145702号公報参照)。また,フランジ11は,一対のフランジ片11aに代えて,単一の円板状に形成することもできる。また,デフケース4は,例えば第2軸線Yを含む分割面で分割される分割構成とすることもできる。また,デフケース4は,鋳造に限らず,鍛造や機械加工等で製作してもよい。
 D・・・・差動装置
 X・・・・第1軸線
 Y・・・・第2軸線
 g・・・・隙間
 1・・・・ミッションケース
 2・・・・駆動ギヤ
 3・・・・リングギヤ
 4・・・・デフケース
 5・・・・機構室
 6・・・・差動機構
 7・・・・第1ドライブ軸
 8・・・・第2ドライブ軸
 10・・・デフケースボディ
 10a・・デフケースボディの,ピニオンギヤ及びサイドギヤの噛合部を覆う部分
 11・・・フランジ
 11a・・フランジ片
 11c・・ギヤ取り付け部(ギヤ取り付け面)
 12・・・軸孔ボス
 12a・・軸孔
 13・・・第1軸受ボス
 13b・・大径ボス部(第2厚肉部)
 13c・・小径ボス部
 14・・・第2軸受ボス
 18・・・ピニオン軸
 19・・・ピニオンギヤ
 20・・・サイドギヤ
 21・・・第1ギヤ支承部
 22・・・第2ギヤ支承部
 28・・・ねじ孔
 29・・・ボルト孔
 30・・・ボルト
 31・・・ねじ孔ボス
 32・・・第1リブ
 32・・・第2リブ
 40・・・第1厚肉部

Claims (3)

  1.  原動機に連なる駆動ギヤに噛合して駆動されるリングギヤと,該リングギヤと共に第1軸線周りに回転する軽合金製のデフケースと,該デフケースの機構室に収容されて,前記リングギヤの駆動力を前記第1軸線上に並ぶ第1及び第2ドライブ軸に分配,伝達する,ギヤ類を鉄鋼製とした差動機構とを備えてなり,
     前記差動機構は,前記機構室で前記第1軸線と直交する第2軸線上に配置されるピニオン軸と,該ピニオン軸に回転可能に支持されると共に,背面を前記機構室の内面の第1ギヤ支承部に支承されるピニオンギヤと,該ピニオンギヤと噛合しながら前記第1及び第2ドライブ軸とそれぞれ連結されると共に,背面を前記機構室の内面の第2ギヤ支承部に支承されるサイドギヤとを有し,
     前記デフケースは,前記機構室を画成するデフケースボディと,該デフケースボディの外周部に一体に連設され,前記リングギヤがその周方向に並ぶ複数のボルトにより締結されるギヤ取り付け部を一側面に有するフランジと,前記デフケースボディの両側部に一体に連設され,前記第1軸線上に並んでミッションケースに回転可能に支持されると共に前記第1及び第2ドライブ軸を回転可能に支持する第1及び第2軸受ボスとを有する差動装置であって,
     前記フランジの他側面には,前記複数のボルトが螺合するねじ孔を有して***する複数のねじ孔ボスと,該複数のねじ孔ボスを相互に一体に連結する第1リブとが形成され,
     また前記デフケースの外側面には,前記フランジ及びデフケースボディを経て前記ねじ孔ボスと前記フランジの他側面側の前記第1軸受ボスとの間を一体に連結する複数条の第2リブが形成され,
     前記デフケースボディの周壁には,前記第1ギヤ支承部を含み,且つ前記周壁の前記ピニオンギヤ及びサイドギヤの噛合部を覆う部分よりも肉厚を厚くする第1厚肉部が形成され,
     また前記第1軸受ボスには,前記第2ギヤ支承部を含み,且つ前記周壁の前記ピニオンギヤ及びサイドギヤの噛合部を覆う部分よりも肉厚を厚くする第2厚肉部が形成されることを特徴とする差動装置。
  2.  請求項1に記載の差動装置であって,
     前記第1厚肉部は,前記第2軸線上で前記デフケースボディの外周部に形成されて前記ピニオン軸の端部を受容する軸孔ボスを含み,
     デフケースの側面視で前記第2軸線の両側に前記第2リブが配置されることを特徴とする差動装置。
  3.  請求項1又は2に記載の差動装置であって,
     前記第1厚肉部は,前記軸孔ボスと,該軸孔ボスの前記第2リブ側の側壁を含むように該軸孔ボスと一体に形成される前記フランジとで構成され,
     前記リングギヤ及びピニオン軸が相互にトルク伝達可能に連結される一方,
     前記軸孔ボスの軸孔と,これに受容される前記ピニオン軸との間には隙間が設けられることを特徴とする差動装置。
PCT/JP2020/002041 2019-03-26 2020-01-22 差動装置 WO2020195059A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/424,724 US20210388892A1 (en) 2019-03-26 2020-01-22 Differential device
CN202080017223.2A CN113518874A (zh) 2019-03-26 2020-01-22 差动装置
DE112020001548.3T DE112020001548T5 (de) 2019-03-26 2020-01-22 Differentialvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058619A JP2020159443A (ja) 2019-03-26 2019-03-26 差動装置
JP2019-058619 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195059A1 true WO2020195059A1 (ja) 2020-10-01

Family

ID=72611752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002041 WO2020195059A1 (ja) 2019-03-26 2020-01-22 差動装置

Country Status (5)

Country Link
US (1) US20210388892A1 (ja)
JP (1) JP2020159443A (ja)
CN (1) CN113518874A (ja)
DE (1) DE112020001548T5 (ja)
WO (1) WO2020195059A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032725U (ja) * 1973-07-19 1975-04-09
JPH08320059A (ja) * 1995-05-25 1996-12-03 Yanagawa Seiki Kk デファレンシャルおよびその製造方法ならびに該製法に用いる中子
JP2010265933A (ja) * 2009-05-12 2010-11-25 Yanmar Co Ltd 作業車両のトランスミッションケース
JP2013104516A (ja) * 2011-11-16 2013-05-30 Asano Gear Co Ltd ディファレンシャル装置
JP2015081630A (ja) * 2013-10-22 2015-04-27 スズキ株式会社 デファレンシャル装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966020A (en) * 1974-12-04 1976-06-29 Allis-Chalmers Corporation Differential lubrication system
JPS5939621B2 (ja) * 1981-02-05 1984-09-25 マツダ株式会社 デイフアレンシヤル装置
US4901599A (en) * 1988-12-29 1990-02-20 Dana Corporation Cross pin retainer block for a bevel gear differential
JPH09229163A (ja) 1996-02-26 1997-09-02 Yanagawa Seiki Kk デフケースおよびその製造方法
EP1433978A1 (en) * 2002-08-02 2004-06-30 Kabushiki Kaisha Ondo Kousakusyo Differential gear for vehicle
JP4887703B2 (ja) * 2005-09-15 2012-02-29 トヨタ自動車株式会社 車両用伝達トルク制限装置
JP2009030630A (ja) * 2007-07-24 2009-02-12 Kuramochi Seiki Kk 自動車用ノンスリップ差動装置
JP4787295B2 (ja) * 2008-07-14 2011-10-05 株式会社トープラ 高強度セルフフォーミングねじによるねじ締結構造体
JP6217023B2 (ja) * 2013-12-27 2017-10-25 武蔵精密工業株式会社 差動装置及びその製造方法
JP6238353B2 (ja) 2014-02-03 2017-11-29 武蔵精密工業株式会社 差動装置及びその組立方法
JP2015158256A (ja) * 2014-02-25 2015-09-03 武蔵精密工業株式会社 差動装置
WO2017173435A1 (en) * 2016-04-01 2017-10-05 Metaldyne, Llc Differential overmolded ring gear
WO2018180278A1 (ja) * 2017-03-31 2018-10-04 本田技研工業株式会社 車両用パワーユニット
JP6457031B2 (ja) * 2017-08-02 2019-01-23 武蔵精密工業株式会社 差動装置
JP2019100504A (ja) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 ディファレンシャル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032725U (ja) * 1973-07-19 1975-04-09
JPH08320059A (ja) * 1995-05-25 1996-12-03 Yanagawa Seiki Kk デファレンシャルおよびその製造方法ならびに該製法に用いる中子
JP2010265933A (ja) * 2009-05-12 2010-11-25 Yanmar Co Ltd 作業車両のトランスミッションケース
JP2013104516A (ja) * 2011-11-16 2013-05-30 Asano Gear Co Ltd ディファレンシャル装置
JP2015081630A (ja) * 2013-10-22 2015-04-27 スズキ株式会社 デファレンシャル装置

Also Published As

Publication number Publication date
CN113518874A (zh) 2021-10-19
JP2020159443A (ja) 2020-10-01
US20210388892A1 (en) 2021-12-16
DE112020001548T5 (de) 2021-12-02

Similar Documents

Publication Publication Date Title
JP7188849B2 (ja) 減速機およびアクチュエータ
KR101266266B1 (ko) 감속장치
WO2012128003A1 (ja) サイクロイド減速機及びインホイールモータ駆動装置
US20160167505A1 (en) In-wheel motor drive device
JP5920321B2 (ja) 電気自動車用トランスアクスル
JP6487664B2 (ja) 差動装置
JP2015175512A (ja) インホイールモータ駆動装置
US6941752B2 (en) Stator support device and torque converter including the same
JP2016080152A5 (ja)
JP2010221934A (ja) インホイールモータユニット
WO2020195059A1 (ja) 差動装置
JP5727745B2 (ja) ギヤ支持構造
WO2016047442A1 (ja) インホイールモータ駆動装置
JP2022540239A (ja) 自動車用の電動式の駆動ユニット
JP2018017342A (ja) 歯車装置
WO2016017351A1 (ja) サイクロイド減速機およびこれを備えたインホイールモータ駆動装置
JP2015080996A (ja) インホイールモータ駆動装置
WO2015137088A1 (ja) インホイールモータ駆動装置
JP2004116737A (ja) 遊星歯車装置およびパワートレーン
JP2017180557A (ja) 伝動装置
JP6534414B2 (ja) 動力装置
JP7303637B2 (ja) インホイールモータ駆動装置
JP2010216591A (ja) 減速装置
JP6587892B2 (ja) 差動装置
WO2017170587A1 (ja) 伝動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776590

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20776590

Country of ref document: EP

Kind code of ref document: A1