WO2020179122A1 - ブレーキ制御装置およびブレーキ制御方法 - Google Patents

ブレーキ制御装置およびブレーキ制御方法 Download PDF

Info

Publication number
WO2020179122A1
WO2020179122A1 PCT/JP2019/040901 JP2019040901W WO2020179122A1 WO 2020179122 A1 WO2020179122 A1 WO 2020179122A1 JP 2019040901 W JP2019040901 W JP 2019040901W WO 2020179122 A1 WO2020179122 A1 WO 2020179122A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
brake control
inclination
thrust
rigidity
Prior art date
Application number
PCT/JP2019/040901
Other languages
English (en)
French (fr)
Inventor
京士朗 伊多倉
貴廣 伊藤
松原 謙一郎
後藤 大輔
諒 松浦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980091691.1A priority Critical patent/CN113423621B/zh
Priority to US17/433,088 priority patent/US20220041144A1/en
Priority to KR1020217026395A priority patent/KR102540788B1/ko
Priority to DE112019006740.0T priority patent/DE112019006740T5/de
Publication of WO2020179122A1 publication Critical patent/WO2020179122A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/746Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive and mechanical transmission of the braking action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • F16D65/183Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes with force-transmitting members arranged side by side acting on a spot type force-applying member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D66/02Apparatus for indicating wear
    • F16D66/021Apparatus for indicating wear using electrical detection or indication means
    • F16D66/022Apparatus for indicating wear using electrical detection or indication means indicating that a lining is worn to minimum allowable thickness
    • F16D66/023Apparatus for indicating wear using electrical detection or indication means indicating that a lining is worn to minimum allowable thickness directly sensing the position of braking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/12Pre-actuation of braking systems without significant braking effect; Optimizing brake performance by reduction of play between brake pads and brake disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/86Optimizing braking by using ESP vehicle or tire model
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/89Criteria for brake release
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/003Position, angle or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/005Force, torque, stress or strain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/006Arrangements for monitoring working conditions, e.g. wear, temperature without direct measurement of the quantity monitored, e.g. wear or temperature calculated form force and duration of braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes

Definitions

  • the present invention relates to a configuration of a brake system and its control, and particularly to a technology effective when applied to an electric brake of an automobile which requires high control accuracy and responsiveness.
  • Vehicles such as automobiles are equipped with a brake system that applies braking force to the wheels according to the amount of depression of the brake pedal by the driver.
  • brake systems Conventionally, many brake systems have been hydraulic systems, but recently, electric systems have been increasing.
  • the brake piston can be pulled back, which was difficult with a hydraulic system, so clearance control that provides a desired gap between the brake pad and the brake disc becomes possible, and fuel efficiency is improved by reducing the drag of the brake pad. Can be expected.
  • the braking force is controlled by using the pressing force of the brake pad and the brake disc detected by the strain sensor after contacting the brake pad by the clearance control.
  • the control based on the characteristics of the caliper rigidity, which represents the relationship between the position of the brake piston and the braking force, controls the braking force with high response and high accuracy to improve safety and improve the brake feel.
  • the technology to do is important.
  • Patent Document 1 stores "a brake control means that independently controls the movement amount of the brake friction material in the braking means that generates a braking force on the wheels for each wheel, and drive data required for controlling the movement amount.
  • a vehicle including a storage means, a vehicle running state detecting means for detecting a physical amount representing a running state of the vehicle, and a vehicle controlling means for controlling the running state of the vehicle via a brake control means for each wheel based on the physical amount.
  • the vehicle control means acquires control data as a result of controlling the running state of the vehicle by the brake means, and uses the acquired control data to store the drive stored in the storage means.
  • a vehicle brake control device that can generate the same pressing force on the left and right wheels regardless of changes in the current sensor value or changes in the actuator rigidity due to aging of the brake actuator " It is disclosed.
  • a caliper equipped with an electric motor and having a pressing member for pressing a brake pad against a brake disc propelled by the electric motor, and a pressing force command value for the brake pad by the pressing member is a braking instruction signal.
  • a control means for controlling the electric motor based on the pressing force command value wherein the control means estimates the thrust of the pressing member from the rotational position of the electric motor.
  • the control means estimates the rigidity of the caliper according to the frequency with which the pressing member presses the brake pad, and the pressing force of the brake pad calculated by the braking instruction signal according to the estimation result of the rigidity.
  • An electric brake device that has a caliper rigidity estimation means for changing a command value and can generate a desired braking force even when the caliper rigidity changes in an electric brake device that estimates the thrust of a pressing member from the rotational position of an electric motor” Is disclosed.
  • a thrust mechanism for pressing a brake pad against a disc rotor an actuator for driving the thrust mechanism, a pressing force detecting means for detecting a pressing force by the thrust mechanism, and a displacement of the thrust mechanism are described.
  • the control means comprises: By including an abnormality detection unit that detects an abnormality of the pressing force detection unit based on the relative relationship between the pressing force signal of the pressing force detection unit and the displacement signal of the position detection unit, the abnormality of the piston thrust sensor can be accurately detected.
  • a brake device that can be detected well is disclosed.
  • the rigidity graph data is updated based on the vehicle behavior data during the vehicle stabilization control, thereby responding to rigidity changes such as deterioration over time and improving the control performance of the vehicle stabilization control.
  • the vehicle behavior is updated after the vehicle behavior becomes unstable as a result of braking, so there is a concern that the safety may be deteriorated when a sudden change in rigidity occurs.
  • the rigidity characteristic is acquired from the measured values of the position sensor and the thrust sensor, and the rigidity characteristic is changed according to the length of the data acquisition interval, thereby appropriately estimating the rigidity change with respect to the temperature change.
  • controllability can be improved.
  • the rigidity table is created based on the measured values, it is difficult to accurately estimate the rigidity characteristics of the high thrust region that did not occur during braking in the previous cycle, and the rigidity characteristics change according to the time interval. Therefore, it is possible to appropriately estimate only the temperature change of the caliper, and it becomes difficult to estimate the time-independent change such as the uneven wear of the brake pad and the inclination of the brake disc.
  • Patent Document 3 shows an example in which the rigidity characteristic is used in the failure determination of the thrust sensor, and it is shown that the rigidity characteristic is created by polynomial approximation of a plurality of measurement points.
  • the accuracy of rigidity estimation may decrease due to an approximation error, and analysis of a large number of measurement points is required for high accuracy, which may increase the memory load.
  • an object of the present invention is to accurately estimate a change in rigidity due to a temperature change, uneven wear of a brake pad, a tilt of a brake disc, and the like with a low memory load and up to a region where a thrust is larger than a measurement range.
  • the present invention provides a friction member that is pressed by a member to be braked, a piston that comes into contact with the friction member and moves in a linear motion direction by rotation of an electric motor, and the braked member of the friction member.
  • a brake control device for controlling a braking unit comprising: a thrust detector for detecting a thrust to a member; a first piston range which is a thrust change having a first inclination with respect to the piston position; and the piston position.
  • the relationship between the thrust and the piston position which is the rigidity of the braking unit, is estimated based on the second piston range, which is a thrust change that results in a second tilt different from the first tilt.
  • the present invention is a brake control method for controlling an electric motor of a braking unit that presses a friction member, wherein a first piston range that is a thrust change having a first inclination with respect to a piston position and a piston position with respect to the piston position. And a second piston range which is a thrust change having a second tilt different from the first tilt, and a relationship between the piston position which is the rigidity of the braking unit and the thrust is estimated.
  • a brake control capable of estimating a rigidity change due to a temperature change, an uneven wear of a brake pad, a tilt of a brake disc, or the like with a low memory load and to a region having a larger thrust than a measurement range with high accuracy.
  • Devices and brake control methods can be provided.
  • FIG. 5 is a conceptual diagram showing the principle of occurrence of rigidity characteristics according to Example 1.
  • FIG. 5 is a calculation conceptual diagram of the rigidity calculation part which concerns on Example 1.
  • FIG. It is a conceptual diagram of the invention effect which concerns on Example 1.
  • FIG. It is a functional block diagram of the rigidity estimation part which concerns on Example 2.
  • FIG. It is a functional block diagram of the rigidity estimation part which concerns on Example 3.
  • FIG. 1 is a schematic diagram of a brake system of the present embodiment, showing a configuration corresponding to an electric brake for one wheel among a plurality of wheels included in a vehicle.
  • the brake system 1 of the present embodiment includes a drive mechanism 2, a brake control device 10, a braking mechanism 11, and a rotation/linear motion conversion mechanism 12 as main components.
  • the drive mechanism 2 is composed of an electric motor 2a and a speed reducer 2b.
  • the brake control device 10 has a thrust control unit (motor controller) 3 and a rigidity estimation unit 4 built therein.
  • the braking mechanism 11 includes a brake pad (friction member) 11a and a brake disc (braked member) 11b that can be brought into contact with and separated from each other.
  • the rotation/linear motion conversion mechanism 12 is composed of a piston 12a and a feed screw 12b, and in the present embodiment, it has a substantially rod shape.
  • a unit (braking unit) including the drive mechanism 2, the brake pad 11a, and the rotation/linear motion conversion mechanism 12 is called a brake caliper 5.
  • the brake caliper 5 plays a role of pressing the brake pad 11a against the brake disc 11b, and enables braking by friction.
  • the rotational driving force generated by the electric motor 2a is decelerated by the speed reducer 2b, the rotational driving force after deceleration is converted into a linear driving force via the feed screw 12b, and the piston 12a is linearly driven.
  • the braking force is applied to the rotating brake disc 11b.
  • the direction in which the piston 12a approaches the brake disc 11b is the positive direction (+), and the opposite direction is the negative direction (-).
  • the thrust control unit (motor controller) 3 in the brake control device 10 controls the rotation speed and position of the electric motor 2a and adjusts the pressing force of the brake pad 11a. Further, the brake control device 10 estimates the braking force of the brake pad 11a based on the thrust detected by the thrust sensor 31 installed in the rotation/linear motion conversion mechanism 12. Further, the brake control device 10 estimates the position of the brake pad 11a based on the rotational position detected by the position sensor 32 installed on the electric motor 2a.
  • the position sensor 32 may be attached to the piston 12a so that the position of the piston 12a can be directly detected.
  • a control signal line 21, communication lines 22 and 23, and a main power line 26 are connected to the brake control device 10. Further, the thrust control unit 3 and the rigidity estimation unit 4 inside are connected to each other by communication lines 24 and 25.
  • the control signal line 21 inputs a control command from a higher-level control device such as a vehicle control ECU (Electronic Control Unit) to the brake control device 10, and the communication lines 22 and 23 are higher-level control devices. And information other than control commands are communicated.
  • a higher-level control device such as a vehicle control ECU (Electronic Control Unit)
  • the communication lines 22 and 23 are higher-level control devices.
  • information other than control commands are communicated.
  • the upper control device and the brake control device 10 are separate here, the control device may be integrated.
  • the rigidity estimation unit 4 includes a rigidity feature detection unit 40, a first inclination calculation unit 41, a second inclination calculation unit 42, a position deviation calculation unit 43, and a rigidity calculation unit 44.
  • a signal is input from the thrust control unit 3 via the communication line 24, and a signal is output to the thrust control unit 3 via the communication line 25.
  • the actual rigidity estimation unit 4 includes hardware such as a CPU (Central Processing Unit), an arithmetic unit such as a microcomputer, a main storage device such as a semiconductor memory, an auxiliary storage device such as a hard disk, and a communication device. , Each function shown in FIG. 2 is realized by the arithmetic unit executing the program stored in the main storage device while referring to the database or the like recorded in the auxiliary storage device. Description will be made while omitting such known configurations and operations as appropriate.
  • a CPU Central Processing Unit
  • an arithmetic unit such as a microcomputer
  • main storage device such as a semiconductor memory
  • auxiliary storage device such as a hard disk
  • the rigidity feature detection unit 40 uses the thrust value signal from the thrust sensor 31 and the position signal of the piston 12a estimated from the position sensor 32 to determine the first inclination (L1) necessary for estimating the rigidity.
  • the second inclination (L2) and the position deviation ( ⁇ X) are calculated, and the calculation results are output.
  • the first inclination calculation unit 41 moves the piston 12a to the brake disc 11b side, and outputs the thrust value signal from the thrust sensor 31 generated after the brake pad 11a and the brake disc 11b contact each other, and the internal value of the first inclination calculation unit.
  • the slope of the thrust increase with respect to the advance amount of the piston 12a is calculated, and The position X1 of the piston 12a when the first inclination L1 and the first inclination are calculated is output.
  • the second inclination calculation unit 42 moves the piston 12a to the brake disc 11b side, and outputs the thrust value signal from the thrust sensor 31 generated after the brake pad 11a and the brake disc 11b contact each other, and the internal value of the second inclination calculation unit.
  • the slope of the thrust increase with respect to the advance amount of the piston 12a is calculated, and The position X2 of the piston 12a when the second inclination L2 and the second inclination are calculated is output.
  • the position deviation calculation unit 43 calculates the position deviation ⁇ X from the difference between the first inclination position X1 and the second inclination position X2 obtained from the first inclination calculation unit 41 and the second inclination calculation unit 42.
  • the rigidity calculation unit 44 calculates the rigidity based on the first inclination L1, the second inclination L2, and the position deviation ⁇ X.
  • the rigidity characteristic represents the relationship of the thrust force with respect to the advance of the piston 12a.
  • the piston 12a is stationary with a clearance provided to prevent dragging during non-braking.
  • the piston 12a moves forward, and when it moves forward by the clearance amount, it pushes forward the brake pad 11a to come into contact with the brake disc 11b, and thrust begins to be generated (A in FIG. 4).
  • the thrust sensor 31 first detects the restoring force caused by the bending (deflection) of the brake caliper. After contact between the brake pad 11a and the brake disc 11b, the brake pad 11a is in a one-side contact state in a range where the brake caliper is flexed (deflection), so that the apparent rigidity (B in FIG. 4) is low (piston advance). (Small boost with respect to quantity) characteristics are obtained.
  • the rigidity calculation unit 44 calculates the rigidity based on the first inclination L1, the second inclination L2, and the position deviation ⁇ X in order to appropriately capture these changes in the rigidity.
  • the second slope calculator 42 also performs the same calculation (calculation of the second slope L2), and further calculates ⁇ X, which is the difference in position between the first slope L1 and the second slope L2.
  • the rigidity is calculated using these three parameters (L1, L2, ⁇ X).
  • the rigidity is calculated, for example, by extracting these parameters at the design stage from various rigidity data obtained experimentally, It is possible to construct an estimation model corresponding to the change in rigidity by regression analysis.
  • the estimation model at this time is, for example, the following expression (1).
  • f (Z1, Z2, Z3) c + ⁇ * Z1 + ⁇ * Z2 + ⁇ * Z3 ... (1) here, f(Z1, Z2, Z3): Estimated piston position that reaches arbitrary thrust (rigidity characteristic)
  • the regression coefficient of Eq. (1) can be set so that the estimation error is minimized, so that rigidity can be estimated with high accuracy for changes in rigidity. Become.
  • the regression model may be designed in advance or may be learned during driving. In short, it suffices that the rigidity can be estimated using the information of the first inclination (L1), the second inclination (L2), and the position deviation ( ⁇ X).
  • the functional blocks of the rigidity estimation unit 4 shown in FIG. 2 are actually executed by software stored in the memory of the microcomputer. Next, this calculation flow will be described with reference to FIG.
  • step S10 it is determined whether the vehicle is currently in a braking state. This determination can be made based on whether the driver depresses the brake pedal by a predetermined amount or more and the thrust command value is 0 or more. If it is in the non-braking state (NO), it goes to the end and waits for the next start timing. On the other hand, if it is in the braking state (YES), the process proceeds to the next step S11.
  • Step S11 mainly corresponds to the processing in the first inclination calculation unit 41, and the output F of the thrust sensor 31 installed in the rotation/linear motion conversion mechanism 12 and the threshold value SF1L are compared and calculated, and F is equal to or less than the threshold value. If (NO), it waits, and if it is more than the threshold value (YES), it proceeds to step S12.
  • Step S12 mainly corresponds to the processing in the first inclination calculation unit 41, and holds the value F1L of the thrust sensor 31 and the value X1L of the position sensor 32 at the time when the threshold value is exceeded and stores them in the memory, and the step S13. Proceed to.
  • these pieces of information are stored in a temporary storage area of a RAM (Random Access Memory) provided in the microcomputer, and are used for the calculation executed in the following control steps. It is also possible to detect other information in addition to this according to the brake system 1.
  • RAM Random Access Memory
  • Step S13 mainly corresponds to the processing in the first inclination calculation unit 41, and compares the output F of the thrust sensor 31 installed in the rotation/linear motion conversion mechanism 12 with the threshold value SF1H, and F is less than or equal to the threshold value. If (NO), it waits, and if it is more than the threshold value (YES), it proceeds to step S14.
  • Step S14 mainly corresponds to the processing in the first inclination calculation unit 41, and holds the value F1H of the thrust sensor 31 and the value X1H of the position sensor 32 at the time when the threshold value is exceeded and stores them in the memory and stores them in step S15. Proceed to.
  • Step S21 mainly corresponds to the process in the second inclination calculation unit 42, and the output F of the thrust sensor 31 installed in the rotation/linear motion conversion mechanism 12 and the threshold value SF2L are compared and calculated, and F is equal to or less than the threshold value. If (NO), it waits, and if it is more than the threshold value (YES), it proceeds to step S22.
  • Step S22 mainly corresponds to the process in the second inclination calculation unit 42, and holds the value F2L of the thrust sensor 31 and the value X2L of the position sensor 32 at the time when the threshold value is exceeded and stores them in the memory, and the step S23 is performed. Proceed to.
  • Step S23 mainly corresponds to the processing in the second inclination calculation unit 42, and compares the output F of the thrust sensor 31 installed in the rotation/linear motion conversion mechanism 12 with the threshold value SF2H, and F is equal to or less than the threshold value. If (NO), it waits, and if it is more than the threshold value (YES), the process proceeds to step S24.
  • Step S24 mainly corresponds to the processing in the second inclination calculation unit 42, and holds the value F2H of the thrust sensor 31 and the value X2H of the position sensor 32 at the time when the threshold value is exceeded and stores them in the memory and stores them in step S25. Proceed to.
  • Step S41 mainly corresponds to the processing of the rigidity calculation unit 44, and the first inclination L1, the second inclination L2, and the position deviation ⁇ X are estimated models f(Z1, Z2, which are created by regression analysis at the time of designing.
  • the rigidity characteristic is calculated by substituting it into Z3).
  • the rigidity change can be appropriately estimated by the above calculation.
  • the piston 12a is advanced too much and the thrust force overshoots, as indicated by a broken line (unestimated) on the left side of the drawing. ..
  • the thrust can be controlled without overshooting as indicated by the dotted line (the present invention).
  • the piston 12a advances as indicated by the broken line (unestimated) on the right side of the figure. Responsiveness deteriorates due to insufficient amount. On the other hand, if the rigidity is properly estimated, the responsiveness is improved as indicated by the dotted line (the present invention).
  • the rigidity can be estimated with high accuracy, it is also possible to detect with high accuracy the contact position (A in FIG. 4) between the brake pad 11a and the brake disc 11b, which is the point where the thrust starts increasing. Also, the piston positioning control at the time of non-braking for keeping the clearance constant can be made highly accurate.
  • Patent Document 2 when it is desired to obtain rigidity characteristics up to a high thrust, it is necessary to increase and measure the high thrust, but in the present invention, if the thrust is increased to a threshold value required for estimation, a high thrust region is obtained. Since it can be estimated up to, it can be estimated only by operating in the normal brake range.
  • the brake control device 10 of the present embodiment includes the brake caliper, the brake pad 11a, the brake disc 11b, and the piston 12a that is connected to the brake pad 11a and moves in the linear direction by the rotation of the electric motor 2a.
  • a thrust detector for detecting the thrust of the brake pad 11a on the brake disc 11b, which is a brake control device for controlling a brake and has a first inclination L1 with respect to the position of the piston 12a.
  • the rigidity of the brake caliper is estimated based on the difference (positional deviation ⁇ X) between the positions of the first piston range (X1H-X1L) and the second piston range (X2H-X2L).
  • first piston range (X1H-X1L) is a range of the restoring force of the flexure in which the brake caliper is flexed and the brake pad 11a is partially biased
  • second piston range (X2H-X2L) is the brake. This is the range of the pressing force after the pad 11a is tangent to the brake disc 11b.
  • FIG. 7 is a functional block diagram of the rigidity estimating unit in the present embodiment, which corresponds to a modification of the first embodiment (FIG. 2). It should be noted that duplicated description of common points with the first embodiment will be omitted.
  • the rigidity estimation unit of the present embodiment has a third inclination calculation unit 51 and a fourth inclination calculation unit 52 added to the configuration of the first embodiment (FIG. 2).
  • the third piston range which is a thrust change that results in a third inclination L3 different from the first inclination L1 and the second inclination L2 with respect to the position of the piston 12a.
  • estimate the rigidity with respect to the position of the piston 12a, in addition to the first inclination L1, the second inclination L2, and the third inclination L3, there is a fourth inclination L4 different from the first inclination L1, the second inclination L2, and the third inclination L3.
  • the rigidity is estimated based on the fourth piston range that is the thrust change.
  • FIG. 8 is a functional block diagram of the rigidity estimation unit in the present embodiment, which corresponds to a modification of the first embodiment (FIG. 2). It should be noted that duplicated description of common points with the first embodiment will be omitted.
  • the rigidity estimation unit of the present embodiment has a rigidity estimation model learning unit 61 added to the configuration of Embodiment 1 (FIG. 2).
  • the rigidity estimation model constructed in advance at the time of design is used.
  • the rigidity is measured in real time during running or stop, and the estimation model is sequentially learned. It may be.
  • the brake control device and the control method according to the present invention have been described by taking an example of an electric brake of an automobile, but the present invention is not limited to this. It is also applicable to electric brakes installed in railways, elevators, etc., and similar effects can be obtained.
  • the brake caliper 5 is described as an example of the braking unit in the present invention.
  • a brake control device having a drum brake type electric cylinder unit that presses a brake shoe against a drum that rotates together with a wheel, and the brake controller. It is applicable to the brake control method of the electric cylinder unit, and the same effect can be obtained.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail to facilitate understanding of the present invention, and are not necessarily limited to those including all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

温度変化やブレーキパッドの偏磨耗、ブレーキディスクの傾きなどによる剛性変化を、低メモリ負荷で、かつ、計測範囲よりも大推力となる領域まで高精度に推定可能なブレーキ制御装置およびブレーキ制御方法を提供する。被制動部材に押圧される摩擦部材と、前記摩擦部材に当接し電動モータの回転により直動方向に移動するピストンと、前記摩擦部材の前記被制動部材への推力を検出する推力検出部と、を備える制動ユニットを制御するブレーキ制御装置であって、前記ピストン位置に対して第1傾きとなる推力変化である第1ピストン範囲と、前記ピストン位置に対して前記第1傾きとは異なる第2傾きとなる推力変化である第2ピストン範囲と、に基づいて、前記制動ユニットの剛性である前記ピストン位置と前記推力の関係を推定する。

Description

ブレーキ制御装置およびブレーキ制御方法
 本発明は、ブレーキシステムの構成とその制御に係り、特に、高い制御精度と応答性が要求される自動車の電動ブレーキに適用して有効な技術に関する。
 自動車等の車両には、運転者によるブレーキペダルの踏込量に応じて車輪に制動力を付与するブレーキシステムが搭載されている。このブレーキシステムは、従来、油圧システムのものが多かったが、最近では電動システムのものが増えつつある。
 電動システムを用いたブレーキシステムでは、油圧システムでは困難であったブレーキピストンの引き戻しができるため、ブレーキパッドとブレーキディスクに所望の隙間を設けるクリアランス制御が可能になり、ブレーキパッドの引きずり低減による燃費改善が期待できる。
 また、ペダル踏込時には、クリアランス制御によりブレーキパッドに接触後、歪みセンサなどで検出するブレーキパッドとブレーキディスクの押付け力を用いた制動力の制御が行われる。
 本制御では、ブレーキピストンの位置と制動力の関係を表すキャリパ剛性の特性に基づいた制御を行うことにより、高応答かつ高精度に制動力を制御し、安全性を高めたり、ブレーキフィールを向上する技術が重要となる。
 キャリパの剛性特性を制御に用いる技術として、例えば、特許文献1のような技術がある。特許文献1には「車輪に制動力を発生するブレーキ手段におけるブレーキ摩擦材の移動量を車輪毎に独立に制御するブレーキ制御手段と、前記移動量の制御において必要とされる駆動データを記憶する記憶手段と、車両の走行状態を表す物理量を検出する車両走行状態検出手段と、前記物理量に基づいて車輪毎のブレーキ制御手段を介して車両走行状態を制御する車両制御手段と、を備えた車両のブレーキ制御装置であって、前記車両制御手段は、前記ブレーキ手段によって車両の走行状態を制御した結果の制御データを取得し、前記取得した制御データを用いて前記記憶手段に記憶されていた駆動データを補正し更新することで、電流センサ値のばらつきや、ブレーキアクチュエータの経年変化によるアクチュエータ剛性の変化によらず、左右輪において同等の押付力を発生させることができる車両のブレーキ制御装置」が開示されている。
 また、特許文献2には「電動モータを備え、ブレーキディスクにブレーキパッドを押圧する押圧部材が前記電動モータにより推進されるキャリパと、前記押圧部材による前記ブレーキパッドの押圧力指令値を制動指示信号に応じて算出し該押圧力指令値に基づいて前記電動モータを制御する制御手段と、からなり、前記制御手段は、前記電動モータの回転位置から前記押圧部材の推力を推定する電動ブレーキ装置において、前記制御手段は、前記押圧部材が前記ブレーキパッドを押圧する頻度に応じて前記キャリパの剛性を推定し該剛性の推定結果に応じて、前記制動指示信号により算出される前記ブレーキパッドの押圧力指令値を変更するキャリパ剛性推定手段を有することで、電動モータの回転位置から押圧部材の推力を推定する電動ブレーキ装置においてキャリパ剛性が変化しても所望の制動力を発生し得る電動ブレーキ装置」が開示されている。
 さらに、特許文献3には「ディスクロータにブレーキパッドを押圧させる推力機構と、該推力機構を駆動するアクチュエータと、前記推力機構による押圧力を検出する押圧力検出手段と、前記推力機構の変位を検出する位置検出手段と、前記押圧力検出手段の押圧力信号と車両の制動指示信号とに応じて制動力を発生すべく前記アクチュエータを制御する制御手段とからなるブレーキ装置において、前記制御手段は、前記押圧力検出手段の押圧力信号と前記位置検出手段の変位信号との相対関係に基づいて前記押圧力検出手段の異常を検知する異常検知手段を有することで、ピストン推力センサの異常を精度よく検知することができるブレーキ装置」が開示されている。
特開2007-161154号公報 特開2008-184023号公報 特開2005-106153号公報
 上記特許文献1では、車両安定化制御中の車両挙動のデータに基づき剛性グラフデータを更新することにより、経年劣化などの剛性変化に対応し、車両安定化制御の制御性能を向上している。しかし、本構成によると、制動した結果、車両挙動が不安定になった後に更新されるため、急激な剛性変化が生じた場合に安全性が低下する懸念がある。
 また、上記特許文献2では、位置センサと推力センサの計測値から剛性特性を取得し、そのデータ取得間隔の長さに応じて剛性特性を変化させることにより、温度変化に対する剛性変化を適切に推定し、制御性を向上させることができる。しかし、剛性テーブルは計測値に基づき作成されるため、前回サイクルの制動時に発生していない高推力領域の剛性特性を高精度に推定することは難しく、また、時間間隔に応じて剛性特性を変化するため、キャリパの温度変化にのみ適切に推定できるのであって、ブレーキパッドの偏磨耗やブレーキディスクの傾きといった時間に依存しない変化に対しては推定が困難となる。
 一方、上記特許文献3では、推力センサの故障判定において剛性特性を用いた例が示されており、剛性特性は複数計測点の多項式近似で作成されることが示されている。特許文献3の剛性推定方法によると、近似誤差により剛性推定精度が低下する恐れがあり、また高精度化には多数の計測点の解析が必要となるためメモリ負荷が増大する可能性がある。
 そこで、本発明の目的は、温度変化やブレーキパッドの偏磨耗、ブレーキディスクの傾きなどによる剛性変化を、低メモリ負荷で、かつ、計測範囲よりも大推力となる領域まで高精度に推定可能なブレーキ制御装置およびブレーキ制御方法を提供することにある。
 上記課題を解決するために、本発明は、被制動部材に押圧される摩擦部材と、前記摩擦部材に当接し電動モータの回転により直動方向に移動するピストンと、前記摩擦部材の前記被制動部材への推力を検出する推力検出部と、を備える制動ユニットを制御するブレーキ制御装置であって、前記ピストン位置に対して第1傾きとなる推力変化である第1ピストン範囲と、前記ピストン位置に対して前記第1傾きとは異なる第2傾きとなる推力変化である第2ピストン範囲と、に基づいて、前記制動ユニットの剛性である前記ピストン位置と前記推力の関係を推定することを特徴とする。
 また、本発明は、摩擦部材を押圧する制動ユニットの電動モータを制御するブレーキ制御方法であって、ピストン位置に対して第1傾きとなる推力変化である第1ピストン範囲と、ピストン位置に対して前記第1傾きとは異なる第2傾きとなる推力変化である第2ピストン範囲と、に基づいて、前記制動ユニットの剛性であるピストン位置と推力の関係を推定することを特徴とする。
 本発明によれば、温度変化やブレーキパッドの偏磨耗、ブレーキディスクの傾きなどによる剛性変化を、低メモリ負荷で、かつ、計測範囲よりも大推力となる領域まで高精度に推定可能なブレーキ制御装置およびブレーキ制御方法を提供することができる。
 これにより、剛性変化に寄らず安定したブレーキ制御が可能となり、制動時の安全性とフィーリングを向上することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1に係るブレーキシステムの概略図。 実施例1に係る剛性推定部の機能ブロック図である。 実施例1に係る剛性推定演算方法を示すフローチャートである。 実施例1に係る剛性特性の発生原理を表す概念図である。 実施例1に係る剛性演算部の演算概念図である。 実施例1に係る発明効果の概念図である。 実施例2に係る剛性推定部の機能ブロック図である。 実施例3に係る剛性推定部の機能ブロック図である。
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。また、本発明は以下の実施例に限定されるものではなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。
 図1から図6を参照して、本発明の実施例1のブレーキシステムについて説明する。図1は、本実施例のブレーキシステムの概略図であり、車両が備える複数車輪のうち一輪分の電動ブレーキに対応する構成を示している。
 図1に示すように、本実施例のブレーキシステム1は、主要な構成として、駆動機構2と、ブレーキ制御装置10と、制動機構11と、回転/直動変換機構12を備えている。これらのうち、駆動機構2は電動モータ2aと減速機2bとからなるものである。ブレーキ制御装置10は推力制御部(モータ制御器)3と剛性推定部4を内蔵したものである。制動機構11はブレーキパッド(摩擦部材)11aとブレーキディスク(被制動部材)11bを接離可能に配置したものである。回転/直動変換機構12はピストン12aと送りねじ12bとからなり、本実施例においては略棒状のものである。
 また、図1において、駆動機構2,ブレーキパッド11a,回転/直動変換機構12を含むユニット(制動ユニット)をブレーキキャリパ5と呼ぶ。ブレーキキャリパ5は、ブレーキパッド11aをブレーキディスク11bに押さえつける役割を果たし、摩擦による制動を可能とする。
 このブレーキシステム1では、電動モータ2aが発生させた回転駆動力を減速機2bで減速し、減速後の回転駆動力を送りねじ12bを介して直動駆動力に変換し、ピストン12aの直線駆動によりブレーキパッド11aをブレーキディスク11bに押し付けることで、回転中のブレーキディスク11bに制動力を与える。なお、以下では、ピストン12aがブレーキディスク11bに接近する方向を正方向(+)とし、その逆方向を負方向(-)とする。
 以上の制動動作を行う際、ブレーキ制御装置10内の推力制御部(モータ制御器)3は、電動モータ2aの回転速度や位置を制御し、ブレーキパッド11aの押圧力を調整する。また、ブレーキ制御装置10は、回転/直動変換機構12に設置した推力センサ31が検出した推力に基づいてブレーキパッド11aの制動力を推定する。さらに、ブレーキ制御装置10は、電動モータ2aに設置した位置センサ32が検出した回転位置に基づいてブレーキパッド11aの位置を推定する。なお、位置センサ32をピストン12aに取り付け、ピストン12aの位置を直接検出できるようにしても良い。
 ここで、ブレーキ制御装置10には、制御信号線21、通信線22,23、主電力線26が接続されている。また、内部の推力制御部3と剛性推定部4は、通信線24,25で相互に接続されている。これらのうち、制御信号線21は、車両制御用ECU(Electronic Control Unit)等の上位制御装置からの制御指令をブレーキ制御装置10に入力する
ものであり、通信線22,23は、上位制御装置と制御指令以外の情報を通信するものである。なお、ここでは、上位制御装置とブレーキ制御装置10を別個のものとしているが、両者を一体化した制御装置としても良い。
 次に、図2を用いて、剛性推定部4の詳細を説明する。図2に示すように、剛性推定部4は、剛性特徴検出部40と、第1傾き演算部41と、第2傾き演算部42と、位置偏差演算部43と、剛性演算部44と、を備えており、通信線24を介して推力制御部3からの信号が入力され、通信線25を介して推力制御部3に信号を出力する。
 なお、実際の剛性推定部4は、CPU(Central Processing Unit)、マイコン等の演
算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置、および、通信装置などのハードウェアを備えており、補助記憶装置に記録されたデータベース等を参照しながら、主記憶装置に記憶されたプログラムを演算装置が実行することで、図2に示す各機能を実現するものであるが、以下では、このような周知の構成や動作を適宜省略しながら説明する。
 ≪剛性特徴検出部40≫
 剛性特徴検出部40は、推力センサ31からの推力値信号と、位置センサ32から推定されるピストン12aの位置信号を用いて、剛性を推定するために必要となる、第1傾き(L1)と第2傾き(L2)と位置偏差(ΔX)を演算し、それらの演算結果を出力するものである。
 ≪第1傾き演算部41≫
 第1傾き演算部41は、ピストン12aをブレーキディスク11b側に移動させ、ブレーキパッド11aとブレーキディスク11bが接触した後に生じる推力センサ31からの推力値信号と、第1傾き演算部の内部値として保持している検出閾値SF1L、SF1Hとを比較演算し、閾値を上回った時点のピストン12aの位置信号X1L、X1Hを検出することで、ピストン12aの進み量に対する推力増加の傾きを演算し、第1傾きL1および第1傾きを演算した際のピストン12aの位置X1を出力する。
 ≪第2傾き演算部42≫
 第2傾き演算部42は、ピストン12aをブレーキディスク11b側に移動させ、ブレーキパッド11aとブレーキディスク11bが接触した後に生じる推力センサ31からの推力値信号と、第2傾き演算部の内部値として保持している検出閾値SF2L、SF2Hとを比較演算し、閾値を上回った時点のピストン12aの位置信号X2L、X2Hを検出することで、ピストン12aの進み量に対する推力増加の傾きを演算し、第2傾きL2および第2傾きを演算した際のピストン12aの位置X2を出力する。
 ≪位置偏差演算部43≫
 位置偏差演算部43は、第1傾き演算部41と第2傾き演算部42から得られる第1傾き位置X1と第2傾き位置X2との差から位置偏差ΔXを演算するものである。
 ≪剛性演算部44≫
 剛性演算部44は、第1傾きL1と第2傾きL2と位置偏差ΔXとに基づいて剛性を演算するものである。
 ここで、図4を用いて剛性特性の発生原理を説明する。剛性特性はピストン12aの進みに対する推力の関係を表すものである。ピストン12aは非制動時には引き摺り防止のためクリアランスを設けて静止している。一方、制動時にはピストン12aが前進し、クリアランス量だけ前進するとブレーキパッド11aを推し進めブレーキディスク11bと接触し、推力が発生しはじめる(図4中のA)。
 さらにピストン12aを前進させると、はじめはブレーキキャリパの撓み(たわみ)等に起因する復元力が推力センサ31で検出される。ブレーキパッド11aとブレーキディスク11bの接触後、ブレーキキャリパの撓み(たわみ)が生じている範囲ではブレーキパッド11aが片あたり状態となるため、みかけの剛性(図4中のB)が低い(ピストン進み量に対する増力が小さい)特性が得られる。
 この復元力は、ピストン12aを更に推し進めていくことで、撓み(たわみ)状態から回復し、減少していく(図4中のC)。その後、ピストン12aを進めていくと、ブレーキパッド11aとブレーキディスク11bが正接した状態、すなわち、ブレーキパッド11aがブレーキディスク11bに正方向へ接近していって接触する状態となり、純粋なブレーキパッド11aの剛性による増力が得られる(図4中のD)。
 剛性演算部44では、これらの剛性変化を適切に捉えるため、第1傾きL1と第2傾きL2と位置偏差ΔXとに基づいて剛性を演算する。
 ここで、図5を用いて剛性演算に用いるパラメータを説明する。第1傾き演算部41では閾値SF1L,SF1Hを越えた時点の推力センサ31の値F1L,F1Hとピストン位置X1L,X1Hの値を保持し、傾きL1=(F1H-F1L)/(X1H-X1L)を演算する。第2傾き演算部42でも同様の演算(第2傾きL2の演算)を行い、さらに第1傾きL1と第2傾きL2との位置の差であるΔXを演算する。
 これらの3つのパラメータ(L1,L2,ΔX)を用いて剛性を演算するが、剛性の演算方法は例えば、実験的に得られた種々の剛性データから、設計段階でこれらのパラメータを抽出し、回帰分析により剛性変化に対応した推定モデルを構築することが考えられる。この時の推定モデルとは、例えば以下の式(1)のようなものである。
 f(Z1,Z2,Z3)=c+α*Z1+β*Z2+γ*Z3 …(1)
 ここで、
 f(Z1,Z2,Z3):任意の推力に達するピストン推定位置(剛性特性)
 Z1:第1傾き(L1)
 Z2:第2傾き(L2)
 Z3:位置偏差(ΔX)
 c,α,β,γ:回帰係数
 回帰分析では式(1)の回帰係数を推定誤差が最小になるように設定することができるので、剛性変化に対して高精度に剛性推定が行えるようになる。
 但し、回帰モデルは予め設計されたものでも、走行中に学習するものであってもよい。要は、第1傾き(L1)と第2傾き(L2)と位置偏差(ΔX)の情報を用いて剛性が推定できればよい。
 図2に示した剛性推定部4の機能ブロックは、実際にはマイクロコンピュータのメモリに記憶されたソフトウェアで実行されるものである。次にこの演算フローを図3に基づき説明する。
 ≪ステップS10≫
 ステップS10では、車両が現在、制動状態か否かを判断する。この判断は、運転者によりブレーキペダルが所定量以上に踏み込まれ、推力指令値が0以上であるかで判断できる。非制動状態である場合(NO)は、エンドに抜けて次の起動タイミングを待つことになる。一方、制動状態である場合(YES)は、次のステップS11に移行する。
 ≪ステップS11≫
 ステップS11は、主に第1傾き演算部41での処理に対応するものであり、回転/直動変換機構12に設置した推力センサ31の出力Fと閾値SF1Lを比較演算し、Fが閾値以下(NO)であれば待機し、閾値以上(YES)であればステップS12に進む。
 ≪ステップS12≫
 ステップS12は、主に第1傾き演算部41での処理に対応するものであり、閾値を超えた時点の推力センサ31の値F1Lおよび位置センサ32の値X1Lを保持しメモリに格納しステップS13に進む。
 ここで、これらの情報は、マイクロコンピュータに備えられているRAM(Random Access Memory)の一時記憶領域に記憶され、以下の制御ステップで実行される演算に利用される。尚、ブレーキシステム1に合せて、これ以外に他の情報を検出することも可能である。
 ≪ステップS13≫
 ステップS13は、主に第1傾き演算部41での処理に対応するものであり、回転/直動変換機構12に設置した推力センサ31の出力Fと閾値SF1Hを比較演算し、Fが閾値以下(NO)であれば待機し、閾値以上(YES)であればステップS14に進む。
 ≪ステップS14≫
 ステップS14は、主に第1傾き演算部41での処理に対応するものであり、閾値を超えた時点の推力センサ31の値F1Hおよび位置センサ32の値X1Hを保持しメモリに格納しステップS15に進む。
 ≪ステップS15≫
 ステップS15は、主に第1傾き演算部41での処理に対応するものであり、ステップS11からステップS14で得られた情報から第1傾きL1=(F1H-F1L)/(X1H-X1L)を演算する。
 ≪ステップS21≫
 ステップS21は、主に第2傾き演算部42での処理に対応するものであり、回転/直動変換機構12に設置した推力センサ31の出力Fと閾値SF2Lを比較演算し、Fが閾値以下(NO)であれば待機し、閾値以上(YES)であればステップS22に進む。
 ≪ステップS22≫
 ステップS22は、主に第2傾き演算部42での処理に対応するものであり、閾値を超えた時点の推力センサ31の値F2Lおよび位置センサ32の値X2Lを保持しメモリに格納しステップS23に進む。
 ≪ステップS23≫
 ステップS23は、主に第2傾き演算部42での処理に対応するものであり、回転/直動変換機構12に設置した推力センサ31の出力Fと閾値SF2Hを比較演算し、Fが閾値以下(NO)であれば待機し、閾値以上(YES)であればステップS24に進む。
 ≪ステップS24≫
 ステップS24は、主に第2傾き演算部42での処理に対応するものであり、閾値を超えた時点の推力センサ31の値F2Hおよび位置センサ32の値X2Hを保持しメモリに格納しステップS25に進む。
 ≪ステップS25≫
 ステップS25は、主に第2傾き演算部42での処理に対応するものであり、ステップS21からステップS24で得られた情報から第2傾きL2=(F2H-F2L)/(X2H-X2L)を演算する。
 ≪ステップS31≫
 ステップS31は、主に位置偏差演算部43の処理に対応するものであり、第1傾きL1と第2傾きL2が演算されたピストン位置の差ΔX=X2L-X1Hを演算する。
 ≪ステップS41≫
 ステップS41は、主に剛性演算部44の処理に対応するものであり、第1傾きL1と第2傾きL2と位置偏差ΔXを、設計時に回帰分析で作成された推定モデルf(Z1,Z2,Z3)に代入することで剛性特性を演算する。
 本発明における効果を図6に示す。本実施例では、以上の演算により、剛性変化を適切に推定できる。例えば、ブレーキパッド11aの過度な磨耗によりみかけ剛性が高剛性に変化した時、剛性が推定されなければ図中左の破線(未推定)のように、ピストン12aを進め過ぎて推力がオーバーシュートする。一方、適切に剛性が推定されれば、点線(本発明)のようにオーバーシュート無く推力が制御できる。
 また、例えば、走行中の横加速度によりブレーキディスク11bが傾いて、みかけ剛性が低剛性に変化した時、剛性が推定されなければ図中右の破線(未推定)のように、ピストン12aの進み量不足により応答性が低下する。一方、適切に剛性が推定されれば、点線(本発明)のように応答性が向上する。
 本発明においては、剛性が高精度に推定できるため、推力が増加開始する点であるブレーキパッド11aとブレーキディスク11bの接触位置(図4のA)を高精度に検出することも可能となるため、クリアランスを一定に保持する非制動時のピストン位置決め制御も高精度化することができる。
 また、上記特許文献2によれば、剛性特性を高推力まで得たい場合は高推力まで増力し計測する必要があるが、本発明では推定に必要な閾値まで推力を増力すれば、高推力領域まで推定できるため、通常のブレーキ範囲のみの作動で推定が可能となる。
 さらに、上記特許文献3によれば、高精度化にはメモリ負荷の増大が懸念されるが、本発明では第1傾きL1と第2傾きL2と位置偏差ΔXのみで推定できるため、メモリ消費量が少なくてすむ。
 以上説明したように、本実施例のブレーキ制御装置10は、ブレーキキャリパと、ブレーキパッド11aと、ブレーキディスク11bと、ブレーキパッド11aに連結し電動モータ2aの回転により直動方向に移動するピストン12aと、ブレーキパッド11aのブレーキディスク11bへの推力を検出する推力検出部(推力センサ31)と、を備えるブレーキを制御するブレーキ制御装置であり、ピストン12aの位置に対して第1傾きL1となる推力変化である第1ピストン範囲(X1H-X1L)と、ピストン12aの位置に対して第1傾きL1とは異なる第2傾きL2となる推力変化である第2ピストン範囲(X2H-X2L)に基づいて、ブレーキキャリパの剛性であるピストン12aの位置とブレーキパッド11aのブレーキディスク11bへの推力との関係を推定する。
 また、第1ピストン範囲(X1H-X1L)と第2ピストン範囲(X2H-X2L)の位置の差分(位置偏差ΔX)に基づいて、ブレーキキャリパの剛性を推定する。
 また、第1ピストン範囲(X1H-X1L)は、ブレーキキャリパに撓みが生じ、ブレーキパッド11aが片あたりを生じる当該撓みの復元力の範囲であり、第2ピストン範囲(X2H-X2L)は、ブレーキパッド11aがブレーキディスク11bへ正接した後の押付け力の範囲である。
 本実施例によれば、剛性とパッド接触位置の推定を低マイコン負荷で高精度に実施することが可能となり、ブレーキの制御性能を向上できる。
 図7を参照して、本発明の実施例2のブレーキシステムについて説明する。図7は本実施例における剛性推定部の機能ブロック図であり、実施例1(図2)の変形例に相当する。なお、実施例1との共通点については重複する説明を省略する。
 本実施例の剛性推定部は、図7に示すように、実施例1(図2)の構成に加えて第3傾き演算部51と第4傾き演算部52を追加したものである。
 例えば、第1傾きL1と第2傾きL2に加えて、ピストン12aの位置に対して第1傾きL1および第2傾きL2とは異なる第3傾きL3となる推力変化である第3ピストン範囲に基づいて、剛性を推定する。さらに、ピストン12aの位置に対して第1傾きL1と第2傾きL2と第3傾きL3に加えて、第1傾きL1、第2傾きL2、第3傾きL3とは異なる第4傾きL4となる推力変化である第4ピストン範囲に基づいて、剛性を推定する。
 剛性の変化が複雑なものであり、第1傾きL1と第2傾きL2では十分な剛性推定精度が得られない場合には、第3傾きL3と第4傾きL4を追加して推定することで、高精度化できる。
 図8を参照して、本発明の実施例3のブレーキシステムについて説明する。図8は本実施例における剛性推定部の機能ブロック図であり、実施例1(図2)の変形例に相当する。なお、実施例1との共通点については重複する説明を省略する。
 本実施例の剛性推定部は、図8に示すように、実施例1(図2)の構成に加えて剛性推定モデル学習部61を追加したものである。上述したように、実施例1では予め設計時に構築した剛性推定モデルを用いているが、本実施例のように走行中や停止中にリアルタイムに剛性を計測し、推定モデルを逐次学習するものであってもよい。これにより、設計時には考慮できていなかった特異な剛性変化に対しても対応可能な推定モデルを構築することができる。
 なお、上記の各実施例では、本発明によるブレーキ制御装置とその制御方法の適用対象として自動車の電動ブレーキを例に説明したが、これに限定されるものではなく、例えば、自動車以外にも、鉄道やエレベータ等に搭載される電動ブレーキにも適用可能であり、同様の効果を得ることができる。
 また、上記の各実施例では、本発明における制動ユニットとしてブレーキキャリパ5を例に説明したが、車輪とともに回転するドラムにブレーキシューを押圧するドラムブレーキ型の電動シリンダユニットを有するブレーキ制御装置や当該電動シリンダユニットのブレーキ制御方法に適用可能であり、同様の効果を得ることができる。
 また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…ブレーキシステム、2…駆動機構、2a…電動モータ、2b…減速機、3…推力制御部(モータ制御器)、4…剛性推定部、5…ブレーキキャリパ(制動ユニット)、10…ブレーキ制御装置、11…制動機構、11a…ブレーキパッド(摩擦部材)、11b…ブレーキディスク(被制動部材)、12…回転/直動変換機構、12a…ピストン、12b…送りねじ、21…制御信号線、22~25…通信線、26…主電力線、31…推力センサ、32…位置センサ、40…剛性特徴検出部、41…第1傾き演算部、42…第2傾き演算部、43…位置偏差演算部、44…剛性演算部、51…第3傾き演算部、52…第4傾き演算部、61…剛性推定モデル学習部

Claims (10)

  1.  被制動部材に押圧される摩擦部材と、前記摩擦部材に当接し電動モータの回転により直動方向に移動するピストンと、前記摩擦部材の前記被制動部材への推力を検出する推力検出部と、を備える制動ユニットを制御するブレーキ制御装置であって、
     前記ピストン位置に対して第1傾きとなる推力変化である第1ピストン範囲と、
     前記ピストン位置に対して前記第1傾きとは異なる第2傾きとなる推力変化である第2ピストン範囲と、に基づいて、前記制動ユニットの剛性である前記ピストン位置と前記推力の関係を推定するブレーキ制御装置。
  2.  請求項1に記載のブレーキ制御装置であって、
     前記第1ピストン範囲と前記第2ピストン範囲の位置の差分に基づいて、前記剛性を推定するブレーキ制御装置。
  3.  請求項1に記載のブレーキ制御装置であって、
     前記第1ピストン範囲は、前記制動ユニットに撓みが生じ、前記摩擦部材が片あたりを生じる当該撓みの復元力の範囲であり、
     前記第2ピストン範囲は、前記摩擦部材が前記被制動部材へ正接した後の押付け力の範囲であるブレーキ制御装置。
  4.  請求項1に記載のブレーキ制御装置であって、
     前記ピストン位置に対して前記第1傾きおよび前記第2傾きとは異なる第3傾きとなる推力変化である第3ピストン範囲に基づいて、前記剛性を推定するブレーキ制御装置。
  5.  請求項1に記載のブレーキ制御装置であって、
     剛性推定モデル学習部を備え、
     前記剛性を推定する推定モデルを逐次学習するブレーキ制御装置。
  6.  摩擦部材を押圧する制動ユニットの電動モータを制御するブレーキ制御方法であって、
     ピストン位置に対して第1傾きとなる推力変化である第1ピストン範囲と、
     ピストン位置に対して前記第1傾きとは異なる第2傾きとなる推力変化である第2ピストン範囲と、に基づいて、前記制動ユニットの剛性であるピストン位置と推力の関係を推定するブレーキ制御方法。
  7.  請求項6に記載のブレーキ制御方法であって、
     前記第1ピストン範囲と前記第2ピストン範囲の位置の差分に基づいて、前記剛性を推定するブレーキ制御方法。
  8.  請求項6に記載のブレーキ制御方法であって、
     前記第1ピストン範囲は、前記制動ユニットに撓みが生じ、前記摩擦部材が片あたりを生じる当該撓みの復元力の範囲であり、
     前記第2ピストン範囲は、前記摩擦部材が被制動部材へ正接した後の押付け力の範囲であるブレーキ制御方法。
  9.  請求項6に記載のブレーキ制御方法であって、
     前記ピストン位置に対して前記第1傾きおよび前記第2傾きとは異なる第3傾きとなる推力変化である第3ピストン範囲に基づいて、前記剛性を推定するブレーキ制御方法。
  10.  請求項6に記載のブレーキ制御方法であって、
     前記剛性を推定する推定モデルを逐次学習するブレーキ制御方法。
PCT/JP2019/040901 2019-03-05 2019-10-17 ブレーキ制御装置およびブレーキ制御方法 WO2020179122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980091691.1A CN113423621B (zh) 2019-03-05 2019-10-17 制动控制装置和制动控制方法
US17/433,088 US20220041144A1 (en) 2019-03-05 2019-10-17 Brake control device and brake control method
KR1020217026395A KR102540788B1 (ko) 2019-03-05 2019-10-17 브레이크 제어 장치 및 브레이크 제어 방법
DE112019006740.0T DE112019006740T5 (de) 2019-03-05 2019-10-17 Bremssteuerungseinrichtung und Bremssteuerungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019039401A JP7189808B2 (ja) 2019-03-05 2019-03-05 ブレーキ制御装置およびブレーキ制御方法
JP2019-039401 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179122A1 true WO2020179122A1 (ja) 2020-09-10

Family

ID=72337850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040901 WO2020179122A1 (ja) 2019-03-05 2019-10-17 ブレーキ制御装置およびブレーキ制御方法

Country Status (6)

Country Link
US (1) US20220041144A1 (ja)
JP (1) JP7189808B2 (ja)
KR (1) KR102540788B1 (ja)
CN (1) CN113423621B (ja)
DE (1) DE112019006740T5 (ja)
WO (1) WO2020179122A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049800A (ja) * 2006-08-24 2008-03-06 Hitachi Ltd 電動ブレーキ装置およびその制御方法
JP2008184023A (ja) * 2007-01-30 2008-08-14 Hitachi Ltd 電動ブレーキ装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570751B2 (ja) * 2000-08-30 2010-10-27 日立オートモティブシステムズ株式会社 電動ブレーキシステム
AU2003216868A1 (en) * 2002-03-21 2003-10-08 Lucas Automotive Gmbh Electrically actuatable vehicle brake and method for controlling an electrically actuatable vehicle brake
FR2841827A1 (fr) * 2002-07-04 2004-01-09 Michelin Soc Tech Estimation de l'usure d'un pneu
JP4316213B2 (ja) * 2002-07-31 2009-08-19 株式会社日立製作所 ブレーキ装置
JP2005106153A (ja) 2003-09-30 2005-04-21 Hitachi Ltd ブレーキ装置
JP4834397B2 (ja) 2005-12-15 2011-12-14 日立オートモティブシステムズ株式会社 車両のブレーキ制御装置
JP2011000928A (ja) * 2009-06-17 2011-01-06 Advics Co Ltd ディスクブレーキ用制振装置
JP5672430B2 (ja) * 2010-03-31 2015-02-18 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP5582293B2 (ja) * 2010-03-31 2014-09-03 日立オートモティブシステムズ株式会社 電動ブレーキ装置
CN102933866B (zh) * 2010-06-08 2014-12-24 丰田自动车株式会社 车辆的电动式制动装置
DE102011081240A1 (de) * 2010-10-13 2012-04-19 Continental Teves Ag & Co. Ohg Verfahren zur Überwachung einer Bremsanlage sowie Bremsanlage
JP5636937B2 (ja) * 2010-12-15 2014-12-10 トヨタ自動車株式会社 ディスクブレーキ装置
JP5737500B2 (ja) * 2011-01-31 2015-06-17 日立オートモティブシステムズ株式会社 電動ブレーキ装置
JP5849978B2 (ja) * 2013-03-15 2016-02-03 株式会社アドヴィックス 車両の電動制動装置
WO2014142336A1 (ja) * 2013-03-15 2014-09-18 株式会社アドヴィックス 車両の電動制動装置
JP6357045B2 (ja) * 2014-07-31 2018-07-11 日立オートモティブシステムズ株式会社 ブレーキ装置
DE102015200106B3 (de) * 2015-01-08 2016-05-12 Ford Global Technologies, Llc Steuerungsverfahren für ein hydraulisches Bremssystem eines Kraftfahrzeugs sowie hydraulisches Bremssystem
JP6664903B2 (ja) * 2015-08-11 2020-03-13 Ntn株式会社 電動ブレーキ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049800A (ja) * 2006-08-24 2008-03-06 Hitachi Ltd 電動ブレーキ装置およびその制御方法
JP2008184023A (ja) * 2007-01-30 2008-08-14 Hitachi Ltd 電動ブレーキ装置

Also Published As

Publication number Publication date
JP2020142577A (ja) 2020-09-10
KR102540788B1 (ko) 2023-06-13
US20220041144A1 (en) 2022-02-10
CN113423621B (zh) 2023-10-13
DE112019006740T5 (de) 2021-10-14
CN113423621A (zh) 2021-09-21
KR20210114517A (ko) 2021-09-23
JP7189808B2 (ja) 2022-12-14

Similar Documents

Publication Publication Date Title
US6270172B1 (en) Electrically operated braking system having a device for operating electric motor of brake to obtain relationship between motor power and braking torque
JP4033281B2 (ja) 制動装置
JP5022915B2 (ja) 電動ブレーキ装置
WO2013099852A1 (ja) 車両の制動制御装置
JP4463812B2 (ja) 電動ブレーキ
WO2019244426A1 (ja) ブレーキシステム
US10507810B2 (en) Electric brake device
JP2010083282A (ja) 電動ディスクブレーキ
JP4000675B2 (ja) 車両用ブレーキ装置
KR101501533B1 (ko) 전기기계 브레이크의 마모 보상을 위한 모터 제어 시스템 및 그 제어 방법
JP2000055093A (ja) 電動ディスクブレーキ装置
JP5849978B2 (ja) 車両の電動制動装置
WO2020179122A1 (ja) ブレーキ制御装置およびブレーキ制御方法
KR20220036480A (ko) 전동식 브레이크 장치 및 제어방법
CN110139786B (zh) 用于对表示车辆驻车制动的力进行控制的方法及其***
KR102537870B1 (ko) 브레이크 제어 장치 및 브레이크 시스템
JP4941830B2 (ja) 電動ディスクブレーキ
JP4542832B2 (ja) 電動ブレーキ装置
JP2005069268A (ja) 電動ブレーキ装置
JP2019151331A (ja) 電動ブレーキ装置
WO2023243266A1 (ja) 電動ブレーキ装置
JP2010265956A (ja) ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026395

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19918481

Country of ref document: EP

Kind code of ref document: A1