WO2019242430A1 - 一种混凝土外加剂中甲醛含量的测试方法 - Google Patents

一种混凝土外加剂中甲醛含量的测试方法 Download PDF

Info

Publication number
WO2019242430A1
WO2019242430A1 PCT/CN2019/086849 CN2019086849W WO2019242430A1 WO 2019242430 A1 WO2019242430 A1 WO 2019242430A1 CN 2019086849 W CN2019086849 W CN 2019086849W WO 2019242430 A1 WO2019242430 A1 WO 2019242430A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
solution
ionic liquid
concrete admixture
sodium
Prior art date
Application number
PCT/CN2019/086849
Other languages
English (en)
French (fr)
Inventor
李格丽
方云辉
钟丽娜
郭元强
林添兴
Original Assignee
科之杰新材料集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科之杰新材料集团有限公司 filed Critical 科之杰新材料集团有限公司
Publication of WO2019242430A1 publication Critical patent/WO2019242430A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Definitions

  • the invention belongs to the technical field of building material detection, and particularly relates to a method for testing the formaldehyde content in a concrete admixture.
  • Formaldehyde is a colorless, strongly irritating gas at room temperature, and is easily soluble in water, alcohol and ether. Formaldehyde is highly toxic to humans and animals, and has been identified by the World Health Organization as a carcinogen and teratogenic substance, and it is also one of the potentially strong mutagenic substances.
  • formaldehyde is widely used in the production of resins, plastics, rubbers, interior wall coatings, concrete admixtures, plywood and adhesives because of its ease of preparation, wide use, and low price.
  • concrete admixtures have been widely used in construction projects to improve the workability of concrete. With the widespread use of additives, some harmful substances in the additives will also be released, formaldehyde is one of them.
  • the release of formaldehyde in concrete admixtures mainly comes from polycyclic aromatic group sulfonates, water-soluble resin sulfonates, and aliphatic water reducing agents.
  • the amount of formaldehyde used tends to increase, which makes the free formaldehyde contained in the admixture and the formaldehyde generated during degradation will be released during use. It will cause formaldehyde pollution in buildings.
  • the state has imposed a compulsory limit on the limits of harmful substances in interior decoration and decoration, and has also limited the formaldehyde limit in concrete admixtures.
  • gas chromatography The most commonly used method in gas chromatography is gas chromatography, which is generally tested after derivatization with derivatizing reagents, but the problem of the separation of derivative isomers is difficult to solve, which limits its application; the instrument detection method is convenient to carry, the reading is intuitive, and the determination It is fast, but the detection of the instrument is severe and the price is high, which limits its general use; spectrophotometry is more commonly used, including acetylacetone spectrophotometry, phenol reagent method, 4-amino-3-hydrazine-5-thio- 1,2,4-triazacene spectrophotometry (AHMT method), chromic acid method, sulfurous acid fuchsin method, etc.
  • AHMT method 4-amino-3-hydrazine-5-thio- 1,2,4-triazacene spectrophotometry
  • the test method also has certain disadvantages, such as the need for distillation, and to prevent the distilled formaldehyde from volatilizing at high temperatures, Ice cube cooling is required at the distillate outlet, which is cumbersome and time-consuming, which brings great inconvenience to the operator; the formation of complexes needs to be held at 60 ° C for 30 minutes, and under normal temperature conditions, it takes longer and cannot be achieved Its rapid determination and testing in an environment containing SO 2 will also have a certain impact on the measurement results.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a method for testing the formaldehyde content in concrete admixtures.
  • a method for testing the formaldehyde content in a concrete admixture includes the following steps:
  • Pretreatment of concrete admixture samples Single-drop liquid phase microextraction of ionic liquid headspace is used to process concrete admixture samples to obtain an extracted sample solution.
  • the first treatment solution and the first extraction solution are added to the extracted sample solution.
  • the second treatment liquid is extracted for 30 to 60 minutes. After the extraction, it is left to stand to obtain the working liquid of the sample to be tested, which is used.
  • the first treatment liquid is a strong alkali solution with a concentration of 0.1 to 0.5% by weight
  • the second treatment liquid is strong. Oxidant solution with a concentration of 0.1 to 0.5 wt%;
  • the above-mentioned single-drop liquid-phase microextraction of the ionic liquid headspace is: accurately weighing an appropriate amount of a concrete admixture sample into a headspace bottle, adding 1 to 2 mL of a surfactant, sealingly soaking for 10 to 20 minutes, and then extracting 2.5 to 3.5 ⁇ L
  • the extraction solution is inserted into the space above the sample to be measured in the headspace bottle, and the headspace extraction is performed for 5 to 10 minutes.
  • the resulting droplets are pumped back to the micro syringe, and the operation is repeated until the extraction is completed to obtain the extracted sample solution.
  • the above ion chromatograph uses IonPac AS18 anion analysis column, 4 ⁇ 250mm, IonPac AG18 guard column, 4 ⁇ 50mm, AERS500 4mm anion suppressor, suppressor current is 50mA, conductivity detector, and column temperature is 30 °C ⁇ 50 °C.
  • the injection volume is 10 ⁇ L to 30 ⁇ L, and the flow rate is 0.5 mL / min to 1.0 mL / min.
  • the eluent contains 15 mmol / L sodium hydroxide, 3 mmol / L sodium tetraborate, and 1.2 mmol / L sodium gluconate.
  • the solvent of the liquid is water.
  • the eluent is a mixed eluent (sodium (potassium) hydroxide eluent) composed of 15mmol / L sodium hydroxide-3mmol / L sodium tetraborate-1.2mmol / L sodium gluconate. Weak ability, requires higher concentration.
  • Sodium gluconate-sodium borate is an eluent with strong leaching ability, suitable for the determination of weak acid anions.
  • Sodium hydroxide is added to the sodium gluconate-sodium borate eluent. In the case of ensuring the leaching ability, it has a certain alkalinity, which is suitable for the determination of the weak acid anion formate).
  • the surfactant is Tween 20, polyoxyethylene octyl phenol ether-10 (OP-10), cocoic acid monoethanolamide sulfosuccinic acid monoester Disodium (DMSS) or potassium monododecyl phosphate (MAPK).
  • the extract is 1-hexyl-2,3-dimethylimidazole hexafluorophosphate ion liquid, 1-dodecyl-3-methylimidazole hexafluorophosphate ion Liquid, 1-butyl-2,3-dimethylimidazole tetrafluoroborate ionic liquid or 1-octyl-3-methylimidazole bis (trifluoromethylalkanesulfonyl) imide salt ionic liquid.
  • the strong base in the strong base solution is one of choline, guanidine, quaternary amine base, sodium methoxide, sodium ethoxide, potassium ethoxide, and sodium tert-butoxide.
  • the strong oxidant is one of hydrogen peroxide, sodium peroxide, and potassium peroxide.
  • the method of extraction in step (1) is ultrasound, shaking, constant temperature water bath or cold dipping.
  • the temperature of the constant temperature water bath is 40 to 60 ° C, and the temperature of the cold immersion is 0 to 10 ° C. Furthermore, the temperature of the constant temperature water bath is 50 ° C, and the temperature of the cold immersion is 5 ° C.
  • the temperature of the chromatographic column is 40 ° C.
  • the injection volume is 25 ⁇ L
  • the flow rate is 0.8 mL / min.
  • the present invention adopts the method of single-drop liquid phase microextraction combined with ionic liquid headspace to pretreat the concrete admixture, so as to separate the residual formaldehyde in the concrete admixture without going through the distillation step to avoid the target in the distillation process.
  • Overflow of objects reduces measurement errors, simple operation steps, time saving, convenient use of instruments, and strong operability.
  • the present invention uses an oxidant to oxidize the separated formaldehyde into formic acid under alkaline conditions, and then tests the formic acid by ion chromatography to indirectly test the content of formaldehyde.
  • the test has high sensitivity, effectively shortens the test time, and improves the test. effectiveness.
  • the present invention uses a mixed eluent to elute and analyze the sample, which has strong eluent ability and better separation effect. It can effectively separate weak acid anions from other ions, improve the resolution, and make the results of quantitative analysis more Accurate and reliable.
  • the present invention applies ion chromatography to the measurement of formaldehyde content in concrete admixtures, broadens the test method for formaldehyde content in concrete admixtures, and provides a new test method for the test of formaldehyde content in concrete admixtures.
  • Figure 1 is a liquid chromatogram of formic acid.
  • FIG. 2 is a liquid chromatogram of the working solution of the sample to be measured in Example 1 of the present invention.
  • the solvent peak is at a retention time near 3.40 min, and the peak is formic acid at a retention time near 8.30 min.
  • Metrohm China Ltd. Metrohm 883 ion chromatography system; IonPac AS18 anion analysis column; IonPac AG18 guard column; AERS500 4mm anion suppressor; METTLER TOLEDO Instrument (Shanghai) Co., Ltd.
  • the chromatographic conditions are: IonPac AS18 anion analysis column, 4 ⁇ 250mm, IonPac AG18 guard column, 4 ⁇ 50mm, AERS500 4mm anion suppressor, suppressor current is 50mA, conductivity detector, column temperature is 30 ° C, injection volume is 10 ⁇ L, the flow rate is 0.5 mL / min, the eluent contains 15 mmol / L sodium hydroxide, 3 mmol / L sodium tetraborate and 1.2 mmol / L sodium gluconate, and the solvent of the eluent is water. Take the working solution of the sample to be tested and pass it through a 0.45 ⁇ m microporous membrane to test it in an ion chromatograph.
  • Chromatographic conditions are: IonPac AS18 anion analysis column, 4 ⁇ 250mm, IonPac AG18 guard column, 4 ⁇ 50mm, AERS500 4mm anion suppressor, suppressor current is 50mA, conductivity detector, column temperature is 35 ° C, injection volume is 15 ⁇ L, the flow rate is 0.6 mL / min, the eluent contains 15 mmol / L sodium hydroxide, 3 mmol / L sodium tetraborate and 1.2 mmol / L sodium gluconate, and the solvent of the eluent is water.
  • Example 1 1.1 and 1.3 are the same as in Example 1.
  • the chromatographic conditions are: IonPac AS18 anion analysis column, 4 ⁇ 250mm, IonPac AG18 guard column, 4 ⁇ 50mm, AERS500 4mm anion suppressor, suppressor current is 50mA, conductivity detector, column temperature is 40 ° C, injection volume is 20 ⁇ L, with a flow rate of 0.7 mL / min, the eluent contains 15 mmol / L sodium hydroxide, 3 mmol / L sodium tetraborate, and 1.2 mmol / L sodium gluconate.
  • the solvent of the eluent is water.
  • Example 1 1.1 and 1.3 are the same as in Example 1.
  • sample 1 # 6.000g in the headspace bottle add 5mL of MAPK, and soak it for 20min in a sealed manner. Then use a 10 ⁇ L micro-syringe to extract 3 ⁇ L of 1-octyl-3-methylimidazole bis (trifluoromethylalkanesulfonyl) imide salt ionic liquid, insert it into the headspace of the sample to be measured, and extract it for 10min in the headspace. The liquid droplet is pumped back to the micro-syringe, and the operation is repeated, and the extraction is completed to obtain an extracted sample solution. Then, 4 mL of 0.4% sodium methoxide solution and 0.6 mL of 0.3% hydrogen peroxide solution were added, and cold immersion extraction was performed at 5 ° C for 40 minutes to obtain a working solution of the sample to be tested.
  • the chromatographic conditions are: IonPac AS18 anion analysis column, 4 ⁇ 250mm, IonPac AG18 guard column, 4 ⁇ 50mm, AERS500 4mm anion suppressor, suppressor current is 50mA, conductivity detector, column temperature is 40 ° C, injection volume is 25 ⁇ L, the flow rate is 0.8 mL / min, the eluent contains 15 mmol / L sodium hydroxide, 3 mmol / L sodium tetraborate and 1.2 mmol / L sodium gluconate, and the solvent of the eluent is water.
  • Example 1 1.1 and 1.3 are the same as in Example 1.
  • the chromatographic conditions are: IonPac AS18 anion analysis column, 4 ⁇ 250mm, IonPac AG18 guard column, 4 ⁇ 50mm, AERS500 4mm anion suppressor, suppressor current is 50mA, conductivity detector, column temperature is 50 ° C, injection volume is 30 ⁇ L with a flow rate of 1.0 mL / min.
  • the eluent contains 15 mmol / L sodium hydroxide, 3 mmol / L sodium tetraborate and 1.2 mmol / L sodium gluconate.
  • the solvent of the eluent is water.
  • Example 1 1.1 and 1.3 are the same as in Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种混凝土外加剂中甲醛含量的测试方法,包括如下步骤:(1)混凝土外加剂样品预处理;(2)标准工作曲线的绘制;(3)甲醛浓度计算。该测试方法采用离子液体顶空单滴液相微萃取联合使用的方法对混凝土外加剂进行预处理,使混凝土外加剂中的残留甲醛分离出来,不经过蒸馏的步骤,避免蒸馏过程中目标物的溢出,减少测量误差,操作步骤简单,省时,使用仪器方便,可操作性强。

Description

一种混凝土外加剂中甲醛含量的测试方法 技术领域
本发明属于建筑材料检测技术领域,具体涉及一种混凝土外加剂中甲醛含量的测试方法。
背景技术
甲醛常温下是一种无色、具有强烈刺激气味的气体,易溶于水、醇和醚。甲醛对人体和动物有较高的毒性,已经被世界卫生组织确定为致癌和致畸物质,也是潜在的强致突变物质之一。但是由于甲醛易制备、用途广、价格低,因此被广泛应用于树脂、塑料、橡胶、内墙涂料、混凝土外加剂、胶合板及黏结剂生产中。近年来混凝土外加剂被广泛应用于建筑工程中,用于改善混凝土的工作性能。随着外加剂的广泛使用,外加剂中一些对人体有害的物质也会释放出来,甲醛就是其中的一种。混凝土外加剂中甲醛的释放主要来源于多环芳香组磺酸盐类、水溶性树脂磺酸盐类及脂肪族等减水剂。在生产减水剂的过程中,为了使减水剂的分散性能更好,甲醛的使用量往往会增加,这就使得外加剂中所含的游离甲醛和降解时产生的甲醛在使用时都会释放出来,这就会引起建筑物甲醛污染。国家对室内装饰装修有害物质的限量进行强制性限制,也对混凝土外加剂中的甲醛限量进行了限定。
甲醛的化学性质十分活泼,因此,许多种方法都可以用于甲醛的定量分析,如滴定分析方、分光光度法、色谱法、电化学分析法、仪器检测法等。但是电化学分析法由于实验过程中会出现干扰多、稳定性差等问题,使用次数较少。滴定分析法适用于游离甲醛含量浓度较高时使用,分光光度法、色谱法及仪器检测法适用于游离甲醛含量较低时使用。色谱法中最常用的是气相色谱法,一般是通过衍生试剂衍生后进行测试,但是衍生物同分异构体的分离问题难以解决,限制了其应用;仪器检测法携带方便,读数直观,测定快速,但是仪器检测干扰严重,价格较高,使其普遍使用受到限制;分光光度法较为常用,有乙酰丙酮分光光度法、酚试剂法、4-氨基-3-联氨-5-硫基-1,2,4-三氮杂茂分光光度法(AHMT法)、变色酸法、亚硫酸品红法等。国家标准中对混凝土外加剂中残留甲醛限定的测定采用的是乙酰丙酮分光光度法。该方法采用蒸馏将样品中的残留甲醛蒸出,在pH值为6的缓冲溶液条件时与乙酰丙酮在加热条件下反应生成黄色的络合物,然后利用紫外分光光度计进行测试,计算出残留甲醛的含量。该测试不受乙醛的干扰,具有方法简便、选择性和重现性好,误差小,但是该测试方法也存在一定的缺点,如需要蒸馏,且为了防止蒸馏出 的甲醛在高温时挥发,在馏分出口处需用冰块冷却,繁琐耗时,给操作者带来极大的不便;络合物的生成需要在60℃恒温30min,如在常温条件下,需要的时间更长,不能实现其快速测定而且在含有SO 2的环境中进行测试,对测定结果也会有一定的影响。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种混凝土外加剂中甲醛含量的测试方法。
本发明的技术方案如下:
一种混凝土外加剂中甲醛含量的测试方法,包括如下步骤:
(1)混凝土外加剂样品预处理:采用离子液体顶空单滴液相微萃取对混凝土外加剂样品进行处理,得萃取好的样品溶液,向萃取好的样品溶液中加入第一处理液和第二处理液进行提取30~60min,提取结束后静置,得到待测样品工作液,待用;其中,第一处理液为强碱溶液,浓度为0.1~0.5wt%,第二处理液为强氧化剂溶液,浓度为0.1~0.5wt%;
(2)标准工作曲线的绘制:从100mg/L的甲酸标准溶液中准确移取0.00~10.00mL于100mL容量瓶中,以超纯水稀释、定容至刻度,摇匀,置于离子色谱仪上进行测试,得到甲酸标准工作曲线的峰面积,绘制浓度-峰面积的标准工作曲线,得到甲酸标准曲线方程;
(3)甲醛浓度计算:将步骤(1)制得的待测样品工作液通过0.2~0.3μm微孔滤膜后置于离子色谱仪中进行测试,平行测试若干次后取平均值,带入步骤(2)所得到的标准曲线中,得到所述混凝土外加剂样品中甲酸的浓度,然后根据公式
Figure PCTCN2019086849-appb-000001
Figure PCTCN2019086849-appb-000002
得到所述混凝土外加剂样品中甲醛的含量,其中W为所述混凝土外加剂样品中甲醛的含量,单位是%,C为所述混凝土外加剂样品中甲酸的浓度,单位是μg/mL,V是所述萃取好的样品溶液的体积,单位是mL,m是所述混凝土外加剂样品的取样量,单位是g;
上述离子液体顶空单滴液相微萃取步骤为:准确称取适量的混凝土外加剂样品于顶空瓶中,加入1~2mL的表面活性剂,密封浸泡10min~20min,然后抽取2.5~3.5μL的萃取液,***顶空瓶中待测样品的上空,顶空萃取5min~10min,将所得液滴抽回微量注射器,重复操作,直至萃取完毕,得到所述萃取好的样品溶液;上述萃取液为六氟磷酸盐离子液体、四氟硼酸盐离子液体或二(三氟甲基烷磺酰)亚胺离子液体;
上述离子色谱仪采用IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温 度为30℃~50℃,进样量为10μL~30μL,流速为0.5mL/min~1.0mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水淋洗液为由15mmol/L氢氧化钠-3mmol/L四硼酸钠-1.2mmol/L葡萄糖酸钠组成的混合淋洗液(氢氧化钠(钾)淋洗液的淋洗能力弱,需要较高的浓度,葡萄糖酸钠-硼酸钠是一种淋洗能力较强的淋洗液,适用于测定弱酸阴离子,在葡萄糖酸钠-硼酸钠淋洗液中加入氢氧化钠,在保证淋洗能力的情况下,又具有一定的碱性,适用弱酸阴离子甲酸根的测定)。
在本发明的一个优选实施方案中,所述表面活性剂为吐温20(Tween20)、聚氧乙烯辛基苯酚醚-10(OP-10)、椰油酸单乙醇酰胺磺基琥珀酸单酯二钠(DMSS)或单十二烷基磷酸酯钾(MAPK)。
在本发明的一个优选实施方案中,所述萃取液为1-己基-2,3-二甲基咪唑六氟磷酸盐离子液体、1-十二基-3-甲基咪唑六氟磷酸盐离子液体、1-丁基-2,3-二甲基咪唑四氟硼酸盐离子液体或1-辛基-3-甲基咪唑双(三氟甲基烷磺酰)亚胺盐离子液体。
在本发明的一个优选实施方案中,所述强碱溶液中的强碱为胆碱、胍、季胺碱、甲醇钠、乙醇钠、乙醇钾、叔丁醇钠中的一种。
在本发明的一个优选实施方案中,所述强氧化剂为过氧化氢、过氧化钠、过氧化钾中的一种。
在本发明的一个优选实施方案中,所述步骤(1)中的提取的方式为超声、振荡、恒温水浴或冷浸。
进一步优选的,所述恒温水浴的温度为40~60℃,所述冷浸的温度为0~10℃。更进一步的,所述恒温水浴的温度为50℃,所述冷浸的温度为5℃
在本发明的一个优选实施方案中,所述色谱柱温度为40℃,进样量为25μL,流速为0.8mL/min。
本发明的有益效果是:
1、本发明采用离子液体顶空单滴液相微萃取联合使用的方法对混凝土外加剂进行预处理,使混凝土外加剂中的残留甲醛分离出来,而不经过蒸馏的步骤,避免蒸馏过程中目标物的溢出,减少测量误差,操作步骤简单,省时,使用仪器方便,可操作性强。
2、本发明采用在碱性条件下,利用氧化剂将分离出来的甲醛氧化成甲酸,然后以离子色谱法对甲酸进行测试,间接测试甲醛的含量,测试灵敏度高,有效的缩短测试时间,提高测试效率。
3、本发明采用混合淋洗液对样品进行淋洗分析,具有较强的淋洗能力,分离效果更好,可将弱酸阴离子与其他离子有效分离,提高了分离度,使定量分析的结果更加准确可靠。
4、本发明将离子色谱法应用于混凝土外加剂中甲醛含量的测试,拓宽了混凝土外加剂中甲醛含量的测试方法,为混凝土外加剂中甲醛含量的测试提供了一种新的测试手段。
附图说明
图1为甲酸的液相色谱图。
图2为本发明实施例1中待测样品工作液的液相色谱图。
上述附图中,保留时间为3.40min附近为溶剂峰,保留时间为8.30min附近为甲酸的峰
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
实施例1
1.1仪器与试剂
瑞士万通中国有限公司瑞士万通883离子色谱仪***;IonPac AS18阴离子分析柱;IonPac AG18保护柱;AERS500 4mm阴离子抑制器;梅特勒托利多仪器(上海)有限公司电子分析天平;甲酸(标准物质);Tween20(分析纯);OP-10(分析纯);DMSS(分析纯);MAPK(分析纯);1-己基-2,3-二甲基咪唑六氟磷酸盐离子液体;1-十二基-3-甲基咪唑六氟磷酸盐离子液体;1-丁基-2,3-二甲基咪唑四氟硼酸盐离子液体;1-辛基-3-甲基咪唑双(三氟甲基烷磺酰)亚胺盐离子液体;胆碱;胍;季胺碱;甲醇钠;乙醇钠;乙醇钾;叔丁醇钠;过氧化氢;过氧化钠;过氧化钾;实验室用水为超纯水;所用样品为混凝土外加剂样品1#、2#、3#,购买于某公司
1.2样品预处理
准确称样品1#5.002g于顶空瓶中,加入1mL的Tween20,密封浸泡10min。然后用10μL微量注射器抽取3μL的1-己基-2,3-二甲基咪唑六氟磷酸盐离子液体,***顶空瓶中待测样品的上空,顶空萃取5min,将液滴抽回微量注射器,重复操作,萃取完毕,得到萃取好的样品溶液。然后加入0.1%的胆碱溶液1mL、0.1%的过氧化氢溶液0.5mL,超声 提取30min,得待测样品工作液(液相色谱如图2所示,与图1的甲酸的液相色谱图相对比,由图1和图2可知,经过预处理后得到的待测样品工作液,其出峰保留时间与甲酸出峰保留时间一致,说明此预处理方法效果较好)。
1.3标准溶液配制及标准曲线绘制
用移液管从100mg/L的甲酸标准溶液中移取0.00、2.00、4.00、6.00、8.00和10.00mL于100mL容量瓶中,以超纯水稀释、定容至刻度,摇匀,置于离子色谱仪上进行测试,得到甲酸标准工作曲线的峰面积,绘制浓度-峰面积的标准工作曲线,得到甲酸标准曲线方程;线性回归方程即标准曲线为:y=2.01*C1+0.45,相关系数为0.993。
1.4样品测试
色谱条件为:IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温度为30℃,进样量为10μL,流速为0.5mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水。取待测样品工作液通过0.45μm微孔滤膜后置于离子色谱仪中进行测试,平行测试10次后取平均值上述标准曲线中,得到待测混凝土外加剂样品中甲酸的浓度,然后根据公式
Figure PCTCN2019086849-appb-000003
得到待测混凝土外加剂样品中甲醛的含量,其中W的单位是%,C的单位是μg/mL,V是萃取好的样品溶液的体积,单位是mL,m是待测混凝土外加剂样品的取样量,单位是g,测得的混凝土外加剂中甲醛的含量为0.03%,相对标准偏差为0.015%。
实施例2
1.2样品预处理
准确称样品2#7.008g于顶空瓶中,加入2mL的OP-10,密封浸泡12min。然后用10μL微量注射器抽取3μL的1-十二基-3-甲基咪唑六氟磷酸盐离子液体,***顶空瓶中待测样品的上空,顶空萃取7min,将液滴抽回微量注射器,重复操作,萃取完毕,得到萃取好的样品溶液。然后加入0.2%的胍溶液1.5mL、0.1%的过氧化钠溶液0.6mL,振荡提取35min,得待测样品工作液。
1.4样品测试
色谱条件为:IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温度为35℃,进样量为15μL,流速为0.6mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼 酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水。
1.1和1.3与实施例1相同。
实施例3
1.2样品预处理
准确称样品3#9.012g于顶空瓶中,加入4mL的DMSS,密封浸泡15min。然后用10μL微量注射器抽取3μL的1-丁基-2,3-二甲基咪唑四氟硼酸盐离子液体,***顶空瓶中待测样品的上空,顶空萃取8min,将液滴抽回微量注射器,重复操作,萃取完毕,得到萃取好的样品溶液。然后加入0.2%的季胺碱溶液2mL、0.2%的过氧化钾溶液0.6mL,50℃恒温水浴提取30min,得待测样品工作液。
1.4样品测试
色谱条件为:IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温度为40℃,进样量为20μL,流速为0.7mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水。
1.1和1.3与实施例1相同。
实施例4
1.2样品预处理
准确称样品1#6.000g于顶空瓶中,加入5mL的MAPK,密封浸泡20min。然后用10μL微量注射器抽取3μL的1-辛基-3-甲基咪唑双(三氟甲基烷磺酰)亚胺盐离子液体,***顶空瓶中待测样品的上空,顶空萃取10min,将液滴抽回微量注射器,重复操作,萃取完毕,得到萃取好的样品溶液。然后加入0.4%的甲醇钠溶液4mL、0.3%的过氧化氢溶液0.6mL,5℃冷浸提取40min,得待测样品工作液。
1.4样品测试
色谱条件为:IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温度为40℃,进样量为25μL,流速为0.8mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水。
1.1和1.3与实施例1相同。
实施例5
1.2样品预处理
准确称样品1#8.009g于顶空瓶中,加入3mL Tween20,密封浸泡15min。然后用10μL微量注射器抽取3μL的1-己基-2,3-二甲基咪唑六氟磷酸盐离子液体,***顶空瓶中待测样品的上空,顶空萃取7min,将液滴抽回微量注射器,重复操作,萃取完毕,得到萃取好的样品溶液。然后加入0.5%的叔丁醇钠溶液4mL、0.3%的过氧化钠溶液0.8mL,超声提取50min,得待测样品工作液。
1.4样品测试
色谱条件为:IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温度为50℃,进样量为30μL,流速为1.0mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水。
1.1和1.3与实施例1相同。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (8)

  1. 一种混凝土外加剂中甲醛含量的测试方法,其特征在于,包括如下步骤:
    (1)混凝土外加剂样品预处理:采用离子液体顶空单滴液相微萃取对混凝土外加剂样品进行处理,得萃取好的样品溶液,向萃取好的样品溶液中加入第一处理液和第二处理液进行提取30~60min,提取结束后静置,得到待测样品工作液,待用;其中,第一处理液为强碱溶液,浓度为0.1~0.5wt%,第二处理液为强氧化剂溶液,浓度为0.1~0.5wt%;
    (2)标准工作曲线的绘制:从100mg/L的甲酸标准溶液中准确移取0.00~10.00mL于100mL容量瓶中,以超纯水稀释、定容至刻度,摇匀,置于离子色谱仪上进行测试,得到甲酸标准工作曲线的峰面积,绘制浓度-峰面积的标准工作曲线,得到甲酸标准曲线方程;
    (3)甲醛浓度计算:将步骤(1)制得的待测样品工作液通过0.2~0.3μm微孔滤膜后置于离子色谱仪中进行测试,平行测试若干次后取平均值,带入步骤(2)所得到的标准曲线中,得到所述混凝土外加剂样品中甲酸的浓度,然后根据公式
    Figure PCTCN2019086849-appb-100001
    Figure PCTCN2019086849-appb-100002
    得到所述混凝土外加剂样品中甲醛的含量,其中W为所述混凝土外加剂样品中甲醛的含量,单位是%,C为所述混凝土外加剂样品中甲酸的浓度,单位是μg/mL,V是所述萃取好的样品溶液的体积,单位是mL,m是所述混凝土外加剂样品的取样量,单位是g;
    上述离子液体顶空单滴液相微萃取步骤为:准确称取适量的混凝土外加剂样品于顶空瓶中,加入1~2mL的表面活性剂,密封浸泡10~20min,然后抽取2.5~3.5μL的萃取液,***顶空瓶中待测样品的上空,顶空萃取5min~10min,将所得液滴抽回微量注射器,重复操作,直至萃取完毕,得到所述萃取好的样品溶液;上述萃取液为六氟磷酸盐离子液体、四氟硼酸盐离子液体或二(三氟甲基烷磺酰)亚胺离子液体;
    上述离子色谱仪采用IonPac AS18阴离子分析柱,4×250mm,IonPac AG18保护柱,4×50mm,AERS500 4mm阴离子抑制器,抑制器电流为50mA,电导检测器,色谱柱温度为30℃~50℃,进样量为10μL~30μL,流速为0.5mL/min~1.0mL/min,淋洗液含有15mmol/L的氢氧化钠、3mmol/L的四硼酸钠和1.2mmol/L葡萄糖酸钠,淋洗液的溶剂为水。
  2. 如权利要求1所述的测试方法,其特征在于:所述表面活性剂为吐温20(Tween20)、聚氧乙烯辛基苯酚醚-10(OP-10)、椰油酸单乙醇酰胺磺基琥珀酸单酯二钠(DMSS)或单十二烷基磷酸酯钾(MAPK)。
  3. 如权利要求1所述的测试方法:其特征在于:所述萃取液为1-己基-2,3-二甲基咪 唑六氟磷酸盐离子液体、1-十二基-3-甲基咪唑六氟磷酸盐离子液体、1-丁基-2,3-二甲基咪唑四氟硼酸盐离子液体或1-辛基-3-甲基咪唑双(三氟甲基烷磺酰)亚胺盐离子液体。
  4. 如权利要求1所述的测试方法,其特征在于:所述强碱溶液中的强碱为胆碱、胍、季胺碱、甲醇钠、乙醇钠、乙醇钾、叔丁醇钠中的一种。
  5. 如权利要求1所述的测试方法,其特征在于:所述强氧化剂为过氧化氢、过氧化钠、过氧化钾中的一种。
  6. 如权利要求1所述的测试方法,其特征在于:所述步骤(1)中的提取的方式为超声、振荡、恒温水浴或冷浸。
  7. 如权利要求6所述的测试方法,其特征在于:所述恒温水浴的温度为40~60℃,所述冷浸的温度为0~10℃。
  8. 如权利要求1所述的测试方法,其特征在于:所述色谱柱温度为40℃,进样量为25μL,流速为0.8mL/min。
PCT/CN2019/086849 2018-06-22 2019-05-14 一种混凝土外加剂中甲醛含量的测试方法 WO2019242430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810650460.7A CN110632242B (zh) 2018-06-22 2018-06-22 一种混凝土外加剂中甲醛含量的测试方法
CN201810650460.7 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242430A1 true WO2019242430A1 (zh) 2019-12-26

Family

ID=68967055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086849 WO2019242430A1 (zh) 2018-06-22 2019-05-14 一种混凝土外加剂中甲醛含量的测试方法

Country Status (2)

Country Link
CN (1) CN110632242B (zh)
WO (1) WO2019242430A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113180A (ja) * 1999-10-20 2001-04-24 Sumika Chemical Analysis Service Ltd カルボニル化合物捕集管の製造方法
CN101793777A (zh) * 2009-02-04 2010-08-04 苏州艾杰生物科技有限公司 甲醛测定试剂(盒)及甲醛浓度测定方法
CN102435698A (zh) * 2011-09-12 2012-05-02 红云红河烟草(集团)有限责任公司 一种同时测定烟用纸张中甲醛和乙醛含量的方法
CN104502486A (zh) * 2014-12-31 2015-04-08 广东出入境检验检疫局检验检疫技术中心 一种应用顶空-固相微萃取技术测定奶粉中甲基香兰素和乙基香兰素的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719844A (zh) * 2012-07-03 2012-10-10 北京化工大学 一种苯甲醇氧化制苯甲醛的方法
CN103399106B (zh) * 2013-08-08 2014-12-10 四川出入境检验检疫局检验检疫技术中心 同时检测皮革中各种醛分别含量的低压离子色谱法
CN104597186A (zh) * 2014-12-30 2015-05-06 广西中烟工业有限责任公司 一种水基胶中甲醛的气相色谱/质谱联用检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113180A (ja) * 1999-10-20 2001-04-24 Sumika Chemical Analysis Service Ltd カルボニル化合物捕集管の製造方法
CN101793777A (zh) * 2009-02-04 2010-08-04 苏州艾杰生物科技有限公司 甲醛测定试剂(盒)及甲醛浓度测定方法
CN102435698A (zh) * 2011-09-12 2012-05-02 红云红河烟草(集团)有限责任公司 一种同时测定烟用纸张中甲醛和乙醛含量的方法
CN104502486A (zh) * 2014-12-31 2015-04-08 广东出入境检验检疫局检验检疫技术中心 一种应用顶空-固相微萃取技术测定奶粉中甲基香兰素和乙基香兰素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, YONGMEI ET AL.: "Determination of Formaldehyde and Glyoxal in Cigarette Paper by Ion Chromatography", JOURNAL OF ANALYTICAL SCIENCE, vol. 30, no. 6, 31 December 2014 (2014-12-31), pages 915; 916, ISSN: 1006-6144 *
WEN, LICHAO: "Experimental Analysis of Determination of Formaldehyde Content in Ambient Air by Chromatography", SCIENCE AND TECHNOLOGY & INNOVATION, 31 December 2016 (2016-12-31), pages 101, ISSN: 2095-6835 *

Also Published As

Publication number Publication date
CN110632242A (zh) 2019-12-31
CN110632242B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN109444282B (zh) 液相色谱测定大庆油田石油磺酸盐样品中活性物含量的方法
CN108956815B (zh) 一种海砂中氯离子含量的测试方法
JP2013205160A (ja) 砒素の定量方法
Kaykhaii et al. Rapid and sensitive determination of fluoride in toothpaste and water samples using headspace single drop microextraction-gas chromatography
CN111965287A (zh) 一种基于超高压高效液相色谱串联质谱法测定土壤中的5种硝基酚类化合物的方法
CN106248609B (zh) 一种紫外分光光度计测定锂离子电池电解液中六氟磷酸锂含量的方法
CN112782306B (zh) 氟磺酸纯度的检测方法
CN111189956B (zh) H2o2氧化离子色谱检测氯化钠样品中亚硝酸盐含量的方法
WO2019242430A1 (zh) 一种混凝土外加剂中甲醛含量的测试方法
CN101158671A (zh) 环境水样中三氯生的快速分析方法
Temel et al. Combination of ultrasound-assisted cloud-point extraction with spectrophotometry for extraction, preconcentration, and determination of low levels of free formaldehyde from cosmetic products
Yoshikawa et al. Determination of formaldehyde in water samples by high-performance liquid chromatography with Methyl acetoacetate derivatization
CN1188701C (zh) 乙醛酸、乙醇酸、乙二醛及草酸的检测方法
CN109507354A (zh) 闪蒸-气相色谱质谱法测定人体毛发中***含量的方法
CN112229939B (zh) 液相色谱法分析检测原油中十八烷基二甲基甜菜碱的方法
CN108802234A (zh) 一种粉煤灰中铵根离子含量的测定方法
JP4186214B2 (ja) ケイモリブデン酸逆抽出法およびケイモリブデン酸(青)吸光光度法によるケイ素定量法
CN112229940A (zh) 采用液相色谱分析检测原油中烷基醇聚氧乙烯醚硫酸盐的方法
CN111208247A (zh) 在线热辅助甲基化-气相色谱质谱法测定人体毛发中γ-羟基丁酸含量的方法
CN103399106B (zh) 同时检测皮革中各种醛分别含量的低压离子色谱法
CN112578037A (zh) 一种检测醋酸乌利司他中间体ⅰ中乌双缩酮含量的方法
CN108088917B (zh) 萘二磺酸同分异构体的检测方法
CN111157666A (zh) 一种同时定量分析胺溶液中亚硫酸根和硫酸根离子的方法
Vuković et al. One-step solid-phase UV spectrophotometric method for phenol determination in vaccines: Development and quality assessment
CN103808836B (zh) 一种尿液中3-烷化腺嘌呤dna加合物的测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19822449

Country of ref document: EP

Kind code of ref document: A1