WO2019194167A1 - バルブ及び緩衝器 - Google Patents

バルブ及び緩衝器 Download PDF

Info

Publication number
WO2019194167A1
WO2019194167A1 PCT/JP2019/014601 JP2019014601W WO2019194167A1 WO 2019194167 A1 WO2019194167 A1 WO 2019194167A1 JP 2019014601 W JP2019014601 W JP 2019014601W WO 2019194167 A1 WO2019194167 A1 WO 2019194167A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
case
free end
main
Prior art date
Application number
PCT/JP2019/014601
Other languages
English (en)
French (fr)
Inventor
君嶋 和之
剛 安井
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to CN201980022794.2A priority Critical patent/CN111936764B/zh
Priority to DE112019001814.0T priority patent/DE112019001814T5/de
Priority to US16/982,917 priority patent/US11536344B2/en
Publication of WO2019194167A1 publication Critical patent/WO2019194167A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/226Shaping or arrangements of the sealing
    • F16K1/2263Shaping or arrangements of the sealing the sealing being arranged on the valve seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/061Mono-tubular units

Definitions

  • the present invention relates to a valve and a shock absorber provided with the valve.
  • a valve is used to generate a damping force by applying resistance to a liquid flow generated when a shock absorber expands and contracts.
  • a valve includes an annular valve body in which one of the inner periphery and the outer periphery is fixed to the valve case, and the other is a free end that can move to both sides in the axial direction.
  • a gap allowing passage of liquid is formed on the outer periphery or inner periphery of the free end (JPH02-76937A).
  • the gap that can be formed on the outer periphery or inner periphery of the free end of the valve body is maintained in a narrow state. Is done.
  • the piston speed of the shock absorber increases and the end portion on the free end side of the valve body bends, the gap that can be formed on the outer periphery or inner periphery of the free end becomes wider. For this reason, the damping coefficient of the shock absorber when the piston speed increases becomes small, and the damping force characteristic of the shock absorber becomes a characteristic depending on the speed.
  • valve body bends (hereinafter referred to as a bending fulcrum). Further, the valve includes a valve stopper so that the amount of deflection of the valve body can be limited.
  • valve body 800 when the valve body 800 is bent, there is a bending fulcrum F3 of the valve body 800 and a support portion S5 of the valve stopper B3 that supports the valve body 800. There is a case where the valve body 800 is deformed so as to swell in accordance with the step formed by the height difference. Then, in FIG. 6, stress concentrates on a part as shown by the arrows Y1 and Y2, and there is a possibility that durability of the valve body 800 may be lowered.
  • An object of the present invention is to provide a valve capable of improving the durability of a valve body and a shock absorber provided with the valve.
  • a valve in which one of an inner peripheral end and an outer peripheral end is a free end that can move to both sides in the axial direction with respect to the valve case; It includes an annular facing surface that is located on the inner peripheral side or outer peripheral side of the valve body and can be opposed to the free end with a gap, and is provided on opposite sides provided in the valve case and on both sides in the axial direction of the valve body.
  • Each of the first and second valve stoppers, and each of the first and second valve stoppers has different heights at different positions in the radial direction of the valve body when the valve body is bent. It has a plurality of support portions that can be supported.
  • FIG. 1 is a longitudinal sectional view showing a shock absorber provided with a damping valve that is a valve according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view showing a part of FIG. 1 in an enlarged manner.
  • FIG. 3 is a partially enlarged view showing a part of FIG. 2 further enlarged.
  • FIG. 4 is a partially enlarged view showing a state when the outer peripheral portion of the valve body of FIG. 3 is bent downward in the drawing.
  • FIG. 5 is a partially enlarged view showing a state when the outer peripheral portion of the valve body of FIG. 3 is bent upward in the drawing.
  • FIG. 6 is a partially enlarged view showing a state when the outer peripheral portion of the valve body of the conventional valve is bent upward in the drawing.
  • a valve according to an embodiment of the present invention is a damping valve V embodied in a piston portion of a shock absorber D.
  • the shock absorber D is interposed between the vehicle body of the vehicle such as an automobile and the axle.
  • the upper and lower sides of the shock absorber D shown in FIG. 1 are simply referred to as “upper” and “lower” unless otherwise specified.
  • bulb which concerns on embodiment of this invention can be suitably changed not only in a vehicle.
  • the direction of the shock absorber in the mounted state can be changed as appropriate according to the mounting target.
  • the shock absorber D of the present embodiment may be attached to the vehicle in the same direction as in FIG. 1 or may be attached to the vehicle in the upside down direction from FIG.
  • the shock absorber D includes a bottomed cylindrical cylinder 1 whose upper end is opened, a piston 2 that is slidably inserted into the cylinder 1, and a lower end that is coupled to the piston 2. And a piston rod 3 which is a rod whose upper end protrudes out of the cylinder 1.
  • the piston rod 3 is inserted into the cylinder 1 so as to be movable in the axial direction.
  • a bracket (not shown) is provided at the upper end of the piston rod 3, and the piston rod 3 is connected to one of the vehicle body and the axle via the bracket.
  • a bracket (not shown) is also provided at the bottom 1a of the cylinder 1, and the cylinder 1 is connected to the other of the vehicle body and the axle via the bracket.
  • the shock absorber D is interposed between the vehicle body and the axle.
  • the piston rod 3 enters and exits the cylinder 1 and the shock absorber D expands and contracts, and the piston 2 moves up and down in the cylinder 1. Move in the axial direction.
  • the shock absorber D includes an annular cylinder head 10 that closes the opening at the upper end of the cylinder 1 and slidably supports the piston rod 3.
  • the lower end of the cylinder 1 is closed by the bottom 1a. Therefore, the inside of the cylinder 1 is a sealed space.
  • a free piston 11 as a movable partition wall is slidably inserted on the side opposite to the piston rod 3 when viewed from the piston 2 in the cylinder 1.
  • a liquid chamber L is formed on the upper side of the free piston 11 in the cylinder 1, and a gas chamber G is formed on the lower side.
  • the liquid chamber L is partitioned by the piston 2 into an extension side chamber L1 on the piston rod 3 side (cylinder head 10 side) and a pressure side chamber L2 on the piston 2 side (bottom 1a side).
  • the extension side chamber L1 and the pressure side chamber L2 are filled with a liquid such as hydraulic oil as a working fluid.
  • air or a gas such as nitrogen gas is sealed in a compressed state.
  • liquid chamber L and the gas chamber G may be partitioned using a bladder or a bellows instead of the free piston 11, and the configuration of the movable partition wall serving as the partition can be changed as appropriate.
  • the shock absorber D is a single rod, single cylinder type, and when the shock absorber D is expanded and contracted, the gas chamber G is expanded or contracted by the free piston (movable partition wall) 11 to enter and exit the cylinder 1. Compensate the volume of the piston rod 3.
  • the configuration for volume compensation can be changed as appropriate.
  • the free piston (movable partition wall) 11 and the gas chamber G are abolished, and an outer shell is provided on the outer periphery of the cylinder 1 to make the shock absorber a double cylinder type.
  • a reservoir chamber for storing liquid may be formed between the cylinder 1 and the outer shell, and volume compensation may be performed in this reservoir chamber. Further, the reservoir chamber may be formed in a tank that is separate from the cylinder 1.
  • a piston rod may be provided on both sides of the piston so that the shock absorber is a double rod type. In such a case, the piston rod volume compensation itself can be made unnecessary.
  • the piston 2 has two valve cases held by nuts 30 on the outer periphery of the piston rod 3.
  • a valve case in which main valve bodies 6 and 7 to be described later are stacked is referred to as a main valve case 4, and the other valve case to which a valve body 8 to be described later is attached is simply referred to as a valve case. Called 5.
  • the piston 2 of the present embodiment functions as a valve case for attaching a valve body such as the main valve bodies 6 and 7 or the valve body 8, and constitutes the damping valve V together with the valve body and the like. Yes.
  • the configuration of the damping valve V will be described.
  • the main valve case 4 includes an annular main body 4a and a cylindrical skirt 4b that protrudes downward from the outer periphery of the lower end of the main body 4a.
  • the main body portion 4a is formed with an extension side passage 4c and a pressure side passage 4d that penetrate the main body portion 4a in the axial direction and open to the inner peripheral side of the skirt portion 4b.
  • the extension-side main valve body 6 that opens and closes the outlet of the extension-side passage 4c is stacked.
  • a pressure-side main valve body 7 that opens and closes the outlet of the pressure-side passage 4d is stacked on the upper side of the main body portion 4a (the extension side chamber L1 side).
  • the extension side and pressure side main valve bodies 6 and 7 are each a laminated leaf valve in which a plurality of elastically deformable leaf valves are laminated.
  • the expansion-side main valve body 6 is opened when the shock absorber D is extended and the piston speed is in the middle-high speed range, so that the expansion-side passage 4c flows into the flow of liquid from the expansion-side chamber L1 to the compression-side chamber L2.
  • the compression-side main valve body 7 opens when the shock absorber D is contracted and the piston speed is in the middle-high speed range, and resists the flow of liquid from the compression-side passage 4d toward the expansion-side chamber L1 through the compression-side passage 4d.
  • the piston speed refers to the speed of the piston rod 3 that moves relative to the cylinder 1, that is, the expansion / contraction speed of the shock absorber D.
  • Outer peripheral portion of the first leaf valve (that is, the leaf valve that contacts the main body portion 4a) located closest to the main valve case 4 among the plurality of leaf valves constituting the main valve bodies 6 and 7 on the expansion side and the pressure side Are formed with notches 6a and 7a, respectively.
  • the piston speed is in the low speed region and the main valve bodies 6 and 7 on the extension side and the pressure side are closed, the liquid passes through the orifice formed by the notches 6a and 7a, and the extension side chamber L1 and the pressure side chamber L2 Go back and forth between. Resistance is given to the flow of the liquid by the orifices (notches 6a and 7a).
  • the orifice formed by the notches 6a and 7a allows bidirectional flow of liquid. For this reason, you may abbreviate
  • the formation method of an orifice can be changed suitably.
  • a groove may be formed by stamping a valve seat on which the main valve bodies 6 and 7 on the extension side or the compression side are seated, and an orifice may be formed by the stamped groove.
  • the orifice may be replaced with a choke.
  • main valve bodies 6 and 7 that are attached to the main valve case 4 and cause the shock absorber D to generate a damping force in the middle / high speed range may be other than the laminated leaf valve, for example, a poppet valve or the like. .
  • the valve case 5 includes an annular fitting portion 5a that fits on the inner periphery of the skirt portion 4b of the main valve case 4, and a cylindrical case portion 5b that protrudes downward from the outer peripheral portion of the lower end of the fitting portion 5a. Including. Between the fitting part 5a and the skirt part 4b, the seal
  • the fitting portion 5a is formed with a communication passage 5c that penetrates the fitting portion 5a in the axial direction and opens to the inner peripheral side of the case portion 5b.
  • the case portion 5b accommodates two stopper members 9, 90 having different outer diameters. Furthermore, the valve body 8 and the stopper member 91 are laminated on the lower side, and the nut 30 is abutted against the lower end of the stopper member 91. Thus, the stopper members 90 and 91 are located on both sides of the valve body 8 in the axial direction, and the stopper member 9 and the nut 30 are located on both sides thereof.
  • the valve body 8 of the present embodiment has three leaf valves 8a, 8b, and 8c stacked, and is elastically deformable.
  • the outer diameter of the central leaf valve 8b is larger than the outer diameters of the leaf valves 8a and 8c located at the upper and lower ends.
  • Spacers 80 and 81 are interposed between the leaf valve 8a at the upper end and the stopper member 90 immediately above it, and between the leaf valve 8c at the lower end and the stopper member 91 immediately below it.
  • spacers 80 and 81 are annular plates whose outer diameters are smaller than the outer diameters of the leaf valves 8a, 8b and 8c constituting the valve body 8.
  • the valve body 8 is fixed to the valve case 5 with its inner periphery sandwiched between spacers 80 and 81.
  • the part of the valve body 8 on the outer peripheral side of the spacers 80, 81 is formed in the vertical direction (axial direction) with the outer peripheral edge of the contact portion between the spacers 80, 81 and the valve body 8 as fulcrums (flexible fulcrums F1, F2). Can move to.
  • the inner peripheral end (inner peripheral end) of the valve body 8 attached to the valve case 5 is a fixed end 8 d that does not move with respect to the valve case 5. Furthermore, the outer peripheral surface of the central leaf valve 8b located at the outer peripheral end (outer peripheral end) of the valve body 8 is a free end 8e that can move up and down (both sides in the axial direction) relative to the valve case 5.
  • annular facing portion 5d that protrudes radially inward (center axis side of the shock absorber D) from the inner periphery of the case portion 5b is formed.
  • the valve body 8 is accommodated on the inner peripheral side of the facing portion 5d. In the extremely low speed range where the piston speed is close to 0 (zero), such as when the shock absorber D starts to move, the valve body 8 does not bend and is maintained in the initial mounting state (FIG. 3).
  • the free end 8e of the valve body 8 faces the facing surface 5e formed on the inner periphery of the facing portion 5d with a predetermined gap P (FIG. 3).
  • the gap P formed between the opposed surface 5e and the free end 8e of the valve body 8 is very narrow.
  • the opening area of the gap P is the opening area of all the orifices formed by the notches 6a and 7a formed in the main valve bodies 6 and 7 (that is, the opening area of the orifice formed by the notches 6a, Smaller than the sum of the opening area of the orifice formed by the notch 7a).
  • the opening area of the gap formed between them is the opening area of all the orifices formed by the notches 6a and 7a (that is, the opening area of the orifice formed by the notches 6a and the opening area of the orifice formed by the notches 7a). And sum).
  • a first valve stopper B1 that has two stopper members 9 and 90 positioned on the upper side of the valve body 8 and limits the amount of deflection to the upper side of the valve body 8 is configured.
  • the outer diameter of the stopper member 9 on the upper side (counter valve element side) is larger than the outer diameter of the stopper member 90 on the lower side (valve element side), and the lower peripheral edges of the upper and lower stopper members 9, 90 are the upper surfaces of the valve body 8. It becomes support part S1, S2 which contact
  • these support portions S1 and S2 are at positions shifted in the radial direction and the axial direction, and support the valve body 8 at different positions in the radial direction and the height direction. More specifically, when the position close to the valve body 8 in the unbent state is a low position and the position far from the high position is the high position, the support portion S1 provided on the upper stopper member 9 is connected to the lower stopper member 90. The free end 8e side of the valve body 8 is supported at a higher position than the provided support portion S2.
  • the second valve stopper B2 that includes the stopper member 91 and the nut 30 located on the lower side of the valve body 8 and restricts the amount of deflection to the lower side of the valve body 8 is configured. Yes.
  • the outer diameter of the stopper portion 30a (FIG. 3) located at the upper end of the nut 30 is larger than the outer diameter of the stopper member 91, and each of the stopper portion 30a and the outer peripheral edge of the upper end of the stopper member 91 contacts the lower surface of the valve body 8.
  • support portions S3 and S4 for supporting the valve body 8 (FIG. 4).
  • these support portions S3 and S4 are in positions shifted in the radial direction and the axial direction, and support the valve body 8 at different positions in the radial direction and the height direction. More specifically, the support portion S3 provided on the nut 30 supports the free end 8e side of the valve body 8 at a higher position than the support portion S4 provided on the stopper member 91.
  • the valve body 8 bends and comes into contact with the first (second) valve stopper B1 (B2), the free end 8e is located on the free end 8e side of the spacer 80 (81) in the valve body 8.
  • the valve body 8 becomes unreasonable so that it gradually becomes higher as it goes to. Therefore, since the stress generated when the valve body 8 is bent can be dispersed and the maximum generated stress can be reduced, the durability of the valve body 8 can be improved.
  • the radial position of the inner support portion S2 is an intermediate position between the outer peripheral edge (flexion fulcrum F1) of the spacer 80 and the outer support portion S1.
  • the stopper member 90 is thicker than the spacer 80.
  • the radial position of the support portion S4 on the inner peripheral side is in the vicinity of the intermediate position between the outer peripheral edge (deflection fulcrum F2) of the spacer 81 and the support portion S3 on the outer peripheral side,
  • the thickness of the stopper member 91 is larger than the thickness of the spacer 81.
  • the valve body 8 when the valve body 8 comes into contact with the first (second) valve stopper B1 (B2), the valve body 8 is smoothly smoothed so that the inclination gradually increases toward the free end 8e. Bend. For this reason, the stress generated in the vicinity of the bending fulcrums F1 and F2 of the valve body 8 can be reduced, and the durability of the valve body 8 can be further improved.
  • the leaf valves 8a and 8c are stacked above and below the leaf valve 8b including the free end 8e facing the facing surface 5e, and the thickness of the stopper member 90 is larger than the thickness of the spacer 80.
  • the total plate thickness of the leaf valve 8a is larger, and the total plate thickness of the stopper member 91 and the leaf valve 8c is larger than the plate thickness of the spacer 81.
  • the amount of deformation increases when the valve body 8 is bent and comes into contact with the first (second) valve stopper B1 (B2).
  • the leaf valve 8b is smoothly curved so that the inclination gradually increases as it moves toward the free end 8e. Therefore, the stress generated near the bending fulcrum of the leaf valve 8b can be reduced, and the durability of the leaf valve 8b can be improved.
  • the diameter of the free end 8e in the initial mounting state where the valve body 8 is not bent is larger than the diameters of the support portions S1 and S3 on the outer peripheral side. For this reason, when the valve body 8 comes into contact with the first (second) valve stopper B1 (B2), the support on the outer peripheral side rather than the gap formed between the free end 8e of the valve body 8 and the facing surface 5e. The gap formed between the part S1 (S3) and the facing surface 5e is reduced, and the liquid flow can be suppressed from being narrowed by the gap.
  • the support portions S1 and S3 are connected to the free end 8e of the valve body 8. It is good to make it contact in the vicinity. Because, when doing so, when the valve body 8 comes into contact with the first (second) valve stopper B1 (B2), the portion of the valve body 8 that protrudes from the support portion S1 (S3) to the outer peripheral side is small, This is because it is possible to suppress the valve body 8 from being largely bent with the support portion S1 (S3) as a fulcrum and lowering the durability.
  • the valve body 8 when the valve body 8 is bent, the outer support portions S1 and S3 are in contact with the outer peripheral portion of the central leaf valve 8b, and the inner support portions S2 and S4 are both ends.
  • the leaf valve 8a is in contact with either one of the leaf valves 8b.
  • the valve body 8 only needs to be configured to include at least one leaf valve, and the leaf valve with which each support portion abuts can be appropriately changed.
  • the shock absorber D contracts, the piston 2 moves downward in the cylinder 1 to compress the pressure side chamber L2, and the liquid in the pressure side chamber L2 passes through the valve body 8 and the pressure side main valve body 7. It moves to the extension side chamber L1. Resistance is applied to the flow of the liquid by the pressure-side main valve body 7, the orifice formed by the notches 6a and 7a of the main valve bodies 6 and 7, or the valve body 8. Thereby, the pressure of the pressure side chamber L2 rises, and the shock absorber D exhibits the pressure side damping force that prevents the contraction operation.
  • the main valve bodies 6 and 7 on the expansion side and the pressure side are opened according to the piston speed, or the outer peripheral portion (end portion on the free end 8e side) of the valve body 8 is bent up and down.
  • the shock absorber D can generate a speed-dependent damping force that depends on the piston speed.
  • the liquid flows from the extension side chamber L1 into the skirt portion 4b through the notches 6a and 7a of the main valve bodies 6 and 7 on the extension side and the pressure side. .
  • the liquid that has flowed into the skirt portion 4b flows downward between the communication passage 5c, the first valve stopper B1 and the case portion 5b in FIG. 2, and the free end 8e and the opposing surface 5e of the valve body 8 facing each other. It flows out into the pressure side chamber L2 from the clearance gap P (FIG. 3) made between.
  • the case portion 5b is formed from the gap P formed between the free end 8e of the valve body 8 facing the pressure side chamber L2 and the facing surface 5e. Flows in. The liquid that has flowed into the case portion 5b flows upward in FIG. 2 between the first valve stopper B1 and the case portion 5b in FIG. 2, and the main valve bodies 6 and 7 on the extension side and the pressure side are notched. It flows out from 6a, 7a to the extension side chamber L1.
  • the opening area of the gap P formed between the free end 8e of the opposing valve body 8 and the opposing surface 5e is very small. For this reason, when the piston speed is in the extremely low speed region, the buffer D exhibits a damping force in the extremely low speed region due to the resistance when the liquid flows through the gap P.
  • the shock absorber D reduces the damping force in the low speed region caused by the resistance of the orifice formed by the notches 6a and 7a of the main valve bodies 6 and 7 on the expansion side and the compression side. Demonstrate.
  • the damping coefficient of the shock absorber D becomes small.
  • the outer peripheral portion of the valve body 8 is bent upward or downward, and the main valve body 6 on the extension side opens when extended, When contracting, the main valve body 7 on the pressure side opens.
  • the outer peripheral portion of the main valve body 6 bends downward, and the liquid can pass through the gap formed between the outer peripheral portion and the main valve case 4. It becomes like this.
  • the pressure-side main valve body 7 is opened, the outer peripheral portion of the main valve body 7 bends upward, so that liquid can pass through a gap formed between the outer peripheral portion and the main valve case 4.
  • the shock absorber D exhibits a damping force in the middle to high speed range due to the resistance of the gap formed by opening the main valve bodies 6 and 7 on the extension side or the pressure side.
  • the damping coefficient of the shock absorber D decreases.
  • the amount of deflection of the main valve bodies 6 and 7 on the extension side and the pressure side may be regulated while the piston speed is in the middle and high speed range and the piston speed is increasing.
  • the damping coefficient increases again as the piston speed increases, with the speed at which the amount of deflection of the main valve bodies 6 and 7 on the expansion side and the compression side becomes maximum.
  • the damping valve (valve) V includes a valve case 5, an annular valve body 8 having an outer peripheral end that is a free end 8e that can move in the axial direction with respect to the valve case 5, and the valve body. 8, which includes an annular facing surface 5 e that can be opposed to the free end 8 e with a gap P, and a facing portion 5 d provided on the valve case 5, and first and second valves positioned on both sides of the valve body 8 in the axial direction. Stoppers B1 and B2 are provided.
  • the first and second valve stoppers B1 and B2 each support a plurality of different positions in the radial direction of the valve body 8 at different heights when the valve body 8 is bent. It has a support part (S1, S2 or S3, S4). According to the said structure, even if the height difference of the bending support points F1 and F2 of the valve body 8 and the support parts S1 and S3 which support the valve body 8 in the highest position is large, it is lower than the support position and is radial. The shifted position is supported by the other support portions S2 and S4. For this reason, the stress produced when the valve body 8 bends is reduced, and durability of the valve body 8 can be improved.
  • the support portions S1 and S3 that support the outer peripheral side (the free end 8e side) of the valve body 8 are the support portions S2 and S2 that support the inner peripheral side (the bending fulcrums F1 and F2 side). It is in a position higher than S4.
  • the position which supports the valve body 8 becomes high, so that the position which supports the valve body 8 is the support part which becomes the free end 8e side among several support parts.
  • the free end 8e side from the bending fulcrums F1 and F2 of the valve body 8 is gradually increased so as to become gradually higher toward the free end 8e. That is, according to the above configuration, the stress generated in the valve body 8 can be dispersed and the maximum generated stress can be efficiently and rationally reduced, so that the durability of the valve body 8 can be reliably improved.
  • the first valve stopper B1 has two annular stopper members 9, 90 having different outer diameters.
  • the two stopper members 9, 90 are provided with support portions S1, S2, respectively (FIG. 5).
  • the second valve stopper B2 includes an annular stopper member 91 and a nut 30 having different outer diameters.
  • the nut 30 and the stopper member 91 are provided with support portions S3 and S4, respectively (FIG. 4).
  • the stopper members 9, 90, 91 and the nut 30 constituting the first and second valve stoppers B1, B2 are respectively annular members.
  • Each of the first and second valve stoppers B1 and B2 includes a plurality of annular members having different outer diameters, and each annular member is provided with a support portion. For this reason, the position which supports the valve body 8 in each support part can be adjusted easily.
  • the stopper member 90 on the valve body 8 side is changed to a stopper member having a larger outer diameter
  • the position where the support portion S2 supports the valve body 8 is changed to the outer periphery. It can be changed to the side (free end 8e side).
  • the stopper member 90 is changed to a stopper member thinner than this, the position where the valve body 8 of each support part S1, S2 is supported can be lowered.
  • first and second valve stoppers B1 and B2 are formed of annular members having different outer diameters
  • a damping valve (valve having a valve body having different specifications (shape, material, number of sheets, etc. of the leaf valve) is provided.
  • a valve stopper suitable for the valve body can be constituted by a combination of annular members having different diameters and thicknesses. That is, since the first and second valve stoppers B1 and B2 can be configured by combining highly versatile annular members, the first and second valve stoppers B1 and B2 can be made inexpensive.
  • a nut 30 for attaching the damping valve V to the outer periphery of the piston rod 3 is used as an annular member on the side opposite to the valve body of the second valve stopper B2. According to the said structure, since the nut 30 serves as the function as 2nd valve stopper B2, the number of components of the buffer D can be reduced. Note that an annular member may be provided separately from the nut 30.
  • the number of support portions of the first and second valve stoppers B1 and B2 is two, and each valve stopper B1 and B2 has two annular members having different outer diameters. Configured. Note that the number of support portions provided in the first and second valve stoppers B1 and B2 may be plural and can be changed as appropriate. And if the annular member which comprises each valve disc is piled up by the number of support parts, even if it is a valve stopper which has three or more support parts, it can form easily.
  • valve disk does not necessarily have to be formed of a plurality of annular members.
  • a step may be formed on the surface of the valve disk facing the valve body, and a plurality of support portions that support the valve body at different radial positions and different heights may be formed by the step. In such a case, the number of parts of the damping valve (valve) can be reduced.
  • each support portion S1, S2, S3, S4 is annular.
  • the shape of each support part is not limited to this, and for example, a plurality of protrusions arranged in the circumferential direction may be used as the support part.
  • the shock absorber D of the present embodiment includes a cylinder 1, a piston rod 3 that is inserted into the cylinder 1 so as to be movable in the axial direction, and a damping valve (valve) V.
  • the damping valve (valve) V provides resistance against the flow of liquid generated when the cylinder 1 and the piston rod 3 move relative to each other in the axial direction. For this reason, when the shock absorber D expands and contracts and the cylinder 1 and the piston rod 3 move relative to each other in the axial direction, the damping force due to the resistance of the damping valve (valve) V can be exhibited.
  • the damping valve (valve) V of the present embodiment includes a main valve case 4 in which passages 4c and 4d are formed, and main valve bodies 6 and 7 stacked on the main valve case 4 to open and close the passages 4c and 4d.
  • the passages 4c and 4d of the main valve case 4 are connected in series with a gap P formed between the free end 8e of the valve body 8 and the facing surface 5e.
  • the damping valve V when configured to include the main valve bodies 6 and 7 and the valve body 8, the piston speed region that causes the valve body 8 to bend and the piston that opens the main valve bodies 6 and 7. Since each speed region can be set, the damping force characteristic of the shock absorber D can be set finely.
  • the piston speed (speed of the piston rod 3 that moves relative to the cylinder 1) is in a speed region lower than a predetermined speed, such as a very low speed region
  • a predetermined speed such as a very low speed region
  • the main valve bodies 6, 7 Is closed and the free end 8e of the valve body 8 faces the facing surface 5e.
  • the liquid flows through the gap P formed between the opposed free end 8e and the facing surface 5e, and the buffer D is given resistance to the liquid flow.
  • the damping force resulting from can be exhibited.
  • the shock absorber D can exhibit a damping force due to the resistance of the main valve bodies 6 and 7.
  • valve body 8 when the valve body 8 is used to generate a damping force in a speed region where the piston speed is lower than a predetermined speed, such as a very low speed region, generally, the valve body 8 having low rigidity is used.
  • the valve body 8 is easily deformed as shown in FIG. For this reason, when the valve body 8 is used to generate a damping force in a speed region lower than a predetermined speed, a plurality of support portions that can support different positions in the radial direction of the valve body 8 at different heights are provided as valve stoppers. This is particularly effective.
  • the main valve case 4 of the present embodiment has a main body portion 4a in which passages 4c and 4d are formed, and a cylindrical skirt portion 4b protruding from one end outer peripheral portion of the main body portion 4a.
  • the valve case 5 has a fitting portion 5a fitted to the inner periphery of the skirt portion 4b, and a cylindrical case portion 5b protruding from the outer periphery of one end of the fitting portion 5a to the outside of the skirt portion 4b. .
  • the first valve stopper B1 is inserted into the case portion 5b, and the valve body 8 and the second valve stopper B2 are arranged on the opposite side of the first valve stopper B1. Further, a communication passage 5c is formed in the fitting portion 5a to communicate the gap P formed between the free end 8e of the valve body 8 and the facing surface 5e and the passages 4c and 4d of the main valve case 4. .
  • the valve body 8 may not necessarily be used in combination with the main valve bodies 6 and 7.
  • the piston speed region is a very low speed region in which the valve body 8 is not bent and the main valve bodies 6 and 7 are maintained in a closed state, and the valve body 8 is bent but the main valve body. 6 and 7 are divided into a low speed region which is a closed region, and a medium and high speed region which is a region where the valve body 8 is bent and the main valve bodies 6 and 7 are opened.
  • the piston speed region may be divided in any way, and the threshold value of each region can be arbitrarily set.
  • each of the first and second valve stoppers B1 and B2 includes a plurality of annular members having different inner diameters.
  • valve case 5 itself is provided with a facing surface 5e, and a fitting portion 5a in which the facing portion 5d including the facing surface 5e and the valve body 8 are laminated is integrally formed. For this reason, the number of parts of the damping valve V can be reduced to facilitate the assembling work.
  • the opposing part 5d containing the opposing surface 5e and the valve case containing the fitting part 5a separately these may be assembled and integrated.
  • the damping valve (valve) V according to the present embodiment is embodied in a piston portion attached to the piston rod 3 of the shock absorber D.
  • the rod entering and exiting the cylinder does not necessarily have to be a piston rod to which a piston is attached, and the position where the damping valve V is provided is not limited to the piston portion.
  • the damping valve V is provided in the middle of the passage communicating the inside of the cylinder and the reservoir chamber. May be provided.
  • the valve includes a valve case 5, an annular valve body 8 in which one of the inner peripheral end and the outer peripheral end is a free end 8 e that can move in the axial direction with respect to the valve case 5, and the valve body 8. Including an annular facing surface 5e that can be opposed to the free end 8e with a gap P between the opposing end 5d provided on the valve case 5 and both sides of the valve body 8 in the axial direction.
  • First and second valve stoppers B1 and B2 are provided. Each of the first and second valve stoppers B1 and B2 has a plurality of support portions (S1, S2 or S2 that can support different positions in the radial direction of the valve body 8 at different heights when the valve body 8 is bent. S3, S4).
  • the valve supports the valve body 8 such that the position where the valve body 8 is supported is closer to the free end 8e side among the plurality of support parts (S1, S2, S3, S4). The position to do becomes high. According to this configuration, since the stress generated when the valve body 8 is bent can be dispersed and the maximum generated stress can be efficiently and rationally reduced, the durability of the valve body 8 can be reliably improved.
  • the first and second valve stoppers B1 and B2 each have a plurality of annular members (stopper members 9, 90 or nuts 30, stopper members 91) having different inner and outer diameters. Each of these annular members is provided with a support portion (S1, S2, S3 or S4). According to this structure, the position which supports the valve body 8 by each support part S1, S2, S3, S4 can be adjusted easily. Furthermore, since the first and second valve stoppers B1 and B2 can be constituted by a combination of annular members having high versatility (stopper members 9, 90, 91 and nuts 30), the valve stoppers B1 and B2 can be made inexpensive.
  • an annular facing surface 5e that can be opposed to the free end 8e of the valve body 8 with a gap P is formed in the facing portion 5d provided in the valve case 5, and in series with the gap P.
  • the main valve case 4 has a main body portion 4a in which passages 4c and 4d are formed, and a cylindrical skirt portion 4b protruding from the outer periphery of one end of the main body portion 4a.
  • the case 5 has a fitting part 5a fitted to the inner periphery of the skirt part 4b, and a cylindrical case part 5b protruding from the outer peripheral part of one end of the fitting part 5a to the outside of the skirt part 4b.
  • valve stopper B1 is inserted into the case portion 5b, the valve body 8 and the second valve stopper B2 are arranged on the side opposite to the first valve stopper B1, and the fitting portion 5a
  • a communication path 5c is formed between the free end 8e of the valve body 8 and the facing surface 5e, and the communication path 5c communicates with the paths 4c and 4d. According to this configuration, it is easy to connect the gap P and the passages 4c and 4d in series.
  • the shock absorber D includes a cylinder 1, a rod (piston rod 3) that is inserted into the cylinder 1 so as to be movable in the axial direction, and the valve (attenuation valve V).
  • the cylinder 1 and the rod (piston rod 3) provide resistance against the flow of liquid generated when the cylinder 1 and the rod (piston rod 3) move relative to each other in the axial direction, and the speed of the rod (piston rod 3) that moves relative to the cylinder 1 In a speed region where the (piston speed) is lower than a predetermined speed, the main valve bodies 6 and 7 are closed and the free end 8e of the valve body 8 faces the facing surface 5e and moves with respect to the cylinder 1 (piston rod).
  • the liquid flows through the gap P formed between the opposed free end 8e and the facing surface 5e,
  • the buffer D can exhibit a damping force due to the resistance applied to the liquid flow.
  • the shock absorber D can exhibit a damping force due to the resistance of the main valve bodies 6 and 7.
  • valve body 8 When the valve body 8 is used for generating a damping force when the speed (piston speed) of the rod (piston rod 3) moving relative to the cylinder 1 is in a speed range lower than a predetermined speed, the rigidity is low.
  • the valve body 8 is generally used, and the valve body 8 is easily deformed. For this reason, in the shock absorber D having the above-described configuration, a plurality of support portions S1, S2, S3 that can support different positions in the radial direction of the valve body 8 at different heights on the first and second valve stoppers B1, B2. , S4 are particularly effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

バルブは、バルブケース(5)と、外周端がバルブケース(5)に対して軸方向の両側へ動ける自由端(8e)とされる環状の弁体(8)と、弁体(8)の外周側に位置して自由端(8e)と隙間をあけて対向できる環状の対向面(5e)を含んでバルブケース(5)に設けられる対向部(5d)と、弁体(8)の軸方向の両側に位置する第一、第二のバルブストッパ(B1,B2)とを備え、第一、第二のバルブストッパ(B1,B2)は、それぞれ、弁体(8)が撓んだときに弁体(8)の径方向の異なる位置を異なる高さで支持できる複数の支持部(S1,S2)を有する。

Description

バルブ及び緩衝器
 本発明は、バルブと、バルブを備えた緩衝器に関する。
 従来、バルブは、例えば、緩衝器の伸縮時に生じる液体の流れに抵抗を与えて減衰力を発生するのに利用されている。また、そのようなバルブの中には、内周と外周の一方をバルブケースに固定される固定端、他方を軸方向の両側へ動ける自由端とする環状の弁体を備え、その弁体の自由端の外周又は内周に液体の通過を許容する隙間を形成したものがある(JPH02-76937A)。
 上記構成によれば、緩衝器の伸縮速度(ピストン速度)が、弁体が撓まない程度の低い速度領域にある場合、弁体の自由端の外周又は内周にできる隙間が狭い状態に維持される。しかし、緩衝器のピストン速度が上昇して弁体の自由端側の端部が撓むと、その自由端の外周又は内周にできる隙間が広くなる。このため、ピストン速度が上昇したときの緩衝器の減衰係数が小さくなり、緩衝器の減衰力特性が速度に依存した特性となる。
 JPH02-76937Aの第8図に記載のバルブでは、弁体の固定端側の端部を間座で押さえており、この間座と弁体とが当接する当接部の自由端側の縁を支点(以下、撓み支点という)にして弁体が撓む。また、上記バルブは、バルブストッパを備え、弁体の撓み量を制限できるようになっている。
 しかしながら、上記した従来のバルブでは、図6に示すように、弁体800が撓んだときに、その弁体800の撓み支点F3と、弁体800を支えるバルブストッパB3の支持部S5との高低差によってできる段差に倣って弁体800がうねるように変形する場合がある。すると、図6中、矢印Y1,Y2で示したような部分に応力が集中し、弁体800の耐久性が低下する虞がある。
 本発明は、弁体の耐久性を向上できるバルブ、及びこのバルブを備えた緩衝器を提供することを目的とする。
 本発明のある態様によれば、バルブであって、バルブケースと、内周端と外周端の一方が前記バルブケースに対して軸方向の両側へ動ける自由端とされる環状の弁体と、前記弁体の内周側又は外周側に位置して前記自由端と隙間をあけて対向できる環状の対向面を含み、前記バルブケースに設けられる対向部と、前記弁体の軸方向の両側に位置する第一、第二のバルブストッパとを備え、前記第一、第二のバルブストッパは、それぞれ、前記弁体が撓んだときに前記弁体の径方向の異なる位置を異なる高さで支持できる複数の支持部を有する。
図1は、本発明の一実施の形態に係るバルブである減衰バルブを備えた緩衝器を示した縦断面図である。 図2は、図1の一部を拡大して示した部分拡大図である。 図3は、図2の一部をさらに拡大して示した部分拡大図である。 図4は、図3の弁体の外周部が図中下側へ撓んだときの状態を示した部分拡大図である。 図5は、図3の弁体の外周部が図中上側へ撓んだときの状態を示した部分拡大図である。 図6は、従来のバルブの弁体の外周部が図中上側へ撓んだときの状態を示した部分拡大図である。
 以下に本発明の実施形態について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品を示す。
 図1に示すように、本発明の一実施形態に係るバルブは、緩衝器Dのピストン部に具現化された減衰バルブVである。緩衝器Dは、自動車等の車両の車体と車軸との間に介装されている。以下の説明では、説明の便宜上、特別な説明がない限り図1に示す緩衝器Dの上下を、単に「上」「下」という。
 なお、本発明の実施形態に係るバルブを備えた緩衝器の取付対象は、車両に限らず適宜変更できる。また、取付状態での緩衝器の向きは、取付対象に応じて適宜変更できる。具体的には、本実施の形態の緩衝器Dを図1と同じ向きで車両に取り付けてもよいし、図1とは上下逆向きにして車両に取り付けてもよい。
 緩衝器Dの具体的な構造について説明する。図1に示すように、緩衝器Dは、上端が開口された有底筒状のシリンダ1と、このシリンダ1内に摺動自在に挿入されるピストン2と、下端がピストン2に連結されて上端がシリンダ1外へと突出するロッドであるピストンロッド3とを備える。
 ピストンロッド3は、シリンダ1内に軸方向に移動可能に挿入されている。ピストンロッド3の上端には、ブラケット(図示せず)が設けられており、ピストンロッド3がそのブラケットを介して車体と車軸の一方に連結される。シリンダ1の底部1aにもブラケット(図示せず)が設けられており、シリンダ1がそのブラケットを介して車体と車軸の他方に連結される。
 このようにして緩衝器Dは車体と車軸との間に介装される。車両が凹凸のある路面を走行する等して車輪が車体に対して上下に振動すると、ピストンロッド3がシリンダ1に出入りして緩衝器Dが伸縮するとともに、ピストン2がシリンダ1内を上下方向(軸方向)に移動する。
 緩衝器Dは、シリンダ1の上端の開口を塞ぐとともにピストンロッド3を摺動自在に支える環状のシリンダヘッド10を備える。シリンダ1の下端は底部1aで塞がれている。したがって、シリンダ1内は、密閉空間とされている。シリンダ1内のピストン2から見てピストンロッド3とは反対側には、可動隔壁としてのフリーピストン11が摺動自在に挿入されている。
 シリンダ1内におけるフリーピストン11の上側には液室Lが形成され、下側にはガス室Gが形成されている。液室Lは、ピストン2によって、ピストンロッド3側(シリンダヘッド10側)の伸側室L1とピストン2側(底部1a側)の圧側室L2とに区画されている。伸側室L1と圧側室L2には、それぞれ作動流体としての作動油等の液体が充填されている。ガス室Gには、エア、又は窒素ガス等の気体が圧縮された状態で封入されている。
 緩衝器Dの伸長時にピストンロッド3がシリンダ1から退出し、その退出したピストンロッド3の体積分だけシリンダ1内の容積が増加すると、フリーピストン11がシリンダ1内を上側へ移動してガス室Gを拡大させる。反対に、緩衝器Dの収縮時にピストンロッド3がシリンダ1内へ侵入し、その侵入したピストンロッド3の体積分だけシリンダ1内の容積が減少すると、フリーピストン11がシリンダ1内を下側へ移動してガス室Gを縮小させる。
 なお、フリーピストン11に替えて、ブラダ、又はベローズ等を利用して液室Lとガス室Gとを仕切っていてもよく、この仕切となる可動隔壁の構成は適宜変更できる。
 さらに、本実施の形態では、緩衝器Dが片ロッド、単筒型であり、緩衝器Dの伸縮時にフリーピストン(可動隔壁)11でガス室Gを拡大又は縮小させて、シリンダ1に出入りするピストンロッド3の体積補償をする。しかし、この体積補償のための構成も適宜変更できる。
 例えば、フリーピストン(可動隔壁)11とガス室Gとを廃し、シリンダ1の外周にアウターシェルを設けて緩衝器を複筒型にする。そして、シリンダ1とアウターシェルとの間に液体を貯留するリザーバ室を形成し、このリザーバ室で体積補償をしてもよい。さらに、そのリザーバ室は、シリンダ1とは別置き型のタンク内に形成されていてもよい。
 また、ピストンの両側にピストンロッドを設けて緩衝器を両ロッド型にしてもよい。このような場合には、ピストンロッドの体積補償自体を不要にできる。
 ピストン2は、ピストンロッド3の外周にナット30で保持される二つのバルブケースを有している。以下、二つのバルブケースを区別するため、後述する主弁体6,7が積層されるバルブケースをメインバルブケース4と称し、後述する弁体8が取り付けられるもう一方のバルブケースを単にバルブケース5と称する。
 このように、本実施の形態のピストン2は、主弁体6,7又は弁体8等の弁体を取り付けるためのバルブケースとして機能しており、弁体等とともに減衰バルブVを構成している。以下、その減衰バルブVの構成について説明する。
 図2に示すように、メインバルブケース4は、環状の本体部4aと、この本体部4aの下端外周部から下方へ突出する筒状のスカート部4bとを含む。本体部4aには、本体部4aを軸方向に貫通しスカート部4bの内周側に開口する伸側の通路4c及び圧側の通路4dが形成されている。本体部4aの下側(圧側室L2側)には、伸側の通路4cの出口を開閉する伸側の主弁体6が積層されている。本体部4aの上側(伸側室L1側)には、圧側の通路4dの出口を開閉する圧側の主弁体7が積層されている。
 伸側と圧側の主弁体6,7は、それぞれ、複数の弾性変形可能なリーフバルブが積層された積層リーフバルブである。伸側の主弁体6は、緩衝器Dの伸長時であってピストン速度が中高速域にある場合に開いて、伸側の通路4cを伸側室L1から圧側室L2へ向かう液体の流れに抵抗を与える。圧側の主弁体7は、緩衝器Dの収縮時であってピストン速度が中高速域にある場合に開いて、圧側の通路4dを圧側室L2から伸側室L1へ向かう液体の流れに抵抗を与える。なお、ピストン速度とは、シリンダ1に対して移動するピストンロッド3の速度、すなわち緩衝器Dの伸縮速度のことを指す。
 伸側と圧側の主弁体6,7を構成する複数のリーフバルブのうち、最もメインバルブケース4側に位置する一枚目のリーフバルブ(すなわち本体部4aに当接するリーフバルブ)の外周部には、それぞれ切欠き6a,7aが形成されている。ピストン速度が低速域にあり、伸側と圧側の主弁体6,7が閉弁している場合、液体が切欠き6a,7aにより形成されるオリフィスを通って伸側室L1と圧側室L2との間を行き来する。当該液体の流れに対しては、オリフィス(切欠き6a,7a)により抵抗が付与される。
 上記切欠き6a,7aにより形成されるオリフィスは、液体の双方向流れを許容する。このため、伸側と圧側の主弁体6,7に形成される切欠き6a,7aのうちの一方を省略してもよい。また、オリフィスの形成方法は、適宜変更できる。例えば、伸側又は圧側の主弁体6,7が離着座する弁座に打刻を行うことによって溝を形成し、この打刻溝によりオリフィスを形成してもよい。オリフィスをチョークに替えてもよい。さらに、メインバルブケース4に取り付けられて緩衝器Dに中高速域の減衰力を発生させるための主弁体6,7は、積層リーフバルブ以外でもよく、例えば、ポペットバルブ等であってもよい。
 バルブケース5は、メインバルブケース4のスカート部4bの内周に嵌合する環状の嵌合部5aと、この嵌合部5aの下端外周部から下方へ突出する筒状のケース部5bとを含む。嵌合部5aとスカート部4bとの間には、嵌合部5aとスカート部4bとの間を塞ぐシール50が設けられる。嵌合部5aには、嵌合部5aを軸方向に貫通しケース部5bの内周側に開口する連通路5cが形成されている。
 ケース部5bには、外径の異なる二つのストッパ部材9,90が収容されている。さらに、その下側には弁体8とストッパ部材91が積層されており、このストッパ部材91の下端にナット30が突き当てられている。このように、弁体8の軸方向の両側にストッパ部材90,91が位置し、さらにその両側にストッパ部材9、ナット30が位置する。
 本実施の形態の弁体8は、図3に示すように、積層された三枚のリーフバルブ8a,8b,8cを有し、弾性変形可能である。環状の弁体8を構成する三枚のリーフバルブのうちの中央のリーフバルブ8bの外径は、上下両端に位置するリーフバルブ8a,8cの外径よりも大きい。上端のリーフバルブ8aとその直上のストッパ部材90との間、及び下端のリーフバルブ8cとその直下のストッパ部材91との間には、それぞれ間座80,81が介装されている。
 これらの各間座80,81は、外径が弁体8を構成する各リーフバルブ8a,8b,8cの外径よりも小さい環状板である。弁体8は、その内周部を間座80,81で挟まれた状態でバルブケース5に固定されている。弁体8における間座80,81よりも外周側の部位は、間座80,81と弁体8との当接部の外周縁を支点(撓み支点F1,F2)に上下方向(軸方向)へ移動できる。
 このように、本実施の形態では、バルブケース5に装着された弁体8の内周側の端(内周端)がバルブケース5に対して動かない固定端8dとなっている。さらに、弁体8の外周側の端(外周端)に位置する中央のリーフバルブ8bの外周面が、バルブケース5に対して上下(軸方向の両側)へ動ける自由端8eとなっている。
 バルブケース5におけるケース部5bの先端には、ケース部5bの内周から径方向内側(緩衝器Dの中心軸側)へ突出する環状の対向部5dが形成されている。弁体8は、対向部5dの内周側に収容される。緩衝器Dの動き出しのときのような、ピストン速度が0(ゼロ)に近い極低速域では、弁体8は撓まず、取付初期の状態に保たれる(図3)。
 このように、弁体8が撓んでいない状態では、弁体8の自由端8eが対向部5dの内周に形成される対向面5eと所定の隙間Pをあけて対向する(図3)。本実施の形態では、相対向する対向面5eと弁体8の自由端8eとの間にできる隙間Pは非常に狭い。隙間Pの開口面積は、前述の主弁体6,7に形成された切欠き6a,7aにより形成される全オリフィスの開口面積(すなわち、切欠き6aにより形成されるオリフィスの開口面積と、切欠き7aにより形成されるオリフィスの開口面積との和)よりも小さい。
 緩衝器Dの伸長時であって、ピストン速度が低速域、又は中高速域にある場合(すなわちピストン速度が極低速域でない場合)には、図4に示すように、弁体8の外周部が撓み支点F1を支点に下側へと撓む。反対に、緩衝器Dの収縮時であって、ピストン速度が低速域、又は中高速域にある場合(すなわちピストン速度が極低速域でない場合)には、図5に示すように、弁体8の外周部が撓み支点F2を支点に上側へと撓む。
 このように、弁体8の外周部(自由端8e側の端部)が上下に撓む低速域、及び中高速域では、上下にずれた弁体8の自由端8eと対向面5eとの間にできる隙間の開口面積は、切欠き6a,7aにより形成される全オリフィスの開口面積(すなわち、切欠き6aにより形成されるオリフィスの開口面積と、切欠き7aにより形成されるオリフィスの開口面積との和)よりも大きくなる。
 本実施の形態では、弁体8の上側に位置する二枚のストッパ部材9,90を有して弁体8の上側への撓み量を制限する第一のバルブストッパB1が構成されている。上側(反弁体側)のストッパ部材9の外径が下側(弁体側)のストッパ部材90の外径よりも大きく、上下のストッパ部材9,90の下端外周縁のそれぞれが弁体8の上面に当接して弁体8を支える支持部S1,S2となっている(図5)。
 さらに、これらの支持部S1,S2は、径方向と軸方向にずれた位置にあり、弁体8を径方向、及び高さ方向の異なる位置で支える。より具体的には、撓んでいない状態の弁体8に近い位置を低い位置、遠い位置を高い位置とすると、上側のストッパ部材9に設けられた支持部S1は、下側のストッパ部材90に設けられた支持部S2よりも弁体8の自由端8e側を高い位置で支える。
 また、本実施の形態では、弁体8の下側に位置するストッパ部材91とナット30を有して弁体8の下側への撓み量を制限する第二のバルブストッパB2が構成されている。ナット30の上端に位置するストッパ部30a(図3)の外径がストッパ部材91の外径よりも大きく、ストッパ部30aとストッパ部材91の上端外周縁のそれぞれが弁体8の下面に当接して弁体8を支える支持部S3,S4となっている(図4)。
 さらに、これらの支持部S3,S4は、径方向と軸方向にずれた位置にあり、弁体8を径方向、及び高さ方向の異なる位置で支える。より具体的には、ナット30に設けられた支持部S3は、ストッパ部材91に設けられた支持部S4よりも弁体8の自由端8e側を高い位置で支える。
 上記構成によれば、弁体8が撓んで第一(第二)のバルブストッパB1(B2)に当接したとき、弁体8における間座80(81)よりも自由端8e側が自由端8eへ向かうに従って徐々に高くなるように、弁体8が無理なくしなる。よって、弁体8が撓んだときに生じる応力を分散させて最大発生応力を小さくできるので、弁体8の耐久性を向上できる。
 また、本実施の形態の第一のバルブストッパB1では、内周側の支持部S2の径方向の位置が、間座80の外周縁(撓み支点F1)と外周側の支持部S1の中間位置付近にあり、間座80の板厚よりもストッパ部材90の板厚の方が大きい。同様に、第二のバルブストッパB2では、内周側の支持部S4の径方向の位置が、間座81の外周縁(撓み支点F2)と外周側の支持部S3の中間位置付近にあり、間座81の板厚よりもストッパ部材91の板厚の方が大きい。
 上記構成によれば、弁体8が第一(第二)のバルブストッパB1(B2)に当接したとき、弁体8がその自由端8eへ向かうに従って傾きが徐々に大きくなるように滑らかに湾曲する。このため、弁体8の撓み支点F1,F2付近に生じる応力を低減し、弁体8の耐久性を一層向上できる。
 さらに、本実施の形態では、対向面5eに対向する自由端8eを含むリーフバルブ8bの上下にリーフバルブ8a,8cが積層されるとともに、間座80の板厚よりもストッパ部材90の板厚とリーフバルブ8aの板厚の合計の板厚の方が大きく、間座81の板厚よりもストッパ部材91の板厚とリーフバルブ8cの合計の板厚の方が大きい。
 このため、対向面5eに対向する自由端8eを含むリーフバルブ8bでは、弁体8が撓んで第一(第二)のバルブストッパB1(B2)に当接したとき変形量が大きくなるものの、リーフバルブ8bが自由端8eへ向かうに従って傾きが徐々に大きくなるように滑らかに湾曲する。よって、そのリーフバルブ8bの撓み支点付近に生じる応力を低減し、リーフバルブ8bの耐久性を向上できる。
 また、本実施の形態では、弁体8が撓んでいない取付初期の状態での自由端8eの径が、外周側の支持部S1,S3の径より大きい。このため、弁体8が第一(第二)のバルブストッパB1(B2)に当接したとき、弁体8の自由端8eと対向面5eとの間にできる隙間よりも、外周側の支持部S1(S3)と対向面5eとの間にできる隙間が小さくなって、その隙間で液体の流れを絞るのを抑制できる。
 さらに、上記したように、取付初期の状態での自由端8eの径を外周側の支持部S1,S3の径より大きくした場合には、その支持部S1,S3を弁体8の自由端8e付近に当接させるとよい。なぜなら、そのようにすると、弁体8が第一(第二)のバルブストッパB1(B2)に当接したときに、弁体8の支持部S1(S3)から外周側にはみ出す部分が小さく、その支持部S1(S3)を支点に弁体8が大きく撓んで耐久性が低下するのを抑制できるためである。
 なお、本実施の形態では、弁体8が撓んだときに、外周側の支持部S1,S3が中央のリーフバルブ8bの外周部に当接し、内周側の支持部S2,S4が両端のリーフバルブ8a,8bの何れか一方に当接するようになっている。しかし、弁体8は、少なくとも一枚のリーフバルブを有して構成されていればよく、各支持部が当接するリーフバルブも適宜変更できる。
 以下、本実施の形態に係る減衰バルブ(バルブ)Vを備えた緩衝器Dの作動について説明する。
 緩衝器Dの伸長時には、ピストン2がシリンダ1内を上方へ移動して伸側室L1を圧縮し、この伸側室L1の液体が伸側の主弁体6と弁体8を通過して圧側室L2へと移動する。当該液体の流れに対しては、伸側の主弁体6、各主弁体6,7の切欠き6a,7aにより形成されたオリフィス、又は弁体8により抵抗が付与される。これにより、伸側室L1の圧力が上昇し、緩衝器Dが伸長作動を妨げる伸側減衰力を発揮する。
 反対に、緩衝器Dの収縮時には、ピストン2がシリンダ1内を下方へ移動して圧側室L2を圧縮し、この圧側室L2の液体が弁体8と圧側の主弁体7を通過して伸側室L1へと移動する。当該液体の流れに対しては、圧側の主弁体7、各主弁体6,7の切欠き6a,7aにより形成されたオリフィス、又は弁体8により抵抗が付与される。これにより、圧側室L2の圧力が上昇し、緩衝器Dが収縮作動を妨げる圧側減衰力を発揮する。
 本実施の形態では、ピストン速度に応じて伸側と圧側の主弁体6,7が開弁したり、弁体8の外周部(自由端8e側の端部)が上下に撓んだりして、緩衝器Dがピストン速度に依存した速度依存の減衰力を発生できる。
 以下、ピストン速度の大きさに応じて詳しく説明する。ピストン速度が0に近い極低速域にある場合、伸側と圧側の主弁体6,7が閉じるとともに、弁体8が撓まずにその自由端8eを対向面5eに対向させている。
 緩衝器Dの伸長時にピストン速度が極低速域にある場合、液体が伸側と圧側の主弁体6,7の切欠き6a,7aを通って伸側室L1からスカート部4b内へと流入する。スカート部4b内に流入した液体は、連通路5c、第一のバルブストッパB1とケース部5bとの間を図2中下向きに流れて、相対向する弁体8の自由端8eと対向面5eとの間にできる隙間P(図3)から圧側室L2へと流出する。
 反対に、緩衝器Dの収縮時にピストン速度が極低速域にある場合、液体が圧側室L2から相対向する弁体8の自由端8eと対向面5eとの間にできる隙間Pからケース部5b内へ流入する。ケース部5b内に流入した液体は、第一のバルブストッパB1とケース部5bとの間、連通路5cを図2中上向きに流れて、伸側と圧側の主弁体6,7の切欠き6a,7aから伸側室L1へと流出する。
 前述のように、相対向する弁体8の自由端8eと対向面5eとの間にできる隙間Pの開口面積は非常に小さい。このため、ピストン速度が極低速域にある場合、緩衝器Dは、その隙間Pを液体が流れる際の抵抗に起因する極低速域の減衰力を発揮する。
 ピストン速度が高くなり、極低速域から脱して低速域にある場合、伸側と圧側の主弁体6,7は閉じているが、弁体8の外周部(自由端8e側の端部)が伸長時には下側へと撓み、収縮時には上側へと撓むことにより、弁体8の自由端8eと対向面5eとが上下にずれる。そして、これらの間にできる隙間の開口面積が、切欠き6a,7aにより形成されるオリフィスの開口面積よりも大きくなる。
 このため、ピストン速度が低速域にある場合、緩衝器Dは、伸側と圧側の主弁体6,7の切欠き6a,7aにより形成されるオリフィスの抵抗に起因する低速域の減衰力を発揮する。ピストン速度が極低速域からこのような低速域へ移行すると、緩衝器Dの減衰係数は小さくなる。
 ピストン速度がさらに高くなり、低速域から脱して中高速域にある場合、弁体8の外周部が上側又は下側へ撓んでいるのは勿論、伸長時には伸側の主弁体6が開き、収縮時には圧側の主弁体7が開く。
 本実施の形態では、伸側の主弁体6が開くと、その主弁体6の外周部が下側へ撓み、その外周部とメインバルブケース4との間にできる隙間を液体が通過できるようになる。同様に、圧側の主弁体7が開くと、その主弁体7の外周部が上側へ撓み、その外周部とメインバルブケース4との間にできる隙間を液体が通過できるようになる。
 このため、ピストン速度が中高速域にある場合、緩衝器Dは、伸側又は圧側の主弁体6,7の開弁によってできる隙間の抵抗に起因する中高速域の減衰力を発揮する。ピストン速度が低速域からこのような中高速域へ移行すると、緩衝器Dの減衰係数は小さくなる。
 なお、ピストン速度が中高速域にある場合であって、ピストン速度が上昇する途中で、伸側と圧側の主弁体6,7の撓み量を規制してもよい。このような場合には、伸側と圧側の主弁体6,7の撓み量が最大となった速度を境に、ピストン速度の上昇に従って減衰係数が再び大きくなる。
 以下、本実施の形態に係る減衰バルブ(バルブ)V、及びその減衰バルブVを備えた緩衝器Dの作用効果について説明する。
 本実施の形態に係る減衰バルブ(バルブ)Vは、バルブケース5と、外周端がバルブケース5に対して軸方向の両側へ動ける自由端8eとされる環状の弁体8と、この弁体8の自由端8eと隙間Pをあけて対向できる環状の対向面5eを含んでバルブケース5に設けられる対向部5dと、弁体8の軸方向の両側に位置する第一、第二のバルブストッパB1,B2とを備える。
 本実施の形態では、第一、第二のバルブストッパB1,B2が、それぞれ、弁体8が撓んだときに、その弁体8の径方向の異なる位置を異なる高さで支持できる複数の支持部(S1,S2又はS3,S4)を有する。当該構成によれば、弁体8の撓み支点F1,F2と、最も高い位置で弁体8を支える支持部S1,S3との高低差が大きくても、その支持位置よりも低く、径方向へずれた位置を他の支持部S2,S4で支えられる。このため、弁体8が撓んだときに生じる応力が低減されて、弁体8の耐久性を向上できる。
 また、本実施の形態において、弁体8の外周側(自由端8e側)を支持する支持部S1,S3は、それより内周側(撓み支点F1,F2側)を支持する支持部S2,S4よりも高い位置にある。このように、本実施の形態では、複数の支持部の中でも、弁体8を支持する位置が自由端8e側となる支持部であるほど、弁体8を支持する位置が高くなる。
 このため、弁体8が撓んだときに、弁体8における撓み支点F1,F2より自由端8e側が自由端8eへ向かうに従って徐々に高くなるように無理なくしなる。つまり、上記構成によれば、弁体8に生じる応力を分散させて、最大発生応力を効率的、且つ合理的に低減できるので、弁体8の耐久性を確実に向上できる。
 また、本実施の形態では、第一のバルブストッパB1が外径の異なる二枚の環状のストッパ部材9,90を有して構成されている。そして、二枚のストッパ部材9,90にそれぞれ支持部S1,S2が設けられている(図5)。さらに、第二のバルブストッパB2が外径の異なる環状のストッパ部材91とナット30とを有して構成されている。そして、ナット30とストッパ部材91にそれぞれ支持部S3,S4が設けられている(図4)。
 このように、第一、第二のバルブストッパB1,B2を構成するストッパ部材9,90,91及びナット30は、それぞれ環状部材である。そして、第一、第二のバルブストッパB1,B2が、それぞれ、外径の異なる複数の環状部材を有して構成されていて、各環状部材に支持部が設けられている。このため、各支持部で弁体8を支持する位置を容易に調整できる。
 具体的に、例えば、第一のバルブストッパB1において、弁体8側のストッパ部材90を、これよりも外径の大きなストッパ部材に変更すれば、支持部S2が弁体8を支える位置を外周側(自由端8e側)へ変更できる。また、そのストッパ部材90を、これよりも薄いストッパ部材に変更すれば、各支持部S1,S2の弁体8を支える位置を低くできる。
 このように、第一、第二のバルブストッパB1,B2を異なる外径の環状部材で形成すれば、仕様(リーフバルブの形状、素材、枚数等)の異なる弁体を備えた減衰バルブ(バルブ)であっても、径及び厚みの異なる環状部材の組合せによりその弁体に適したバルブストッパを構成できる。つまり、第一、第二のバルブストッパB1,B2を汎用性の高い環状部材を組み合わせてそれぞれ構成できるので、第一、第二のバルブストッパB1,B2をそれぞれ安価にできる。
 また、本実施の形態では、第二のバルブストッパB2の反弁体側の環状部材として、減衰バルブVをピストンロッド3の外周に取り付けるためのナット30を利用している。当該構成によれば、ナット30が第二のバルブストッパB2としての機能も兼ねるので、緩衝器Dの部品数を低減できる。なお、ナット30とは別に、環状部材を設けてもよい。
 また、本実施の形態では、第一、第二のバルブストッパB1,B2の支持部の数は、それぞれ二つであり、各バルブストッパB1,B2が外径の異なる二つの環状部材を有して構成されている。なお、第一、第二のバルブストッパB1,B2に設ける支持部の数は、複数であればよく、適宜変更できる。そして、各バルブディスクを構成する環状部材を支持部の数だけ重ねれば、三以上の支持部をもつバルブストッパであっても容易に形成できる。
 しかし、バルブディスクは、必ずしも複数の環状部材で形成されていなくてもよい。具体的には、例えば、バルブディスクの弁体側を向く面に段差を形成し、この段差によって弁体を径方向の異なる位置、異なる高さで支持する複数の支持部を形成してもよい。このような場合には、減衰バルブ(バルブ)の部品数を削減できる。
 さらに、本実施の形態では、ストッパ部材(環状部材)9,90,91、及びナット(環状部材)30における弁体8側の外周縁がそれぞれ支持部S1,S2,S3,S4となっており、各支持部S1,S2,S3,S4の形状が環状である。しかし、各支持部の形状は、この限りではなく、例えば、周方向に並ぶ複数の突起を支持部として利用してもよい。
 また、本実施の形態の緩衝器Dは、シリンダ1と、シリンダ1内に軸方向へ移動可能に挿入されるピストンロッド3と、減衰バルブ(バルブ)Vとを備える。そして、減衰バルブ(バルブ)Vは、シリンダ1とピストンロッド3が軸方向へ相対移動する際に生じる液体の流れに対して抵抗を与える。このため、緩衝器Dが伸縮してシリンダ1とピストンロッド3が軸方向へ相対移動するときに、減衰バルブ(バルブ)Vの抵抗に起因する減衰力を発揮できる。
 また、本実施の形態の減衰バルブ(バルブ)Vは、通路4c,4dが形成されるメインバルブケース4と、メインバルブケース4に積層されて通路4c,4dを開閉する主弁体6,7とを備える。そして、メインバルブケース4の通路4c,4dは、弁体8の自由端8eと対向面5eとの間にできる隙間Pと直列に接続されている。
 上記したように、主弁体6,7と弁体8を有して減衰バルブVが構成されている場合、弁体8を撓ませるピストン速度の領域と、主弁体6,7を開くピストン速度の領域をそれぞれ設定できるので、緩衝器Dの減衰力特性を細かく設定できる。
 さらに、本実施の形態では、ピストン速度(シリンダ1に対して移動するピストンロッド3の速度)が極低速域のような、所定の速度よりも低い速度領域にある場合、主弁体6,7が閉じるとともに弁体8の自由端8eが対向面5eと対向する。このため、ピストン速度が所定の速度よりも低い速度領域では、相対向する自由端8eと対向面5eの間にできる隙間Pを液体が流れ、緩衝器Dがその液体の流れに付与される抵抗に起因する減衰力を発揮できる。
 一方、ピストン速度が中高速域のような、所定の速度よりも高い速度領域にある場合には、主弁体6,7が開くとともに弁体8の外周部(自由端8e側の端部)が撓んで自由端8eと対向面5eとが対向しなくなる。すると、弁体8を通過する液体の流れに付与される抵抗が小さくなる。このため、ピストン速度が所定の速度よりも高い速度領域では、緩衝器Dが主弁体6,7の抵抗に起因する減衰力を発揮できる。
 このように、極低速域のような、ピストン速度が所定の速度よりも低い速度領域の減衰力の発生に弁体8を利用する場合、一般的に剛性の低い弁体8が利用されるので、弁体8が図6に示すような変形をしやすくなる。このため、所定の速度よりも低い速度領域の減衰力の発生に弁体8を利用する場合には、弁体8の径方向の異なる位置を異なる高さで支持できる複数の支持部をバルブストッパに設けるのが特に効果的である。
 また、本実施の形態のメインバルブケース4は、通路4c,4dが形成される本体部4aと、この本体部4aの一端外周部から突出する筒状のスカート部4bとを有する。さらに、バルブケース5は、スカート部4bの内周に嵌合する嵌合部5aと、この嵌合部5aの一端外周部からスカート部4bの外へ突出する筒状のケース部5bとを有する。
 そして、第一のバルブストッパB1がケース部5b内に挿入されるとともに、弁体8と第二のバルブストッパB2が第一のバルブストッパB1の反嵌合部側に配置されている。また、嵌合部5aには、弁体8の自由端8eと対向面5eとの間にできる隙間Pと、メインバルブケース4の通路4c,4dとを連通する連通路5cが形成されている。
 このため、上記構成によれば、メインバルブケース4の通路4c,4dと、弁体8の自由端8eと対向面5eとの間にできる隙間Pとを直列に接続するのが容易である。なお、メインバルブケース4とバルブケース5の構成は、上記の限りではなく、適宜変更できる。さらに、必ずしも弁体8を主弁体6,7と組み合わせて利用しなくてもよい。
 そして、上記説明では、ピストン速度の領域を、弁体8が撓まず、主弁体6,7が閉じた状態に維持される領域である極低速域、弁体8は撓むが主弁体6,7は閉じている領域である低速域、及び弁体8が撓むとともに主弁体6,7が開弁する領域である中高速域に区画している。しかし、どのようにピストン速度の領域を区分けしてもよく、各領域の閾値もそれぞれ任意に設定できる。
 また、本実施の形態では、弁体8の内周端が固定端8d、外周端が自由端8eとなっていて、弁体8の外周側に対向部5dが位置しているが、反対に、弁体の内周端を自由端、外周端を固定端として、弁体8の内周側に対向部を設けてもよい。この場合、第一、第二のバルブストッパB1,B2は、それぞれ、内径の異なる複数の環状部材を有して構成される。
 さらに、本実施の形態では、バルブケース5自体に対向面5eが形成されていて、この対向面5eを含む対向部5dと弁体8が積層される嵌合部5aが一体成形されている。このため、減衰バルブVの部品数を少なくして組立作業を容易にできる。なお、対向面5eを含む対向部5dと、嵌合部5aを含むバルブケースを個別に形成してから、これらを組み立てて一体化してもよい。
 また、本実施の形態に係る減衰バルブ(バルブ)Vは、緩衝器Dのピストンロッド3に装着されたピストン部分に具現化されている。しかし、シリンダに出入りするロッドは、必ずしもピストンが取り付けられたピストンロッドでなくてもよく、減衰バルブVを設ける位置はピストン部に限らない。例えば、前述のように、緩衝器がリザーバ室を備え、このリザーバ室でシリンダに出入りするピストンロッドの体積補償をする場合には、シリンダ内とリザーバ室とを連通する通路の途中に減衰バルブVを設けてもよい。
 そして、これらの変更は、第一、第二のバルブストッパB1,B2に設けられる支持部の位置、数、及び形状、並びに、第一、第二のバルブストッパB1,B2の形成方法によらず可能である。
 以上のように構成された本発明の実施形態の構成、作用、および効果をまとめて説明する。
 バルブ(減衰バルブV)は、バルブケース5と、内周端と外周端の一方がバルブケース5に対して軸方向の両側へ動ける自由端8eとされる環状の弁体8と、弁体8の内周側又は外周側に位置して自由端8eと隙間Pをあけて対向できる環状の対向面5eを含み、バルブケース5に設けられる対向部5dと、弁体8の軸方向の両側に位置する第一、第二のバルブストッパB1,B2とを備える。第一、第二のバルブストッパB1,B2は、それぞれ、弁体8が撓んだときにその弁体8の径方向の異なる位置を異なる高さで支持できる複数の支持部(S1,S2又はS3,S4)を有している。
 この構成によれば、弁体8の撓み支点F1,F2と、最も高い位置で弁体8を支える支持部S1,S3との高低差が大きくても、その支持位置よりも低く、径方向へずれた位置を他の支持部S2,S4で支えられる。このため、弁体8が撓んだときに生じる応力が低減されて、弁体8の耐久性を向上できる。
 バルブ(減衰バルブV)は、複数の支持部(S1,S2,S3,S4)の中では、弁体8を支持する位置が自由端8e側となる支持部であるほど、弁体8を支持する位置が高くなる。この構成によれば、弁体8が撓んだときに生じる応力を分散させて、最大発生応力を効率的、且つ合理的に低減できるので、弁体8の耐久性を確実に向上できる。
 バルブ(減衰バルブV)は、第一、第二のバルブストッパB1,B2が、それぞれ、内径又は外径の異なる複数の環状部材(ストッパ部材9,90又はナット30、ストッパ部材91)を有して構成されており、これら環状部材のそれぞれに支持部(S1,S2,S3又はS4)が設けられている。この構成によれば、各支持部S1,S2,S3,S4で弁体8を支持する位置を容易に調整できる。さらに、第一、第二のバルブストッパB1,B2を汎用性の高い環状部材(ストッパ部材9,90,91、ナット30)の組み合わせで構成できるので、各バルブストッパB1,B2を安価にできる。
 バルブ(減衰バルブV)は、バルブケース5に設けられる対向部5dに、弁体8の自由端8eと隙間Pをあけて対向できる環状の対向面5eが形成されており、その隙間Pと直列な通路4c,4dが形成されるメインバルブケース4と、このメインバルブケース4に積層されて通路4c,4dを開閉する主弁体6,7とを備える。この構成によれば、バルブ(減衰バルブV)を緩衝器Dに利用した場合、緩衝器Dの減衰力の特性を細かく設定できる。
 バルブ(減衰バルブV)は、メインバルブケース4が、通路4c,4dが形成される本体部4aと、この本体部4aの一端外周部から突出する筒状のスカート部4bとを有し、バルブケース5が、スカート部4bの内周に嵌合する嵌合部5aと、この嵌合部5aの一端外周部からスカート部4bの外へ突出する筒状のケース部5bとを有し、第一のバルブストッパB1がケース部5b内に挿入され、弁体8と第二のバルブストッパB2が第一のバルブストッパB1の反嵌合部側に配置されており、嵌合部5aには、弁体8の自由端8eと対向面5eとの間にできる隙間Pと通路4c,4dを連通する連通路5cが形成されている。この構成によれば、隙間Pと通路4c,4dを直列に接続するのが容易である。
 緩衝器Dは、シリンダ1と、このシリンダ1内に軸方向へ移動可能に挿入されるロッド(ピストンロッド3)と、上記バルブ(減衰バルブV)とを備え、そのバルブ(減衰バルブV)が、シリンダ1とロッド(ピストンロッド3)が軸方向へ相対移動する際に生じる液体の流れに対して抵抗を与えるようになっており、シリンダ1に対して移動するロッド(ピストンロッド3)の速度(ピストン速度)が所定の速度よりも低い速度領域では、主弁体6,7が閉じるとともに弁体8の自由端8eが対向面5eと対向し、シリンダ1に対して移動するロッド(ピストンロッド3)の速度(ピストン速度)が所定の速度よりも高い速度領域では、主弁体6,7が開くとともに弁体8の自由端8e側の端部が撓んで自由端8eと対向面5eとが対向しなくなる。
 この構成によれば、ロッド(ピストンロッド3)の速度(ピストン速度)が所定の速度よりも低い速度領域では、相対向する自由端8eと対向面5eの間にできる隙間Pを液体が流れ、緩衝器Dがその液体の流れに付与される抵抗に起因する減衰力を発揮できる。一方、ロッド(ピストンロッド3)の速度(ピストン速度)が所定の速度よりも高い速度領域では、緩衝器Dが主弁体6,7の抵抗に起因する減衰力を発揮できる。
 そして、シリンダ1に対して移動するロッド(ピストンロッド3)の速度(ピストン速度)が所定の速度よりも低い速度領域にある場合の減衰力発生用に弁体8を利用する場合、剛性の低い弁体8が一般的に利用され、弁体8が変形しやすくなる。このため、上記構成を備えた緩衝器Dでは、第一、第二のバルブストッパB1,B2に弁体8の径方向の異なる位置を異なる高さで支持できる複数の支持部S1,S2,S3,S4を設けるのが特に効果的である。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2018年4月6日に日本国特許庁に出願された特願2018-073596に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (6)

  1.  バルブであって、
     バルブケースと、
     内周端と外周端の一方が前記バルブケースに対して軸方向の両側へ動ける自由端とされる環状の弁体と、
     前記弁体の内周側又は外周側に位置して前記自由端と隙間をあけて対向できる環状の対向面を含み、前記バルブケースに設けられる対向部と、
     前記弁体の軸方向の両側に位置する第一、第二のバルブストッパとを備え、
     前記第一、第二のバルブストッパは、それぞれ、前記弁体が撓んだときに前記弁体の径方向の異なる位置を異なる高さで支持できる複数の支持部を有するバルブ。
  2.  請求項1に記載のバルブであって、
     前記複数の支持部の中では、前記弁体を支持する位置が自由端側となる支持部であるほど、前記弁体を支持する位置が高くなるバルブ。
  3.  請求項1に記載のバルブであって、
     前記第一、第二のバルブストッパは、それぞれ、内径又は外径の異なる複数の環状部材を有して構成されており、
     前記複数の環状部材のそれぞれに前記支持部が設けられているバルブ。
  4.  請求項1に記載のバルブであって、
     前記隙間と直列な通路が形成されるメインバルブケースと、
     前記メインバルブケースに積層されて前記通路を開閉する主弁体とを備えるバルブ。
  5.  請求項4に記載のバルブであって、
     前記メインバルブケースは、前記通路が形成される本体部と、前記本体部の一端外周部から突出する筒状のスカート部とを有し、
     前記バルブケースは、前記スカート部の内周に嵌合する嵌合部と、前記嵌合部の一端外周部から前記スカート部の外へ突出する筒状のケース部とを有し、
     前記第一のバルブストッパは、前記ケース部内に挿入されており、
     前記弁体と前記第二のバルブストッパは、前記第一のバルブストッパの反嵌合部側に配置されており、
     前記嵌合部には、前記隙間と前記通路を連通する連通路が形成されているバルブ。
  6.  シリンダと、
     前記シリンダ内に軸方向へ移動可能に挿入されるロッドと、
     請求項4に記載のバルブとを備えた緩衝器であって、
     前記バルブは、前記シリンダと前記ロッドが軸方向へ相対移動する際に生じる液体の流れに対して抵抗を与えるようになっており、
     前記シリンダに対して移動する前記ロッドの速度が所定の速度よりも低い速度領域では、前記主弁体が閉じるとともに前記自由端が前記対向面と対向し、
     前記シリンダに対して移動する前記ロッドの速度が前記所定の速度よりも高い速度領域では、前記主弁体が開くとともに前記弁体の自由端側の端部が撓んで前記自由端と前記対向面とが対向しなくなる緩衝器。
PCT/JP2019/014601 2018-04-06 2019-04-02 バルブ及び緩衝器 WO2019194167A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980022794.2A CN111936764B (zh) 2018-04-06 2019-04-02 阀以及缓冲器
DE112019001814.0T DE112019001814T5 (de) 2018-04-06 2019-04-02 Ventil und stossdämpfer
US16/982,917 US11536344B2 (en) 2018-04-06 2019-04-02 Valve and shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-073596 2018-04-06
JP2018073596A JP7002395B2 (ja) 2018-04-06 2018-04-06 バルブ及び緩衝器

Publications (1)

Publication Number Publication Date
WO2019194167A1 true WO2019194167A1 (ja) 2019-10-10

Family

ID=68100295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014601 WO2019194167A1 (ja) 2018-04-06 2019-04-02 バルブ及び緩衝器

Country Status (5)

Country Link
US (1) US11536344B2 (ja)
JP (1) JP7002395B2 (ja)
CN (1) CN111936764B (ja)
DE (1) DE112019001814T5 (ja)
WO (1) WO2019194167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058467A1 (ja) * 2021-10-04 2023-04-13 Kyb株式会社 ショックアブソーバ及びバルブ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506634B2 (ja) 2021-03-31 2024-06-26 カヤバ株式会社 緩衝器
JP2023015489A (ja) 2021-07-20 2023-02-01 Kyb株式会社 緩衝器
JP7441204B2 (ja) 2021-11-25 2024-02-29 カヤバ株式会社 緩衝器
JP2024002315A (ja) * 2022-06-23 2024-01-11 カヤバ株式会社 減衰バルブおよび緩衝器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113537U (ja) * 1983-01-24 1984-07-31 トヨタ自動車株式会社 シヨツクアブソ−バ
JPS6368535U (ja) * 1986-12-27 1988-05-09
US20050211087A1 (en) * 2004-03-24 2005-09-29 Dourson Stephen E Hydraulic actuator having disc valve assembly
JP2016173140A (ja) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 ショックアブソーバ

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632146U (ja) * 1979-08-21 1981-03-28
JPH0276937A (ja) * 1988-06-03 1990-03-16 Honda Motor Co Ltd 油圧緩衝器
US5042624A (en) * 1988-09-29 1991-08-27 Atsugi Unisia Corporation Hydraulic shock absorber with pre-loaded valve for linear variation characteristics of damping force
US5709290A (en) * 1996-02-20 1998-01-20 General Motors Corporation Monotube damper valve
US6837344B2 (en) * 2001-02-12 2005-01-04 Delphi Technologies, Inc. Piston and rod assembly for air-actuated variable damping
JP2004324817A (ja) * 2003-04-25 2004-11-18 Showa Corp 車両用油圧緩衝器のバルブ構造
DE10339188A1 (de) * 2003-08-22 2005-03-10 Suspa Holding Gmbh Gasfeder
JP4726039B2 (ja) * 2005-01-13 2011-07-20 カヤバ工業株式会社 バルブ構造
JP4987283B2 (ja) * 2005-11-09 2012-07-25 カヤバ工業株式会社 緩衝器のバルブ構造および緩衝器
US8517153B2 (en) * 2007-08-21 2013-08-27 Sram, Llc Suspension damping valve
JP4902470B2 (ja) * 2007-09-14 2012-03-21 株式会社ショーワ 油圧緩衝器の減衰力調整構造
JP2009085245A (ja) * 2007-09-27 2009-04-23 Showa Corp 油圧緩衝器の減衰力調整構造
DE102007047516B3 (de) * 2007-10-04 2009-04-30 Zf Friedrichshafen Ag Dämpfventil
JP5064310B2 (ja) * 2008-06-12 2012-10-31 カヤバ工業株式会社 バルブ
US20100084234A1 (en) * 2008-10-07 2010-04-08 Robert Patrick Marble Dual constraint disc valve system for damper
US8794407B2 (en) 2009-11-18 2014-08-05 Tenneco Automotive Operating Company Inc. Velocity progressive valving
JP5941359B2 (ja) * 2012-07-10 2016-06-29 Kyb株式会社 緩衝器のバルブ構造
JP5781479B2 (ja) * 2012-08-30 2015-09-24 株式会社ショーワ 圧力緩衝装置
DE102012109437A1 (de) * 2012-10-04 2014-04-10 Thyssenkrupp Bilstein Gmbh Dämpfungsventil für einen Stoßdämpfer
JP5997070B2 (ja) * 2013-01-31 2016-09-21 Kyb株式会社 緩衝器
EP2989346B1 (en) * 2013-07-12 2017-12-06 BeijingWest Industries Co. Ltd. Hydraulic damper
KR101876915B1 (ko) * 2013-10-28 2018-08-09 주식회사 만도 쇽업소버의 피스톤 밸브 어셈블리
JP5787961B2 (ja) * 2013-10-31 2015-09-30 日立オートモティブシステムズ株式会社 緩衝器
JP2015105737A (ja) * 2013-12-02 2015-06-08 カヤバ工業株式会社 緩衝器
KR101760908B1 (ko) * 2013-12-09 2017-07-24 주식회사 만도 쇽업소버
JP6505510B2 (ja) * 2015-06-08 2019-04-24 株式会社ショーワ 圧力緩衝装置
KR102588959B1 (ko) * 2015-09-14 2023-10-12 히다치 아스테모 가부시키가이샤 완충기
DE102015223932A1 (de) * 2015-12-01 2017-06-01 Zf Friedrichshafen Ag Verstellbare Dämpfventileinrichtung mit einem Dämpfventil
KR102002607B1 (ko) * 2017-05-24 2019-07-22 주식회사 만도 쇽업소버의 밸브구조

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113537U (ja) * 1983-01-24 1984-07-31 トヨタ自動車株式会社 シヨツクアブソ−バ
JPS6368535U (ja) * 1986-12-27 1988-05-09
US20050211087A1 (en) * 2004-03-24 2005-09-29 Dourson Stephen E Hydraulic actuator having disc valve assembly
JP2016173140A (ja) * 2015-03-17 2016-09-29 トヨタ自動車株式会社 ショックアブソーバ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058467A1 (ja) * 2021-10-04 2023-04-13 Kyb株式会社 ショックアブソーバ及びバルブ

Also Published As

Publication number Publication date
CN111936764B (zh) 2023-01-03
JP2019183918A (ja) 2019-10-24
US11536344B2 (en) 2022-12-27
DE112019001814T5 (de) 2020-12-17
US20210010557A1 (en) 2021-01-14
JP7002395B2 (ja) 2022-01-20
CN111936764A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2019194167A1 (ja) バルブ及び緩衝器
JP3009151B2 (ja) 液圧緩衝器
JP5418778B2 (ja) 緩衝器
WO2018163868A1 (ja) 緩衝器
JP2010538219A (ja) 完全変位弁組立体を備えたショックアブソーバ
JP2008082491A (ja) 緩衝器のバルブ構造
WO2017175784A1 (ja) 緩衝器
JP2022186977A (ja) 緩衝器
EP3333446B1 (en) Valve structure for buffer
WO2019194168A1 (ja) バルブ及び緩衝器
JP4883695B2 (ja) 緩衝器のバルブ構造
JP4909761B2 (ja) 緩衝器のバルブ構造
WO2016052701A1 (ja) 緩衝器
JP6738368B2 (ja) バルブシート部材、バルブ、及び緩衝器
JP4847364B2 (ja) 緩衝器のバルブ構造
JP6496197B2 (ja) 緩衝器
JP7032979B2 (ja) バルブ及び緩衝器
WO2023002735A1 (ja) バルブおよび緩衝器
JP4726079B2 (ja) 緩衝器のバルブ構造
WO2023149580A1 (ja) 緩衝器
JP2008215433A (ja) 緩衝器のバルブ構造
JP5324239B2 (ja) バルブ構造
JP2980744B2 (ja) ショックアブソーバのバルブ構造
JP4162232B2 (ja) 油圧緩衝器
JP4162231B2 (ja) 油圧緩衝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780524

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19780524

Country of ref document: EP

Kind code of ref document: A1