WO2023149580A1 - 緩衝器 - Google Patents

緩衝器 Download PDF

Info

Publication number
WO2023149580A1
WO2023149580A1 PCT/JP2023/003883 JP2023003883W WO2023149580A1 WO 2023149580 A1 WO2023149580 A1 WO 2023149580A1 JP 2023003883 W JP2023003883 W JP 2023003883W WO 2023149580 A1 WO2023149580 A1 WO 2023149580A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
lower collar
support
receiving portion
angle
Prior art date
Application number
PCT/JP2023/003883
Other languages
English (en)
French (fr)
Inventor
直樹 安河内
尚喜 長谷川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2023149580A1 publication Critical patent/WO2023149580A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder

Definitions

  • the present invention relates to buffers.
  • shock absorbers resin A rebound spring consisting of a coil spring fitted with a collar is interposed.
  • the rebound spring is sandwiched and compressed between the rod guide and the receiving portion of the support, which approach each other when the shock absorber is extended, thereby exhibiting a spring force that suppresses the extension of the shock absorber. It is designed to reduce the impact of the maximum extension of the
  • the rebound spring disclosed in JP2015-148268A is configured with a coil spring and resin upper and lower collars that are fitted to the inner periphery of both ends of the coil spring.
  • the lower collar has the role of fixing the coil spring to the outer periphery of the piston rod, while the upper collar faces the piston rod through a gap and is displaced relative to the piston rod.
  • the coil spring is fixed at the piston-side end by the lower collar, but the opposite-piston-side end is free.
  • the upper collar comes into contact with the rod guide or the cushion rubber provided at the lower end of the rod guide, it contracts. Then, the spring force is exerted to suppress the extension of the shock absorber.
  • the above-described support 100 includes a cylindrical portion 100a welded and fixed to the piston rod 101, and a flange-shaped receiving portion 100b whose inner circumference continues to the end of the cylindrical portion 100a opposite to the piston. , and the angle formed by the receiving portion 100b and the tubular portion 100a is a right angle.
  • rebound spring 102 contracts when the shock absorber is extended, the spring force is exerted to press the lower collar 103 against the receiving portion 100b of the support 100 constructed as described above, but the shock absorber is subjected to a lateral force.
  • rebound spring 102 may become eccentric with respect to support 100 .
  • the lower collar 103 is also radially displaced with respect to the support 100 .
  • an object of the present invention is to provide a shock absorber that can prevent deformation of the support without increasing the manufacturing cost and weight.
  • the shock absorber of the present invention comprises a cylinder, a piston slidably inserted into the cylinder, and a piston movably inserted through the cylinder and having one end connected to the piston.
  • a rebound spring having a rod, a coil spring arranged on the outer circumference of the piston rod, an annular lower collar mounted on the piston-side end of the coil spring and fitted on the outer circumference of the piston rod, and mounted on the outer circumference of the piston rod.
  • a receiving portion connected to the end opposite to the piston and axially facing the piston side end of the lower collar and capable of abutting against the lower collar is provided, and a restricting portion is provided to restrict the eccentricity of the lower collar with respect to the receiving portion.
  • the shock absorber constructed in this manner even if the rebound spring contracts when the shock absorber is extended and is eccentric with respect to the support, the spring force received from the rebound spring bends the outer periphery of the receiving portion of the support toward the cylindrical portion. It is possible to suppress the deformation that would cause it to collapse.
  • FIG. 1 is a longitudinal sectional view of a shock absorber according to one embodiment of the invention.
  • FIG. 2 is an enlarged vertical cross-sectional view of the support portion of the shock absorber according to one embodiment of the present invention.
  • FIG. 3 is an enlarged vertical cross-sectional view of a rebound spring of a shock absorber according to one embodiment of the present invention.
  • FIG. 4 is an enlarged longitudinal sectional view of the support portion of the shock absorber in the first modified example of one embodiment of the present invention.
  • FIG. 5 is an enlarged vertical cross-sectional view of a support portion of a shock absorber in a second modification of one embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view of a shock absorber according to one embodiment of the invention.
  • FIG. 2 is an enlarged vertical cross-sectional view of the support portion of the shock absorber according to one embodiment of the present invention.
  • FIG. 3 is an enlarged vertical cross-sectional view of a rebound spring of a shock absorber according to one
  • FIG. 6(a) is an enlarged vertical cross-sectional view of a support portion of a shock absorber in a third modified example of one embodiment of the present invention.
  • FIG. 6(b) is an enlarged longitudinal sectional view of the support portion of the shock absorber in the fourth modified example of the embodiment of the present invention.
  • FIG. 7 is an enlarged longitudinal sectional view of a conventional support.
  • the shock absorber D in one embodiment includes a cylinder 1, a piston 2 slidably inserted into the cylinder 1, and a piston 2 movably inserted into the cylinder 1 and having one end extending from the piston. , a rebound spring 4 having a piston rod 3 connected to a coil spring 5 and a lower collar 6 attached to the piston side end 5a of the coil spring 5, and a piston side end of the lower collar 6 axially facing the lower collar 6 and an annular support 8 for supporting the
  • the cylinder 1 has a cylindrical shape with a bottom, and an annular rod guide 9 is attached to the upper end in FIG.
  • the rod guide 9 seals the upper end opening of the cylinder 1 and has the piston rod 3 inserted through the inner circumference thereof to slidably support the piston rod 3 .
  • 1, which is the atmosphere side of the rod guide 9 is fixed to the cylinder 1 in a superimposed state with a seal member 10 which is in sliding contact with the outer circumference of the piston rod 3, thereby sealing the outer circumference of the piston rod 3.
  • the seal member 10 also seals between the cylinder 1 and the outer circumference of the rod guide 9, and the inside of the cylinder 1 is liquid-tightly sealed.
  • the interior of the cylinder 1 is divided into an expansion side chamber R1 above the piston 2 in FIG. 1 and a compression side chamber R2 below the piston 2 in FIG. 1 by the piston 2 inserted into the cylinder 1.
  • the expansion side chamber R1 and the compression side chamber R2 are filled with liquid such as hydraulic oil.
  • a free piston 11 is slidably inserted in the cylinder 1 below the piston 2, and the cylinder 1 is filled with gas below the free piston 11.
  • An air chamber G is formed.
  • the piston 2 is provided with a passage 2a that communicates the expansion side chamber R1 and the compression side chamber R2, and a damping valve 2b as a damping force generating element provided in the middle of the passage 2a.
  • a damping valve 2b as a damping force generating element provided in the middle of the passage 2a.
  • the shock absorber D when the shock absorber D is extended, the pressure in the expansion side chamber R1 becomes higher than the pressure in the compression side chamber R2, and the pressure difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2 acts on the piston 2, and the shock absorber D D outputs a damping force that prevents the piston 2 from moving upward in FIG.
  • the shock absorber D contracts, the pressure in the compression side chamber R2 becomes higher than the pressure in the expansion side chamber R1, and the differential pressure between the pressure in the compression side chamber R2 and the pressure in the expansion side chamber R1 acts on the piston 2, and the shock absorber D outputs a damping force that prevents the piston 2 from moving downward in FIG.
  • the shock absorber D when the expansion and contraction is exhibited, the piston rod 3 moves in and out of the cylinder 1, so the displacement of the piston rod 3 within the cylinder 1 changes. This volume change is compensated for by the free piston 11 moving up and down within the cylinder 1 to change the volume of the air chamber G.
  • the shock absorber D is a so-called single-rod single-cylinder shock absorber. and form a liquid-filled reservoir in which the displacement of the piston rod 3 is compensated for by the double-cylinder shock absorber.
  • the shock absorber D may be a double rod type shock absorber in which the piston rod 3 is inserted into the expansion side chamber R1 and the compression side chamber R2.
  • the damping valve 2b provided in the piston 2 is a throttle that allows both the flow of liquid from the expansion-side chamber R1 to the compression-side chamber R2 and the opposite flow of liquid from the compression-side chamber R2 to the expansion-side chamber R1.
  • a plurality of passages 2a are provided, some of which are provided with damping valves that allow only the flow of liquid from the expansion side chamber R1 to the compression side chamber R2, and all of the remaining passages 2a are provided with a flow from the compression side chamber R2 to the expansion side chamber R1.
  • a damping valve may be provided to allow only directed liquid flow.
  • the passage 2a and the damping valve 2b can be provided outside the piston 2. For example, they can be provided in the piston rod 3 or outside the cylinder 1.
  • the piston rod 3 has the piston 2 attached to its lower end in FIG. 1, and its upper end in FIG. A support 8 is fixed by welding to the outer periphery of the piston rod 3 at the bottom in FIG.
  • the support 8 includes a cylindrical portion 8a mounted on the outer periphery of the piston rod 3 and a ring-shaped receiving portion 8b having an inner periphery connected to the end of the cylindrical portion 8a opposite to the piston. and is formed by expanding the diameter of a pipe material at an intermediate portion in the axial direction.
  • the angle ⁇ between the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 is greater than 90 degrees and is 110 degrees, and the receiving portion 8b is gradually separated from the piston rod 3 toward the outer circumference. and has a tapered inclined surface 8b1 on the side opposite to the piston.
  • the support 8 configured in this manner inserts the piston rod 3 into the cylindrical portion 8a, and after fitting the cylindrical portion 8a to a predetermined position on the outer periphery of the piston rod 3, the cylindrical portion 8a is attached to the piston by projection welding. It is fixed to the piston rod 3 by being attached to the outer periphery of the rod 3 .
  • the eccentricity of the lower collar 6 with respect to the receiving portion 8b of the support 8 is restricted by making the angle ⁇ formed by the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 larger than 90 degrees. Forms a regulatory department.
  • the angle ⁇ between the receiving portion 8b and the cylindrical portion 8a is set to be larger than 90 degrees
  • the angle ⁇ may be any angle larger than 90 degrees. From the viewpoint of supporting the lower collar 6, it is preferable that the angle obtained by subtracting 90 degrees from the angle ⁇ is set within the range of 10 degrees to 35 degrees.
  • the rebound spring 4 is attached to the coil spring 5 arranged on the outer periphery of the piston rod 3 through which the piston rod 3 is inserted, and to the piston-side end 5a of the coil spring 5, which is the lower end in FIG. and an annular lower collar 6 fitted to the outer periphery of the piston rod 3, and an annular upper collar 7 mounted to the end of the coil spring 5 opposite to the piston, which is the upper end in FIG. is configured with
  • the coil spring 5 has an end turn portion at the piston side end 5a of the lower end and an end turn portion at the opposite piston side end 5b of the upper end in FIGS. there is
  • the lower collar 6 is made of a hard resin material, and as shown in FIG. It is composed of a small-diameter cylindrical fitting portion 6b and a plurality of ridges 6c provided on the inner circumference of the seat portion 6a.
  • the lower collar 6 configured in this manner is attached to the coil spring 5 by press-fitting the fitting portion 6b into the inner periphery of the piston-side end 5a of the coil spring 5.
  • the tip of the fitting portion 6b of the lower collar 6 has a tapered outer diameter so that the fitting portion 6b can be smoothly inserted into the piston-side end 5a of the coil spring 5. 5 can be easily installed.
  • the lower end surface in FIG. 2 of the seat portion 6a which serves as the piston-side end surface 6d of the lower collar 6, is an inclined surface that gradually moves away from the piston 2 toward the outer peripheral side.
  • the inclination angle ⁇ is an angle smaller than 20 degrees obtained by subtracting 90 degrees from the angle ⁇ formed by the tubular portion 8a and the receiving portion 8b in the cross section of the support 8 .
  • three ridges 6c are provided on the inner periphery of the lower collar 6 at equal intervals in the circumferential direction, and contact the outer periphery of the piston rod 3 inserted into the inner periphery with a straining force.
  • the lower collar 6 is fixed to the outer circumference of the piston rod 3 by making contact with it. Note that the number of protrusions 6c to be installed may be three or more, and can be arbitrarily changed.
  • the lower collar 6 has a piston-side end surface 6d, which is an inclined surface, in contact with the receiving portion 8b of the support 8, thereby restricting the downward movement of the rebound spring 4 with respect to the piston rod 3 in FIG. there is
  • the inclination angle ⁇ of the piston-side end surface 6d of the lower collar 6 is smaller than 20 degrees obtained by subtracting 90 degrees from the angle ⁇ formed between the cylindrical portion 8a and the receiving portion 8b in the cross section of the support 8, so no load is applied. , the outer periphery of the piston-side end face 6d of the lower collar 6 is in line contact with the receiving portion 8b of the support 8. As shown in FIG.
  • the upper collar 7 is formed of a hard fiber-reinforced resin, and includes an annular seat portion 7a and an outer peripheral portion that rises downward from the inner peripheral side of the end of the seat portion 7a on the side of the coil spring as shown in FIG. It comprises a cylindrical fitting portion 7b smaller in diameter than the seat portion 7a and a plurality of annular projections 7c provided inwardly on the inner periphery of the seat portion 7a.
  • the upper collar 7 configured in this manner is attached to the coil spring 5 by press-fitting the fitting portion 7b into the inner circumference of the end turn of the end 5b of the coil spring 5 opposite to the piston.
  • the tip of the fitting portion 7b of the upper collar 7 has a tapered outer diameter. mounting work to the coil spring 5 is facilitated.
  • shock absorber D constructed as described above, when the piston 2 moves upward in FIG. A spring 5 generates a spring force that prevents the piston 2 from moving upward in FIG. In addition, the shock absorber D generates a damping force that prevents the upward movement of the piston 2 in FIG. . Therefore, in a situation where the rebound spring 4 is compressed when the shock absorber D is extended, the force exerted by the shock absorber D is composed of the spring force generated by the rebound spring 4 that prevents the movement of the piston 2 and the pressure difference that prevents the piston 2 from moving. is the sum of the damping forces that hinder the movement of
  • the angle ⁇ formed by the cylindrical portion 8a and the receiving portion 8b in the cross section of the support 8 is larger than 90 degrees, the internal stress in the support 8 formed by bending the pipe member halfway is reduced. The durability of 8 is improved. Further, in the cross section of the support 8, the angle ⁇ between the cylindrical portion 8a and the receiving portion 8b is larger than 90 degrees, and the receiving portion 8b has a disc spring shape. The strength of the support 8 against the load that causes the diameter to expand is much higher than when the angle ⁇ is 90 degrees. Therefore, the durability and strength of the support 8 are improved without increasing the wall thickness of the support 8, so that deformation of the receiving portion 8b to expand its diameter when subjected to the spring force from the coil spring 5 is suppressed. It is possible to prevent deformation such that the outer periphery of the receiving portion 8b is bent toward the cylindrical portion 8a as in the case of the support 100. - ⁇
  • the shock absorber D of this embodiment includes the cylinder 1, the piston 2 slidably inserted into the cylinder 1, and the piston 2 movably inserted into the cylinder 1 and having one end attached to the piston 2.
  • a regulating portion is provided for regulating the eccentricity of the lower collar 6 with respect to the receiving portion 8b.
  • the eccentricity of the lower collar 6 with respect to the support 8 is restricted by the restricting portion so that the lower collar 6 does not shift radially, so a large moment acts on the receiving portion 8b when the rebound spring 4 is compressed. can prevent it from Therefore, according to the shock absorber D constructed in this way, even if the thickness of the support 8 is not increased, the spring force received from the rebound spring 4 when the shock absorber D expands causes the outer periphery of the receiving portion 8b to move toward the cylindrical portion 8a. It is possible to suppress deformation such as bending. As described above, according to the shock absorber D of the present embodiment, the durability and strength of the support 8 can be improved without increasing the thickness of the support 8, and the bending deformation can be suppressed. Deformation of the support 8 can be prevented without causing an increase.
  • the angle formed by the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 is greater than 90 degrees to form the restricting portion.
  • the angle formed by the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 is made larger than 90 degrees, so that the strength of the support 8 can be improved and the lower collar for the receiving portion 8b can be provided. Since the regulating portion that regulates the eccentricity of 6 can be formed, the manufacturing cost can be reduced.
  • the fitting portion 6b is fitted to the inner circumference of the end turn portion of the piston-side end 5a of the coil spring 5, and the fitting portion 6b always has a reduced diameter.
  • the receiving portion 100b of the support 100 is also bent and deformed to bend the outer circumference of the seat portion 6a of the lower collar 6 toward the piston 2 side with respect to the inner circumference.
  • the moment is received by receiving the spring force generated by receiving the fitting part 6b which receives the contraction force of the diameter contraction direction from the coil spring 5, and the coil spring 5 being compressed.
  • the angle ⁇ formed by the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 is set to be larger than 90 degrees, and the piston-side end surface 6d of the lower collar 6 is used as an inclined surface.
  • the inclination angle ⁇ of the piston-side end face 6d is smaller than the angle ⁇ formed by the cylindrical portion 8a and the receiving portion 8b in the cross section of the support 8 minus 90 degrees. Therefore, the outer circumference of the piston-side end face 6d of the lower collar 6 is in contact with the receiving portion 8b of the support 8. As shown in FIG.
  • the shock absorber D configured in this way, when an axial load acts on the seat portion 6a of the lower collar 6 from the rebound spring 4, the lower collar 6 receives a moment such that the inner peripheral side of the seat portion 6a approaches the receiving portion 8b. Therefore, the tensile force acting between the fitting portion 6b and the seat portion 6a due to the straining force that the fitting portion 6b receives from the coil spring 5 can be relieved by the moment. Therefore, according to the shock absorber D configured in this way, fatigue of the lower collar 6 can be reduced even if the spring force from the coil spring 5 is repeatedly received.
  • the piston-side end surface 6d of the lower collar 6 is tapered to form an inclined surface.
  • the inclined surface may be a curved surface other than a tapered surface as long as it can be set to abut.
  • the angle ⁇ formed by the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 is made larger than 90 degrees, and the piston-side end surface 6d of the lower collar 6 is used as an inclined surface to form a restricting portion.
  • the inclination angle ⁇ of the piston-side end face 6d is greater than the angle ⁇ formed by the cylindrical portion 8a and the receiving portion 8b in the cross section of the support 8 minus 90 degrees, the inner circumference of the piston-side end face 6d of the lower collar 6 contacts the receiving portion 8 b of the support 8 .
  • the spring force generated by the compression of the coil spring 5 is transmitted to the receiving portion 8b of the support 8 through the inner circumference of the lower collar 6, so that the load received from the rebound spring 4 acts.
  • the wire passes through the wall thickness of the cylindrical portion 8a of the support 8 or the vicinity of the outer periphery of the cylindrical portion 8a, so that the moment that bends the outer periphery of the receiving portion 8b toward the cylindrical portion 8a can be greatly reduced. It is possible to enhance the deformation suppression effect of
  • the angle ⁇ formed by the receiving portion 8b and the cylindrical portion 8a in the cross section of the support 8 is made larger than 90 degrees, and the piston-side end surface 6d of the lower collar 6 is formed as an inclined surface to form a restricting portion. If the angle ⁇ is made equal to the angle ⁇ formed by the cylindrical portion 8a and the receiving portion 8b in the cross section of the support 8 minus 90 degrees, fatigue of the lower collar 6 can be reduced even if the coil spring 5 repeatedly receives the spring force. , the effect of suppressing deformation of the receiving portion 8b can be enhanced. However, in order to make the inclination angle ⁇ equal to the angle obtained by subtracting 90 degrees from the angle ⁇ , it is necessary to strictly manage the dimensions of the lower collar 6 and the support 8 .
  • the inclination angle ⁇ An angle smaller than the angle obtained by subtracting 90 degrees from ⁇ is superior in terms of facilitating manufacturing, and if it is desired to enhance the effect of suppressing deformation of the receiving portion 8b, subtract 90 degrees from the inclination angle ⁇ and the angle ⁇ .
  • the piston-side end surface 6d of the lower collar 6 is formed as an inclined surface, but as shown in FIG. may
  • the imaginary plane V passing through the edge of the stepped portion becomes an inclined plane. Therefore, if the inclination angle of the imaginary plane V is made smaller than the angle ⁇ formed by the cylindrical portion 8a and the receiving portion 8b in the cross section of the support 8 minus 90 degrees, the outer peripheral side of the seat portion 6a contacts the receiving portion 8b. Since they are in contact with each other, fatigue of the lower collar 6 can be reduced.
  • the category in which the piston-side end surface 6d of the lower collar 6 is formed as an inclined surface includes forming the piston-side end surface 6d of the lower collar 6 into a stepped shape, and forming the virtual plane V passing through the edge of the stepped portion as an inclined surface. .
  • the piston-side end surface 6d of the seat portion 6a of the lower collar 6 is not an inclined surface, but a non-inclined surface or a reversely inclined inclined surface that is opposite to the inclined surface shown in FIG. Also in this case, the outer circumference of the piston-side end surface 6d of the lower collar 6 abuts against the receiving portion 8b of the support 8, so that fatigue of the lower collar 6 can be reduced even if the spring force from the coil spring 5 is repeatedly received.
  • the outer peripheral portion 8b2 of the receiving portion 8b is inclined so that the angle formed by the outer peripheral portion 8b2 of the receiving portion 8b and the tubular portion 8a is 90 degrees.
  • a restricting portion that restricts the eccentricity of the lower collar 6 with respect to the receiving portion 8b may be formed by making it larger.
  • the outer peripheral portion 8b2 of the receiving portion 8b is folded back, and the angle formed by the outer peripheral portion 8b3 of the receiving portion 8b and the cylindrical portion 8a is set to 180 degrees or more.
  • the outer peripheral portion 8b3 may face the outer periphery of the seat portion 6a of the lower collar 6 to form a restricting portion that restricts the eccentricity of the lower collar 6 with respect to the receiving portion 8b.
  • grooves or recesses may be provided on the piston-side end surface 6d of the lower collar 6 for the purpose of suppressing the striking sound with the receiving portion 8b.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)
  • Springs (AREA)

Abstract

本発明の緩衝器(D)は、シリンダ(1)と、シリンダ(1)内に摺動自在に挿入されたピストン(2)と、シリンダ(1)内に移動自在に挿通されるピストンロッド(3)と、ピストンロッド(3)の外周に配置されるコイルスプリング(5)とコイルスプリング(5)に装着される環状のロアカラー(6)とを有するリバウンドスプリング(4)と、ロアカラー(6)と軸方向で対向してロアカラー(6)のピストン側端を支承する環状のサポート(8)とを備え、サポート(8)がピストンロッド(3)の外周に装着される筒部(8a)と、環状であって内周が筒部(8a)の反ピストン側端に接続されるとともにロアカラー(6)のピストン側端に軸方向で対向してロアカラー(6)に当接可能な受部(8b)とを備え、受部(8b)に対するロアカラー(6)の偏心を規制する規制部を設けた。

Description

緩衝器
 本発明は、緩衝器に関する。
 従来から緩衝器にあっては、シリンダ端部を封止しピストンロッドを軸支するロッドガイドとピストンロッドの中間部に溶接されてフランジ状の受部を有するサポートとの間に、両端に樹脂カラーを装着したコイルスプリングでなるリバウンドスプリングを介装している。このリバウンドスプリングは、緩衝器の伸長時において互いに接近するロッドガイドとサポートにおける受部との間で挟まれて圧縮せしめられることで、緩衝器の伸長を抑制するばね力を発揮して、緩衝器の最大伸切時の衝撃を緩和するようになっている。
 そして、たとえば、JP2015-148268Aに開示されたリバウンドスプリングにあっては、コイルスプリングと、コイルスプリングの両端内周のそれぞれ嵌合される樹脂製のアッパーカラーとロアカラーとを備えて構成されている。
 ロアカラーは、コイルスプリングをピストンロッドの外周に固定する役割を持ち、対するアッパーカラーはピストンロッドとの間に隙間を介して臨んでいてピストンロッドに対して変位するようになっている。このように、コイルスプリングは、ピストン側端がロアカラーによって固定されるが反ピストン側端が自由端とされており、アッパーカラーがロッドガイド或いはロッドガイドの下端に設けられるクッションゴムに当接すると収縮してばね力を発揮して緩衝器の伸長を抑制する。
特開2015-148268号公報
 ところで、図7に示すように、前述したサポート100は、ピストンロッド101に溶接されて固定される筒部100aと、内周が筒部100aの反ピストン側端に連なるフランジ状の受部100bとを備えて構成されており、受部100bと筒部100aとでなす角度は直角となっている。
 前述したように、緩衝器の伸長時にリバウンドスプリング102が収縮するとばね力を発揮してロアカラー103を前述のように構成されたサポート100の受部100bに対して押しつけるが、緩衝器に横力が作用してロッド104に横力が作用すると、リバウンドスプリング102がサポート100に対して偏心する場合がある。このようにリバウンドスプリング102がサポート100に対して偏心するとロアカラー103もサポート100に対して径方向へずれてしまう。
 このようにロアカラー103がサポート100に対して偏心して径方向にずれてしまうと、リバウンドスプリング102が圧縮させられることによって発生するばね力の作用線が受部100bの外周側へずれて受部100bに大きなモーメントが作用するようになる。すると、図7中の破線で示したようにサポート100の受部100bの外周が筒部側へ向けて曲がるように変形して、ロアカラー103のサポート100に当接するシート部103aやリバウンドスプリング102に嵌合している嵌合部103bを傷めてしまう可能性がある。このようなサポート100の変形を防止するには、サポート100の肉厚を厚くする必要があるが、そうすると、緩衝器の製造コストと重量が増加してしまう。
 そこで、本発明は、製造コストと重量の増加を招くことなくサポートの変形を防止できる緩衝器の提供を目的としている。
 前記した目的を解決するために、本発明の緩衝器は、シリンダと、シリンダ内に摺動自在に挿入されたピストンと、シリンダ内に移動自在に挿通されるとともに一端がピストンに連結されるピストンロッドと、ピストンロッドの外周に配置されるコイルスプリングとコイルスプリングのピストン側端に装着されるとともにピストンロッドの外周に嵌合される環状のロアカラーとを有するリバウンドスプリングと、ピストンロッドの外周に装着されるとともにロアカラーと軸方向で対向してロアカラーのピストン側端を支承する環状のサポートとを備え、サポートがピストンロッドの外周に装着される筒部と、環状であって内周が筒部の反ピストン側端に接続されるとともにロアカラーのピストン側端に軸方向で対向してロアカラーに当接可能な受部とを備え、受部に対するロアカラーの偏心を規制する規制部を設けたことを特徴としている。
 このように構成された緩衝器によれば、緩衝器の伸長時にリバウンドスプリングが収縮しつつサポートに対して偏心してもリバウンドスプリングから受けるばね力でサポートにおける受部の外周が筒部側へ曲がってしまうような変形を抑制できる。
図1は、本発明の一実施の形態における緩衝器の縦断面図である。 図2は、本発明の一実施の形態における緩衝器のサポート部分の拡大縦断面図である。 図3は、本発明の一実施の形態における緩衝器のリバウンドスプリングの拡大縦断面図である。 図4は、本発明の一実施の形態の第1変形例における緩衝器のサポート部分の拡大縦断面図である。 図5は、本発明の一実施の形態の第2変形例における緩衝器のサポート部分の拡大縦断面図である。 図6(a)は、本発明の一実施の形態の第3変形例における緩衝器のサポート部分の拡大縦断面図である。図6(b)は、本発明の一実施の形態の第4変形例における緩衝器のサポート部分の拡大縦断面図である。 図7は、従来のサポートの拡大縦断面図である。
 以下、図に基づいて本発明の実施の形態について説明する。一実施の形態における緩衝器Dは、図1に示すように、シリンダ1と、シリンダ1に摺動自在に挿入されたピストン2と、シリンダ1内に移動自在に挿通されるとともに一端が前記ピストンに連結されるピストンロッド3と、コイルスプリング5とコイルスプリング5のピストン側端5aに装着されるロアカラー6とを有するリバウンドスプリング4と、ロアカラー6と軸方向で対向してロアカラー6のピストン側端を支承する環状のサポート8とを備えている。
 以下、各部について詳細に説明する。シリンダ1は、有底筒状とされており、図1中上端には、環状のロッドガイド9が取り付けられている。このロッドガイド9は、シリンダ1の上端開口部を封止するとともに内周にピストンロッド3が挿通されていて、当該ピストンロッド3を摺動自在に軸支している。また、ロッドガイド9の大気側となる図1中上方には、ピストンロッド3の外周に摺接するシール部材10が重ねられた状態でシリンダ1に固定されており、ピストンロッド3の外周がシールされている。シール部材10は、シリンダ1とロッドガイド9の外周との間もシールしており、シリンダ1内は液密に封止されている。
 そして、シリンダ1内は、当該シリンダ1内に挿入されたピストン2によって、図1中でピストン2の上方の伸側室R1と図1中でピストン2の下方の圧側室R2とに区画されており、伸側室R1と圧側室R2内には作動油等の液体が充填されている。また、この緩衝器Dの場合、シリンダ1内には、ピストン2よりも下方にフリーピストン11が摺動自在に挿入されており、当該シリンダ1内にフリーピストン11の下方に気体が充填される気室Gが形成されている。
 ピストン2には、伸側室R1と圧側室R2とを連通する通路2aと、通路2aの途中に設けた減衰力発生要素としての減衰弁2bが設けられている。緩衝器Dが伸長作動して、ピストン2によって伸側室R1が圧縮されると、伸側室R1の液体が通路2aを通過して圧側室R2へ移動する。すると、減衰弁2bが液体の流れに抵抗を与えるので、伸側室R1の圧力が上昇し、伸側室R1と圧側室R2の圧力に差が生じる。また、緩衝器Dが収縮作動する場合には、ピストン2によって圧側室R2が圧縮され、圧側室R2の液体が通路2aを通過して伸側室R1へ移動する。すると、減衰弁2bが液体の流れに抵抗を与えるので、圧側室R2の圧力が上昇し、圧側室R2と伸側室R1の圧力に差を生じる。
 このように、緩衝器Dの伸長作動時には伸側室R1の圧力が圧側室R2の圧力よりも高くなり、伸側室R1の圧力が圧側室R2の圧力の差圧がピストン2に作用し、緩衝器Dは、ピストン2の図1中上方への移動を妨げる減衰力を出力する。他方、緩衝器Dの収縮作動時には、圧側室R2の圧力が伸側室R1の圧力よりも高くなり、圧側室R2の圧力と伸側室R1の圧力の差圧がピストン2に作用し、緩衝器Dは、ピストン2の図1中下方への移動を妨げる減衰力を出力する。
 なお、この緩衝器Dの場合、伸縮作動を呈すると、シリンダ1内にピストンロッド3が出入りするため、シリンダ1内でピストンロッド3の押しのける容積が変化する。この容積変化は、フリーピストン11がシリンダ1内で上下動して気室Gの容積を変化させることで補償される。このように、緩衝器Dは、所謂、片ロッドの単筒型緩衝器とされているが、シリンダ1外に外筒やタンクを設けて、外筒とシリンダ1との間或いはタンク内に気体と液体を充填したリザーバを形成して、当該リザーバでピストンロッド3の押しのけ容積の変化を補償する復筒型緩衝器とされてもよい。また、緩衝器Dは、ピストンロッド3が伸側室R1と圧側室R2に挿通される両ロッド型の緩衝器とされてもよい。
 また、ピストン2に設けた減衰弁2bは、この場合、伸側室R1から圧側室R2へ向かう液体の流れと、反対に圧側室R2から伸側室R1へ向かう液体の流れの両方を許容する絞りとされているが、通路2aを複数設けておき、その一部に伸側室R1から圧側室R2へ向かう液体の流れのみを許容する減衰弁を設け、残りの全部に圧側室R2から伸側室R1へ向かう液体の流れのみを許容する減衰弁を設けるようにしてもよい。さらに、通路2aおよび減衰弁2bは、ピストン2以外に設けることも可能であり、たとえば、ピストンロッド3に設けたり、シリンダ1外に設けたりすることも可能である。
 ピストンロッド3は、図1中下端となる先端にピストン2が装着されており、図1中上端がロッドガイド9の内周を通してシリンダ1外に突出されている。また、ピストンロッド3の図1中下方の外周には、サポート8が溶接によって固定されている。
 サポート8は、図1および図2に示すように、ピストンロッド3の外周に装着される筒部8aと、環状であって内周が筒部8aの反ピストン側端に接続される受部8bとを備えており、パイプ材を軸方向の中間部分で拡径変形させて形成されている。また、サポート8の断面における受部8bと筒部8aとでなす角度θが90度より大きく、110度となっており、受部8bは、外周へ向かうほどピストンロッド3から徐々に離間するように傾斜していて反ピストン側にテーパ状の傾斜面8b1を備えている。このように構成されたサポート8は、筒部8a内にピストンロッド3を挿入して、筒部8aをピストンロッド3の外周の所定位置に嵌合させたのち、筒部8aがプロジェクション溶接によってピストンロッド3の外周に装着されることで、ピストンロッド3に固定される。本実施の形態の緩衝器Dでは、サポート8の断面における受部8bと筒部8aとでなす角度θが90度より大きくすることで、サポート8の受部8bに対するロアカラー6の偏心を規制する規制部を形成している。なお、規制部を受部8bと筒部8aとでなす角度θを90度より大きな角度とすることで形成する場合、前記角度θは、任意の90度よりも大きな角度であればよいが、ロアカラー6を支持する観点からは、角度θから90度を差し引いた角度が10度から35度までの範囲に設定されるのが好ましい。
 リバウンドスプリング4は、前述した通り、内方にピストンロッド3が挿通されてピストンロッド3の外周に配置されるコイルスプリング5と、コイルスプリング5の図1中下端となるピストン側端5aに装着されてピストンロッド3の外周に嵌合される環状のロアカラー6と、コイルスプリング5の図1中上端となる反ピストン側端に装着されてピストンロッド3の外周に配置される環状のアッパーカラー7とを備えて構成されている。
 コイルスプリング5は、図1および図3に示すように、下端のピストン側端5aに座巻部を備えるとともに、図1および図3中の上端の反ピストン側端5bに座巻部を備えている。
 ロアカラー6は、この場合、硬質の樹脂材料で形成され、図3に示すように、環状のシート部6aと、シート部6aのコイルスプリング側端の内周側から立ち上がり外径がシート部6aより小径な筒状の嵌合部6bと、シート部6aの内周に設けた複数の突条6cとを備えて構成されている。このように構成されたロアカラー6は、コイルスプリング5のピストン側端5aの内周に嵌合部6bを圧入することでコイルスプリング5に装着される。なお、ロアカラー6の嵌合部6bの先端は外径が先細りの形状となっていて、当該嵌合部6bをコイルスプリング5のピストン側端5a内にスムーズに挿入できるので、ロアカラー6のコイルスプリング5への装着作業が容易になる。
 ロアカラー6のピストン側端面6dとなるシート部6aの図2中下端面は、外周側へ向かうほどピストン2から徐々に遠ざかる傾斜面となっており、本実施の形態の緩衝器Dで傾斜面の傾斜角度αは、サポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた20度よりも小さい角度となっている。
 なお、突条6cは、この実施の形態では、ロアカラー6の内周に周方向に等間隔を持って3つ設けられており、内周に挿入されたピストンロッド3の外周に緊迫力をもって当接してロアカラー6をピストンロッド3の外周に固定する。なお、突条6cの設置数は、三つ以上であればよく、任意に変更できる。また、このロアカラー6は、傾斜面でなるピストン側端面6dを前記したサポート8の受部8bに当接させていて、リバウンドスプリング4のピストンロッド3に対する図1中下方への移動が規制されている。
 ロアカラー6のピストン側端面6dにおける傾斜角度αは、サポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた20度よりも小さい角度なので、何ら荷重が作用しない状態では、ロアカラー6のピストン側端面6dの外周がサポート8の受部8bに線接触している。
 アッパーカラー7は、この場合、硬質の繊維強化樹脂で形成され、図3に示すように、環状のシート部7aと、シート部7aのコイルスプリング側端の内周側から下方へ向けて立ち上がり外径がシート部7aより小径な筒状の嵌合部7bと、シート部7aの内周に内方へ向けて設けた複数の環状の突起7cとを備えて構成されている。
 このように構成されたアッパーカラー7は、コイルスプリング5の反ピストン側端5bの座巻の内周に嵌合部7bを圧入することでコイルスプリング5に装着される。このアッパーカラー7の嵌合部7bの先端の外径が先細りとなる形状となっており、当該嵌合部7bをコイルスプリング5の反ピストン側端5b内にスムーズに挿入できるので、アッパーカラー7のコイルスプリング5への装着作業が容易になる。
 そして、前述のように構成された緩衝器Dでは、ピストン2が図1中上方へ移動する伸長作動時に、アッパーカラー7がロッドガイド9に当接して、コイルスプリング5が圧縮されると、コイルスプリング5がピストン2の図1中上方への移動を妨げるばね力を発生する。また、緩衝器Dは、伸長作動時には、上述したように伸側室R1の圧力と圧側室R2の圧力に差を生じさせて、ピストン2の図1中上方への移動を妨げる減衰力を発生する。したがって、緩衝器Dが伸長作動時にリバウンドスプリング4が圧縮される状況では、緩衝器Dが発揮する力は、リバウンドスプリング4が発生するピストン2の移動を妨げるばね力と、前記圧力差によってピストン2の移動を妨げる減衰力の総和となる。
 このように、緩衝器Dが伸長作動して、アッパーカラー7がロッドガイド9に当接するとコイルスプリング5が収縮してばね力を発生するので、ロアカラー6が当該ばね力によってサポート8の受部8bに押圧される。
 サポート8の断面において筒部8aと受部8bとのなす角度θが90度よりも大きくなっているので、パイプ材を途中で曲げ成型して形成されるサポート8における内部応力が低減されてサポート8の耐久性が向上する。また、サポート8の断面において筒部8aと受部8bとのなす角度θが90度よりも大きく受部8bが皿ばね状の形状となっており、受部8bを筒部8a側へ向けて拡径させるような荷重に対するサポート8の強度は、前記角度θが90度である場合に比較して格段に高くなる。よって、サポート8の肉厚を厚くしなくともサポート8における耐久性および強度が向上するので、コイルスプリング5からばね力を受けた場合に受部8bが拡径する変形が抑制されて、従来のサポート100のように受部8bの外周が筒部8a側へ向けて曲がるような変形を阻止できる。
 以上のように、本実施の形態の緩衝器Dは、シリンダ1と、シリンダ1内に摺動自在に挿入されたピストン2と、シリンダ1内に移動自在に挿通されるとともに一端がピストン2に連結されるピストンロッド3と、ピストンロッド3の外周に配置されるコイルスプリング5とコイルスプリング5のピストン側端5aに装着されるとともにピストンロッド3の外周に嵌合される環状のロアカラー6とを有するリバウンドスプリング4と、ピストンロッド3の外周に装着されるとともにロアカラー6と軸方向で対向してロアカラー6のピストン側端を支承する環状のサポート8とを備え、サポート8がピストンロッド3の外周に装着される筒部8aと、環状であって内周が筒部8aの反ピストン側端に接続されるとともにロアカラー6のピストン側端に軸方向で対向してロアカラー6に当接可能な受部8bとを備え、受部8bに対するロアカラー6の偏心を規制する規制部が設けられている。
 このように構成された緩衝器Dによれば、規制部によってロアカラー6がサポート8に対して偏心が規制されて径方向へずれないので、リバウンドスプリング4の圧縮時に受部8bに大きなモーメントが作用するのを防止できる。よって、このように構成された緩衝器Dによれば、サポート8の肉厚を厚くしなくとも緩衝器Dの伸長時にリバウンドスプリング4から受けるばね力で受部8bの外周が筒部8a側へ曲がってしまうような変形を抑制できる。以上より、本実施の形態の緩衝器Dによれば、サポート8の肉厚を厚くしなくともサポート8の耐久性と強度を向上させて曲げ変形を抑制できるので、製造コストの増加および重量の増加を招くことなくサポート8の変形を防止できる。
 また、本実施の形態の緩衝器Dは、サポート8の断面における受部8bと筒部8aとでなす角度を90度より大きくして規制部を形成している。このように構成された緩衝器Dによれば、サポート8の断面における受部8bと筒部8aとでなす角度を90度より大きくすることでサポート8の強度を向上できるとともに受部8bに対するロアカラー6の偏心を規制する規制部を形成できるので、製造コストを低減できる。
 ここで、従来のサポート100でロアカラー6を支持すると、嵌合部6bがコイルスプリング5のピストン側端5aの座巻部分の内周に嵌合されていて、嵌合部6bには常に縮径方向への緊迫力が作用し、リバウンドスプリング4のばね力を受けるとサポート100の受部100bも曲げ変形してロアカラー6のシート部6aの外周を内周に対してピストン2側に向けて曲げようとするモーメントが作用する。よって、従来のサポート100の構造では、コイルスプリング5から縮径方向の緊迫力を受けている嵌合部6bと、コイルスプリング5が圧縮されることで発生するばね力を受けることによってモーメントを受けるシート部6aとの間に大きな引張力が作用してロアカラー6を疲労させてしまう。ところが、本実施の形態の緩衝器Dでは、サポート8の断面における受部8bと筒部8aとでなす角度θを90度より大きくするとともに、ロアカラー6のピストン側端面6dを傾斜面として規制部を形成し、ピストン側端面6dにおける傾斜角度αがサポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた角度よりも小さい角度となっている。よって、ロアカラー6のピストン側端面6dの外周がサポート8の受部8bに当接している。このように構成された緩衝器Dでは、リバウンドスプリング4からロアカラー6のシート部6aに軸方向の荷重が作用すると、ロアカラー6は、シート部6aの内周側が受部8bに接近するようなモーメントを受けるので、嵌合部6bがコイルスプリング5から受ける緊迫力によって嵌合部6bとシート部6aとの間に作用する引張力を当該モーメントによって緩和できる。よって、このように構成された緩衝器Dによれば、コイルスプリング5から繰り返しばね力を受けてもロアカラー6の疲労を軽減できる。なお、図示したところでは、ロアカラー6のピストン側端面6dをテーパ面とすることで、傾斜面としているが、このようにしてもロアカラー6のピストン側端6dの外周がサポート8の受部8bに当接するように設定できれば傾斜面はテーパ面以外にも湾曲面とされてもよい。
 また、図4に示すように、サポート8の断面における受部8bと筒部8aとでなす角度θを90度より大きくするとともに、ロアカラー6のピストン側端面6dを傾斜面として規制部を形成し、ピストン側端面6dにおける傾斜角度αがサポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた角度よりも大きくする場合、ロアカラー6のピストン側端面6dの内周がサポート8の受部8bに当接する構造となる。このように構成された緩衝器Dでは、コイルスプリング5が圧縮されることによって発生するばね力をロアカラー6の内周を通じてサポート8の受部8bに伝達するので、リバウンドスプリング4から受ける荷重の作用線は、サポート8の筒部8aの肉厚或いは筒部8aの外周の近傍を通ることになり、受部8bの外周を筒部8a側へ向けて曲げるモーメントを非常に少なくでき、受部8bの変形抑制効果を高める得る。
 なお、サポート8の断面における受部8bと筒部8aとでなす角度θを90度より大きくするとともに、ロアカラー6のピストン側端面6dを傾斜面として規制部を形成し、ピストン側端面6dにおける傾斜角度αをサポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた角度と等しくする場合、コイルスプリング5から繰り返しばね力を受けてもロアカラー6の疲労を軽減でき、受部8bの変形抑制効果を高める得る。ただし、このように、傾斜角度αと角度θから90度を差し引いた角度とを等しくするには、ロアカラー6とサポート8の寸法管理を厳密にする必要がある。よって、ロアカラー6とサポート8の量産性を考慮すると、ロアカラー6の疲労を軽減したい場合には、傾斜角度αと角度θから90度を差し引いた角度とを等しくするよりも、傾斜角度αを角度θから90度を差し引いた角度よりも小さい角度とする方が製造を容易とできる点で優れ、受部8bの変形抑制効果を高めたい場合には、傾斜角度αと角度θから90度を差し引いた角度とを等しくするよりも、傾斜角度αを角度θから90度を差し引いた角度よりも大きな角度とする方が製造を容易とできる点で優れる。
 前述したところでは、ロアカラー6のピストン側端面6dを傾斜面としているが、図5に示すように、ピストン側端面6dを階段状にして、シート部6aの外径が段階的に大きくなるようにしてもよい。このようにピストン側端面6dを階段状にすると、段部の縁を通る仮想面Vは傾斜面となる。よって、仮想面Vの傾斜角度をサポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた角度よりも小さくすれば、シート部6aの外周側が受部8bに当接するので、ロアカラー6の疲労を軽減できる。また、仮想面Vの傾斜角度をサポート8の断面における筒部8aと受部8bとでなす角度θから90度を差し引いた角度よりも大きくすれば、シート部6aの内周側が受部8bに当接するので、受部8bの変形抑制効果を高め得る。このように、ロアカラー6のピストン側端面6dを傾斜面とする範疇には、ロアカラー6のピストン側端面6dを階段状にして段部の縁を通る仮想面Vを傾斜面とすることも含まれる。
 なお、ロアカラー6におけるシート部6aのピストン側端面6dは、傾斜面ではなく、傾斜しない面或いは図2或いは図4に示した傾斜面とは逆向きに傾斜する逆傾斜の傾斜面となっていてもよく、この場合も、ロアカラー6のピストン側端面6dの外周がサポート8の受部8bに当接するのでコイルスプリング5から繰り返しばね力を受けてもロアカラー6の疲労を軽減できる。
 また、図6(a)に示すように、サポート8の断面において、受部8bの外周部8b2のみを傾斜させて、当該受部8bの外周部8b2と筒部8aとでなす角度を90度より大きくして、ロアカラー6の受部8bに対する偏心を規制する規制部を形成してもよい。さらには、図6(b)に示すように、受部8bの外周部8b2を折り返した形状として、当該受部8bの外周部8b3と筒部8aとでなす角度を180度以上に設定して、外周部8b3をロアカラー6のシート部6aの外周に対向させて、ロアカラー6の受部8bに対する偏心を規制する規制部を形成してもよい。
 また、ロアカラー6のピストン側端面6dに受部8bとの打音を抑制する等の目的で、溝や凹部が設けられていてもよい。
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。
1・・・シリンダ、2・・・ピストン、3・・・ピストンロッド、4・・・リバウンドスプリング、5・・・コイルスプリング、6・・・ロアカラー、6d・・・ロアカラーのピストン側端面、8・・・サポート、8a・・・筒部、8b・・・受部(規制部)、8b2,8b3・・・受部の外周部(規制部)

Claims (7)

  1.  緩衝器であって、
     シリンダと、
     前記シリンダ内に摺動自在に挿入されたピストンと、
     前記シリンダ内に移動自在に挿通されるとともに一端が前記ピストンに連結されるピストンロッドと、
     前記ピストンロッドの外周に配置されるコイルスプリングと、前記コイルスプリングのピストン側端に装着されるとともに前記ピストンロッドの外周に嵌合される環状のロアカラーとを有するリバウンドスプリングと、
     前記ピストンロッドの外周に装着されるとともに前記ロアカラーと軸方向で対向して前記ロアカラーのピストン側端を支承する環状のサポートとを備え、
     前記サポートは、前記ピストンロッドの外周に装着される筒部と、環状であって内周が前記筒部の反ピストン側端に接続されるとともに前記ロアカラーのピストン側端に軸方向で対向して前記ロアカラーに当接可能な受部とを有し、
     前記受部に対する前記ロアカラーの偏心を規制する規制部を設けた
     緩衝器。
  2.  請求項1に記載の緩衝器であって、
     前記規制部は、前記受部の外周を反ピストン側へ向けて傾斜させて形成された
     緩衝器。
  3.  請求項1に記載の緩衝器であって、
     前記規制部は、前記受部と前記ロアカラーの外周側とを当接させることで前記偏心を規制する
     緩衝器。
  4.  請求項1に記載の緩衝器であって、
     前記規制部は、前記受部と前記ロアカラーの内周側とを当接させることで前記偏心を規制する
     緩衝器。
  5.  請求項1に記載の緩衝器であって、
     前記規制部は、前記サポートの断面における前記受部と前記筒部とでなす角度を90度より大きくして形成される
     緩衝器。
  6.  請求項1に記載の緩衝器であって、
     前記規制部は、前記サポートの断面における前記受部と前記筒部とでなす角度を90度より大きくするとともに、前記ロアカラーのピストン側端面を前記ピストン側端に外周側へ向かうほど前記ピストンから徐々に遠ざかる傾斜面とすることで形成されており、
     前記ロアカラーの前記傾斜面の傾斜角度は、前記サポートの断面における前記角度から90度を差し引いた角度よりも小さい
     緩衝器。
  7.  請求項1に記載の緩衝器であって、
     前記規制部は、前記サポートの断面における前記受部と前記筒部とでなす角度を90度より大きくするとともに、前記ロアカラーのピストン側端面を前記ピストン側端に外周側へ向かうほど前記ピストンから徐々に遠ざかる傾斜面とすることで形成されており、
     前記ロアカラーの前記傾斜面の傾斜角度は、前記サポートの断面における前記角度から90度を差し引いた角度よりも大きい
     緩衝器。
PCT/JP2023/003883 2022-02-04 2023-02-06 緩衝器 WO2023149580A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015993 2022-02-04
JP2022015993A JP2023113982A (ja) 2022-02-04 2022-02-04 緩衝器

Publications (1)

Publication Number Publication Date
WO2023149580A1 true WO2023149580A1 (ja) 2023-08-10

Family

ID=87552386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003883 WO2023149580A1 (ja) 2022-02-04 2023-02-06 緩衝器

Country Status (2)

Country Link
JP (1) JP2023113982A (ja)
WO (1) WO2023149580A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007471A (ja) * 2011-06-27 2013-01-10 Hitachi Automotive Systems Ltd 緩衝器
JP2014114871A (ja) * 2012-12-10 2014-06-26 Kayaba Ind Co Ltd 緩衝器
JP2015135147A (ja) * 2014-01-17 2015-07-27 カヤバ工業株式会社 ショックアブソーバ
JP2015148268A (ja) * 2014-02-06 2015-08-20 カヤバ工業株式会社 緩衝器
JP2021116883A (ja) * 2020-01-28 2021-08-10 日立Astemo株式会社 緩衝器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007471A (ja) * 2011-06-27 2013-01-10 Hitachi Automotive Systems Ltd 緩衝器
JP2014114871A (ja) * 2012-12-10 2014-06-26 Kayaba Ind Co Ltd 緩衝器
JP2015135147A (ja) * 2014-01-17 2015-07-27 カヤバ工業株式会社 ショックアブソーバ
JP2015148268A (ja) * 2014-02-06 2015-08-20 カヤバ工業株式会社 緩衝器
JP2021116883A (ja) * 2020-01-28 2021-08-10 日立Astemo株式会社 緩衝器

Also Published As

Publication number Publication date
JP2023113982A (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
JP2011094749A (ja) 緩衝器
WO2019194167A1 (ja) バルブ及び緩衝器
KR20110098630A (ko) 완충기
JP2009287731A (ja) 緩衝器
JP2010538219A (ja) 完全変位弁組立体を備えたショックアブソーバ
JP2018105378A (ja) 緩衝器
JP6339717B1 (ja) 圧力緩衝装置
JP4453000B2 (ja) 油圧緩衝器
WO2023149580A1 (ja) 緩衝器
EP3333446B1 (en) Valve structure for buffer
JP2009287752A (ja) 流体圧緩衝器
JP2014181757A (ja) 緩衝器
JP2019183919A (ja) バルブ及び緩衝器
JP7070331B2 (ja) ハイドロストッパ付ショックアブソーバ
WO2015119156A1 (ja) 緩衝器
KR20110047974A (ko) 완충기
JP4839201B2 (ja) 緩衝器のバルブ構造
JP4815482B2 (ja) 油圧緩衝器
CN109983250B (zh) 减震器
JP4868166B2 (ja) 流体圧緩衝器
JP5112985B2 (ja) リバウンドスプリング
JP2016080140A (ja) 圧力緩衝装置
JP2020008150A (ja) 緩衝装置
KR20200089427A (ko) 쇽업소버
JP6246425B1 (ja) 緩衝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749896

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)