WO2019106980A1 - 自走式病原体検出装置、病原体検出システム、及び、制御方法 - Google Patents

自走式病原体検出装置、病原体検出システム、及び、制御方法 Download PDF

Info

Publication number
WO2019106980A1
WO2019106980A1 PCT/JP2018/038238 JP2018038238W WO2019106980A1 WO 2019106980 A1 WO2019106980 A1 WO 2019106980A1 JP 2018038238 W JP2018038238 W JP 2018038238W WO 2019106980 A1 WO2019106980 A1 WO 2019106980A1
Authority
WO
WIPO (PCT)
Prior art keywords
pathogen
unit
propelled
self
detection device
Prior art date
Application number
PCT/JP2018/038238
Other languages
English (en)
French (fr)
Inventor
高柳 哲也
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019557055A priority Critical patent/JP7190652B2/ja
Priority to CN201880074171.5A priority patent/CN111356939B/zh
Publication of WO2019106980A1 publication Critical patent/WO2019106980A1/ja
Priority to US16/810,180 priority patent/US11559179B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L7/00Suction cleaners adapted for additional purposes; Tables with suction openings for cleaning purposes; Containers for cleaning articles by suction; Suction cleaners adapted to cleaning of brushes; Suction cleaners adapted to taking-up liquids
    • A47L7/0061Suction cleaners adapted for additional purposes; Tables with suction openings for cleaning purposes; Containers for cleaning articles by suction; Suction cleaners adapted to cleaning of brushes; Suction cleaners adapted to taking-up liquids adapted for disinfecting or sterilising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/019Biological contaminants; Fouling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0216Vehicle borne

Definitions

  • the present disclosure relates to a self-propelled pathogen detection device, a pathogen detection system, and a control method.
  • Patent Document 1 discloses a self-propelled ion generator for the purpose of deodorizing.
  • pathogens such as influenza virus can be detected at an early stage, and the spread of pathogens can be suppressed by inactivating the detected pathogens. .
  • the present disclosure provides a self-propelled pathogen detection device and the like that can preferentially set a location where a pathogen is likely to be present in a space such as a facility to be a target region of detection.
  • a self-propelled pathogen detection apparatus includes a case, a detection unit that detects a pathogen, a moving mechanism that moves the case, and position information indicating the current position of the case in space.
  • the movement mechanism is configured to determine a target area in the space based on a position acquisition unit to be acquired and flow line information of a person in the space, and to move the housing in the target area based on the position information.
  • a control unit that controls the detection unit, and the detection unit detects a pathogen in the target area.
  • the self-propelled pathogen detection device of the present disclosure can preferentially set a location where a pathogen is likely to be present in a space such as a facility to be a detection target region.
  • FIG. 1 is a diagram showing an outline of a pathogen detection system according to an embodiment.
  • FIG. 2 is a view schematically showing an internal structure of a self-propelled pathogen detection apparatus according to the embodiment.
  • FIG. 3 is a block diagram showing a functional configuration of the pathogen detection system according to the embodiment.
  • FIG. 4 is a flowchart of the target area determination operation.
  • FIG. 5 is an example of a floor plan in which furniture and the like are arranged.
  • FIG. 6 is a diagram showing an example of the human detection position information.
  • FIG. 7 is a diagram conceptually showing flow line information of a person.
  • FIG. 8 is a diagram showing a target region determined by the method for determining a target region based on the first algorithm.
  • FIG. 8 is a diagram showing a target region determined by the method for determining a target region based on the first algorithm.
  • FIG. 9 is a flowchart of a method of determining a target area based on the second algorithm.
  • FIG. 10 is a diagram showing three clusters determined as target areas.
  • FIG. 11 is a flowchart of a pathogen detection operation.
  • FIG. 12 is a flowchart of a specific example of the purification process.
  • FIG. 13 is a sequence diagram of the update operation of the target area.
  • FIG. 14 is a flowchart of the feedback operation.
  • influenza virus which is an example of infectious virus
  • influenza virus is scattered by coughing or sneezing of an infected person. That is, the influenza virus originates in the place where the infected person is located. Therefore, in order to inactivate the influenza virus, it is very important to consider information such as human behavior patterns or flow lines of people in the facility.
  • the present disclosure has been made in view of the above circumstances, and provides a self-propelled pathogen detection device and the like for detecting a pathogen such as influenza virus at an early stage and inactivating the detected pathogen.
  • a self-propelled pathogen detection apparatus includes a case, a detection unit that detects a pathogen, a moving mechanism that moves the case, and position information indicating the current position of the case in space.
  • the movement mechanism is configured to determine a target area in the space based on a position acquisition unit to be acquired and flow line information of a person in the space, and to move the housing in the target area based on the position information.
  • a control unit that controls the detection unit, and the detection unit detects a pathogen in the target area.
  • Such a self-propelled pathogen detection apparatus can detect a pathogen with a region where people are often present as a target region based on flow line information of a person.
  • An area where people are often present is, in other words, an area where pathogens excreted from people are often present. Therefore, the self-propelled pathogen detection device can preferentially set the location where the pathogen is likely to be present in space as the detection target region.
  • the self-propelled pathogen detection device further includes a human sensor that detects the presence or absence of a person when the casing is moving in the space, and the flow line information of the person is When the space is divided into a plurality of unit areas, the number of times the presence of a person is detected by the human sensor in each of the plurality of unit areas is included.
  • Such a self-propelled pathogen detection device can detect a pathogen with a region where the number of times a person has been detected is high as a target region based on flow line information of a person. Therefore, the self-propelled pathogen detection device can preferentially set the location where the pathogen is likely to be present in space as the detection target region.
  • control unit preferentially includes the unit area in the target area as the unit area is more frequently detected by the human sensor.
  • Such a self-propelled pathogen detection device can detect a pathogen with a region where the number of times a person has been detected is high as a target region based on flow line information of a person. Therefore, the self-propelled pathogen detection device can preferentially set the location where the pathogen is likely to be present in space as the detection target region.
  • the self-propelled pathogen detection apparatus further includes a storage unit, and the control unit stores the position information when the presence of a person is detected by the human sensor as the human detection position information. It stores in the unit and updates the flow line information of the person based on the person detection position information.
  • Such a self-propelled pathogen detection apparatus can change the target area in accordance with the change in flow line information of a person.
  • the self-propelled pathogen detection device further includes a purification unit that performs purification processing to inactivate the pathogen.
  • Such a self-propelled pathogen detection device can achieve inactivation of pathogens in addition to detection of pathogens.
  • the purification unit performs processing of spraying hypochlorous acid water as the purification processing.
  • Such a self-propelled pathogen detection device can achieve inactivation of pathogens by spraying hypochlorous acid water.
  • the detection unit further detects the concentration of the pathogen, and the purification unit changes the content of the purification process according to the concentration of the detected pathogen.
  • Such a self-propelled pathogen detection device can increase the amount of hypochlorous acid water sprayed per unit time as the concentration of the detected pathogen increases, thereby shortening the time even when the concentration of the pathogen is high. Inactivation of pathogens can take place in time.
  • control unit controls the moving mechanism to stop the casing at a detection position at which the pathogen is detected by the detection unit, and the purification unit stops at the detection position. Perform the above purification process.
  • Such a self-propelled pathogen detection device can increase the certainty of inactivation of pathogens by performing purification treatment in a stopped state.
  • the purification unit continues the purification process until the concentration of the pathogen detected by the detection unit becomes lower than a predetermined concentration, and the control unit controls the pathogen to be detected by the detection unit.
  • the concentration is lower than the predetermined concentration, the housing is moved from the detection position by controlling the movement mechanism.
  • Such a self-propelled pathogen detection apparatus can increase the certainty of inactivation of pathogens by performing purification treatment until the concentration of pathogens becomes low.
  • a pathogen detection system includes a self-propelled pathogen detection device and a control terminal
  • the self-propelled pathogen detection device includes a housing, a detection unit that detects a pathogen, and A moving mechanism for moving the case, a position acquisition unit for acquiring position information indicating the current position of the case in the space, a control unit for controlling the moving mechanism, and a first wireless communication unit
  • the terminal is a terminal control unit that determines a target area in the space based on flow line information of a person in the space, and a second wireless communication that transmits information indicating the determined target area to the first wireless communication unit
  • the control unit is configured to move the moving mechanism so as to move the housing within the target area specified by the information received by the first wireless communication unit based on the position information. Control and Parts are detecting pathogens in the target area.
  • Such a pathogen detection system can detect a pathogen using a region where people are often present as a target region based on flow line information of a person.
  • An area where people are often present is, in other words, an area where pathogens excreted from people are often present. Therefore, the pathogen detection system can preferentially set the location where the pathogen is likely to be present in space to be the detection target region.
  • a control method is a control method of a self-propelled pathogen detection device, which acquires position information indicating the current position of the self-propelled pathogen detection device in a space, and a person in the space
  • the target region in the space is determined based on the flow line information, and the self-propelled pathogen detection device is moved within the determined target region based on the position information, and the self-propelled pathogen detection device
  • the self-propelled pathogen detection device detects a pathogen when present in the target area.
  • the self-propelled pathogen detection device can detect a pathogen with a region where people are often present as a target region based on flow line information of a person.
  • An area where people are often present is, in other words, an area where pathogens excreted from people are often present. Therefore, the self-propelled pathogen detection device can preferentially set the location where the pathogen is likely to be present in space as the detection target region.
  • a recording medium such as an apparatus, a system, a method, an integrated circuit, a computer program, or a computer readable CD-ROM.
  • a recording medium such as an apparatus, a system, a method, an integrated circuit, a computer program, or a computer readable CD-ROM.
  • These general or specific aspects may be realized by any combination of an apparatus, a system, a method, an integrated circuit, a computer program and a recording medium.
  • FIG. 1 is a diagram showing an outline of a pathogen detection system according to an embodiment.
  • FIG. 2 is a view schematically showing an internal structure of a self-propelled pathogen detection apparatus according to the embodiment. Only main components are shown in FIG.
  • the pathogen detection system 100 is a system for detecting a pathogen in a care facility, a hospital, or an indoor space where people such as a learning acupuncture center gather.
  • the indoor space is, in other words, a flat space.
  • the pathogen detection system 100 includes a self-propelled pathogen detection device 10, a charger 30, and a control terminal 40.
  • the self-propelled pathogen detection apparatus 10 can self-propelled by moving a pair of wheels 12 b arranged at the lower part of the housing 11 and move to an arbitrary place, as with a robot cleaner or the like.
  • the self-propelled pathogen detection device 10 detects whether a pathogen is contained in the air which enters the inside of the housing 11 from the air inlet 15a and is discharged to the outside of the housing 11 from the air outlet 15b.
  • the self-propelled pathogen detection apparatus 10 stops self-traveling, and performs purification processing for inactivating the pathogen at a place where the pathogen is detected.
  • the self-propelled pathogen detection apparatus 10 sprays hypochlorous acid water from the spray port 17c as purification processing. Thereby, the self-propelled pathogen detection device 10 can suppress the spread of the infection of the pathogen.
  • the self-propelled pathogen detection device 10 operates using a storage battery unit (not shown in FIGS. 1 and 2) as a power source, and the charger 30 charges the storage battery unit.
  • the self-propelled pathogen detection device 10 can move throughout the space such as a room in the facility to detect the pathogen, in order to detect the pathogen early and inactivate the detected pathogen, It is necessary to preferentially set the area where the pathogen is likely to be present as the target area for detection. Therefore, in the pathogen detection system 100, a target region considered to be highly likely to have a pathogen is determined based on flow line information of a person in the space, and the self-propelled pathogen detection device 10 is prioritized in the target region. To move.
  • the control terminal 40 is an information terminal that performs such a process of determining a target area.
  • the detailed configurations of the self-propelled pathogen detection device 10, the charger 30, and the control terminal 40 will be described with reference to FIG. 3 in addition to FIG. 1 and FIG.
  • FIG. 3 is a block diagram showing a functional configuration of the pathogen detection system 100. As shown in FIG.
  • the self-propelled pathogen detection apparatus 10 includes a housing 11 and a plurality of components provided in the housing 11. Specifically, the plurality of components provided in the housing 11 include the moving mechanism 12, the position acquisition unit 13, the control unit 14, the collection unit 15, the detection unit 16, and the purification unit 17.
  • the housing 11 is a main body of the self-propelled pathogen detection device 10 provided with each component of the self-propelled pathogen detection device 10.
  • the housing 11 is, for example, a flat cylindrical shape, but the shape of the housing 11 is not particularly limited.
  • An intake port 15 a and a spray port 17 c are provided on the top surface of the housing 11. Further, an exhaust port 15 b is provided on the side surface of the housing 11.
  • the moving mechanism 12 moves the casing 11, that is, the self-propelled pathogen detection device 10.
  • the moving mechanism 12 includes a wheel 12 b and a drive circuit 12 a that drives the wheel 12 b.
  • the drive circuit 12a includes, for example, a motor for rotating the wheel 12b, a control circuit of the motor, and the like.
  • the self-propelled pathogen detection apparatus 10 includes, for example, a pair of wheels 12b, but the number of the wheels 12b is not particularly limited.
  • the moving mechanism 12 can make the self-propelled pathogen detection device 10 curve-travel by adjusting the rotation speed of the pair of wheels 12 b.
  • the position acquisition unit 13 acquires position information indicating the current position of the housing 11 in space.
  • the position acquisition unit 13 transmits, for example, an invisible light such as infrared light, visible light, or an ultrasonic wave or the like to be detected around the housing 11 and receives the to-be-detected wave reflected by a wall that defines a space.
  • Sensor module The position acquisition unit 13 calculates and acquires position information based on a position estimation algorithm using the detected wave.
  • the position information is, for example, a two-dimensional coordinate in a top view in a space whose origin is the position of the charger 30, and the position estimation algorithm is, for example, the time from transmission to reception of the wave to be detected Is an algorithm for calculating the two-dimensional coordinates using As a specific position estimation algorithm, for example, a data assimilation method such as a Kalman filter or a particle filter is used.
  • a data assimilation method such as a Kalman filter or a particle filter is used.
  • the position acquisition unit 13 is not limited to the configuration in which the position acquisition unit 13 itself calculates and acquires position information.
  • the position acquisition unit 13 may acquire position information from the outside of the self-propelled pathogen detection device 10.
  • the position acquisition unit 13 is realized by a wireless communication circuit or the like.
  • the wireless communication circuit is, in other words, a wireless communication module.
  • the control unit 14 controls the moving mechanism 12 based on the control command received by the wireless communication unit 19 from the control terminal 40. Thereby, the self-propelled pathogen detection device 10 moves in the space. Further, the control unit 14 controls the position acquisition unit 13, the collection unit 15, the detection unit 16, the purification unit 17, the human sensor 18, the wireless communication unit 19, the storage battery unit 21 and the like.
  • the control unit 14 is realized by, for example, a microcomputer or the like, but may be realized by a processor or a dedicated circuit.
  • the collection unit 15 sucks and collects the particles suspended in the air.
  • the collection unit 15 has, for example, an intake fan or a pump, and collects particulates in the air taken in through the intake port 15a.
  • the detection unit 16 detects a pathogen.
  • the detection unit 16 detects a pathogen when the housing 11 is present in the target area.
  • the detection unit 16 is, for example, a sensor that detects a pathogen in the fine particles collected by the collection unit 15 using a detection technique of floating virus using a surface enhanced Raman scattering phenomenon as described in Patent Document 2 It is.
  • the detection unit 16 can also detect the concentration of a pathogen.
  • the collection unit 15 and the detection unit 16 detect whether or not the fine particles floating in the air contain the pathogen. It may be detected whether or not the attached microparticles contain a pathogen. In this case, the collection unit 15 is not necessary, and a light detection method such as a fluorescent fingerprint may be used as a detection method by the detection unit 16.
  • the purification unit 17 performs a purification process to inactivate the pathogen.
  • the purification unit 17 includes a tank 17a in which hypochlorous acid water is stored, and a sprayer 17b that sprays hypochlorous acid water stored in the tank 17a in the form of a mist. That is, the purification unit 17 performs processing of spraying hypochlorous acid water as purification processing. Hypochlorous acid water is discharged from the spray port 17c.
  • the spray port 17 c is provided on the upper surface of the housing 11, but may be provided on the lower surface of the housing 11. In this case, the purification unit 17 mainly purifies the floor surface of the space.
  • cleaning part 17 may achieve inactivation of a pathogen by methods other than spraying hypochlorous acid water.
  • the human sensor 18 detects the presence or absence of a person.
  • the human sensor 18 detects, for example, the presence or absence of a person when the housing 11 is moving in the space.
  • the human sensor 18 is, for example, an infrared sensor that detects the presence or absence of a person based on a change in the amount of infrared light, but may be a sensor that detects the presence or absence of a person based on ultrasonic waves.
  • the human sensor 18 is used to generate human detection position information in space.
  • the wireless communication unit 19 is an example of a first wireless communication unit, and is a wireless communication circuit with which the self-propelled pathogen detection device 10 performs wireless communication with the control terminal 40.
  • the wireless communication circuit is, in other words, a wireless communication module.
  • the wireless communication unit 19 may perform optical communication such as infrared communication.
  • the communication standard when the wireless communication unit 19 performs radio wave communication is, for example, Bluetooth (registered trademark) or Wi-Fi (registered trademark), but is not particularly limited.
  • the storage unit 20 is a storage device in which a control program of the control unit 14 and the like are stored.
  • the storage unit 20 is realized by, for example, a semiconductor memory or the like.
  • the storage battery unit 21 is a power supply unit of the self-propelled pathogen detection device 10.
  • the storage battery unit 21 includes, for example, a storage battery such as a lithium ion battery, a circuit for charging, a circuit for discharging, and the like.
  • the self-propelled pathogen detection device 10 can travel indoors as long as the storage capacity of the storage battery is available.
  • connection terminal portion 22 is a terminal structure for connecting the self-propelled pathogen detection device 10 to the charger 30.
  • the connection terminal portion 22 is exposed from the housing 11 to the outside, for example.
  • the storage battery unit 21 can receive supply of power for charging the storage battery from the charger 30 via the connection terminal portion 22 by the connection terminal portion 22 being connected to the connection terminal portion 31 of the charger 30. .
  • the charger 30 is a device for charging the storage battery in the storage battery unit 21.
  • the charger 30 includes a connection terminal unit 31 and a power control unit 32.
  • connection terminal portion 31 is a terminal structure for connecting the self-propelled pathogen detection device 10 to the charger 30.
  • the charger 30 can supply power to the self-propelled pathogen detection device 10 via the connection terminal portion 31 by the connection terminal portion 31 being connected to the connection terminal portion 22 of the self-propelled pathogen detection device 10 it can.
  • the power control unit 32 is a control device that controls the supply of power to the self-propelled pathogen detection device 10 via the connection terminal unit 31.
  • the power control unit 32 is realized by, for example, a circuit that converts AC power obtained from the power system into DC power suitable for charging the storage battery of the storage battery unit 21.
  • the power control unit 32 may include a microcomputer or a processor.
  • the control terminal 40 is an information terminal for controlling the self-propelled pathogen detection device 10.
  • the control terminal 40 is, for example, a portable terminal dedicated to the pathogen detection system 100, but may be a general-purpose portable terminal such as a smartphone or a tablet terminal, or may be a general-purpose stationary terminal such as a personal computer. Good.
  • a dedicated application for controlling the self-propelled pathogen detection device 10 is installed in the general-purpose terminal.
  • the control terminal 40 includes an input receiving unit 41, a terminal control unit 42, a wireless communication unit 43, a display unit 44, and a storage unit 45.
  • the input receiving unit 41 receives an input from the user.
  • the input receiving unit 41 is specifically a touch panel, but may be a hardware key or the like.
  • the terminal control unit 42 controls the wireless communication unit 43 and the display unit 44 in accordance with the user's input received by the input receiving unit 41.
  • the terminal control unit 42 is realized by, for example, a microcomputer or the like, but may be realized by a processor or a dedicated circuit.
  • the wireless communication unit 43 is an example of a second wireless communication unit, and is a wireless communication circuit for the control terminal 40 to wirelessly communicate with the self-propelled pathogen detection device 10.
  • the wireless communication circuit is, in other words, a wireless communication module.
  • the wireless communication unit 43 performs radio wave communication with the control terminal 40, for example, but may perform optical communication such as infrared communication.
  • a communication standard when the wireless communication unit 43 performs radio wave communication is, for example, Bluetooth (registered trademark) or Wi-Fi (registered trademark), but is not particularly limited.
  • the wireless communication unit 43 transmits a control command to the wireless communication unit 19 of the self-propelled pathogen detection device 10 based on the control of the terminal control unit 42, for example.
  • the wireless communication unit 43 receives, from the wireless communication unit 19 of the self-propelled pathogen detection device 10, position information indicating the current position of the self-propelled pathogen detection device 10, the storage amount of the storage battery, the concentration of pathogens, etc. Receive information as appropriate.
  • the display unit 44 displays an image based on the control of the terminal control unit 42.
  • the display unit 44 is realized by a display panel such as a liquid crystal panel or an organic EL panel.
  • the display unit 44 displays various information, such as position information, the remaining amount of charge of the storage battery, and the concentration of the pathogen, which the wireless communication unit 43 has received from the self-propelled pathogen detection device 10. Thereby, the user can grasp the position of the self-propelled pathogen detection device 10 and the state of the space.
  • various information is transmitted by the wireless communication unit 19 in real time and displayed by the display unit 44, the user can grasp the position of the self-propelled pathogen detection device 10 and the state of the space in real time.
  • the storage unit 45 is a storage device in which a control program of the terminal control unit 42 and the like are stored.
  • the storage unit 45 also stores various information received by the wireless communication unit 43.
  • the storage unit 45 is realized by, for example, a semiconductor memory or the like.
  • the pathogen detection system 100 can move a region of interest in space and detect pathogens in the region of interest.
  • the operation of determining the target area in the pathogen detection system 100 will be described.
  • FIG. 4 is a flowchart of the target area determination operation.
  • the input receiving unit 41 of the control terminal 40 receives an input related to basic drawing information of a space from the user (S11).
  • the basic drawing information is, for example, space floor plan information
  • the input related to the basic drawing information is, for example, an input for instructing reading of space floor plan information.
  • the input reception unit 41 receives an input regarding the arrangement of the furniture and the charger (S12).
  • the user sets boundary conditions such as the entrance and exit of the room and the door in the floor plan read in step S11 through the input reception unit 41.
  • the user places icons such as a sofa, a desk, and a charger on the floor plan read out in step S11.
  • FIG. 5 is an example of a floor plan in which furniture and the like are arranged.
  • the space shown by the floor plan is as large as 6 mats of 3.4 [m] ⁇ 3.4 [m].
  • an entrance 1 and an entrance 2 are set.
  • a sofa, a desk, and a charger are disposed on the floor plan.
  • the input receiving unit 41 receives an input for specifying a method of determining a target area (S13).
  • the user can select one of three methods, a manual method, a random method, and an automatic method.
  • the input accepting unit 41 When the input accepting unit 41 accepts an input for designating a manual method (manual method in S13), the user can designate a desired area on the floor plan shown in FIG. 5 as a target area. In this case, the input receiving unit 41 further receives the input of the user specifying the target area (S14).
  • the terminal control unit 42 randomly determines a target area (S15). For example, the terminal control unit 42 randomly generates a route that can be returned to the charger 30 within a predetermined time, and sets the route as a target area.
  • the terminal control unit 42 refers to the storage unit 45 so that the flow line information of the person in the space is stored in the storage unit 45. It is determined whether it is stored (S16).
  • the flow line information of a person is position information of the self-propelled pathogen detection device 10 when the presence of a person is detected by the human sensor 18 of the self-propelled pathogen detection device 10. People's flow line information is generated based on person detection position information.
  • FIG. 6 is a diagram showing an example of the human detection position information.
  • the self-propelled pathogen detection device 10 operates in the human detection position specifying mode of moving around the space from the corner to the corner at a predetermined frequency such as once a day.
  • the control unit 14 of the self-propelled pathogen detection device 10 detects the timing when the presence of the person is detected as shown in FIG.
  • the position information indicating the current position of the self-propelled pathogen detection apparatus 10 is stored in the storage unit 20 as human detection position information.
  • the position information is, for example, a two-dimensional coordinate whose origin is the position of the charger 30, and the position acquisition unit 13 calculates, for example, 2 when the self-propelled pathogen detection apparatus 10 is connected to the charger 30. Calibrate the dimension coordinates to 0. For example, when the operation in the human detection position specification mode ends or when a request for human detection position information is received, the control unit 14 puts together the human detection position information obtained during the operation to the wireless communication unit 19. Send to
  • the human detection position information is received by the wireless communication unit 43 of the control terminal 40 and stored in the storage unit 45.
  • the terminal control unit 42 generates flow line information of a person using such person detection position information.
  • FIG. 7 is a diagram conceptually showing flow line information of a person.
  • the flow line information of a person is information indicating the number of times the presence of a person is detected by the human sensor 18 in each of the plurality of meshes.
  • a mesh is an example of a unit area. As shown in FIG. 7, the mesh is, for example, one area when the space is divided in a matrix.
  • the terminal control unit 42 counts the number of times a person is detected for each mesh with reference to the person detection position information. The numbers in the mesh shown in FIG. 7 indicate the number of times a person is detected in the mesh.
  • Such flow line information of a person is stored in the storage unit 45.
  • the flow line information of a person is not stored in the storage unit 45.
  • the terminal control unit 42 does not use the flow line information of the person, and the target is based on the first algorithm using the floor plan after the furniture etc. obtained in step S12 is arranged.
  • An area is determined (S17).
  • the terminal control unit 42 determines the target area based on the second algorithm using the flow line information of the person (S18) ).
  • FIG. 8 is a diagram showing a target region determined by the method for determining a target region based on the first algorithm.
  • the terminal control unit 42 determines, in the space, a polygonal-line-shaped target area connecting the entrance 1 and the entrance 2 of the space input by the user.
  • the polygonal target region is constituted by a plurality of linear regions.
  • the broken line-shaped target area has a predetermined width W, and the end of the broken line-shaped area is configured to be separated by a predetermined distance D or more from an obstacle such as furniture arranged in the space.
  • the predetermined distance D is, for example, about 30 cm.
  • the predetermined width and the predetermined distance may be changeable according to the user's input received by the input receiving unit 41.
  • FIG. 8 is an example. In the example of FIG. 8, since there is one set of entrance and exit, one target area is provided. However, when there are three or more entrances and exits, the terminal control unit 42 generates a polygonal target area in the same manner for each combination of any two entrances selected from among the three or more entrances. Decide.
  • FIG. 9 is a flowchart of a method of determining a target area based on the second algorithm.
  • the terminal control unit 42 reads flow line information of a person stored in the storage unit 45 (S21). As described above with reference to FIG. 7, the terminal control unit 42 may, for example, determine the number of times the presence of a person is detected by the human sensor 18 in each of the plurality of meshes when the space is divided into the plurality of meshes. Used as human's flow line information.
  • the terminal control unit 42 performs space clustering based on the read person's flow line information (S22). Specifically, the terminal control unit 42 performs space clustering based on the number of times of human detection in each mesh determined by the read flow line information of the human.
  • the terminal control unit 42 integrates the number of times of human detection in one or more meshes included in the cluster for each cluster (S23). Integration is, in other words, numerical integration. Then, the terminal control unit 42 selects a predetermined number n (n ⁇ k) of clusters in order from the cluster having the largest integrated value (S24), and determines the selected predetermined number n of clusters as the target area (S24). For example, a predetermined number of clusters may be selected in order from the cluster having the largest area.
  • FIG. 10 is a diagram showing three clusters determined as target areas. An area obtained by combining the cluster 1, the cluster 2 and the cluster 3 shown in FIG. 10 is a target area.
  • the terminal control unit 42 may preferentially include in the target area the mesh in which the number of times the presence of a person is detected by the human sensor 18 is large. it can. That is, the self-propelled pathogen detection apparatus 10 can detect a pathogen with a region where people are often present as a target region based on flow line information of a person. An area where people are often present is, in other words, an area where pathogens excreted from people are often present. Therefore, the self-propelled pathogen detection apparatus 10 can preferentially set the location where the pathogen is likely to be present in the space as the detection target region.
  • the terminal control unit 42 may select a mesh whose number of times the presence of a person is detected by the human sensor 18 is a predetermined number or more, and set the selected mesh as a target area. That is, the terminal control unit 42 may exclude, from the target area, meshes whose number of times the presence of a person is detected by the human sensor 18 is less than a predetermined number. With such an algorithm as well, the terminal control unit 42 can preferentially include in the target area the mesh whose number of times the presence of a person is detected by the human sensor 18 is large.
  • FIG. 11 is a flowchart of a pathogen detection operation.
  • the wireless communication unit 19 of the self-propelled pathogen detection device 10 receives information indicating the target area from the wireless communication unit 43 of the control terminal 40 (S31).
  • the information indicating the target area for example, the target area is indicated by two-dimensional coordinates with the position of the charger 30 as the origin.
  • the information indicating the received target area is stored, for example, in the storage unit 20.
  • the position acquisition unit 13 acquires position information indicating the current position of the housing 11 in the space (S32).
  • the control unit 14 moves the housing 11 within the target area determined by the housing 11 by controlling the moving mechanism 12 based on the position information (S33). Specifically, the control unit 14 moves the housing 11 in a range in which the coordinates indicated by the position information acquired by the position acquisition unit 13 belong to the target area.
  • the target area and the position of the charger 30 are not continuous and not connected.
  • the self-propelled pathogen detection device 10 may be directed to the shortest mesh from the position of the charger 30 in the target area.
  • counts of detection of a person is prioritized among several meshes.
  • the previously identified mesh may be prioritized.
  • the collection unit 15 collects particulates in the air (S34), and the detection unit 16 targets the collected particulates as a pathogen. Detection (S35).
  • collection of particulates in step S34 may be performed while the housing 11 is moving, or may be performed in a state where the housing 11 is stopped.
  • control unit 14 determines whether the detected concentration of the pathogen exceeds a first predetermined concentration (S36). When the concentration of the detected pathogen is equal to or less than the first predetermined concentration (No in S36), the movement in the target area is continued while acquiring the position information (S32) (S33).
  • the control unit 14 stops the housing 11 at the pathogen detection position where the detection unit 16 detects the pathogen (S37).
  • cleaning part 17 performs a purification
  • the purification unit 17 performs a process of spraying hypochlorous acid water as a purification process.
  • the purification process of step S37 may be performed during movement.
  • the collection unit 15 collects fine particles in the air during or after the purification process (S39), and the detection unit 16 detects a pathogen in the collected fine particles. (S40). Further, the control unit 14 determines whether the concentration of the detected pathogen is less than the second predetermined concentration (S41).
  • the second predetermined concentration is, for example, a concentration lower than the first predetermined concentration, but may be equal to the first predetermined concentration.
  • the control unit 14 moves the housing 11 again in the target area while acquiring the position information (S32) (S33). That is, the purification unit 17 continues the purification process until the concentration of the pathogen detected by the detection unit 16 becomes lower than the second predetermined concentration, and the control unit 14 controls the concentration of the pathogen detected by the detection unit 16 When it becomes lower than the second predetermined concentration, the casing 11 is moved from the pathogen detection position by controlling the moving mechanism 12.
  • the control unit 14 calculates a CT value based on the concentration of hypochlorous acid water, and the CT value is calculated from the calculated CT value.
  • the spraying time of hypochlorous acid water required for inactivation can be calculated back. In this case, steps S39 and S40 may be omitted, and it may be determined in step S41 whether the spreading time has elapsed.
  • the purification unit 17 may change the content of the purification process according to the concentration of the detected pathogen.
  • FIG. 12 is a flowchart of a specific example of such purification processing.
  • FIG. 12 shows a specific process performed in step S37 of FIG.
  • the control unit 14 determines whether the concentration of the pathogen is higher than the first predetermined concentration and lower than the third predetermined concentration (S51).
  • the third predetermined concentration is a concentration higher than the first predetermined concentration.
  • the purification unit 17 performs the purification processing in the weak operation mode based on the control of the control unit 14. (S52).
  • the purification unit 17 performs the purification process in the strong operation mode based on the control of the control unit 14 (S52).
  • the amount of hypochlorous acid water sprayed per unit time is larger than that in the weak operation mode. Therefore, even when the concentration of pathogen is high, pathogen inactivation can be performed in a short time.
  • the spraying time of hypochlorous acid water may be different. Specifically, in the strong operation mode, the hypochlorous acid water may be sprayed for a longer time than the weak operation mode.
  • the content of the purification process is changed in two steps, but the content of the purification process may be changed to, for example, three steps of a weak operation mode, a middle operation mode, and a strong operation mode. , May be finely changed to four or more stages.
  • FIG. 13 is a sequence diagram of the update operation of the target area.
  • the self-propelled pathogen detection apparatus 10 performs an operation in the human detection position specifying mode (S61).
  • the control unit 14 of the self-propelled pathogen detection device 10 causes the self-propelled pathogen detection device 10 to move the entire space sequentially by controlling the moving mechanism 12. Then, when the presence of a person is detected during movement, the control unit 14 stores position information of a position at which the presence of a person is detected in the storage unit 20 as person detection position information. Position information is acquired by the position acquisition unit 13.
  • the terminal control unit 42 of the control terminal 40 causes the wireless communication unit 43 to transmit a request for human detection position information based on the user's input or the like accepted by the input accepting unit 41 (S62).
  • the request for the human detection position information may be periodically transmitted.
  • the wireless communication unit 19 of the self-propelled pathogen detection apparatus 10 receives a request for human detection position information (S63).
  • the request for human detection position information may be included, for example, in a control command that instructs the start of a detection operation of a pathogen.
  • the control unit 14 reads the human detection position information stored in the storage unit 20 in step S61 in response to the request for the received human detection position information, and transmits the read human detection position information to the wireless communication unit 19 (S64) ).
  • the human detection position information may be spontaneously transmitted from the self-propelled pathogen detection device 10 side.
  • the control unit 14 may cause the wireless communication unit 19 to periodically transmit the human detection position information.
  • the wireless communication unit 43 of the control terminal 40 receives the human detection position information (S65).
  • the terminal control unit 42 updates the current person's flow line information stored in the storage unit 45 based on the person detection position information (S66). Specifically, the number of times of human detection of each mesh in the human detection position information is added to the number of human detection of each mesh in the current human flow line information. If the operation of determining the target area in FIG. 9 is performed using such flow line information of the person after the update, the target area is updated.
  • the terminal control unit 42 can adaptively change the target area according to the change of the life pattern of the person. Therefore, the self-propelled pathogen detection apparatus 10 can perform efficient pathogen inactivation by performing a pathogen detection operation on the changed target area.
  • the update of flow line information of a person may be performed at a time set by the user.
  • the self-propelled pathogen detection device 10 when it is in operation, it may be updated based on the human detection information at the time of previous operation.
  • the self-propelled pathogen detection apparatus 10 when the self-propelled pathogen detection apparatus 10 is operated, the total detection number of persons in each operation time zone on the previous operation day is calculated by numerical integration over the mesh, and the person detection information in the highest detection number time zone is calculated.
  • the flow line information of the person is updated based on that.
  • the self-propelled pathogen detection device 10 may perform a feedback operation of automatically returning to the charger 30 when the storage residual amount of the storage battery of the storage battery unit 21 becomes lower than a predetermined amount during the detection operation of the pathogen.
  • FIG. 14 is a flowchart of the feedback operation.
  • the control unit 14 monitors the storage residual amount of the storage battery of the storage battery unit 21 and determines whether the storage residual amount is less than a predetermined amount (S72).
  • the predetermined amount is, for example, 10% of the maximum remaining charge amount.
  • the control unit 14 determines that the remaining amount of charge is equal to or more than the predetermined amount (No in S72)
  • the control unit 14 continues the operation of detecting a pathogen.
  • control unit 14 determines that the remaining charge amount is less than the predetermined amount (Yes in S72)
  • the control unit 14 moves the casing 11 toward the charger 30 by controlling the moving mechanism 12 (S73) .
  • the control unit 14 determines whether the distance between the housing 11 and the charger 30 is less than a predetermined distance (S74).
  • control unit 14 determines that the distance between the housing 11 and the charger 30 is equal to or more than the predetermined distance (No in S74) If the control unit 14 determines that the distance between the housing 11 and the charger 30 is equal to or more than the predetermined distance (No in S74), the control unit 14 continues the movement of the housing 11 toward the charger 30 (S73). On the other hand, when the control unit 14 determines that the distance between the housing 11 and the charger 30 is less than the predetermined distance (Yes in S74), the control unit 14 searches the connection terminal portion 31 of the charger 30 (S75). By controlling 12, the housing 11 is moved so that the connection terminal 22 of the self-propelled pathogen detection device 10 is connected to the connection terminal 31, and the self-propelled pathogen detection device 10 is connected to the charger 30. (S76).
  • the terminal control unit 42 of the control terminal 40 performs the determination of the target area and the update of the flow line information of the person, but the determination of the target area and the update of the flow line information of the person May be performed by the control unit 14 of the self-propelled pathogen detection apparatus 10.
  • the control unit 14 determines the target area in the space based on the flow line information of the person in the space, and updates the flow line information of the person based on the human detection position information Good.
  • the control terminal mainly functions as a user interface, and the control unit of the self-propelled pathogen detection device mainly performs various controls.
  • control unit 14 of the self-propelled pathogen detection apparatus 10 mainly performs the detection operation of the pathogen, but the detection operation of the pathogen is mainly performed by the terminal control unit 42 of the control terminal 40. May be performed.
  • the terminal control unit 42 of the control terminal 40 operates the self-propelled pathogen detection device 10 in a subordinate manner by causing the wireless communication unit 43 to appropriately transmit the control command.
  • the space where the pathogen detection system performs pathogen detection is, for example, an indoor space such as a nursing home, a hospital, or a waiting room of a hospital, but may be another space.
  • the space where the pathogen detection system performs pathogen detection may be an airport.
  • the space where the pathogen detection system performs pathogen detection is not limited to a building, but may be a space within a moving body such as a railway or an airplane.
  • pathogens to be detected by the pathogen detection system are not limited to viruses.
  • the pathogen may be, for example, mold or bacteria.
  • another processing unit may execute the processing executed by a specific processing unit.
  • the order of a plurality of processes may be changed, or a plurality of processes may be executed in parallel.
  • the component such as the control processing unit may be realized by dedicated hardware or by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
  • the components such as the control processing unit may be circuits (or integrated circuits). These circuits may constitute one circuit as a whole or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the present disclosure may be realized as a control method of a self-propelled pathogen detection device executed by a computer or the like, or a method of detecting a pathogen using a self-propelled pathogen detection device.
  • the present disclosure may be implemented as a program for causing a computer to execute these methods.
  • the present disclosure may be realized as a computer readable non-transitory recording medium in which the program is recorded.
  • the pathogen detection system of the present disclosure can preferentially set a location where a pathogen is likely to be present in a space such as a facility as a target region of detection.
  • the pathogen detection system of the present disclosure can detect pathogens early in a care facility, a hospital, or an indoor space such as a waiting room of a hospital. Examples of the invention derived from the above disclosure are listed below. 1.
  • a self-propelled pathogen detection device Case, Detection unit for detecting pathogens, A moving mechanism for moving the housing, A position acquisition unit that acquires position information indicating the current position of the housing in a space;
  • the control unit comprises a processor and a storage unit, and during operation (I) In at least one unit area selected as a target area from a plurality of unit areas in the space based on flow line information of a person in the space, based on the position information acquired by the position acquisition unit Controlling the moving mechanism to move a housing, and (ii) controlling the detection unit to detect the pathogen in the target area; Self-propelled pathogen detection device.
  • the self-propelled pathogen detection apparatus further comprising a human sensor for detecting the presence or absence of a human when the housing is moving in the space, here,
  • the flow line information includes the number of people detected by the human sensor in each unit area.
  • Self-propelled pathogen detection device. 4 It is a self-propelled pathogen detection device according to item 2,
  • the control unit stores the position information when the person is detected by the human sensor as the person detection position information in the storage unit, and the flow line information of the person is detected based on the person detection position information.
  • the self-propelled pathogen detection apparatus according to Item 1, further comprising a purification unit for performing purification processing for inactivating the pathogen.
  • Self-propelled pathogen detection device 6. It is a self-propelled pathogen detection device according to item 5, The purification treatment is spraying a hypochlorous acid aqueous solution, Self-propelled pathogen detection device. 7. It is a self-propelled pathogen detection device according to item 5, The storage unit stores a plurality of purification processes, The detection unit detects the concentration of the pathogen detected by the detection unit, and the control unit selects at least one purification process from the plurality of purification processes according to the concentration of the pathogen. Self-propelled pathogen detection device. 8.
  • It is a self-propelled pathogen detection device When the detection unit detects the pathogen, the control unit controls the moving mechanism to stop the casing at a detection position at which the detection unit detects the pathogen, and the purification unit The self-propelled pathogen detection apparatus which performs the said purification process in the state stopped to the said detection position. 9. It is a self-propelled pathogen detection device according to item 5, The purification unit continues the purification process until the concentration of the pathogen detected by the detection unit becomes lower than a predetermined concentration, and the control unit controls the concentration of the pathogen detected by the detection unit When the concentration becomes lower than a predetermined concentration, the casing is moved from the detection position by controlling the movement mechanism. Self-propelled pathogen detection device. 10.
  • a pathogen detection system Equipped with a self-propelled pathogen detection device and a control terminal, here,
  • the self-propelled pathogen detection device Case, Detection unit for detecting pathogens A moving mechanism for moving the housing, A position acquisition unit that acquires position information indicating the current position of the housing in space; A control unit that controls the moving mechanism, and a first wireless communication unit;
  • the control terminal is A terminal control unit configured to select at least one unit area as a target area from a plurality of unit areas in the space based on flow line information of the person in the space; and information indicating the selected target area as the first wireless
  • a second wireless communication unit for transmitting to the communication unit here,
  • the control unit controls the moving mechanism to move the casing within the target area selected by the information received by the first wireless communication unit, based on the position information, and A detection unit detects a pathogen in the target area.
  • a control method of a self-propelled pathogen detection device comprising Acquiring position information indicating the current position of the self-propelled pathogen detection device in space; At least one unit area is selected as a target area from a plurality of unit areas in the space based on flow line information of a person in the space, The self-propelled pathogen detection apparatus is moved within the selected target area based on the position information, and the self-propelled pathogen detection apparatus is present in the target area. Control method for causing pathogen detection equipment to detect pathogens.
  • SYMBOLS 10 self-propelled type pathogen detection apparatus 11 housing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本開示は、施設内等の空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる自走式病原体検出装置を提供する。本開示による自走式病原体検出装置(10)は、筐体と、病原体を検出する検出部(16)と、筐体を移動させる移動機構(12)と、空間における筐体の現在位置を示す位置情報を取得する位置取得部(13)と、空間における人の動線情報に基づいて当該空間における対象領域を決定し、位置情報に基づいて、対象領域内で筐体を移動させるように移動機構(12)を制御する制御部(14)とを備え、検出部(16)は、対象領域内において病原体を検出する。

Description

自走式病原体検出装置、病原体検出システム、及び、制御方法
 本開示は、自走式病原体検出装置、病原体検出システム、及び、制御方法に関する。
 室内の空気質を改善する事を目的として、空気清浄機が利用されている。例えば、特許文献1には、消臭を目的とした自走式イオン発生機が開示されている。
特開2013-148246号公報 特開2015-178993号公報
 ところで、介護施設、病院、または、学習塾などの人が集まる施設においては、インフルエンザウイルスなどの病原体を早期に検出し、検出した病原体を不活化することで病原体の感染拡大を抑止することができる。
 本開示は、施設内等の空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる自走式病原体検出装置等を提供する。
 本開示の一態様に係る自走式病原体検出装置は、筐体と、病原体を検出する検出部と、前記筐体を移動させる移動機構と、空間における前記筐体の現在位置を示す位置情報を取得する位置取得部と、前記空間における人の動線情報に基づいて当該空間における対象領域を決定し、前記位置情報に基づいて、前記対象領域内で前記筐体を移動させるように前記移動機構を制御する制御部とを備え、前記検出部は、前記対象領域内において病原体を検出する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の自走式病原体検出装置は、施設内等の空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
図1は、実施の形態に係る病原体検出システムの概要を示す図である。 図2は、実施の形態に係る自走式病原体検出装置の内部構造を模式的に示す図である。 図3は、実施の形態に係る病原体検出システムの機能構成を示すブロック図である。 図4は、対象領域の決定動作のフローチャートである。 図5は、家具等が配置された間取り図の一例である。 図6は、人検出位置情報の一例を示す図である。 図7は、人の動線情報を概念的に示す図である。 図8は、第1アルゴリズムに基づく対象領域の決定方法によって決定された対象領域を示す図である。 図9は、第2アルゴリズムに基づく対象領域の決定方法のフローチャートである。 図10は、対象領域として決定された3つのクラスタを示す図である。 図11は、病原体の検出動作のフローチャートである。 図12は、浄化処理の具体例のフローチャートである。 図13は、対象領域の更新動作のシーケンス図である。 図14は、帰還動作のフローチャートである。
 (本開示の基礎となった知見)
 従来の空気清浄機は、花粉、カビ、菌、または、PM2.5などのエアロゾルをターゲットとし、フィルタまたはイオン発生によりエアロゾルの除菌及び除去を行う。このような空気清浄機は通常、室内の角または窓際などの場所に据え置かれる。一方、このような据え置き型の空気清浄機に加えて、特許文献1に記載された自走式イオン発生機のように、自走式の空気清浄機も開発されている。
 しかしながら、上記据え置き型の空気清浄機または自走式の空気清浄機が、介護施設、病院、または、学習塾などの人が集まる施設における感染性ウイルスの不活化に使用される場合、効率を上げることができない。
 例えば、感染性ウイルスの一例であるインフルエンザウイルスは、感染者の咳またはくしゃみにより飛散する。つまり、インフルエンザウイルスは、感染者の居る場所を発生源としている。このため、インフルエンザウイルスを不活化するためには、人の行動パターン、または、施設内の人の動線などの情報を考慮することが非常に重要となる。
 また、ウイルスの感染力が高い場合、感染者がウイルスを飛散してから短時間で周囲に存在する感受者が感染する可能性が高い。したがって、短時間でウイルスの不活化を行うことができなければ集団感染に至る可能性がある。特許文献1に記載された自走式のイオン発生機は消臭を目的としている為、このようなウイルスの感染状況は考慮されていない。
 本開示は、以上のような事情を鑑みたものであり、インフルエンザウイルスなどの病原体を早期に検出し、検出した病原体不活化するための自走式病原体検出装置等を提供する。
 本開示の一態様に係る自走式病原体検出装置は、筐体と、病原体を検出する検出部と、前記筐体を移動させる移動機構と、空間における前記筐体の現在位置を示す位置情報を取得する位置取得部と、前記空間における人の動線情報に基づいて当該空間における対象領域を決定し、前記位置情報に基づいて、前記対象領域内で前記筐体を移動させるように前記移動機構を制御する制御部とを備え、前記検出部は、前記対象領域内において病原体を検出する。
 このような自走式病原体検出装置は、人の動線情報に基づいて人が存在することが多い領域を対象領域として病原体の検出を行うことができる。人が存在することが多い領域は、言い換えれば、人から排出される病原体が存在することが多い領域である。したがって、自走式病原体検出装置は、空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
 また、例えば、前記自走式病原体検出装置は、さらに、前記筐体が前記空間内を移動しているときに人の存否を検出する人感センサを備え、前記人の動線情報は、前記空間を複数の単位領域に分割した場合に、前記複数の単位領域それぞれにおいて前記人感センサによって人の存在が検出された回数を含む。
 このような自走式病原体検出装置は、人の動線情報に基づいて人が検出された回数が多い領域を対象領域として病原体の検出を行うことができる。したがって、自走式病原体検出装置は、空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
 また、例えば、前記制御部は、前記人感センサによって人の存在が検出された回数が多い前記単位領域ほど優先的に前記対象領域に含める。
 このような自走式病原体検出装置は、人の動線情報に基づいて人が検出された回数が多い領域を対象領域として病原体の検出を行うことができる。したがって、自走式病原体検出装置は、空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
 また、例えば、前記自走式病原体検出装置は、さらに、記憶部を備え、前記制御部は、前記人感センサによって人の存在が検出されたときの前記位置情報を人検出位置情報として前記記憶部に記憶し、前記人検出位置情報に基づいて前記人の動線情報をアップデートする。
 このような自走式病原体検出装置は、対象領域を人の動線情報の変化に応じて変更することができる。
 また、例えば、前記自走式病原体検出装置は、さらに、前記病原体を不活化するための浄化処理を行う浄化部を備える。
 このような自走式病原体検出装置は、病原体の検出に加えて、病原体の不活化を図ることができる。
 また、例えば、前記浄化部は、前記浄化処理として次亜塩素酸水を噴霧する処理を行う。
 このような自走式病原体検出装置は、次亜塩素酸水の噴霧により、病原体の不活化を図ることができる。
 また、例えば、前記検出部は、さらに、前記病原体の濃度を検出し、前記浄化部は、検出された前記病原体の濃度に応じて前記浄化処理の内容を変更する。
 このような自走式病原体検出装置は、検出された病原体の濃度が高いほど単位時間あたりに散布される次亜塩素酸水の量を増やすことにより、病原体の濃度が高い場合であっても短時間で病原体の不活化を行うことができる。
 また、例えば、前記制御部は、前記移動機構を制御することにより、前記検出部によって前記病原体が検出された検出位置に前記筐体を停止させ、前記浄化部は、前記検出位置に停止した状態で前記浄化処理を行う。
 このような自走式病原体検出装置は、停止した状態で浄化処理を行うことにより、病原体の不活化の確実性を高めることができる。
 また、例えば、前記浄化部は、前記検出部によって検出される前記病原体の濃度が所定濃度よりも低くなるまで前記浄化処理を継続し、前記制御部は、前記検出部によって検出される前記病原体の濃度が前記所定濃度よりも低くなった場合に、前記移動機構を制御することにより前記筐体を前記検出位置から移動させる。
 このような自走式病原体検出装置は、病原体の濃度が低くなるまで浄化処理を行うことにより、病原体の不活化の確実性を高めることができる。
 また、本開示の一態様に係る病原体検出システムは、自走式病原体検出装置と、制御端末とを備え、前記自走式病原体検出装置は、筐体と、病原体を検出する検出部と、前記筐体を移動させる移動機構と、空間における前記筐体の現在位置を示す位置情報を取得する位置取得部と、前記移動機構を制御する制御部と、第1無線通信部とを備え、前記制御端末は、前記空間における人の動線情報に基づいて当該空間における対象領域を決定する端末制御部と、決定された前記対象領域を示す情報を前記第1無線通信部に送信する第2無線通信部とを備え、前記制御部は、前記位置情報に基づいて、前記第1無線通信部によって受信された前記情報により特定される前記対象領域内で前記筐体を移動させるように前記移動機構を制御し、前記検出部は、前記対象領域内において病原体を検出する。
 このような病原体検出システムは、人の動線情報に基づいて人が存在することが多い領域を対象領域として病原体の検出を行うことができる。人が存在することが多い領域は、言い換えれば、人から排出される病原体が存在することが多い領域である。したがって、病原体検出システムは、空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
 また、本開示の一態様に係る制御方法は、自走式病原体検出装置の制御方法であって、空間における前記自走式病原体検出装置の現在位置を示す位置情報を取得し、前記空間における人の動線情報に基づいて当該空間における対象領域を決定し、前記位置情報に基づいて、決定された前記対象領域内で前記自走式病原体検出装置を移動させ、前記自走式病原体検出装置が前記対象領域内に存在しているときに前記自走式病原体検出装置に病原体を検出させる。
 このような制御方法によれば、自走式病原体検出装置は、人の動線情報に基づいて人が存在することが多い領域を対象領域として病原体の検出を行うことができる。人が存在することが多い領域は、言い換えれば、人から排出される病原体が存在することが多い領域である。したがって、自走式病原体検出装置は、空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
 なお、これらの包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。これらの包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態)
 [概略構成]
 まず、実施の形態に係る病原体検出システムの概略構成について説明する。図1は、実施の形態に係る病原体検出システムの概要を示す図である。図2は、実施の形態に係る自走式病原体検出装置の内部構造を模式的に示す図である。なお、図2では、主たる構成要素のみが図示されている。
 病原体検出システム100は、介護施設、病院、または、学習塾などの人が集まる室内空間を対象として、病原体の検出を行うシステムである。室内空間は、言い換えれば、平空間である。図1に示されるように、病原体検出システム100は、自走式病原体検出装置10と、充電器30と、制御端末40とを備える。
 自走式病原体検出装置10は、ロボット掃除機などと同様に、筐体11の下部に配置されている一対の車輪12bが回転することにより自走し、任意の場所に移動することができる。また、自走式病原体検出装置10は、吸気口15aから筐体11の内部に入り、排気口15bから筐体11の外部に排出される空気中に病原体が含まれるか否かを検出する。自走式病原体検出装置10は、病原体が検出されると自走を停止し、病原体が検出された場所において、病原体を不活化するための浄化処理を行う。自走式病原体検出装置10は、具体的には、浄化処理として噴霧口17cから次亜塩素酸水を噴霧する。これにより、自走式病原体検出装置10は、病原体の感染が拡大することを抑制することができる。
 なお、自走式病原体検出装置10は、蓄電池ユニット(図1及び図2で図示せず)を電源として動作し、充電器30は、蓄電池ユニットを充電する。
 また、自走式病原体検出装置10は、施設内の部屋などの空間をくまなく移動して病原体を検出することもできるが、病原体を早期に検出し、検出した病原体不活化するためには、病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることが必要となる。そこで、病原体検出システム100においては、空間内の人の動線情報に基づいて病原体が存在する可能性が高いと考えられる対象領域を決定し、自走式病原体検出装置10を対象領域内で優先的に移動させる。
 これにより、病原体の早期検出が可能となる。なお、制御端末40は、このような対象領域の決定処理などを行う情報端末である。以下、図1及び図2に加えて図3を参照しながら自走式病原体検出装置10、充電器30、及び、制御端末40の詳細構成について説明する。図3は、病原体検出システム100の機能構成を示すブロック図である。
 [自走式病原体検出装置の構成]
 まず、自走式病原体検出装置10について説明する。図1~図3に示されるように、自走式病原体検出装置10は、筐体11と、筐体11に設けられた複数の構成要素を備える。筐体11に設けられた複数の構成要素は、具体的には、移動機構12と、位置取得部13と、制御部14と、捕集部15と、検出部16と、浄化部17と、人感センサ18と、無線通信部19と、記憶部20と、蓄電池ユニット21と、接続端子部22とである。
 筐体11は、自走式病原体検出装置10が備える各構成要素が設けられる、自走式病原体検出装置10の本体である。筐体11は、例えば、平らな円柱状であるが、筐体11の形状は特に限定されない。筐体11の上面には、吸気口15a及び噴霧口17cが設けられている。また、筐体11の側面には、排気口15bが設けられている。
 移動機構12は、筐体11、つまり、自走式病原体検出装置10を移動させる。移動機構12は、具体的には、車輪12bと、車輪12bを駆動する駆動回路12aとを備える。駆動回路12aには、例えば、車輪12bを回転するためのモータ、及び、モータの制御回路などが含まれる。なお、自走式病原体検出装置10は、例えば、一対の車輪12bを備えるが、車輪12bの数などは特に限定されない。移動機構12は、一対の車輪12bの回転数を調整することにより、自走式病原体検出装置10をカーブ走行させることができる。
 位置取得部13は、空間における筐体11の現在位置を示す位置情報を取得する。位置取得部13は、例えば、赤外線などの不可視光、可視光、または、超音波などの被検出波を筐体11の周囲に送信し、空間を規定する壁などで反射した被検出波を受信するセンサモジュールである。位置取得部13は、被検出波を用いた位置推定アルゴリズムに基づいて位置情報を算出及び取得する。なお、位置情報は、例えば、充電器30の位置を原点とした空間内の上面視における二次元座標であり、位置推定アルゴリズムは、例えば、被検出波を送信してから受信するまでの時間等を用いて上記二次元座標を算出するためのアルゴリズムである。具体的な位置推定アルゴリズムとしては、例えば、カルマンフィルタ、または、パーティクルフィルタなどのデータ同化手法が用いられる。
 なお、位置取得部13は、位置取得部13自身が位置情報を算出及び取得する構成に限定されない。位置取得部13は、自走式病原体検出装置10の外部から位置情報を取得してもよい。この場合、位置取得部13は、無線通信回路等によって実現される。無線通信回路は、言い換えれば、無線通信モジュールである。
 制御部14は、無線通信部19が制御端末40から受信した制御指令に基づいて、移動機構12を制御する。これにより、自走式病原体検出装置10は、空間内を移動する。また、制御部14は、位置取得部13、捕集部15、検出部16、浄化部17、人感センサ18、無線通信部19、及び、蓄電池ユニット21などを制御する。制御部14は、例えば、マイクロコンピュータなどによって実現されるが、プロセッサまたは専用回路によって実現されてもよい。
 捕集部15は、空気中に浮遊している微粒子を吸引し、捕集する。捕集部15は、具体的には、例えば、吸気用のファンまたはポンプを有し、吸気口15aから吸気した空気中の微粒子を捕集する。
 検出部16は、病原体を検出する。例えば、検出部16は、筐体11が対象領域内に存在しているときに病原体を検出する。検出部16は、例えば、特許文献2に記載されているような表面増強ラマン散乱現象を利用した浮遊ウイルスの検出技術を用いて捕集部15によって捕集された微粒子中の病原体を検出するセンサである。また、検出部16は、病原体の濃度を検出することもできる。
 なお、自走式病原体検出装置10においては、捕集部15及び検出部16は、空気中を浮遊する微粒子に病原体が含まれているか否かを検出するが、検出部16は、床面に付着した微粒子中に病原体が含まれているか否かを検出してもよい。この場合、捕集部15は不要であり、検出部16による検出方式には蛍光指紋などの光検出法が用いられればよい。
 浄化部17は、病原体を不活化するための浄化処理を行う。浄化部17は、具体的には、次亜塩素酸水が貯蔵されるタンク17aと、タンク17aに貯蔵された次亜塩素酸水をミスト状にして散布する噴霧器17bとを備える。つまり、浄化部17は、浄化処理として次亜塩素酸水を噴霧する処理を行う。次亜塩素酸水は、噴霧口17cから出される。噴霧口17cは、筐体11の上面に設けられているが、筐体11の下面に設けられてもよい。この場合、浄化部17は、主として空間の床面を浄化する。なお、浄化部17は、次亜塩素酸水を散布する以外の方法で病原体の不活化を図ってもよい。
 人感センサ18は、人の存否を検出する。人感センサ18は、例えば、筐体11が空間内を移動しているときに人の存否を検出する。人感センサ18は、例えば、赤外線量の変化に基づいて人の存否を検出する赤外線センサであるが、超音波に基づいて人の存否を検出するセンサであってもよい。人感センサ18は、空間内の人検出位置情報の生成に用いられる。
 無線通信部19は、第1無線通信部の一例であり、自走式病原体検出装置10が制御端末40と無線通信を行うための無線通信回路である。無線通信回路は、言い換えれば、無線通信モジュールである。無線通信部19は、例えば、制御端末40の無線通信部43と電波通信を行うが、赤外線通信などの光通信を行ってもよい。無線通信部19が電波通信を行う場合の通信規格は、例えば、Bluetooth(登録商標)、または、Wi-Fi(登録商標)などであるが、特に限定されない。
 記憶部20は、制御部14の制御プログラムなどが記憶される記憶装置である。記憶部20は、例えば、半導体メモリ等によって実現される。
 蓄電池ユニット21は、自走式病原体検出装置10の電源部である。蓄電池ユニット21は、例えば、リチウムイオン電池などの蓄電池、充電用回路、及び、放電用回路などを含む。自走式病原体検出装置10は、蓄電池の蓄電残量がある限りは室内を自走することができる。
 接続端子部22は、自走式病原体検出装置10を充電器30に接続するための端子構造である。接続端子部22は、例えば、筐体11から外部に露出している。蓄電池ユニット21は、接続端子部22が充電器30の接続端子部31に接続されることで、充電器30から接続端子部22を介して蓄電池を充電するための電力の供給を受けることができる。
 [充電器の構成]
 充電器30は、蓄電池ユニット21内の蓄電池を充電するための装置である。充電器30は、接続端子部31と、電力制御部32とを備える。
 接続端子部31は、自走式病原体検出装置10を充電器30に接続するための端子構造である。充電器30は、接続端子部31が自走式病原体検出装置10の接続端子部22に接続されることで、接続端子部31を介して自走式病原体検出装置10に電力を供給することができる。
 電力制御部32は、接続端子部31を介した自走式病原体検出装置10への電力の供給を制御する制御装置である。電力制御部32は、例えば、電力系統から得られる交流電力を蓄電池ユニット21の蓄電池の充電に適した直流電力に変換する回路などによって実現される。電力制御部32は、マイクロコンピュータまたはプロセッサを含んでもよい。
 [制御端末の構成]
 制御端末40は、自走式病原体検出装置10を制御するための情報端末である。制御端末40は、例えば、病原体検出システム100専用の携帯端末であるが、スマートフォンまたはタブレット端末等の汎用の携帯端末であってもよいし、パーソナルコンピュータなどの汎用の据え置き型の端末であってもよい。制御端末40が汎用の端末である場合、当該汎用の端末には、自走式病原体検出装置10を制御するための専用アプリケーションがインストールされる。制御端末40は、具体的には、入力受付部41と、端末制御部42と、無線通信部43と、表示部44と、記憶部45とを備える。
 入力受付部41は、ユーザの入力を受け付ける。入力受付部41は、具体的には、タッチパネルであるが、ハードウェアキーなどであってもよい。
 端末制御部42は、入力受付部41が受け付けたユーザの入力に応じて、無線通信部43及び表示部44を制御する。端末制御部42は、例えば、マイクロコンピュータなどによって実現されるが、プロセッサまたは専用回路によって実現されてもよい。
 無線通信部43は、第2無線通信部の一例であり、制御端末40が自走式病原体検出装置10と無線通信を行うための無線通信回路である。無線通信回路は、言い換えれば、無線通信モジュールである。無線通信部43は、例えば、制御端末40と電波通信を行うが、赤外線通信などの光通信を行ってもよい。無線通信部43が電波通信を行う場合の通信規格は、例えば、Bluetooth(登録商標)、または、Wi-Fi(登録商標)などであるが、特に限定されない。
 無線通信部43は、例えば、端末制御部42の制御に基づいて、制御指令を自走式病原体検出装置10の無線通信部19に送信する。また、無線通信部43は、自走式病原体検出装置10の無線通信部19から、自走式病原体検出装置10の現在位置を示す位置情報、蓄電池の蓄電残量、及び、病原体の濃度などの情報を適宜受信する。
 表示部44は、端末制御部42の制御に基づいて画像を表示する。表示部44は、液晶パネルまたは有機ELパネルなどの表示パネルによって実現される。
 表示部44は、無線通信部43が自走式病原体検出装置10から受信した、位置情報、蓄電池の蓄電残量、及び、病原体の濃度などの各種情報を表示する。これにより、ユーザは、自走式病原体検出装置10の位置、及び、空間の状態を把握することができる。各種情報が無線通信部19によってリアルタイムに送信され、表示部44によって表示される場合、ユーザは、自走式病原体検出装置10の位置、及び、空間の状態をリアルタイムに把握することができる。
 記憶部45は、端末制御部42の制御プログラムなどが記憶される記憶装置である。また、記憶部45には、無線通信部43によって受信された各種情報も記憶される。記憶部45は、例えば、半導体メモリ等によって実現される。
 [対象領域の決定動作]
 上述のように、病原体検出システム100は、空間内の対象領域を移動し、当該対象領域における病原体を検出することができる。ここで、病原体検出システム100における対象領域の決定動作について説明する。図4は、対象領域の決定動作のフローチャートである。
 まず、制御端末40の入力受付部41は、空間の基本図面情報に関する入力をユーザから受け付ける(S11)。基本図面情報は、例えば、空間の間取り図情報であり、基本図面情報に関する入力は、例えば、空間の間取り図情報の読み出しを指示する入力である。
 次に、入力受付部41は、家具及び充電器の配置に関する入力を受け付ける(S12)。例えば、ユーザは、入力受付部41を通じて、ステップS11で読み出した間取り図に、部屋の出入り口、及び、扉などの境界条件を設定する。また、ユーザは、ソファ、机、及び、充電器などのアイコンをステップS11で読み出した間取り図上に配置する。図5は、家具等が配置された間取り図の一例である。
 図5の例では、間取り図によって示される空間は、3.4[m]×3.4[m]の6畳程度の広さである。間取り図には、出入り口1及び出入り口2が設定されている。また、間取り図上には、ソファ、机、及び、充電器が配置されている。
 次に、入力受付部41は、対象領域の決定方式を指定する入力を受け付ける(S13)。病原体検出システム100では、一例として、ユーザは、マニュアル方式、ランダム方式、及び、自動方式の3つの方式の中から1つを選択することができる。
 入力受付部41によってマニュアル方式を指定する入力が受け付けられると(S13でマニュアル方式)、ユーザは、図5に示される間取り図上の所望の領域を対象領域として指定することができる。この場合、入力受付部41は、対象領域を指定するユーザの入力をさらに受け付ける(S14)。
 入力受付部41によってランダム方式を指定する入力が受け付けられると(S13でランダム方式)、端末制御部42は、ランダムに対象領域を決定する(S15)。例えば、端末制御部42は、充電器30に所定の時間内に帰還できるルートをランダムに発生させ、当該ルートを対象領域とする。
 入力受付部41によって自動方式を指定する入力が受け付けられると(S13で自動方式)、端末制御部42は、記憶部45を参照することにより、空間内の人の動線情報が記憶部45に記憶されているか否かを判定する(S16)。
 人の動線情報は、自走式病原体検出装置10の人感センサ18によって人の存在が検出されたときの自走式病原体検出装置10の位置情報である。人の動線情報は、人検出位置情報に基づいて生成される。図6は、人検出位置情報の一例を示す図である。自走式病原体検出装置10は、1日1回などの所定の頻度で空間の隅から隅までをくまなく移動する人検出位置特定モードの動作を行う。自走式病原体検出装置10の制御部14は、移動中に人感センサ18によって人の存在が検出されると、図6に示されるように人の存在が検出されたタイミング、及び、そのときの自走式病原体検出装置10の現在位置を示す位置情報を人検出位置情報として記憶部20に記憶する。位置情報は、例えば、充電器30の位置を原点とする2次元座標であり、位置取得部13は、例えば、自走式病原体検出装置10が充電器30に接続されているときに算出した2次元座標を0に校正する。制御部14は、例えば、人検出位置特定モードの動作の終了時、または、人検出位置情報の要求が受信されたときに、動作中に得られた人検出位置情報をまとめて無線通信部19に送信させる。
 人検出位置情報は、制御端末40の無線通信部43によって受信され、記憶部45に記憶される。端末制御部42は、このような人検出位置情報を用いて、人の動線情報を生成する。図7は、人の動線情報を概念的に示す図である。
 人の動線情報は、例えば、空間を複数のメッシュに分割した場合に、複数のメッシュそれぞれにおいて人感センサ18によって人の存在が検出された回数を示す情報である。メッシュは、単位領域の一例である。図7に示されるように、メッシュは、例えば、空間をマトリクス状に分割した場合の1つの領域である。端末制御部42は、人検出位置情報を参照してメッシュごとに人が検出された回数を集計する。図7に示されるメッシュ内の数字は、当該メッシュ内で人が検出された回数を示している。
 このような人の動線情報は、記憶部45に記憶される。しかしながら、例えば、自走式病原体検出装置10の初回動作時には記憶部45には人の動線情報は記憶されていない。このような場合(S16でNo)、端末制御部42は、人の動線情報を用いず、ステップS12において得られる家具等が配置された後の間取り図を用いた第1アルゴリズムに基づいて対象領域を決定する(S17)。一方、記憶部45に人の動線情報が記憶されている場合(S16でYes)、端末制御部42は、人の動線情報を用いた第2アルゴリズムに基づいて対象領域を決定する(S18)。
 [第1アルゴリズムに基づく対象領域の決定]
 次に、第1アルゴリズムに基づく対象領域の決定方法について説明する。図8は、第1アルゴリズムに基づく対象領域の決定方法によって決定された対象領域を示す図である。
 まず、端末制御部42は、空間において、ユーザによって入力された空間の出入り口1及び出入り口2を結ぶ折れ線状の対象領域を決定する。この折れ線状の対象領域は、複数の直線状の領域によって構成される。折れ線状の対象領域は、所定幅Wであり、当該折れ線状の領域の端が空間に配置されている家具などの障害物から所定の距離D以上離れるように構成される。所定の距離Dは、例えば、例えば30cm程度である。このような構成は、人は障害物の極めて近辺ではなく少し離れた場所を往来するため病原体も障害物から少し離れた位置で排出されるという仮定に基づく。なお、所定幅及び所定距離は、入力受付部41によって受け付けられたユーザの入力に応じて変更可能であってもよい。
 なお、図8は、一例である。図8の例では、出入り口が1組であるため、1本の対象領域が設けられている。しかしながら、出入り口が3つ以上存在する場合には、端末制御部42は、3つ以上の出入り口の中から選択された任意の2つの出入り口の組み合わせのそれぞれについて、同様の方法で折れ線状の対象領域を決定する。
 [第2アルゴリズムに基づく対象領域の決定]
 次に、第2アルゴリズムに基づく対象領域の決定方法について説明する。図9は、第2アルゴリズムに基づく対象領域の決定方法のフローチャートである。
 まず、端末制御部42は、記憶部45に記憶された人の動線情報を読み出す(S21)。上記図7を用いて説明したように、端末制御部42は、例えば、空間を複数のメッシュに分割した場合の、複数のメッシュそれぞれにおける人感センサ18によって人の存在が検出された回数を、人の動線情報として使用する。
 次に、端末制御部42は、読み出した人の動線情報に基づいて、空間のクラスタ化を行う(S22)。端末制御部42は、具体的には、読み出した人の動線情報によって定まる各メッシュにおける人の検出回数に基づいて、空間のクラスタ化を行う。端末制御部42は、例えば、k平均法などを用いて、空間のクラスタ化を行う。例えば、k=6としてクラスタ化が行われると、空間は、6つのクラスタにクラスタ化される。なお、k平均法が用いられる場合には、例えば、k=3~6程度である。kは、入力受付部41によって受け付けられたユーザの入力に応じて変更可能であってもよい。
 次に、端末制御部42は、クラスタごとに当該クラスタに含まれる1以上のメッシュにおける人の検出回数を積算する(S23)。積算は、言い換えれば、数値積分である。そして、端末制御部42は、積算値が最も大きなクラスタから順に所定数n(n<k)のクラスタを選択し(S24)、選択した所定数nのクラスタを対象領域として決定する(S24)。なお、例えば、面積が最も大きなクラスタから順に所定数のクラスタが選択されてもよい。図10は、対象領域として決定された3つのクラスタを示す図である。図10に示されるクラスタ1、クラスタ2、及び、クラスタ3を合わせた領域が対象領域である。
 以上のような第2アルゴリズムに基づく対象領域の決定方法によれば、端末制御部42は、人感センサ18によって人の存在が検出された回数が多いメッシュほど優先的に対象領域に含めることができる。つまり、自走式病原体検出装置10は、人の動線情報に基づいて人が存在することが多い領域を対象領域として病原体の検出を行うことができる。人が存在することが多い領域は、言い換えれば、人から排出される病原体が存在することが多い領域である。したがって、自走式病原体検出装置10は、空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。
 なお、第2アルゴリズムとして他のアルゴリズムが用いられてもよい。例えば、端末制御部42は、人感センサ18によって人の存在が検出された回数が所定数以上のメッシュを選択し、選択したメッシュを対象領域としてもよい。つまり、端末制御部42は、人感センサ18によって人の存在が検出された回数が所定数未満のメッシュを対象領域から除外してもよい。このようなアルゴリズムによっても、端末制御部42は、人感センサ18によって人の存在が検出された回数が多いメッシュほど優先的に対象領域に含めることができる。
 [病原体の検出動作]
 上述のいずれかの方式で対象領域が決定されると、自走式病原体検出装置10は、病原体の検出動作を開始する。図11は、病原体の検出動作のフローチャートである。
 まず、自走式病原体検出装置10の無線通信部19は、対象領域を示す情報を制御端末40の無線通信部43から受信する(S31)。対象領域を示す情報においては、例えば、充電器30の位置を原点とした二次元座標で対象領域が示されている。受信された対象領域を示す情報は、例えば、記憶部20に記憶される。
 次に、位置取得部13は、空間における筐体11の現在位置を示す位置情報を取得する(S32)。制御部14は、位置情報に基づいて移動機構12を制御することにより、筐体11に決定された対象領域内で筐体11を移動させる(S33)。制御部14は、具体的には、位置取得部13によって取得された位置情報によって示される座標が対象領域内に属する範囲で筐体11を移動させる。
 なお、上記図10の例では、対象領域と充電器30の位置とは連続的でなく、つながっていない。充電器30の位置が自走式病原体検出装置10の移動開始点となる場合、自走式病原体検出装置10は、対象領域のうち充電器30の位置から最短のメッシュへ向かうとよい。また、対象領域のうち充電器30の位置から最短のメッシュが複数存在する場合、複数のメッシュのうち人の検出回数が多いメッシュが優先される。また、人の検出回数も同じ場合には、先に特定されたメッシュが優先されればよい。
 このように、筐体11が対象領域内を移動しているときに、捕集部15は空気中の微粒子の捕集を行い(S34)、検出部16は捕集された微粒子を対象として病原体の検出を行う(S35)。なお、ステップS34における微粒子の捕集は、筐体11の移動中に行われてもよいし、筐体11が停止した状態で行われてもよい。
 次に、制御部14は、検出された病原体の濃度が第一所定濃度を超えるか否かの判定を行う(S36)。検出された病原体の濃度が第一所定濃度以下である場合(S36でNo)、位置情報を取得しながらの(S32)対象領域内の移動が継続される(S33)。
 一方、検出された病原体の濃度が第一所定濃度を超える場合(S36でYes)、制御部14は、検出部16によって病原体が検出された病原体検出位置に筐体11を停止させる(S37)。そして、浄化部17は、制御部14の制御に基づいて、病原体検出位置に停止した状態で浄化処理を行う(S38)。浄化部17は、具体的には、浄化処理として次亜塩素酸水を噴霧する処理を行う。なお、ステップS37の浄化処理は、移動中に行われてもよい。
 捕集部15は、浄化処理中、または、浄化処理が行われた後に、空気中の微粒子の捕集を行い(S39)、検出部16は、捕集された微粒子中の病原体の検出を行う(S40)。また、制御部14は、検出された病原体の濃度が第二所定濃度未満であるか否かの判定を行う(S41)。第二所定濃度は、例えば、第一所定濃度よりも低い濃度であるが、第一所定濃度と等しくてもよい。
 検出された病原体の濃度が第二所定濃度以上である場合(S41でNo)、浄化処理が継続される(S38)。一方、検出された病原体の濃度が第二所定濃度未満である場合(S41でYes)、当該病原体検出位置における浄化処理は完了となる。制御部14は、位置情報を取得しながら(S32)対象領域内で筐体11を再び移動させる(S33)。つまり、浄化部17は、検出部16によって検出される病原体の濃度が第二所定濃度よりも低くなるまで浄化処理を継続し、制御部14は、検出部16によって検出される病原体の濃度が第二所定濃度よりも低くなった場合に、移動機構12を制御することにより筐体11を病原体検出位置から移動させる。
 なお、タンク17a内に貯蔵された次亜塩素酸水の濃度が既知である場合、制御部14は、次亜塩素酸水の濃度に基づいてCT値を算出し、算出したCT値から病原体の不活化に必要な次亜塩素酸水の散布時間を逆算することができる。この場合、ステップS39及びステップS40は省略され、ステップS41においては散布時間が経過したか否かが判定されればよい。
 [浄化処理の具体例]
 浄化部17は、検出された病原体の濃度に応じて浄化処理の内容を変更してもよい。図12は、このような浄化処理の具体例のフローチャートである。なお、図12は、図11のステップS37において行われる具体的な処理を示している。
 制御部14は、病原体の濃度が第一所定濃度よりも高く、かつ、第三所定濃度よりも低いか否かを判定する(S51)。第三所定濃度は、第一所定濃度よりも高い濃度である。病原体の濃度が第一所定濃度よりも高く、かつ、第三所定濃度以下である場合(S51でYes)、浄化部17は、制御部14の制御に基づいて、弱運転モードで浄化処理を行う(S52)。一方、病原体の濃度が第三所定濃度よりも高い場合(S51でNo)、浄化部17は、制御部14の制御に基づいて、強運転モードで浄化処理を行う(S52)。
 強運転モードでは、例えば、弱運転モードよりも単位時間あたりに散布される次亜塩素酸水の量が多い。したがって、病原体の濃度が高い場合であっても短時間で病原体の不活化を行うことができる。なお、強運転モード及び弱運転モードでは、例えば、次亜塩素酸水の散布時間が異なってもよい。具体的には、強運転モードのでは、弱運転モードよりも長い時間、次亜塩素酸水の散布を行ってもよい。
 なお、図12では、浄化処理の内容が2段階で変更されたが、浄化処理の内容は、例えば、弱運転モード、中運転モード、及び、強運転モードの3段階に変更されてもよいし、4段階以上に細かく変更されてもよい。
 [人の動線情報のアップデート]
 上述のように、人の動線情報は、1日1回などの所定の頻度で行われる人検出位置特定モードの動作の結果得られる人検出位置情報に基づいてアップデートされる。図13は、対象領域の更新動作のシーケンス図である。
 まず、自走式病原体検出装置10は、人検出位置特定モードの動作を行う(S61)。自走式病原体検出装置10の制御部14は、移動機構12を制御することにより、自走式病原体検出装置10に空間全体を順次移動させる。そして、制御部14は、移動中に人の存在が検出されると、人の存在が検出された位置の位置情報を人検出位置情報として記憶部20に記憶する。位置情報は、位置取得部13によって取得される。
 その後、制御端末40の端末制御部42は、入力受付部41が受け付けたユーザの入力等に基づいて、人検出位置情報の要求を無線通信部43に送信させる(S62)。なお、人検出位置情報の要求は、定期的に送信されてもよい。
 自走式病原体検出装置10の無線通信部19は、人検出位置情報の要求を受信する(S63)。人検出位置情報の要求は、例えば、病原体の検出動作の開始を指示する制御指令に含まれるとよい。制御部14は、受信された人検出位置情報の要求に応じてステップS61において記憶部20に記憶された人検出位置情報を読み出し、読み出した人検出位置情報を無線通信部19に送信させる(S64)。なお、人検出位置情報は、自走式病原体検出装置10側から自発的に送信されてもよい。例えば、制御部14は、定期的に人検出位置情報を無線通信部19に送信させてもよい。
 制御端末40の無線通信部43は、人検出位置情報を受信する(S65)。端末制御部42は、人検出位置情報に基づき、記憶部45に記憶された現在の人の動線情報をアップデートする(S66)。具体的には、現在の人の動線情報における各メッシュの人の検出回数に、人検出位置情報における各メッシュの人の検出回数を加算する。このようなアップデート後の人の動線情報を用いて上記図9の対象領域の決定動作が行われれば、対象領域がアップデートされる。
 このように、人の動線情報がアップデートされれば、端末制御部42は、対象領域を人の生活パターンの変化に応じて適応的に変更することができる。したがって、自走式病原体検出装置10は、変更後の対象領域に対して病原体の検出動作を行うことにより、効率よく病原体の不活化を行うことができる。
 なお、人の動線情報のアップデートは、ユーザが設定した時間に行われてもよい。また、自走式病原体検出装置10の稼働時に、前回稼働時の人検出情報に基づいてアップデートされてもよい。この場合、自走式病原体検出装置10の稼働時に、前回の稼働日における各稼働時間帯の人の総検出数がメッシュにわたる数値積分により計算され、最も検出数の高い時間帯の人検出情報に基づいて人の動線情報のアップデートが行われる。
 [充電器への帰還動作]
 自走式病原体検出装置10は、病原体の検出動作中に蓄電池ユニット21の蓄電池の蓄電残量が所定量よりも低下すると、自動的に充電器30に帰還する帰還動作を行ってもよい。図14は、帰還動作のフローチャートである。
 制御部14は、上記図9の病原体の検出動作中に(S71)、蓄電池ユニット21の蓄電池の蓄電残量をモニタし、当該蓄電残量が所定量未満か否かを判定する(S72)。所定量は、例えば、最大蓄電残量の10%である。制御部14は、蓄電残量が所定量以上であると判定すると(S72でNo)、病原体の検出動作を継続する。
 一方で、制御部14は、蓄電残量が所定量未満であると判定すると(S72でYes)、移動機構12を制御することにより、筐体11を充電器30に向かって移動させる(S73)。そして、制御部14は、筐体11と充電器30との距離が所定距離未満であるか否かを判定する(S74)。
 制御部14は、筐体11と充電器30との距離が所定距離以上であると判定すると(S74でNo)、筐体11の充電器30に向かう移動を継続する(S73)。一方、制御部14は、筐体11と充電器30との距離が所定距離未満であると判定すると(S74でYes)、充電器30の接続端子部31の探索を行い(S75)、移動機構12を制御することにより、自走式病原体検出装置10の接続端子部22が接続端子部31に接続されるように筐体11を移動させ、自走式病原体検出装置10を充電器30に接続する(S76)。
 以上説明したような帰還動作によれば、自走式病原体検出装置10が蓄電残量不足で停止してしまうことを抑制することができる。
 [変形例]
 なお、上記実施の形態では、対象領域の決定、及び、人の動線情報の更新を制御端末40の端末制御部42が行ったが、対象領域の決定、及び、人の動線情報の更新は、自走式病原体検出装置10の制御部14が行ってもよい。例えば、制御部14は、端末制御部42に代わり、空間における人の動線情報に基づいて当該空間における対象領域を決定し、人検出位置情報に基づいて人の動線情報をアップデートしてもよい。この場合、制御端末は、主にユーザインターフェースとして機能し、自走式病原体検出装置の制御部が主体的に各種制御を行う。
 また、上記実施の形態では、病原体の検出動作は、自走式病原体検出装置10の制御部14が主体的に行ったが、病原体の検出動作は、制御端末40の端末制御部42によって主体的に行われてもよい。この場合、制御端末40の端末制御部42は、無線通信部43に適宜制御指令を送信させることにより、自走式病原体検出装置10を従属的に動作させる。
 (その他の実施の形態)
 以上、実施の形態に係る病原体検出システムについて説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば、病原体検出システムが病原体の検出を行う空間は、例えば、介護施設、病院、または、病院の待合室などの室内空間であるが、その他の空間であってもよい。病原体検出システムが病原体の検出を行う空間は、空港であってもよい。また、病原体検出システムが病原体の検出を行う空間は、建屋に限らず、鉄道または飛行機など移動体内の空間であってもよい。
 また、病原体検出システムの検出対象となる病原体は、ウイルスに限定されない。例えば、病源体は、例えば、カビまたは細菌であってもよい。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 また、上記実施の形態において、制御処理部などの構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、制御処理部などの構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 また、本開示は、コンピュータ等によって実行される自走式病原体検出装置の制御方法、または、自走式病原体検出装置を用いた病原体の検出方法として実現されてもよい。本開示は、これらの方法をコンピュータに実行させるためのプログラムとして実現されてもよい。本開示は、当該プログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の病原体検出システムは、施設内等の空間において病原体が存在する可能性が高い場所を優先的に検出の対象領域とすることができる。本開示の病原体検出システムは、介護施設、病院、または、病院の待合室などの室内空間などにおいて病原体を早期に検出できる。
 上記の開示内容から導出される発明の例が以下、列挙される。
1.自走式病原体検出装置であって、
 筐体、
 病原体を検出する検出部、
 前記筐体を移動させる移動機構、
 空間における前記筐体の現在位置を示す位置情報を取得する位置取得部、および
 制御部
 を具備し、
 前記制御部は、プロセッサおよび記憶部を具備し、かつ、動作中に、
  (i) 前記空間における人の動線情報に基づいて前記空間における複数の単位領域から対象領域として選択された少なくとも1つの単位領域内で、前記位置取得部によって取得された位置情報に基づいて前記筐体を移動させるように前記移動機構を制御し、かつ
  (ii) 前記対象領域内で前記病原体を検出するように前記検出部を制御する、
 自走式病原体検出装置。
2.項目1に記載の自走式病原体検出装置であって、さらに
 前記筐体が前記空間内を移動しているときに人の存否を検出するための人感センサを具備し、
 ここで、
 前記動線情報は、各単位領域において前記人感センサによって検出された人の数を含む、
 自走式病原体検出装置。
3.項目2に記載の自走式病原体検出装置であって、
 前記人感センサによって検出された人の数が所定の値以上である単位領域が前記対象領域として選択される、
 自走式病原体検出装置。
4.項目2に記載の自走式病原体検出装置であって、
 前記制御部は、前記人感センサによって前記人が検出されたときの前記位置情報を人検出位置情報として前記記憶部に記憶し、かつ
 前記人検出位置情報に基づいて前記人の動線情報をアップデートする、
 自走式病原体検出装置。
5.項目1に記載の自走式病原体検出装置であって、さらに
 前記病原体を不活性化する浄化処理を行うための浄化部を具備している、
 自走式病原体検出装置。
6.項目5に記載の自走式病原体検出装置であって、
 前記浄化処理は、次亜塩素酸水溶液を噴霧することである、
 自走式病原体検出装置。
7.項目5に記載の自走式病原体検出装置であって、
 前記記憶部は、複数の浄化処理を記憶しており、
 前記検出部は、前記検出部で検出された病原体の濃度を検出し、かつ
 前記制御部は、前記病原体の濃度に応じて前記複数の浄化処理の中から少なくとも1つの浄化処理を選択する、
 自走式病原体検出装置。
8.項目5に記載の自走式病原体検出装置であって、
 前記検出部によって前記病原体が検出されたときに、前記制御部は前記検出部によって前記病原体が検出された検出位置に前記筐体を停止するように前記移動機構を制御し、かつ
 前記浄化部は、前記検出位置に停止した状態で前記浄化処理を行う
 自走式病原体検出装置。
9.項目5に記載の自走式病原体検出装置であって、
 前記浄化部は、前記検出部によって検出される前記病原体の濃度が所定濃度よりも低くなるまで前記浄化処理を継続し、かつ
 前記制御部は、前記検出部によって検出される前記病原体の濃度が前記所定濃度よりも低くなったときに、前記移動機構を制御することにより前記筐体を前記検出位置から移動させる、
 自走式病原体検出装置。
10.病原体検出システムであって、
 自走式病原体検出装置、および
 制御端末
 を具備し、
 ここで、
 前記自走式病原体検出装置は、
  筐体、
  病原体を検出する検出部、
  前記筐体を移動させる移動機構、
  空間における前記筐体の現在位置を示す位置情報を取得する位置取得部、
  前記移動機構を制御する制御部、および
  第1無線通信部
 を具備し、
 前記制御端末は、
  前記空間における前記人の動線情報に基づいて前記空間における複数の単位領域から少なくとも1つの単位領域を対象領域として選択する端末制御部、および
  選択された前記対象領域を示す情報を前記第1無線通信部に送信する第2無線通信部
 を具備し、
 ここで、
 前記制御部は、前記位置情報に基づいて、前記第1無線通信部によって受信された情報が示す選択された前記対象領域内で前記筐体を移動させるように前記移動機構を制御し、かつ
 前記検出部は、前記対象領域内において病原体を検出する
 病原体検出システム。
11.自走式病原体検出装置の制御方法であって、
 空間における前記自走式病原体検出装置の現在位置を示す位置情報を取得し、
 前記空間における人の動線情報に基づいて当該空間における複数の単位領域から少なくとも1つの単位領域を対象領域として選択し、
 前記位置情報に基づいて、選択された前記対象領域内で前記自走式病原体検出装置を移動させ、かつ
 前記自走式病原体検出装置が前記対象領域内に存在しているときに前記自走式病原体検出装置に病原体を検出させる
 制御方法。
 10 自走式病原体検出装置
 11 筐体
 12 移動機構
 12a 駆動回路
 12b 車輪
 13 位置取得部
 14 制御部
 15 捕集部
 15a 吸気口
 15b 排気口
 16 検出部
 17 浄化部
 17a タンク
 17b 噴霧器
 17c 噴霧口
 18 人感センサ
 19、43 無線通信部
 20、45 記憶部
 21 蓄電池ユニット
 22、31 接続端子部
 30 充電器
 32 電力制御部
 40 制御端末
 41 入力受付部
 42 端末制御部
 44 表示部
 100 病原体検出システム
 

Claims (11)

  1.  筐体と、
     病原体を検出する検出部と、
     前記筐体を移動させる移動機構と、
     空間における前記筐体の現在位置を示す位置情報を取得する位置取得部と、
     前記空間における人の動線情報に基づいて当該空間における対象領域を決定し、前記位置情報に基づいて、前記対象領域内で前記筐体を移動させるように前記移動機構を制御する制御部とを備え、
     前記検出部は、前記対象領域内において病原体を検出する
     自走式病原体検出装置。
  2.  さらに、前記筐体が前記空間内を移動しているときに人の存否を検出する人感センサを備え、
     前記人の動線情報は、前記空間を複数の単位領域に分割した場合に、前記複数の単位領域それぞれにおいて前記人感センサによって人の存在が検出された回数を含む
     請求項1に記載の自走式病原体検出装置。
  3.  前記制御部は、前記人感センサによって人の存在が検出された回数が多い前記単位領域ほど優先的に前記対象領域に含める
     請求項2に記載の自走式病原体検出装置。
  4.  さらに、記憶部を備え、
     前記制御部は、
     前記人感センサによって人の存在が検出されたときの前記位置情報を人検出位置情報として前記記憶部に記憶し、
     前記人検出位置情報に基づいて前記人の動線情報をアップデートする
     請求項2または3に記載の自走式病原体検出装置。
  5.  さらに、前記病原体を不活化するための浄化処理を行う浄化部を備える
     請求項1~4のいずれか1項に記載の自走式病原体検出装置。
  6.  前記浄化部は、前記浄化処理として次亜塩素酸水を噴霧する処理を行う
     請求項5に記載の自走式病原体検出装置。
  7.  前記検出部は、さらに、前記病原体の濃度を検出し、
     前記浄化部は、検出された前記病原体の濃度に応じて前記浄化処理の内容を変更する
     請求項5または6に記載の自走式病原体検出装置。
  8.  前記制御部は、前記移動機構を制御することにより、前記検出部によって前記病原体が検出された検出位置に前記筐体を停止させ、
     前記浄化部は、前記検出位置に停止した状態で前記浄化処理を行う
     請求項5~7のいずれか1項に記載の自走式病原体検出装置。
  9.  前記浄化部は、前記検出部によって検出される前記病原体の濃度が所定濃度よりも低くなるまで前記浄化処理を継続し、
     前記制御部は、前記検出部によって検出される前記病原体の濃度が前記所定濃度よりも低くなった場合に、前記移動機構を制御することにより前記筐体を前記検出位置から移動させる
     請求項8に記載の自走式病原体検出装置。
  10.  自走式病原体検出装置と、
     制御端末とを備え、
     前記自走式病原体検出装置は、
     筐体と、
     病原体を検出する検出部と、
     前記筐体を移動させる移動機構と、
     空間における前記筐体の現在位置を示す位置情報を取得する位置取得部と、
     前記移動機構を制御する制御部と、
     第1無線通信部とを備え、
     前記制御端末は、
     前記空間における人の動線情報に基づいて当該空間における対象領域を決定する端末制御部と、
     決定された前記対象領域を示す情報を前記第1無線通信部に送信する第2無線通信部とを備え、
     前記制御部は、前記位置情報に基づいて、前記第1無線通信部によって受信された前記情報により特定される前記対象領域内で前記筐体を移動させるように前記移動機構を制御し、
     前記検出部は、前記対象領域内において病原体を検出する
     病原体検出システム。
  11.  自走式病原体検出装置の制御方法であって、
     空間における前記自走式病原体検出装置の現在位置を示す位置情報を取得し、
     前記空間における人の動線情報に基づいて当該空間における対象領域を決定し、
     前記位置情報に基づいて、決定された前記対象領域内で前記自走式病原体検出装置を移動させ、
     前記自走式病原体検出装置が前記対象領域内に存在しているときに前記自走式病原体検出装置に病原体を検出させる
     制御方法。
PCT/JP2018/038238 2017-11-28 2018-10-15 自走式病原体検出装置、病原体検出システム、及び、制御方法 WO2019106980A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019557055A JP7190652B2 (ja) 2017-11-28 2018-10-15 自走式病原体検出装置、病原体検出システム、及び、制御方法
CN201880074171.5A CN111356939B (zh) 2017-11-28 2018-10-15 自走式病原体检测装置、病原体检测***以及控制方法
US16/810,180 US11559179B2 (en) 2017-11-28 2020-03-05 Self-propelled pathogen detection device, pathogen detection system, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-228158 2017-11-28
JP2017228158 2017-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/810,180 Continuation US11559179B2 (en) 2017-11-28 2020-03-05 Self-propelled pathogen detection device, pathogen detection system, and control method

Publications (1)

Publication Number Publication Date
WO2019106980A1 true WO2019106980A1 (ja) 2019-06-06

Family

ID=66664900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038238 WO2019106980A1 (ja) 2017-11-28 2018-10-15 自走式病原体検出装置、病原体検出システム、及び、制御方法

Country Status (4)

Country Link
US (1) US11559179B2 (ja)
JP (1) JP7190652B2 (ja)
CN (1) CN111356939B (ja)
WO (1) WO2019106980A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135205A (ja) * 2020-02-27 2021-09-13 パナソニックIpマネジメント株式会社 ガス検知方法、プログラム、及びガス検知システム
JP2021153884A (ja) * 2020-03-27 2021-10-07 英孝 宮▲崎▼ 環境殺菌装置
WO2023037405A1 (ja) * 2021-09-07 2023-03-16 日本電気株式会社 照射位置特定装置、照射位置通知システム、その制御方法、及び非一時的なコンピュータ可読媒体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064861A1 (ja) * 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 検出装置
US20210286370A1 (en) * 2018-07-20 2021-09-16 Sony Corporation Agent, existence probability map creation method, agent action control method, and program
JP2021029487A (ja) * 2019-08-21 2021-03-01 パナソニックIpマネジメント株式会社 自律走行型掃除機、自律走行型掃除機の制御方法、及び、プログラム
US11823295B2 (en) * 2020-06-19 2023-11-21 Honeywell International, Inc. Systems and methods for reducing risk of pathogen exposure within a space

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283479A (ja) * 2003-03-25 2004-10-14 Toli Corp 集塵性タイルカーペットの敷設方法
JP2005046592A (ja) * 2003-07-29 2005-02-24 Samsung Kwangju Electronics Co Ltd 床殺菌機能を備えたロボット掃除機
JP2013223531A (ja) * 2012-04-19 2013-10-31 Sharp Corp 自走式空気清浄機
JP2014209293A (ja) * 2013-04-16 2014-11-06 富士ゼロックス株式会社 経路探索装置、自走式作業装置、プログラム及び記録媒体
JP2016039843A (ja) * 2014-08-12 2016-03-24 株式会社 徳武製作所 除菌機能付き加湿空気清浄装置
JP2016206876A (ja) * 2015-04-21 2016-12-08 Cyberdyne株式会社 自律移動体の走行経路教示システムおよび走行経路教示方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314937A (ja) * 1988-06-15 1989-12-20 Nec Corp ゴミ測定自走ロボット
JPH07103536A (ja) 1993-10-07 1995-04-18 Sekisui Chem Co Ltd 建物の換気システム
JPH09296941A (ja) 1996-04-30 1997-11-18 Natl House Ind Co Ltd 建物の吸排気システム
TW201017149A (en) * 2008-08-06 2010-05-01 Invitrox Inc Use of focused light scattering techniques in biological applications
US8779391B2 (en) * 2011-03-03 2014-07-15 Teckni-Corp Sterilization system with ultraviolet emitter for eradicating biological contaminants
JP2013148246A (ja) 2012-01-17 2013-08-01 Sharp Corp 自走式電子機器および自走式イオン発生機
JP6054136B2 (ja) * 2012-10-23 2016-12-27 シャープ株式会社 機器制御装置、および自走式電子機器
JP6282031B2 (ja) 2012-11-12 2018-02-21 三菱電機株式会社 空調用換気装置
JP6069606B2 (ja) * 2013-03-01 2017-02-01 株式会社国際電気通信基礎技術研究所 ロボット制御システムおよびロボット制御方法
JP2015178993A (ja) 2014-03-19 2015-10-08 パナソニックIpマネジメント株式会社 検出装置
JP2015206670A (ja) 2014-04-21 2015-11-19 パナソニックIpマネジメント株式会社 捕集装置、検出装置、清浄装置、捕集方法、検出方法、および、清浄方法
CN104298239B (zh) * 2014-09-29 2016-08-24 湖南大学 一种室内移动机器人增强地图学习路径规划方法
WO2016210399A2 (en) * 2015-06-25 2016-12-29 Daylight Medical, Inc. Decontamination system and decontamination unit housing equipped with remote control
JP6666695B2 (ja) * 2015-11-16 2020-03-18 シャープ株式会社 自走式電子機器および自走式電子機器の走行方法
CN105892321B (zh) * 2016-04-28 2018-11-23 京东方科技集团股份有限公司 一种清洁机器人的调度方法及调度装置
CN106362173A (zh) * 2016-09-28 2017-02-01 西安四腾环境科技有限公司 一种智能化综合灭菌机器人
JP2018112775A (ja) * 2017-01-06 2018-07-19 富士ゼロックス株式会社 自律移動ロボット
CN107256019B (zh) * 2017-06-23 2018-10-19 杭州九阳小家电有限公司 一种清洁机器人的路径规划方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283479A (ja) * 2003-03-25 2004-10-14 Toli Corp 集塵性タイルカーペットの敷設方法
JP2005046592A (ja) * 2003-07-29 2005-02-24 Samsung Kwangju Electronics Co Ltd 床殺菌機能を備えたロボット掃除機
JP2013223531A (ja) * 2012-04-19 2013-10-31 Sharp Corp 自走式空気清浄機
JP2014209293A (ja) * 2013-04-16 2014-11-06 富士ゼロックス株式会社 経路探索装置、自走式作業装置、プログラム及び記録媒体
JP2016039843A (ja) * 2014-08-12 2016-03-24 株式会社 徳武製作所 除菌機能付き加湿空気清浄装置
JP2016206876A (ja) * 2015-04-21 2016-12-08 Cyberdyne株式会社 自律移動体の走行経路教示システムおよび走行経路教示方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021135205A (ja) * 2020-02-27 2021-09-13 パナソニックIpマネジメント株式会社 ガス検知方法、プログラム、及びガス検知システム
JP7361311B2 (ja) 2020-02-27 2023-10-16 パナソニックIpマネジメント株式会社 ガス検知方法、プログラム、及びガス検知システム
JP2021153884A (ja) * 2020-03-27 2021-10-07 英孝 宮▲崎▼ 環境殺菌装置
JP7148156B2 (ja) 2020-03-27 2022-10-05 日本未来科学研究所合同会社 環境殺菌装置
WO2023037405A1 (ja) * 2021-09-07 2023-03-16 日本電気株式会社 照射位置特定装置、照射位置通知システム、その制御方法、及び非一時的なコンピュータ可読媒体

Also Published As

Publication number Publication date
CN111356939A (zh) 2020-06-30
JP7190652B2 (ja) 2022-12-16
JPWO2019106980A1 (ja) 2020-10-01
US11559179B2 (en) 2023-01-24
CN111356939B (zh) 2023-09-29
US20200196812A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2019106980A1 (ja) 自走式病原体検出装置、病原体検出システム、及び、制御方法
CN109965778B (zh) 包括移动机器人的环境管理***以及其使用方法
US7789951B2 (en) Method and system for moving air purifier
TWI645136B (zh) 室內空氣品質調整系統
US11471813B2 (en) Air cleaner
CN213577931U (zh) 空气清净装置以及智能管理***
JP2019150564A (ja) 浄化方法、浄化装置及び浄化システム
EP3282913B1 (en) Dust processing
KR101945495B1 (ko) 전자기기 및 그 제어 방법
CN112953798A (zh) 基于基站的清洁设备控制方法、设备、装置及存储介质
JP7348026B2 (ja) 微粒子処理システム、微粒子処理制御装置及び微粒子処理制御プログラム
JP2017099540A (ja) 集塵システムおよび集塵方法
KR101890386B1 (ko) 공기 청정기 및 이의 구동 방법
JP2015156107A (ja) 自走式電子機器
US11631279B2 (en) Smart cleaning system
CN113865052A (zh) 一种控制方法、控制设备、空调***及存储介质
WO2022066453A1 (en) Self-cleaning environment
KR20190060265A (ko) 공기청정기 자동이동장치
WO2019167594A1 (ja) 浄化方法、浄化装置及び浄化システム
JP2022034951A (ja) 移動式除菌装置および室内除菌システム
US20210362086A1 (en) Method of automatically following human for purifying air nearby
JP7315262B2 (ja) 掃除システム及び掃除システムを構成するロボット掃除装置並びに飛行体装置
JP2014154011A (ja) 自走式電子機器
EP3916311B1 (en) Method of automatically following human for purifying air nearby
JP2019110858A (ja) 病原体検出システム、病原体検出方法、病原体検出器、及び、制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884283

Country of ref document: EP

Kind code of ref document: A1