WO2019104554A1 - 无人机的控制方法及控制终端 - Google Patents

无人机的控制方法及控制终端 Download PDF

Info

Publication number
WO2019104554A1
WO2019104554A1 PCT/CN2017/113653 CN2017113653W WO2019104554A1 WO 2019104554 A1 WO2019104554 A1 WO 2019104554A1 CN 2017113653 W CN2017113653 W CN 2017113653W WO 2019104554 A1 WO2019104554 A1 WO 2019104554A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
target
drones
job task
control
Prior art date
Application number
PCT/CN2017/113653
Other languages
English (en)
French (fr)
Inventor
钟和立
吴旭民
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780026702.9A priority Critical patent/CN109154828A/zh
Priority to PCT/CN2017/113653 priority patent/WO2019104554A1/zh
Publication of WO2019104554A1 publication Critical patent/WO2019104554A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft

Definitions

  • the embodiment of the invention relates to the field of drones, and in particular to a control method and a control terminal for a drone.
  • the flying hand can control a drone to perform work tasks in the work area through the remote control, such as a pesticide spraying operation task, but when the operating area of the drone is large, a drone may need The task of the job can be completed for a long time, resulting in a low efficiency of the drone.
  • Embodiments of the present invention provide a control method and a control terminal for a drone to improve work efficiency of a human machine.
  • a first aspect of the present invention provides a control method for a drone, which is applied to a control terminal of a drone, and includes:
  • a second aspect of the embodiments of the present invention provides a control method for a drone, which is applied to a control terminal of a drone, and includes:
  • the target drone being one of at least two drones communicatively coupled to the control terminal;
  • a third aspect of the embodiments of the present invention provides a control terminal for a drone, including: a processor and a communication interface;
  • the processor is used to:
  • the communication interface is configured to transmit target job task data determined for each of at least two drones communicatively coupled to the control terminal to a corresponding drone to cause the drone to perform the The target job task indicated by the target job task data.
  • a fourth aspect of the embodiments of the present invention provides a control terminal for a drone, including: a processor and a display component;
  • the processor is used to:
  • the target drone being one of at least two drones communicatively coupled to the control terminal;
  • the control method and the control terminal of the unmanned aerial vehicle provided by the embodiment detect the user's work task assignment operation by the control terminal, and according to the work task assignment operation, each of the at least two drones communicatively connected with the control terminal A target job task data is determined, and the target job task data corresponding to each drone is sent to the drone, so that the same control terminal can control a plurality of drones to perform work tasks, thereby improving the operating efficiency of the drone.
  • FIG. 1 is a flowchart of a method for controlling a drone according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • 15 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • 17 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 19 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 21 is a flowchart of a method for controlling a drone according to another embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 23 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 25 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 26 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 27 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 29 is a structural diagram of a control terminal of a drone according to another embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • the control method of the drone is applied to a control terminal of the drone.
  • the method in this embodiment may include:
  • Step S101 detecting a job assignment operation of the user.
  • the execution body of the method of this embodiment may be a control terminal of the drone, and the control terminal may specifically be a remote controller, a smart phone, a tablet computer, a ground control station, a laptop computer, a watch, a wristband, and the like, and combinations thereof.
  • the control terminal is provided with a user interface, and the user can operate the user interface.
  • the control terminal can detect the operation of the user interface on the user, and control the drone connected to the control terminal according to the operation of the user.
  • the control terminal can communicate with at least two drones. Connected, the drone can be specifically an agricultural drone. This embodiment takes the control terminal as a communication connection with two drones as an example.
  • the user interface 20 of the control terminal includes a plurality of icons, such as an icon 21, an icon 22, an icon 23, and an icon 24.
  • the user interface 20 may display a job task list, the job task in the job task list is a task for the drone to perform; when the user operates the icon 22, for example, click, the user interface 20 may display the user information;
  • the user interface 20 can display information of the drone that is communicatively connected to the control terminal; when the user operates the icon 24, for example, clicks, the user interface 20 can display the associated with the control terminal.
  • Settings item This is merely a schematic illustration, and does not limit the specific form and content of the user interface, nor the specific shape and function of each icon in the user interface.
  • the job task list may include a plurality of job tasks, and each of the plurality of job tasks may be unmanned.
  • the job task that the machine has performed may also be a job task that the drone has not performed, or it may be a job task that the drone is performing.
  • the user interface 20 displays a job task icon 25 of No. 1 field, a job task icon 26 of No. 2 field, and a job task icon 27 of No. 3 field.
  • Each job task icon includes a work time and a pre-operation. Estimate area, number of plots, task status, location information, and task identification.
  • the task identifier may be a task number, such as a sequence of numbers, or a sequence of other forms, which is not specifically limited herein.
  • the user for example, the flying hand, can perform an assignment operation on the job task displayed in the job task list. For example, after the user clicks the arrow 251 included in the job task icon 25 or the job task icon 25, the user interface 20 displays the frame 30 as shown in FIG.
  • the bullet box 30 is provided for the user to select a drone that performs a work task corresponding to the No. 1 field.
  • the control terminal is in communication connection with the UAV No. 1 and the UAV No. 2
  • the user interface displays a drop-down list 32, and the drop-down list 32 includes the UAV No. 1
  • the identification information and the identification information of the UAV No. 2 the user can select an identification information of the UAV from the drop-down list 32, such as the identification information of the UAV No. 1, and click the OK button to set the UAV No. 1 A drone that performs a work task corresponding to No. 1 field.
  • the job task icon 25 further includes a positioning mark 252 of the No. 1 field.
  • the user interface displays an electronic map in which the position or area indicated by the positioning information 1 is displayed, optionally, The positioning information 1 is the position information of the No. 1 field.
  • the control terminal can detect that the user includes the job task icon 25 or the job task icon 25
  • the click operation of the arrow 251 can also detect the user's selection operation of the identification information of the UAV No. 1 and according to the user's click operation on the job task icon 25 or the arrow 251 included in the job task icon 25, and the user pair 1
  • the selection operation of the identification information of the UAV No. 1 is a user's assignment operation to the job task corresponding to the No. 1 field.
  • control terminal can also detect the user's assignment operation to the job task corresponding to the No. 2 field.
  • the user can set the UAV No. 2 as a drone that performs the work task corresponding to the No. 2 field. The specific process will not be described here.
  • Step S102 Determine target job task data for each of at least two drones communicatively connected to the control terminal according to the detected job task assignment operation.
  • the control terminal may store a plurality of job task data, or store a plurality of job task data in a server or a storage system communicably connected to the control terminal, optionally, one job task data and one on the user interface.
  • the job task icon corresponds to each other, that is, each job task icon on the user interface can be associated with a job task data through the task identifier, the job task data includes route information, flight height of the drone along the route, and flight speed. , flight attitude, actions that the drone needs to perform when flying along the route, such as spraying, aerial photography, etc.
  • the control terminal When the control terminal detects the assignment operation of the job task corresponding to the No. 1 field, the control terminal may acquire the information from the server or the storage system that is in communication with the control terminal according to the task identifier of the job task corresponding to the No. 1 field.
  • the task identifies the corresponding job task data, and determines the job task data as the target job task data of the UAV No. 1.
  • the server or the storage system that is connected to the local or communication terminal according to the task identifier of the job task corresponding to the No. 2 field may be identified.
  • the job task data corresponding to the task identifier is obtained, and the job task data is determined as the target job task data of the No. 2 drone.
  • Step S103 Send target job task data determined for each of at least two drones communicatively connected to the control terminal to a corresponding drone to cause the drone to execute the target job task data. Indicated target job task.
  • the control terminal determines the target work task data of the UAV No. 1 and the UAV No. 2
  • the target work task data of the drone No. 1 is transmitted to the drone No. 1 so that the drone No. 1 executes the target work task indicated by the target work task data.
  • the target work task data of the UAV No. 2 is sent to the UAV No. 2, so that the UAV No. 2 executes the target work task indicated by the target work task data.
  • the target job task data may include job area information, wherein the job area information may include at least one of location information, area information, and boundary information of the work area, for example, when the control terminal When the user's assignment operation to the job task corresponding to the No. 1 field is detected, the control terminal can acquire the work area information corresponding to the No. 1 field.
  • the implementation manner of the control terminal acquiring the work area information corresponding to the No. 1 field is as follows:
  • control terminal or a server or a storage system communicatively connected to the control terminal stores work area information corresponding to each work task, and the control terminal can be locally or connected to the control terminal. Or the working area information corresponding to the No. 1 field is obtained in the storage system.
  • 253 is an icon for identifying No. 1 field.
  • the user interface will display an electronic map 40 as shown in FIG. 4, and the electronic map 40 is displayed.
  • the control terminal detects the operation of the icon 41 by the user, it determines at least one of the work area information corresponding to the No. 1 field, such as the position information, the area information, and the boundary information.
  • the control terminal determines the work area information corresponding to the No. 1 field
  • the work area information corresponding to the No. 1 field is transmitted to the No. 1 drone according to the user's assignment operation to the work task corresponding to the No. 1 field, 1
  • the drone can plan the route to be operated on the No. 1 field based on the work area information corresponding to the No. 1 field, and execute the route.
  • control terminal transmits the work area information corresponding to the No. 2 field to the No. 2 drone, and after the No. 2 drone receives the work area information corresponding to the No. 2 field, the work area information corresponding to the No. 2 field can be obtained. Plan the route to operate in the No. 2 field and execute the route.
  • the target job task data sent by the control terminal to the drone may specifically be route information.
  • the target job task data sent by the control terminal to the UAV 1 may be specifically The target work area is, for example, the route information corresponding to the No. 1 field, and the target work task data transmitted by the control terminal to the UAV No. 2 may specifically be the route information corresponding to the target work area, for example, No. 2 field.
  • the same job task can also be performed by multiple drones. As shown in FIG. 5, the number of plots included in the No. 1 field is two. When the user clicks on the positioning mark 252 of the positioning information 1 as shown in FIG. 5, the user interface displays an electronic map 60 as shown in FIG.
  • Map 60 shows two plots of plot 1, such as parcel A and parcel B.
  • the user interface 20 displays a bullet box 70 as shown in FIG. 7, and the bullet box 70 includes a selection box 71 and a selection box 72.
  • the selection box 71 includes a drop-down arrow 711.
  • the user interface displays a drop-down list 712.
  • the drop-down list 712 includes the identification information of the drone No. 1 and the identification information of the UAV No. 2, and the user can pull down the In the list 712, the identification information of one drone is selected, for example, the identification information of the UAV No.
  • the selection box 72 includes a drop-down arrow 721.
  • the user interface displays a drop-down list 722.
  • the drop-down list 722 includes the identification information of the drone No. 1 and the identification information of the UAV No. 2, and the user can pull down from In the list 722, the identification information of one drone is selected, for example, the identification information of the UAV No. 2, and the parcel B is assigned to the UAV No. 2 to operate. Therefore, the work task corresponding to the No. 1 field is realized by the UAV No. 1 and the No. 2 UAV. This is only a schematic description, and does not limit the correspondence between the drone that is communicatively connected to the control terminal and the work area.
  • the control terminal detects the user's job task assignment operation, and determines the target job task data for each of the at least two drones communicatively connected to the control terminal according to the job task assignment operation.
  • the target job task data corresponding to the machine is sent to the drone, so that the same control terminal can control a plurality of drones to perform work tasks, thereby improving the operating efficiency of the drone.
  • Embodiments of the present invention provide a method for controlling a drone.
  • FIG. 8 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 8, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may further include:
  • Step S801 detecting a flight state control operation of the user.
  • the communication connection between the control terminal and the two drones is taken as an example, and the two drones respectively For the No. 1 UAV and the No. 2 UAV, by the above embodiment, the control terminal can assign the target work task data to each of the two UAVs.
  • the control terminal gives No. 1
  • the target job task data assigned by the drone is the route data corresponding to the work area 91 in the electronic map 90 as shown in FIG. 9, and the target work task data assigned by the control terminal to the No. 2 drone is as shown in FIG.
  • the control terminal displays the route 911 corresponding to the work area in the work area 91.
  • the control terminal transmits the route data corresponding to the work area 92 to the UAV No. 2
  • the control terminal displays the route 921 corresponding to the work area in the work area 92.
  • control terminal may also display an icon 912 for marking the UAV No. 1 and an icon 922 for marking the UAV No. 2 in the electronic map 90.
  • the UAV No. 1 and the UAV No. 2 can also transmit their position information to the control terminal in real time, and the control terminal adjusts according to the real-time position information of the UAV No. 1.
  • the position of the icon 912 on the route 911 causes the icon 912 to move in the direction of the route 911.
  • control terminal adjusts the position of the icon 922 on the route 921 according to the real-time location information of the UAV 2, so that the icon 922 Move in the direction of the route 921.
  • the user can also control the flight status of UAV No. 1 and UAV No. 2 through the control terminal, for example, control No. 1 Flight speed, flight altitude, etc. of man-machine and No. 2 drone.
  • the user can input data in the input box 931 to control the flying height of the drone No. 1, or adjust the arrow on the progress bar 932 to adjust the flying height of the drone No. 1. It is also possible to input data in input box 941 to control the flight speed of drone 1, or adjust the arrow on progress bar 942 to adjust the flight speed of drone 1.
  • the control terminal can detect the user's control operation on the flight state of the UAV No. 1.
  • the user can enter data in input box 951 to control the flying height of drone 2, or adjust the arrow on progress bar 952 to adjust the flying height of drone 2.
  • Data can also be entered in input box 961 to control the flight speed of UAV 2, or the arrow on progress bar 962 can be adjusted to adjust the flight speed of UAV No. 2.
  • the control ends The terminal can detect the user's control operation on the flight state of the UAV 2.
  • Step S802 controlling flight states of the at least two unmanned aerial vehicles or controlling flight states of the target drones in the at least two unmanned aerial vehicles according to the flight state control operation.
  • the control terminal can control the flight state of the UAV No. 1 according to the user's control operation on the flight state of the UAV No. 1, and control the No. 2 unmanned according to the user's control operation on the flight state of the UAV No. 2 Flight status of the aircraft.
  • the user can control only the flight state of the UAV No. 1, or only the flight state of the UAV No. 2.
  • control terminal may determine the flying height set by the user for the UAV No. 2 according to the data input by the user in the input box 951, and send the flying height to the UAV No. 2 to make the UAV No. 2
  • the current flight altitude is adjusted according to the flight height.
  • the method further includes:
  • Step S1001 Receive target job task execution status information sent by each of the at least two drones.
  • each of the UAV No. 1 and UAV No. 2 can also perform the status information of the target work task that it performs, for example, completion.
  • the rate is sent to the control terminal.
  • the control terminal receives the completion rate of the target job task transmitted by each of the No. 1 UAV and the No. 2 UAV.
  • Step S1002 Display target job task execution status information sent by each of the at least two drones.
  • the control terminal After the control terminal receives the completion rate of the target job task sent by each of the UAV No. 1 and the UAV No. 2, the target job sent by each of the UAV No. 1 and the UAV No. 2
  • the completion rate of the task is displayed on the user interface.
  • the display box 111 of the user interface 110 can display the icon 912 of the drone No. 1 and the completion rate of the target task of the UAV No. 1; user interface
  • the display box 112 of 110 can display the icon 922 of the UAV No. 2 and the completion rate of the target work task of the UAV No. 2.
  • the method further includes:
  • Step S1201 Receive flight state information sent by each of the at least two drones.
  • each of the UAV No. 1 and UAV No. 2 can also transmit its flight status information to the control terminal.
  • the control terminal receives flight status information transmitted by each of the UAV No. 1 and the UAV No. 2.
  • the flight status information includes one or more of flight speed, flight altitude, location information, and power information.
  • Step S1202 Display flight state information sent by each of the at least two drones.
  • the control terminal After receiving the flight state information sent by each of the UAV No. 1 and the UAV No. 2, the control terminal displays the flight state information sent by each of the UAV No. 1 and the UAV No. 2 in the U.S.
  • the display box 111 of the user interface 110 can also display the power, speed, and altitude of the UAV No. 1; the display frame 112 of the user interface 110 can also display the UAV No. 2 Electricity, speed, altitude.
  • the method further includes:
  • Step S1301 Receive fault information sent by the first drone of the at least two drones.
  • the drone communicably connected to the control terminal may further include a drone No. 3, and the control terminal allocates a route corresponding to the work area 141 according to a job assignment operation of the user.
  • the data is sent to the drone No. 3, and correspondingly, the display box 113 of the user interface 140 can also display the icon of the drone No. 3, the completion rate of the target work task of the drone No. 3, and the drone of the No. 3 drone. Electricity, speed, altitude.
  • the order of the display frame 111, the display frame 112, and the display frame 113 may be determined according to the communication connection sequence between the control terminal and the three drones, or may be based on three drones. The number size is determined.
  • UAV No. 1 When the UAV No. 1, UAV No. 2 and UAV No. 3 perform their respective target tasks, if one of the UAVs, such as UAV No. 2, fails, UAV No. 2 can also The fault information is sent to the control terminal, and the control terminal can receive the fault information sent by the drone No. 2.
  • Step S1302 displaying fault indication information associated with the first drone according to the fault information.
  • the fault indication information associated with the fault information is displayed on the user interface, such as the user interface 140, for example, the drone 2 on the route 921 can be Icon 922 is displayed in a highlighted state, for example, displayed in red,
  • the icon of the drone No. 2 in the display box 112 is displayed in a highlighted state, for example, displayed in red, or/and a fault indication icon 142 is displayed in the display frame 112 to prompt the user that the UAV No. 2 has failed.
  • Step S1303 Detecting a fault information viewing operation of the user.
  • the user may click the display box 112, or click the fault indication icon 142, or click the icon 922 of the UAV No. 2 to view No. 2 Man-machine fault information.
  • the control terminal can detect a user's click operation on the display frame 112, the fault indication icon 142, or the icon 922.
  • Step S1304 Display an operation according to the detected fault information, and display fault information sent by the first drone.
  • control terminal may display the fault information sent by the drone No. 2 according to the click operation of the display box 112, the fault indication icon 142, or the icon 922 by the user, and by viewing the fault information, the flying hand can obtain the No. 2 unmanned person. In this way, the specific component of the machine is faulty, and in this way, the working state of the drone can be tracked in time.
  • the control terminal receives the target job task execution state information and flight state information sent by each of the at least two unmanned aerial vehicles that are communicatively connected thereto, and transmits the target job task execution state information and flight transmitted by each drone.
  • the status information is displayed on the user interface, so that the user can monitor multiple drones at the same time.
  • the control terminal receives fault information sent by one of the at least two drones, and can also display a fault indication on the user interface. The information is provided to the drone that the user has failed the drone so that the user can immediately find the fault.
  • Embodiments of the present invention provide a method for controlling a drone.
  • FIG. 15 is a flowchart of a method for controlling a drone according to another embodiment of the present invention. As shown in FIG. 15, the method in this embodiment may further include:
  • Step S1501 detecting a user's takeoff control operation.
  • the "execute task" icon as shown in FIG. 16 can be clicked.
  • the user interface 20 displays a bullet box 160 as shown in FIG. 16, and the bullet box 160 includes a drone No. 1
  • the user can control at least one of the UAV No. 1 and the UAV No. 2 to take off by operating at least one of the slide button 161, the slide button 162, and the slide button 163.
  • sliding the slide button to the right indicates opening.
  • Step S1502 Control the at least two UAVs to take off or control the target UAV in the at least two UAVs to take off according to the takeoff control operation.
  • the drone No. 1 is controlled to take off.
  • the drone No. 2 is controlled to take off.
  • the control terminal detects that the user has turned on the slide button 163 the control UAV No. 1 and the UAV No. 2 take off at the same time.
  • the method further includes:
  • step S1701 the user's return flight control operation is detected.
  • the user can also click "as shown in FIG. 18".
  • the "Return” icon controls at least one of the No. 1 drone and the No. 2 drone to return.
  • the user interface 110 displays a bullet box 180 as shown in FIG. 18
  • the bullet box 180 includes a sliding button 181 for controlling the return of the drone No. 1 , and controls the drone of the No. 2 to return.
  • the sliding button 182 controls the sliding button 183 of the UAV No. 1 and the UAV No. 2 to return.
  • the user can control at least one of the UAV 1 and the UAV 2 to return to the navigation by operating at least one of the slide button 181, the slide button 182, and the slide button 183.
  • sliding the slide button to the right indicates opening.
  • Step S1702 Control the at least two unmanned aircrafts to return or control the target drones in the at least two drones to return according to the return flight control operation.
  • control unit 1 When the control terminal detects that the user has turned on the slide button 181, the control unit 1 returns to the drone. At this time, the control terminal can send the position information of the preset return point 184 to the drone No. 1 so that the No. 1 is absent. The man machine returns to the preset return point 184 along the return route 185.
  • the control terminal When the control terminal detects that the user has turned on the slide button 182, the control unit 2 returns to the drone; at this time, the control terminal can transmit the position information of the preset return point 184 to the drone No. 2, so that the No. 2 is absent. The man machine returns to the preset return point 184 along the return route 186.
  • the control terminal When the control terminal detects that the user has turned on the slide button 183, the UAV No. 1 and the UAV No. 2 are controlled to return at the same time. At this time, the control terminal may send the position information of the preset return point 184 to the UAV No. 1 and the UAV No. 2, respectively, so that the UAV No. 1 returns to the preset return point 184 along the return route 185. The drone 2 is returned to the preset return point 184 along the return route 186.
  • the method further includes:
  • Step S1901 detecting a user's job task pause operation.
  • the user can also click on the "Pause” icon as shown in FIG. 20 to control the UAV No. 1 and At least one of the No. 2 drones suspends the execution of the target job task.
  • the user interface 110 displays the bullet box 200 as shown in FIG. 20, and the bullet box 200 includes a slide button 201 for controlling the No. 1 drone to suspend the execution of the target job task, and the control No. 2 The drone suspends the slide button 202 of the target job task, and simultaneously controls the slide button 203 of the No. 1 drone and the No. 2 drone to suspend the execution of the target job task.
  • the user can control at least one of the No. 1 UAV and the No. 2 UAV to suspend execution of the target work task by operating at least one of the slide button 201, the slide button 202, and the slide button 203.
  • sliding the slide button to the right indicates opening.
  • Step S1902 Control the at least two UAVs to suspend execution of the target job task or control the target UAV in the at least two UAVs to suspend execution of the target job task according to the job task suspending operation.
  • the drone No. 1 is controlled to suspend execution of the target job task.
  • the control terminal detects that the user has turned on the slide button 202 the control drone No. 2 suspends execution of the target job task.
  • the control terminal detects that the user has turned on the slide button 203 the No. 1 drone and the No. 2 drone are simultaneously suspended to perform the target work task.
  • the method further includes:
  • step S2101 the user's job task end operation is detected.
  • the user can also click on the "End” icon as shown in FIG. 22 to control the UAV No. 1 and At least one of the No. 2 drones ends the execution of the target job task.
  • the user interface 110 displays the bullet box 220 as shown in FIG. 22, and the bullet box 220
  • the utility model comprises a sliding button 221 for controlling the No. 1 drone to end the execution of the target work task, a sliding button 222 for controlling the No. 2 drone to end the execution of the target work task, and simultaneously controlling the No. 1 drone and the No. 2 drone to execute the target operation. Slide button 223 for the task.
  • the user can control at least one of the No. 1 UAV and the No. 2 UAV to end the execution of the target work task by operating at least one of the slide button 221, the slide button 222, and the slide button 223.
  • sliding the slide button to the right indicates opening.
  • Step S2102 controlling the at least two drones to end the execution of the target job task or controlling the target drone of the at least two drones to end the execution of the target job task according to the job task ending operation.
  • control drone No. 1 ends the execution of the target job task.
  • control drone No. 2 ends the execution of the target job task.
  • control terminal detects that the user has turned on the slide button 223 the control drone No. 1 and the drone No. 2 simultaneously end the execution of the target work task.
  • the control terminal detects the user's take-off control operation, the return flight control operation, the work task pause operation, or the work task end operation, and controls at least two drones that are in communication with the control terminal to take off, return, and suspend the execution of the target task. Ending the execution of the target job task, or controlling the target drone in the at least two drones to take off, return, suspend the execution of the target job task, or end the execution of the target job task, improving at least two of the communication connections with the control terminal The flexibility of the drone for control.
  • Embodiments of the present invention provide a method for controlling a drone.
  • the method in this embodiment may further include: adjusting a zoom level of the displayed electronic map to indicate a location of each of the at least two drones
  • the icon of the information is displayed completely on the electronic map.
  • the control terminal can also automatically adjust the zoom level of the electronic map 90 so that the icon 912 indicating the position information of the drone No. 1 and the icon 922 indicating the position information of the drone No. 2 are complete.
  • the map is displayed on the electronic map 90.
  • control terminal when the control terminal receives the location information sent by each of the plurality of drones communicatively connected thereto, the control terminal may adjust the electronic map according to the location information sent by each drone.
  • the zoom level is such that the icon indicating the location information of each drone is completely displayed on the electronic map.
  • the adjusting the zoom level of the displayed electronic map to completely display the icon indicating the location information of each of the at least two drones on the electronic map including: adjusting the display
  • the zoom level of the electronic map is such that an icon indicating position information of each of the at least two drones and an icon indicating position information of the preset return point are completely displayed on the electronic map.
  • the control terminal may further adjust the electronic map 90 according to the position information of the preset return point and the position information sent by each of the plurality of drones communicatively connected to the control terminal.
  • the zoom level is such that the icon 912 indicating the position information of the drone No. 1 and the icon 922 indicating the position information of the drone No. 2 are completely displayed on the electronic map 90 while also causing the position indicating the preset return point.
  • the icon 97 of the information is completely displayed on the electronic map 90.
  • the preset return point may be a dosing point of the agricultural drone.
  • the preset return point may be determined by the user performing a return point setting operation on the control terminal, wherein the preset return point may be in the same position as the control terminal or may be inconsistent.
  • the adjusting the zoom level of the displayed electronic map to cause the icon indicating the position information of each of the at least two drones to be completely displayed on the electronic map including: adjusting the displayed electronic map
  • the zoom level is such that an icon indicating location information of each of the at least two drones and an icon indicating location information of the control terminal are completely displayed on the electronic map.
  • the location where the preset return point is located is different from the location where the control terminal is located.
  • the control terminal is located at the position indicated by the icon 98 in the electronic map 90, for example, based on FIG.
  • the terminal may further adjust the zoom level of the electronic map 90 according to the location information of the control terminal and the location information sent by each of the plurality of drones communicatively connected to the control terminal, so that the drone No. 1 is indicated.
  • the icon 912 of the location information and the icon 922 indicating the location information of the drone 2 are completely displayed on the electronic map 90, while also causing the icon 98 indicating the location information of the control terminal to be completely displayed on the electronic map 90.
  • the location where the control terminal is located may be a preset return point; if the drone that is in communication with the control terminal is an agricultural drone, the location of the control terminal may also be agricultural Man-made dosing point.
  • the icon of the position information of each drone is completely displayed on the electronic map, or the icon indicating the position information of the preset return point is completely displayed on the electronic map. Up, or making the icon indicating the location information of the control terminal completely displayed on the electronic map, improves the flexibility of electronic map content display.
  • Embodiments of the present invention provide a method for controlling a drone.
  • FIG. 23 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • the control method of the drone is applied to a control terminal of the drone.
  • the control method of the drone is applied to a control terminal of the drone.
  • the method in this embodiment may include:
  • Step S2301 Detecting a target drone selection operation of the user, the target drone being one of at least two drones communicatively connected to the control terminal.
  • the user interface 20 of the control terminal includes a plurality of icons, such as an icon 21, an icon 22, an icon 23, and an icon 24.
  • the user interface 20 may display information of the drone that is communicatively connected to the control terminal, for example, the drone that is communicatively connected to the control terminal includes the UAV No. 1 and No. 2
  • the drone when the user clicks on the icon 23, the user interface 20 can display a bullet box 240 as shown in FIG.
  • the bullet box 240 includes an icon 241 and an icon 242, and the user can click on the icon 241 or the icon 242 when the control terminal detects When the user clicks on the icon 241, it is determined that the target drone selected by the user is the UAV No. 1. When the control terminal detects that the user clicks the icon 242, it determines that the target drone selected by the user is the UAV No. 2.
  • Step S2302 Display a control interface corresponding to the target drone according to the target drone selection operation.
  • the control terminal can display the control interface corresponding to the UAV No. 1 according to the user's selection operation of the UAV No. 1.
  • the control terminal can display the control interface corresponding to the UAV No. 2 according to the user's selection operation of the UAV No. 2.
  • control terminal may display the control interface of the drone corresponding to the display frame selected by the user according to the user's selection operation on the display frame 111, the display frame 112, or the display frame 113.
  • control terminal may also be based on the user icon 912 or The selection operation of the icon 922 displays the control interface of the drone corresponding to the icon selected by the user.
  • the control terminal can display the control interface corresponding to the UAV No. 1 as shown in FIG. 25 according to the user's selection operation of the UAV No. 1.
  • the control interface 250 displays an icon 912 for signing the UAV No. 1, a task assignment icon 254 for assigning a work task to the UAV No. 1, and an input for controlling the fly height of the UAV No. 1.
  • the user can assign a job task to the drone 1 by clicking the task assignment icon 254.
  • the user can also enter data in input box 931 to control the flying height of drone 1, or adjust the arrow on progress bar 932 to adjust the flying height of drone 1.
  • only the control interface corresponding to the UAV No. 1 is schematically illustrated, and the specific form and content of the control interface are not limited.
  • the method further includes: detecting a user task assignment operation on the control interface; determining target task task data for the target drone according to the detected job task assignment operation; The job task data is sent to the target drone to cause the target drone to execute the target job task indicated by the target job task data.
  • the control terminal displays the popup 260 on the control interface 250 according to the user's click operation on the task assignment icon 254, and the popup window 260 includes a drop-down arrow 261.
  • the pop-up window 260 displays a drop-down list 262.
  • the drop-down list 262 includes a work task list including a plurality of work tasks, such as the work task of No. 1 field and the work task of No. 2 field. This is merely a schematic illustration and does not limit the specific form and content of the control interface. The user can select a job task such as the job job of No.
  • the target work task data is determined for the UAV No. 1 according to the operation, and the target work task data may be specifically It is the route information corresponding to the No. 1 field. Further, the control terminal transmits the route information corresponding to the No. 1 field to the UAV No. 1 so that the UAV No. 1 executes the work task corresponding to the No. 1 field.
  • the control terminal After the control terminal transmits the route information corresponding to the No. 1 field to the UAV No. 1, the control terminal can display the control interface 270 as shown in FIG.
  • the control interface 270 displays the work area 91 of the drone No. 1 , the route 911 corresponding to the work area 91 , and the icon 912 for signing the drone No. 1 .
  • the method further includes: detecting a flight state control operation of the user on the control interface; determining a flight state control instruction according to the detected flight state control operation; and transmitting the flight state control command to the A target drone to control the flight status of the target drone.
  • the user can also input data in the input box 931 to control the flying height of the UAV No. 1, or adjust the progress bar 932.
  • the arrow on the arrow adjusts the flying height of the drone No. 1.
  • the control terminal can detect the user's control operation on the flight state of the UAV No. 1, and control the flight state of the UAV No.
  • a flying height control command is generated; the flying height control command is sent to the No. 1 drone to control the flying height of the No. 1 drone.
  • the method further includes: receiving target job task execution state information sent by the target drone; and displaying target job task execution state information sent by the target drone on the control interface.
  • control terminal receives the completion rate of the target job task sent by the UAV No. 1, and displays the completion rate of the target job task sent by the UAV No. 1 on the control interface 270, as shown in FIG.
  • the completion rate of the target work task of the drone No. 1 is displayed in the display frame 111 of 270.
  • the method further includes: receiving flight state information sent by the target drone; and displaying flight state information sent by the target drone on the control interface.
  • the control terminal can also receive flight status information transmitted by the UAV No. 1.
  • the flight status information includes one or more of flight speed, flight altitude, location information, and power information.
  • the display frame 111 of the control interface 270 can also display 1 The power, speed, and altitude of the drone.
  • the control terminal can also receive the location information transmitted by the UAV No. 1 and display the icon 912 indicating the No. 1 UAV position information on the route 911 indicating that the UAV No. 1 is executed.
  • the method further includes: receiving fault information sent by the target drone; and displaying fault indication information associated with the target drone on the control interface according to the fault information.
  • the control terminal can receive the fault information sent by the UAV No. 1, and display the fault indication information associated with the fault information on the control interface 270, for example, the route 911 can be
  • the icon 912 of the drone No. 1 is displayed in a highlighted state, for example, displayed in red
  • the icon of the drone No. 1 in the display frame 111 is displayed in a highlighted state, for example, displayed in red, or/and in the display frame 111.
  • a fault indication icon 271 is displayed to prompt the user that the No. 1 drone has failed.
  • the method further includes: detecting a fault information viewing operation of the user on the control interface; displaying an operation according to the detected fault information, and displaying, on the control interface, fault information sent by the target drone .
  • the user may click the display box 111, or click the fault indication icon 271, or click the icon 912 of the drone No. 1 to view No. 1 Man-machine fault information.
  • the control terminal detects the target drone selection operation of the user, determines the target drone selected by the user from the plurality of drones communicatively connected with the control terminal, and displays the corresponding control of the target drone.
  • the interface allows the user interface to switch from a user interface that controls multiple drones to a user interface that controls a target drone, further enhancing the flexibility of the user interface and the flexibility of drone control.
  • FIG. 28 is a structural diagram of a control terminal of a drone according to an embodiment of the present invention.
  • the control terminal 280 of the drone includes a processor 281 and a communication interface 282.
  • the processor 281 is configured to: detect a user task assignment operation; and determine target job task data for each of at least two drones communicatively connected to the control terminal according to the detected job task assignment operation; 282 for determining each of at least two drones communicatively coupled to the control terminal
  • the target job task data is sent to the corresponding drone to cause the drone to execute the target job task indicated by the target job task data.
  • the processor 281 is further configured to: detect a flight state control operation of the user; control the flight state of the at least two unmanned aerial vehicles or control the at least two unmanned aerial vehicles according to the flight state control operation; The flight status of the target drone.
  • control terminal 280 of the drone further includes: a display component 283; the communication interface 282 is further configured to: receive target job task execution state information sent by each of the at least two drones; For: the control display component 283 displays target job task execution state information transmitted by each of the at least two drones.
  • the communication interface 282 is further configured to: receive flight state information sent by each of the at least two drones; the processor 281 is further configured to: control the display component 283 to display the at least two drones Flight status information for each transmission.
  • the flight status information includes one or more of flight speed, flight altitude, location information, and power information.
  • the communication interface 282 is further configured to: receive fault information sent by the first drone of the at least two drones; the processor 281 is further configured to: control the display component 283 to display and The fault indication information associated with the first drone.
  • the processor 281 is further configured to: detect a fault information viewing operation of the user; and view the operation according to the detected fault information, and the control display component 283 displays the fault information sent by the first drone.
  • the processor 281 is further configured to: detect a user's take-off control operation; control the at least two drones to take off or control the target of the at least two drones according to the take-off control operation The plane took off.
  • the processor 281 is further configured to: detect a return control operation of the user; control, according to the return control operation, to return the at least two drones or control a target of the at least two unmanned aerial vehicles The aircraft returned.
  • the processor 281 is further configured to: detect a user's job task pause operation; control the at least two drones to suspend execution of the target job task or control the at least two unmanned objects according to the job task pause operation The target drone in the machine suspends the execution of the target job task.
  • the processor 281 is further configured to: detect a user's job task ending operation;
  • the job task ending operation controls the at least two drones to end the execution of the target job task or controls the target drone of the at least two drones to end the execution of the target job task.
  • the processor 281 is further configured to: adjust a zoom level of the displayed electronic map, so that an icon indicating location information of each of the at least two drones is completely displayed on the electronic map.
  • the processor 281 adjusts a zoom level of the displayed electronic map to enable the icon indicating the location information of each of the at least two drones to be completely displayed on the electronic map, specifically for : adjusting a zoom level of the displayed electronic map such that an icon indicating location information of each of the at least two drones and an icon indicating location information of the preset return point are completely displayed on the electronic map .
  • the processor 281 adjusts a zoom level of the displayed electronic map to enable the icon indicating the location information of each of the at least two drones to be completely displayed on the electronic map, specifically for : adjusting a zoom level of the displayed electronic map such that an icon indicating location information of each of the at least two drones and an icon indicating location information of the control terminal are completely displayed on the electronic map .
  • control terminal provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 1 to FIG. 22, and details are not described herein again.
  • the control terminal detects the user's job task assignment operation, and determines the target job task data for each of the at least two drones communicatively connected to the control terminal according to the job task assignment operation.
  • the target job task data corresponding to the machine is sent to the drone, so that the same control terminal can control a plurality of drones to perform work tasks, thereby improving the operating efficiency of the drone.
  • FIG. 29 is a structural diagram of a control terminal of a drone according to another embodiment of the present invention.
  • the control terminal 290 of the drone includes a processor 291 and a display component 292.
  • the processor 291 is configured to: detect a target drone selection operation of the user, the target drone is one of at least two drones communicatively connected to the control terminal; The machine selects an operation, and the control display component 292 displays a control interface corresponding to the target drone.
  • control terminal 290 further includes: a communication interface 293; the processor 291 is further configured to: Detecting a job assignment operation of the user on the control interface; determining target job task data for the target drone according to the detected job task assignment operation; the communication interface 293 is configured to send the target job task data to The target drone is configured to cause the target drone to perform the target job task indicated by the target job task data.
  • the processor 291 is further configured to: detect a flight state control operation of the user on the control interface; determine a flight state control command according to the detected flight state control operation; and the communication interface 293 is further configured to: A flight state control command is sent to the target drone to control the flight state of the target drone.
  • the communication interface 293 is further configured to: receive target job task execution state information sent by the target drone; and the processor 291 is further configured to: control the display component 292 to display the target on the control interface The target job task execution status information sent by the machine.
  • the communication interface 293 is further configured to: receive flight state information sent by the target drone; the processor 291 is further configured to: control the display component 292 to display, on the control interface, the target drone to send Flight status information.
  • the communication interface 293 is further configured to: receive fault information sent by the target drone; the processor 291 is further configured to: according to the fault information, control display component 292 to display and The fault indication information associated with the target drone.
  • the processor 291 is further configured to: detect a fault information viewing operation of the user on the control interface; and view the operation according to the detected fault information, and the control display component 292 displays the target on the control interface.
  • the fault information sent by the machine is further configured to: detect a fault information viewing operation of the user on the control interface; and view the operation according to the detected fault information, and the control display component 292 displays the target on the control interface. The fault information sent by the machine.
  • control terminal provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 23, and details are not described herein again.
  • the control terminal detects the target drone selection operation of the user, determines the target drone selected by the user from the plurality of drones communicatively connected with the control terminal, and displays the corresponding control of the target drone.
  • the interface allows the user interface to switch from a user interface that controls multiple drones to a user interface that controls a target drone, further enhancing the flexibility of the user interface and the flexibility of drone control.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, actual There may be additional divisions at present, for example multiple units or components may be combined or integrated into another system, or some features may be omitted or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种无人机的控制方法及控制终端(280,290),方法包括:检测用户的作业任务分配操作(S101);根据检测到的作业任务分配操作,为与控制终端(280,290)通信连接的至少两个无人机中的每一个确定目标作业任务数据(S102);将为与控制终端(280,290)通信连接的至少两个无人机中的每一个确定的目标作业任务数据发送给对应的无人机,以使无人机执行目标作业任务数据指示的目标作业任务(S103)。通过控制终端(280,290)检测用户的作业任务分配操作,并根据作业任务分配操作为与控制终端(280,290)通信连接的至少两个无人机中的每一个确定目标作业任务数据,将每个无人机对应的目标作业任务数据发送给该无人机,使得同一控制终端(280,290)可控制多个无人机执行作业任务,提高了无人机的作业效率。

Description

无人机的控制方法及控制终端 技术领域
本发明实施例涉及无人机领域,尤其涉及一种无人机的控制方法及控制终端。
背景技术
随着无人机的发展,其应用领域越来越广泛,例如无人机执行农林植物保护作业,或者执行地形勘测作业任务等。
现有技术中,飞手通过遥控器可以控制一台无人机在作业区域执行作业任务,例如农药喷洒作业任务,但是,当无人机的作业区域较大时,一台无人机可能需要较长时间才能完成作业任务,从而导致无人机的作业效率较低。
发明内容
本发明实施例提供一种无人机的控制方法及控制终端,以提高人机的作业效率。
本发明实施例的第一方面是提供一种无人机的控制方法,应用于无人机的控制终端,包括:
检测用户的作业任务分配操作;
根据检测到的作业任务分配操作,为与所述控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据;
将为与所述控制终端通信连接的至少两个无人机中的每一个确定的目标作业任务数据发送给对应的无人机,以使所述无人机执行所述目标作业任务数据指示的目标作业任务。
本发明实施例的第二方面是提供一种无人机的控制方法,应用于无人机的控制终端,包括:
检测用户的目标无人机选择操作,所述目标无人机是与所述控制终端通讯连接的至少两个无人机中的一个无人机;
根据所述目标无人机选择操作,显示所述目标无人机对应的控制界面。
本发明实施例的第三方面是提供一种无人机的控制终端,包括:处理器和通讯接口;
所述处理器用于:
检测用户的作业任务分配操作;
根据检测到的作业任务分配操作,为与所述控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据;
所述通讯接口用于将为与所述控制终端通信连接的至少两个无人机中的每一个确定的目标作业任务数据发送给对应的无人机,以使所述无人机执行所述目标作业任务数据指示的目标作业任务。
本发明实施例的第四方面是提供一种无人机的控制终端,包括:处理器和显示组件;
所述处理器用于:
检测用户的目标无人机选择操作,所述目标无人机是与所述控制终端通讯连接的至少两个无人机中的一个无人机;
根据所述目标无人机选择操作,控制所述显示组件显示所述目标无人机对应的控制界面。
本实施例提供的无人机的控制方法及控制终端,通过控制终端检测用户的作业任务分配操作,并根据该作业任务分配操作为与该控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据,将每个无人机对应的目标作业任务数据发送给该无人机,使得同一控制终端可控制多个无人机执行作业任务,提高了无人机的作业效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的无人机的控制方法的流程图;
图2为本发明实施例提供的用户界面的示意图;
图3为本发明实施例提供的用户界面的示意图;
图4为本发明实施例提供的用户界面的示意图;
图5为本发明实施例提供的用户界面的示意图;
图6为本发明实施例提供的用户界面的示意图;
图7为本发明实施例提供的用户界面的示意图;
图8为本发明另一实施例提供的无人机的控制方法的流程图;
图9为本发明另一实施例提供的用户界面的示意图;
图10为本发明另一实施例提供的无人机的控制方法的流程图;
图11为本发明另一实施例提供的用户界面的示意图;
图12为本发明另一实施例提供的无人机的控制方法的流程图;
图13为本发明另一实施例提供的无人机的控制方法的流程图;
图14为本发明另一实施例提供的用户界面的示意图;
图15为本发明另一实施例提供的无人机的控制方法的流程图;
图16为本发明另一实施例提供的用户界面的示意图;
图17为本发明另一实施例提供的无人机的控制方法的流程图;
图18为本发明另一实施例提供的用户界面的示意图;
图19为本发明另一实施例提供的无人机的控制方法的流程图;
图20为本发明另一实施例提供的用户界面的示意图;
图21为本发明另一实施例提供的无人机的控制方法的流程图;
图22为本发明另一实施例提供的用户界面的示意图;
图23为本发明实施例提供的无人机的控制方法的流程图;
图24为本发明另一实施例提供的用户界面的示意图;
图25为本发明另一实施例提供的用户界面的示意图;
图26为本发明另一实施例提供的用户界面的示意图;
图27为本发明另一实施例提供的用户界面的示意图;
图28为本发明实施例提供的无人机的控制终端的结构图;
图29为本发明另一实施例提供的无人机的控制终端的结构图。
附图标记:
20-用户界面       21-图标         22-图标
23-图标            24-图标           25-作业任务图标
26-作业任务图标    27-作业任务图标   251-箭头
252-定位标记       30-弹框           31-下拉箭头
32-下拉列表        40-电子地图       41-1号田的图标
42-边界点          43-边界点         44-边界点
45-边界点          60-电子地图       70-弹框
72-选择框          711-下拉箭头      712-下拉列表
721-下拉箭头       722-下拉列表      90-电子地图
91-作业区域        92-作业区域       911-航线
912-图标           921-航线          922-图标
97-图标            98-图标           931-输入框
932-进度条         941-输入框        942-进度条
951-输入框         952-进度条        961-输入框
962-进度条         110-用户界面      111-显示框
112-显示框         140-用户界面      141-作业区域
142-故障指示图标    160-弹框         161-滑动按键
162-滑动按键        163-滑动按键     180-弹框
181-滑动按键        182-滑动按键     183-滑动按键
184-预设返航点      185-返航线       186-返航线
200-弹框            201-滑动按键     202-滑动按键
203-滑动按键        220-弹框         221-滑动按键
222-滑动按键        223-滑动按键     240-弹框
241-图标            242-图标         270-控制界面
271-故障指示图标    280-控制终端      281-处理器
282-通讯接口        283-显示组件      290-控制终端
291-处理器          292-显示组件      293-通讯接口
71-选择框           253-图标          254-任务分配图标
260-弹窗            261-下拉箭头      262-下拉列表
250-控制界面        113-显示框
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种无人机的控制方法。图1为本发明实施例提供的无人机的控制方法的流程图。该无人机的控制方法应用于无人机的控制终端。如图1所示,本实施例中的方法,可以包括:
步骤S101、检测用户的作业任务分配操作。
本实施例方法的执行主体可以是无人机的控制终端,该控制终端具体可以是遥控器、智能手机、平板电脑、地面控制站、膝上型电脑、手表、手环等及其组合。
该控制终端提供有用户界面,用户可以对该用户界面进行操作。该控制终端可检测出用户对该用户界面的操作,并根据用户的操作来控制与该控制终端通信连接的无人机,在本实施例中,该控制终端可以与至少两个无人机通信连接,该无人机具体可以是农业无人机。本实施例以该控制终端与两个无人机通信连接为例。
如图2所示,该控制终端的用户界面20包括多个图标,例如图标21、图标22、图标23、图标24。可选的,当用户对图标21进行操作例如 点击时,用户界面20可显示作业任务列表,该作业任务列表中的作业任务是供无人机来执行的任务;当用户对图标22进行操作例如点击时,用户界面20可显示用户信息;当用户对图标23进行操作例如点击时,用户界面20可显示与该控制终端通信连接的无人机的信息;当用户对图标24进行操作例如点击时,用户界面20可显示与该控制终端相关联的设置项。此处只是示意性说明,并不限定用户界面的具体形式和展现的内容,也不限定用户界面中每个图标的具体形状和功能。
如图2所示,用户对图标21进行操作例如点击后,用户界面20显示作业任务列表,该作业任务列表可包括多个作业任务,该多个作业任务中的每个作业任务可以是无人机执行过的作业任务,也可以是无人机没有执行过的作业任务,还可以是无人机正在执行的作业任务。如图2所示,该用户界面20显示有1号田的作业任务图标25、2号田的作业任务图标26和3号田的作业任务图标27,每个作业任务图标分别包括作业时间、预估面积、地块数量、任务状态、定位信息和任务标识等。此处只是示意性说明,并不限定作业任务的数量,也不限定作业任务图标包括的信息。其中,任务标识可以是任务编号例如数字序列,还可以是其他形式的序列,此处不作具体限定。
用户例如飞手可以对作业任务列表中显示的作业任务进行分配操作,例如,用户点击作业任务图标25或作业任务图标25包括的箭头251后,用户界面20显示如图3所示的弹框30,弹框30可供用户选择执行1号田对应的作业任务的无人机。假设该控制终端与1号无人机和2号无人机通信连接,当用户点击弹框30中的下拉箭头31时,该用户界面显示下拉列表32,下拉列表32包括1号无人机的标识信息和2号无人机的标识信息,用户可以从下拉列表32中选择一个无人机的标识信息例如1号无人机的标识信息,并点击确定按键,以将1号无人机设置为执行1号田对应的作业任务的无人机。
另外,作业任务图标25还包括1号田的定位标记252,当用户点击定位标记252时,用户界面将显示电子地图,该电子地图中显示有定位信息1指示的位置或区域,可选的,定位信息1是1号田的位置信息。
该控制终端可检测到用户对作业任务图标25或作业任务图标25包括 的箭头251的点击操作,还可以检测到用户对1号无人机的标识信息的选择操作,并根据用户对作业任务图标25或作业任务图标25包括的箭头251的点击操作,以及用户对1号无人机的标识信息的选择操作,将1号田对应的作业任务和1号无人机进行关联,从而检测出用户对作业任务图标25或作业任务图标25包括的箭头251的点击操作,以及对1号无人机的标识信息的选择操作是用户对1号田对应的作业任务的分配操作。同理,该控制终端还可以检测出用户对2号田对应的作业任务的分配操作,可选的,用户可以将2号无人机设置为执行2号田对应的作业任务的无人机,具体过程此处不再赘述。
步骤S102、根据检测到的作业任务分配操作,为与所述控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据。
具体的,该控制终端可存储有多个作业任务数据,或者与该控制终端通信连接的服务器或存储***中存储有多个作业任务数据,可选的,一个作业任务数据与用户界面上的一个作业任务图标对应,也就是说,用户界面上的每个作业任务图标可通过任务标识关联到一个作业任务数据,该作业任务数据包括航线信息、无人机沿着航线飞行的飞行高度、飞行速度、飞行姿态、无人机沿着航线飞行时所需执行的动作例如喷洒、航拍等。
当该控制终端检测到用户对1号田对应的作业任务的分配操作时,可以根据1号田对应的作业任务的任务标识从本地、或者与该控制终端通信连接的服务器或存储***中获取与该任务标识对应的作业任务数据,并将该作业任务数据确定为1号无人机的目标作业任务数据。
同理,当该控制终端检测到用户对2号田对应的作业任务的分配操作时,可以根据2号田对应的作业任务的任务标识从本地、或者与该控制终端通信连接的服务器或存储***中获取与该任务标识对应的作业任务数据,并将该作业任务数据确定为2号无人机的目标作业任务数据。
步骤S103、将为与所述控制终端通信连接的至少两个无人机中的每一个确定的目标作业任务数据发送给对应的无人机以使所述无人机执行所述目标作业任务数据指示的目标作业任务。
当该控制终端确定出1号无人机的目标作业任务数据和2号无人机的 目标作业任务数据之后,将1号无人机的目标作业任务数据发送给1号无人机,以使1号无人机执行该目标作业任务数据指示的目标作业任务。同理,将2号无人机的目标作业任务数据发送给2号无人机,以使2号无人机执行该目标作业任务数据指示的目标作业任务。
另外,在其他实施例中,目标作业任务数据可以包括作业区域信息,其中,所述作业区域信息可以至少包括作业区域的位置信息、面积信息、边界信息中的一种,例如,当该控制终端检测到用户对1号田对应的作业任务的分配操作时,该控制终端可获取1号田对应的作业区域信息。该控制终端获取1号田对应的作业区域信息的实现方式有如下几种:
一种实现方式是:该控制终端、或者与该控制终端通信连接的服务器或存储***存储有每个作业任务对应的作业区域信息,该控制终端可从本地、或者与该控制终端通信连接的服务器或存储***中获取1号田对应的作业区域信息。
另外一种实现方式是:如图3所示,253是用于标识1号田的图标,当用户点击图标253时,该用户界面将显示如图4所示的电子地图40,电子地图40显示有指示1号田的图标41,用户可以在电子地图40上对图标41进行操作,例如,选择出图标41的边界,或选择出图标41的4个边界点例如边界点42、边界点43、边界点44、边界点45。当该控制终端检测到用户对图标41的操作时,确定出1号田对应的作业区域信息,例如位置信息、面积信息、边界信息中的至少一种。
进一步的,当控制终端确定出1号田对应的作业区域信息后,根据用户对1号田对应的作业任务的分配操作,将1号田对应的作业区域信息发送给1号无人机,1号无人机接收到1号田对应的作业区域信息之后,可根据1号田对应的作业区域信息,规划出在1号田进行作业的航线,并执行该航线。
同理,该控制终端将2号田对应的作业区域信息发送给2号无人机,2号无人机接收到2号田对应的作业区域信息之后,可根据2号田对应的作业区域信息,规划出在2号田进行作业的航线,并执行该航线。
另外,该控制终端发送给无人机的目标作业任务数据具体可以是航线信息,可选的,该控制终端发送给1号无人机的目标作业任务数据具体可 以是目标作业区域例如1号田对应的航线信息,该控制终端发送给2号无人机的目标作业任务数据具体可以是目标作业区域例如2号田对应的航线信息。此外,在一些实施例中,同一个作业任务还可以由多个无人机来共同执行。如图5所示,1号田包括的地块数量为2,当用户点击如图5所示的定位信息1的定位标记252时,该用户界面显示如图6所示的电子地图60,电子地图60显示有1号田的两个地块,例如地块A和地块B。如图5所示,当用户点击作业任务图标25或作业任务图标25包括的箭头251后,用户界面20显示如图7所示的弹框70,弹框70包括选择框71和选择框72,选择框71包括下拉箭头711,当用户点击下拉箭头711时,该用户界面显示下拉列表712,下拉列表712包括1号无人机的标识信息和2号无人机的标识信息,用户可以从下拉列表712中选择一个无人机的标识信息例如1号无人机的标识信息,将地块A分配给1号无人机来作业。选择框72包括下拉箭头721,当用户点击下拉箭头721时,该用户界面显示下拉列表722,下拉列表722包括1号无人机的标识信息和2号无人机的标识信息,用户可以从下拉列表722中选择一个无人机的标识信息例如2号无人机的标识信息,将地块B分配给2号无人机来作业。从而实现了1号田对应的作业任务由1号无人机和2号无人机来共同执行。此处只是示意性说明,并不限定与该控制终端通信连接的无人机与作业区域的对应关系。
本实施例通过控制终端检测用户的作业任务分配操作,并根据该作业任务分配操作为与该控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据,将每个无人机对应的目标作业任务数据发送给该无人机,使得同一控制终端可控制多个无人机执行作业任务,提高了无人机的作业效率。
本发明实施例提供一种无人机的控制方法。图8为本发明另一实施例提供的无人机的控制方法的流程图。如图8所示,在图1所示实施例的基础上,本实施例中的方法,还可以包括:
步骤S801、检测用户的飞行状态控制操作。
本实施例以控制终端与两个无人机通信连接为例,两个无人机分别 为1号无人机和2号无人机,通过上述实施例,控制终端可以给两个无人机中的每一个分配目标作业任务数据,在本实施例中,假设该控制终端给1号无人机分配的目标作业任务数据是如图9所示的电子地图90中作业区域91对应的航线数据,该控制终端给2号无人机分配的目标作业任务数据是如图9所示的电子地图90中作业区域92对应的航线数据。当该控制终端将作业区域91对应的航线数据发送给1号无人机之后,该控制终端在作业区域91内显示该作业区域对应的航线911。当该控制终端将作业区域92对应的航线数据发送给2号无人机之后,该控制终端在作业区域92内显示该作业区域对应的航线921。
另外,该控制终端还可以在电子地图90中显示用于标志1号无人机的图标912和用于标志2号无人机的图标922。此外,1号无人机和2号无人机在执行作业任务的过程中,还可以将其位置信息实时的发送给该控制终端,该控制终端根据1号无人机实时的位置信息,调整图标912在航线911上的位置,使得图标912沿着航线911的方向移动;同理,该控制终端根据2号无人机实时的位置信息,调整图标922在航线921上的位置,使得图标922沿着航线921的方向移动。
此外,在1号无人机和2号无人机在执行作业任务的过程中,用户还可以通过该控制终端控制1号无人机和2号无人机的飞行状态,例如控制1号无人机和2号无人机的飞行速度、飞行高度等。
如图9所示,用户可以在输入框931中输入数据以控制1号无人机的飞行高度,或者调整进度条932上的箭头来调整1号无人机的飞行高度。还可以在输入框941中输入数据以控制1号无人机的飞行速度,或者调整进度条942上的箭头来调整1号无人机的飞行速度。此处只是示意性说明,不限定用户可控制的1号无人机的飞行状态以及控制方式。相应的,该控制终端可以检测到用户对1号无人机的飞行状态的控制操作。
同理,用户可以在输入框951中输入数据以控制2号无人机的飞行高度,或者调整进度条952上的箭头来调整2号无人机的飞行高度。还可以在输入框961中输入数据以控制2号无人机的飞行速度,或者调整进度条962上的箭头来调整2号无人机的飞行速度。此处只是示意性说明,不限定用户可控制的2号无人机的飞行状态以及控制方式。相应的,该控制终 端可以检测到用户对2号无人机的飞行状态的控制操作。
步骤S802、根据所述飞行状态控制操作,控制所述至少两个无人机的飞行状态或者控制所述至少两个无人机中的目标无人机的飞行状态。
该控制终端可以根据用户对1号无人机的飞行状态的控制操作,控制1号无人机的飞行状态,以及根据用户对2号无人机的飞行状态的控制操作,控制2号无人机的飞行状态。或者,用户可以只对1号无人机的飞行状态进行控制操作,或者只对2号无人机的飞行状态进行控制操作。
例如,该控制终端可以根据用户在输入框951中输入的数据,确定用户对2号无人机设置的飞行高度,并将该飞行高度发送给2号无人机,以使2号无人机根据该飞行高度调整其当前的飞行高度。
可选的,如图10所示,所述方法还包括:
步骤S1001、接收所述至少两个无人机中每一个发送的目标作业任务执行状态信息。
当1号无人机和2号无人机在执行各自的目标作业任务时,1号无人机和2号无人机中的每一个还可以将其执行的目标作业任务的状态信息例如完成率发送给该控制终端。该控制终端接收1号无人机和2号无人机中的每一个发送的目标作业任务的完成率。
步骤S1002、显示所述至少两个无人机中所述每一个发送的目标作业任务执行状态信息。
该控制终端接收到1号无人机和2号无人机中的每一个发送的目标作业任务的完成率后,将1号无人机和2号无人机中的每一个发送的目标作业任务的完成率显示在用户界面上,如图11所示,用户界面110的显示框111中可显示1号无人机的图标912以及1号无人机的目标作业任务的完成率;用户界面110的显示框112中可显示2号无人机的图标922以及2号无人机的目标作业任务的完成率。
可选的,如图12所示,所述方法还包括:
步骤S1201、接收所述至少两个无人机中每一个发送的飞行状态信息。
当1号无人机和2号无人机在执行各自的目标作业任务时,1号无人机和2号无人机中的每一个还可以将其飞行状态信息发送给该控制终端。 该控制终端接收1号无人机和2号无人机中的每一个发送的飞行状态信息。其中,所述飞行状态信息包括飞行速度、飞行高度、位置信息、电量信息中的一种或多种。
步骤S1202、显示所述至少两个无人机中每一个发送的飞行状态信息。
该控制终端接收到1号无人机和2号无人机中的每一个发送的飞行状态信息后,将1号无人机和2号无人机中的每一个发送的飞行状态信息显示在用户界面上,如图11所示,用户界面110的显示框111中还可以显示1号无人机的电量、速度、高度;用户界面110的显示框112中还可以显示2号无人机的电量、速度、高度。
可选的,如图13所示,所述方法还包括:
步骤S1301、接收所述至少两个无人机中的第一无人机发送的故障信息。
如图14所示,在上述实施例的基础上,与该控制终端通信连接的无人机还可以包括3号无人机,该控制终端根据用户的作业任务分配操作将作业区域141对应的航线数据发送给3号无人机,相应的,用户界面140的显示框113中还可以显示3号无人机的图标、3号无人机的目标作业任务的完成率、3号无人机的电量、速度、高度。可选的,在用户界面140中,显示框111、显示框112、显示框113的排列顺序可以根据该控制终端与3个无人机的通信连接顺序确定,也可以根据3个无人机的编号大小确定。
在1号无人机、2号无人机和3号无人机在执行各自的目标作业任务时,如果其中一个无人机例如2号无人机出现了故障,2号无人机还可以将其故障信息发送给该控制终端,该控制终端可接收2号无人机发送的故障信息。
步骤S1302、根据所述故障信息显示与第一无人机相关联的故障指示信息。
当控制终端接收到2号无人机发送的故障信息之后,在用户界面例如用户界面140上显示与该故障信息相关联的故障指示信息,例如,可以将航线921上的2号无人机的图标922显示成高亮状态例如显示成红色,将 显示框112中的2号无人机的图标显示成高亮状态例如显示成红色,或/及在显示框112中显示故障指示图标142,以提示用户2号无人机出现了故障。
步骤S1303、检测用户的故障信息查看操作。
当用户根据用户界面140上的故障指示信息确定2号无人机出现故障时,用户可以点击显示框112、或者点击故障指示图标142,或者点击2号无人机的图标922以查看2号无人机的故障信息。
该控制终端可以检测用户对显示框112、故障指示图标142、或图标922的点击操作。
步骤S1304、根据检测到的故障信息查看操作,显示所述第一无人机发送的故障信息。
进一步的,该控制终端可以根据用户对显示框112、故障指示图标142、或图标922的点击操作,显示2号无人机发送的故障信息,通过查看故障信息,飞手可以获取2号无人机的哪个具体的部件出现故障,通过这种方式可以及时地跟踪无人机的工作状态。
本实施例通过该控制终端接收与其通信连接的至少两个无人机中每一个发送的目标作业任务执行状态信息、飞行状态信息,并将各无人机发送的目标作业任务执行状态信息、飞行状态信息显示在用户界面,可使用户同时监控多个无人机,另外,通过该控制终端接收至少两个无人机中某一无人机发送的故障信息,还可以在用户界面显示故障指示信息,以提供是用户该无人机出现故障,使得用户可即时发现故障的无人机。
本发明实施例提供一种无人机的控制方法。图15为本发明另一实施例提供的无人机的控制方法的流程图。如图15所示,在图1所示实施例的基础上,本实施例中的方法,还可以包括:
步骤S1501、检测用户的起飞控制操作。
在图7的基础上,当用户将地块A分配给1号无人机、将地块B分配给2号无人机之后,可点击如图16所示的“执行任务”图标,此时,用户界面20显示如图16所示的弹框160,弹框160包括控制1号无人机 起飞的滑动按键161、控制2号无人机起飞的滑动按键162、同时控制1号无人机和2号无人机起飞的滑动按键163。用户可以通过对滑动按键161、滑动按键162、滑动按键163中的至少一个进行操作,以控制1号无人机和2号无人机中的至少一个起飞。可选的,滑动按键滑动到右端表示开启。
步骤S1502、根据所述起飞控制操作,控制所述至少两个无人机起飞或者控制所述至少两个无人机中的目标无人机起飞。
当控制终端检测到用户开启了滑动按键161时,控制1号无人机起飞。当控制终端检测到用户开启了滑动按键162时,控制2号无人机起飞。当控制终端检测到用户开启了滑动按键163时,控制1号无人机和2号无人机同时起飞。
可选的,如图17所示,所述方法还包括:
步骤S1701、检测用户的返航控制操作。
在图11的基础上,当1号无人机和2号无人机在执行各自的目标作业任务时,或者在执行完各自的目标作业任务时,用户还可以点击如图18所示的“返航”图标,控制1号无人机和2号无人机中的至少一个返航。可选的,当用户点击“返航”图标后,用户界面110显示如图18所示的弹框180,弹框180包括控制1号无人机返航的滑动按键181、控制2号无人机返航的滑动按键182、同时控制1号无人机和2号无人机返航的滑动按键183。用户可以通过对滑动按键181、滑动按键182、滑动按键183中的至少一个进行操作,以控制1号无人机和2号无人机中的至少一个返航。可选的,滑动按键滑动到右端表示开启。
步骤S1702、根据所述返航控制操作,控制所述至少两个无人机返航或者控制所述至少两个无人机中的目标无人机返航。
当控制终端检测到用户开启了滑动按键181时,控制1号无人机返航,此时,该控制终端可以将预设返航点184的位置信息发送给1号无人机,以使1号无人机沿着返航线185返回到预设返航点184。
当控制终端检测到用户开启了滑动按键182时,控制2号无人机返航;此时,该控制终端可以将预设返航点184的位置信息发送给2号无人机,以使2号无人机沿着返航线186返回到预设返航点184。
当控制终端检测到用户开启了滑动按键183时,控制1号无人机和2号无人机同时返航。此时,该控制终端可以将预设返航点184的位置信息分别发送给1号无人机和2号无人机,以使1号无人机沿着返航线185返回到预设返航点184,使2号无人机沿着返航线186返回到预设返航点184。
可选的,如图19所示,所述方法还包括:
步骤S1901、检测用户的作业任务暂停操作。
在图11的基础上,当1号无人机和2号无人机在执行各自的目标作业任务时,用户还可以点击如图20所示的“暂停”图标,控制1号无人机和2号无人机中的至少一个暂停执行目标作业任务。可选的,当用户点击“暂停”图标后,用户界面110显示如图20所示的弹框200,弹框200包括控制1号无人机暂停执行目标作业任务的滑动按键201、控制2号无人机暂停执行目标作业任务的滑动按键202、同时控制1号无人机和2号无人机暂停执行目标作业任务的滑动按键203。用户可以通过对滑动按键201、滑动按键202、滑动按键203中的至少一个进行操作,以控制1号无人机和2号无人机中的至少一个暂停执行目标作业任务。可选的,滑动按键滑动到右端表示开启。
步骤S1902、根据所述作业任务暂停操作,控制所述至少两个无人机暂停执行目标作业任务或者控制所述至少两个无人机中的目标无人机暂停执行目标作业任务。
当控制终端检测到用户开启了滑动按键201时,控制1号无人机暂停执行目标作业任务。当控制终端检测到用户开启了滑动按键202时,控制2号无人机暂停执行目标作业任务。当控制终端检测到用户开启了滑动按键203时,控制1号无人机和2号无人机同时暂停执行目标作业任务。
可选的,如图21所示,所述方法还包括:
步骤S2101、检测用户的作业任务结束操作。
在图11的基础上,当1号无人机和2号无人机在执行各自的目标作业任务时,用户还可以点击如图22所示的“结束”图标,控制1号无人机和2号无人机中的至少一个结束执行目标作业任务。可选的,当用户点击“结束”图标后,用户界面110显示如图22所示的弹框220,弹框220 包括控制1号无人机结束执行目标作业任务的滑动按键221、控制2号无人机结束执行目标作业任务的滑动按键222、同时控制1号无人机和2号无人机结束执行目标作业任务的滑动按键223。用户可以通过对滑动按键221、滑动按键222、滑动按键223中的至少一个进行操作,以控制1号无人机和2号无人机中的至少一个结束执行目标作业任务。可选的,滑动按键滑动到右端表示开启。
步骤S2102、根据所述作业任务结束操作,控制所述至少两个无人机结束执行目标作业任务或者控制所述至少两个无人机中的目标无人机结束执行目标作业任务。
当控制终端检测到用户开启了滑动按键221时,控制1号无人机结束执行目标作业任务。当控制终端检测到用户开启了滑动按键222时,控制2号无人机结束执行目标作业任务。当控制终端检测到用户开启了滑动按键223时,控制1号无人机和2号无人机同时结束执行目标作业任务。
本实施例通过控制终端检测用户的起飞控制操作、返航控制操作、作业任务暂停操作、或作业任务结束操作,控制与控制终端通信连接的至少两个无人机起飞、返航、暂停执行目标作业任务或结束执行目标作业任务,或者控制该至少两个无人机中的目标无人机起飞、返航、暂停执行目标作业任务或结束执行目标作业任务,提高了对与控制终端通信连接的至少两个无人机进行控制的灵活性。
本发明实施例提供一种无人机的控制方法。在图1所示实施例的基础上,本实施例中的方法,还可以包括:调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上。例如,在图9的基础上,控制终端还可以自动调节电子地图90的缩放级别,以使指示1号无人机的位置信息的图标912和指示2号无人机的位置信息的图标922完整地显示在电子地图90上。可选的,当该控制终端接收到与其通信连接的多个无人机中每个无人机发送的位置信息时,该控制终端可根据每个无人机发送的位置信息,调节电子地图的缩放级别,以使指示每个无人机的位置信息的图标完整地显示在电子地图上。
可选的,所述调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上,包括:调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示预设返航点的位置信息的图标完整地显示在电子地图上。
例如,在图9的基础上,控制终端还可以根据预设返航点的位置信息、以及与控制终端通信连接的多个无人机中每个无人机发送的位置信息,来调节电子地图90的缩放级别,以使指示1号无人机的位置信息的图标912和指示2号无人机的位置信息的图标922完整地显示在电子地图90上,同时还使得指示预设返航点的位置信息的图标97完整地显示在电子地图90上。可选的,如果与控制终端通信连接的无人机是农业无人机,预设返航点可以是农业无人机的加药点。在某些实施例中,所述预设返航点可以是用户对控制终端进行返航点设置操作来确定的,其中,预设返航点所在的位置可以和控制终端所在的位置一致,也可以不一致。
或者,所述调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上,包括:调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示所述控制终端的位置信息的图标完整地显示在电子地图上。
在一些实施例中,预设返航点所在的位置和控制终端所在的位置不同,如图9所示,控制终端位于电子地图90中图标98指示的位置,例如,在图9的基础上,控制终端还可以根据控制终端的位置信息、以及与控制终端通信连接的多个无人机中每个无人机发送的位置信息,来调节电子地图90的缩放级别,以使指示1号无人机的位置信息的图标912和指示2号无人机的位置信息的图标922完整地显示在电子地图90上,同时还使得指示该控制终端的位置信息的图标98完整地显示在电子地图90上。在某些实施例中,所述控制终端所在的位置可以是预设返航点;如果与控制终端通信连接的无人机是农业无人机,则所述控制终端所在的位置还可以是农业无人机的加药点。
本实施例通过调节显示的电子地图的缩放级别,使得每一个无人机的位置信息的图标完整地显示在电子地图上,或者使得指示预设返航点的位置信息的图标完整地显示在电子地图上,或者使得指示控制终端的位置信息的图标完整地显示在电子地图上,提高了电子地图内容显示的灵活性。
本发明实施例提供一种无人机的控制方法。图23为本发明实施例提供的无人机的控制方法的流程图。该无人机的控制方法应用于无人机的控制终端。该无人机的控制方法应用于无人机的控制终端。如图23所示,本实施例中的方法,可以包括:
步骤S2301、检测用户的目标无人机选择操作,所述目标无人机是与所述控制终端通讯连接的至少两个无人机中的一个无人机。
如图2所示,该控制终端的用户界面20包括多个图标,例如图标21、图标22、图标23、图标24。当用户对图标23进行操作例如点击时,用户界面20可显示与该控制终端通信连接的无人机的信息,例如,与该控制终端通信连接的无人机包括1号无人机和2号无人机,当用户点击图标23时,用户界面20可显示如图24所示的弹框240,弹框240包括图标241和图标242,用户可以点击图标241或图标242,当控制终端检测到用户点击图标241时,确定用户选择的目标无人机是1号无人机,当控制终端检测到用户点击图标242时,确定用户选择的目标无人机是2号无人机。
步骤S2302、根据所述目标无人机选择操作,显示所述目标无人机对应的控制界面。
当用户点击图标241时,控制终端可根据用户对1号无人机的选择操作,显示1号无人机对应的控制界面。当用户点击图标242时,控制终端可根据用户对2号无人机的选择操作,显示2号无人机对应的控制界面。
或者,在图14的基础上,控制终端也可以根据用户对显示框111、显示框112或显示框113的选择操作,显示用户选择的显示框对应的无人机的控制界面。
再或者,在图11的基础上,控制终端也可以根据用户对图标912或 图标922的选择操作,显示用户选择的图标对应的无人机的控制界面。
以图24为例,当用户点击图标241时,控制终端可根据用户对1号无人机的选择操作,显示1号无人机对应的控制界面如图25所示的控制界面250,如图25所示,控制界面250显示有用于标志1号无人机的图标912、用于给1号无人机分配作业任务的任务分配图标254、用于控制1号无人机的飞行高度的输入框931、用于控制1号无人机的飞行高度的进度条932、用于控制1号无人机的飞行速度的输入框941、以及用于控制1号无人机的飞行速度的进度条942。
用户可以通过点击任务分配图标254给1号无人机分配作业任务。用户还可以在输入框931中输入数据以控制1号无人机的飞行高度,或者调整进度条932上的箭头来调整1号无人机的飞行高度。还可以在输入框941中输入数据以控制1号无人机的飞行速度,或者调整进度条942上的箭头来调整1号无人机的飞行速度。此处只是对1号无人机对应的控制界面进行示意性说明,不限定该控制界面的具体形式和包括的内容。
可选的,所述方法还包括:检测用户在所述控制界面上的作业任务分配操作;根据检测到的作业任务分配操作,为所述目标无人机确定目标作业任务数据;将所述目标作业任务数据发送给目标无人机,以使目标无人机执行所述目标作业任务数据指示的目标作业任务。
如图26所示,当用户在控制界面250点击任务分配图标254时,控制终端根据用户对任务分配图标254的点击操作在控制界面250上显示弹窗260,弹窗260包括下拉箭头261,当用户点击下拉箭头261时,弹窗260出现下拉列表262,下拉列表262中包括作业任务列表,该作业任务列表中包括多个作业任务,例如1号田的作业任务和2号田的作业任务,此处只是示意性说明,并不限定该控制界面的具体形式和显示的内容。用户可以从下拉列表262中选择一个作业任务例如1号田的作业任务作为分配给1号无人机的作业任务。当控制终端检测到用户在控制界面250上给1号无人机分配1号田的作业任务的操作时,根据该操作为1号无人机确定目标作业任务数据,该目标作业任务数据具体可以是1号田对应的航线信息,进一步的,该控制终端将1号田对应的航线信息发送给1号无人机,以使1号无人机执行1号田对应的作业任务。
当该控制终端将1号田对应的航线信息发送给1号无人机之后,该控制终端可显示如图27所示的控制界面270。控制界面270中显示有1号无人机的作业区域91、作业区域91对应的航线911、用于标志1号无人机的图标912。
可选的,所述方法还包括:检测用户在所述控制界面上的飞行状态控制操作;根据检测到的飞行状态控制操作,确定飞行状态控制指令;将所述飞行状态控制指令发送给所述目标无人机,以控制所述目标无人机的飞行状态。
如图27所示,在1号无人机执行1号田对应的作业任务的过程中,用户还可以在输入框931中输入数据以控制1号无人机的飞行高度,或者调整进度条932上的箭头来调整1号无人机的飞行高度。还可以在输入框941中输入数据以控制1号无人机的飞行速度,或者调整进度条942上的箭头来调整1号无人机的飞行速度。此处只是示意性说明,不限定用户可控制的1号无人机的飞行状态以及控制方式。相应的,该控制终端可以检测到用户对1号无人机的飞行状态的控制操作,并根据用户对1号无人机的飞行状态的控制操作,控制1号无人机的飞行状态,例如,根据用户对1号无人机的飞行高度的控制操作,生成飞行高度控制指令;将该飞行高度控制指令发送给1号无人机,以控制1号无人机的飞行高度。
可选的,所述方法还包括:接收所述目标无人机发送的目标作业任务执行状态信息;在所述控制界面上显示所述目标无人机发送的目标作业任务执行状态信息。
例如,该控制终端接收1号无人机发送的目标作业任务的完成率,并将1号无人机发送的目标作业任务的完成率显示在控制界面270上,如图27所示,控制界面270的显示框111中显示1号无人机的目标作业任务的完成率。
可选的,所述方法还包括:接收所述目标无人机发送的飞行状态信息;在所述控制界面上显示所述目标无人机发送的飞行状态信息。
例如,该控制终端还可接收1号无人机发送的飞行状态信息。其中,所述飞行状态信息包括飞行速度、飞行高度、位置信息、电量信息中的一种或多种。如图27所示,控制界面270的显示框111中还可以显示1 号无人机的电量、速度、高度。另外,如图27所示,该控制终端还可接收1号无人机发送的位置信息,将指示1号无人机位置信息的图标912显示在指示1号无人机执行的航线911上。
可选的,所述方法还包括:接收所述目标无人机发送的故障信息;根据所述故障信息,在所述控制界面上显示与所述目标无人机相关联的故障指示信息。
当1号无人机出现故障时,该控制终端可接收1号无人机发送的故障信息,并在控制界面270上显示与该故障信息相关联的故障指示信息,例如,可以将航线911上的1号无人机的图标912显示成高亮状态例如显示成红色,将显示框111中的1号无人机的图标显示成高亮状态例如显示成红色,或/及在显示框111中显示故障指示图标271,以提示用户1号无人机出现了故障。
可选的,所述方法还包括:检测用户在所述控制界面上的故障信息查看操作;根据检测到的故障信息查看操作,在所述控制界面上显示所述目标无人机发送的故障信息。
当用户根据控制界面270上的故障指示信息确定1号无人机出现故障时,用户可以点击显示框111、或者点击故障指示图标271,或者点击1号无人机的图标912以查看1号无人机的故障信息。
本实施例通过控制终端检测用户的目标无人机选择操作,确定出用户从与该控制终端通信连接的多个无人机中选择的目标无人机,并显示该目标无人机对应的控制界面,使得用户界面可以从控制多个无人机的用户界面切换到控制一个目标无人机的用户界面,进一步提高了用户界面的灵活性,以及对无人机控制的灵活性。
本发明实施例提供一种无人机的控制终端。图28为本发明实施例提供的无人机的控制终端的结构图,如图28所示,无人机的控制终端280包括:处理器281、通讯接口282。处理器281用于:检测用户的作业任务分配操作;根据检测到的作业任务分配操作,为与所述控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据;通讯接口282用于将为与所述控制终端通信连接的至少两个无人机中的每一个确定的 目标作业任务数据发送给对应的无人机,以使所述无人机执行所述目标作业任务数据指示的目标作业任务。
可选的,处理器281还用于:检测用户的飞行状态控制操作;根据所述飞行状态控制操作,控制所述至少两个无人机的飞行状态或者控制所述至少两个无人机中的目标无人机的飞行状态。
可选的,无人机的控制终端280还包括:显示组件283;通讯接口282还用于:接收所述至少两个无人机中每一个发送的目标作业任务执行状态信息;处理器281还用于:控制显示组件283显示所述至少两个无人机中所述每一个发送的目标作业任务执行状态信息。
可选的,通讯接口282还用于:接收所述至少两个无人机中每一个发送的飞行状态信息;处理器281还用于:控制显示组件283显示所述至少两个无人机中每一个发送的飞行状态信息。
可选的,所述飞行状态信息包括飞行速度、飞行高度、位置信息、电量信息中的一种或多种。
可选的,通讯接口282还用于:接收所述至少两个无人机中的第一无人机发送的故障信息;处理器281还用于:根据所述故障信息控制显示组件283显示与第一无人机相关联的故障指示信息。
可选的,处理器281还用于:检测用户的故障信息查看操作;根据检测到的故障信息查看操作,控制显示组件283显示所述第一无人机发送的故障信息。
可选的,处理器281还用于:检测用户的起飞控制操作;根据所述起飞控制操作,控制所述至少两个无人机起飞或者控制所述至少两个无人机中的目标无人机起飞。
可选的,处理器281还用于:检测用户的返航控制操作;根据所述返航控制操作,控制所述至少两个无人机返航或者控制所述至少两个无人机中的目标无人机返航。
可选的,处理器281还用于:检测用户的作业任务暂停操作;根据所述作业任务暂停操作,控制所述至少两个无人机暂停执行目标作业任务或者控制所述至少两个无人机中的目标无人机暂停执行目标作业任务。
可选的,处理器281还用于:检测用户的作业任务结束操作;根据所 述作业任务结束操作,控制所述至少两个无人机结束执行目标作业任务或者控制所述至少两个无人机中的目标无人机结束执行目标作业任务。
可选的,处理器281还用于:调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上。
可选的,处理器281调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上时,具体用于:调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示预设返航点的位置信息的图标完整地显示在电子地图上。
可选的,处理器281调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上时,具体用于:调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示所述控制终端的位置信息的图标完整地显示在电子地图上。
本发明实施例提供的控制终端的具体原理和实现方式均与图1-图22所示实施例类似,此处不再赘述。
本实施例通过控制终端检测用户的作业任务分配操作,并根据该作业任务分配操作为与该控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据,将每个无人机对应的目标作业任务数据发送给该无人机,使得同一控制终端可控制多个无人机执行作业任务,提高了无人机的作业效率。
本发明实施例提供一种无人机的控制终端。图29为本发明另一实施例提供的无人机的控制终端的结构图,如图29所示,无人机的控制终端290包括:处理器291、显示组件292。处理器291用于:检测用户的目标无人机选择操作,所述目标无人机是与所述控制终端通讯连接的至少两个无人机中的一个无人机;根据所述目标无人机选择操作,控制显示组件292显示所述目标无人机对应的控制界面。
可选的,控制终端290还包括:通讯接口293;处理器291还用于: 检测用户在所述控制界面上的作业任务分配操作;根据检测到的作业任务分配操作,为所述目标无人机确定目标作业任务数据;通讯接口293用于将所述目标作业任务数据发送给目标无人机,以使目标无人机执行所述目标作业任务数据指示的目标作业任务。
可选的,处理器291还用于:检测用户在所述控制界面上的飞行状态控制操作;根据检测到的飞行状态控制操作,确定飞行状态控制指令;通讯接口293还用于:将所述飞行状态控制指令发送给所述目标无人机,以控制所述目标无人机的飞行状态。
可选的,通讯接口293还用于:接收所述目标无人机发送的目标作业任务执行状态信息;处理器291还用于:控制显示组件292在所述控制界面上显示所述目标无人机发送的目标作业任务执行状态信息。
可选的,通讯接口293还用于:接收所述目标无人机发送的飞行状态信息;处理器291还用于:控制显示组件292在所述控制界面上显示所述目标无人机发送的飞行状态信息。
可选的,通讯接口293还用于:接收所述目标无人机发送的故障信息;处理器291还用于:根据所述故障信息,控制显示组件292在所述控制界面上显示与所述目标无人机相关联的故障指示信息。
可选的,处理器291还用于:检测用户在所述控制界面上的故障信息查看操作;根据检测到的故障信息查看操作,控制显示组件292在所述控制界面上显示所述目标无人机发送的故障信息。
本发明实施例提供的控制终端的具体原理和实现方式均与图23所示实施例类似,此处不再赘述。
本实施例通过控制终端检测用户的目标无人机选择操作,确定出用户从与该控制终端通信连接的多个无人机中选择的目标无人机,并显示该目标无人机对应的控制界面,使得用户界面可以从控制多个无人机的用户界面切换到控制一个目标无人机的用户界面,进一步提高了用户界面的灵活性,以及对无人机控制的灵活性。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实 现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (42)

  1. 一种无人机的控制方法,应用于无人机的控制终端,其特征在于,包括:
    检测用户的作业任务分配操作;
    根据检测到的作业任务分配操作,为与所述控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据;
    将为与所述控制终端通信连接的至少两个无人机中的每一个确定的目标作业任务数据发送给对应的无人机,以使所述无人机执行所述目标作业任务数据指示的目标作业任务。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测用户的飞行状态控制操作;
    根据所述飞行状态控制操作,控制所述至少两个无人机的飞行状态或者控制所述至少两个无人机中的目标无人机的飞行状态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述至少两个无人机中每一个发送的目标作业任务执行状态信息;
    显示所述至少两个无人机中所述每一个发送的目标作业任务执行状态信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述至少两个无人机中每一个发送的飞行状态信息;
    显示所述至少两个无人机中每一个发送的飞行状态信息。
  5. 根据权利要求4所述的方法,其特征在于,
    所述飞行状态信息包括飞行速度、飞行高度、位置信息、电量信息中的一种或多种。
  6. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述至少两个无人机中的第一无人机发送的故障信息;
    根据所述故障信息显示与第一无人机相关联的故障指示信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    检测用户的故障信息查看操作;
    根据检测到的故障信息查看操作,显示所述第一无人机发送的故障信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    检测用户的起飞控制操作;
    根据所述起飞控制操作,控制所述至少两个无人机起飞或者控制所述至少两个无人机中的目标无人机起飞。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    检测用户的返航控制操作;
    根据所述返航控制操作,控制所述至少两个无人机返航或者控制所述至少两个无人机中的目标无人机返航。
  10. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    检测用户的作业任务暂停操作;
    根据所述作业任务暂停操作,控制所述至少两个无人机暂停执行目标作业任务或者控制所述至少两个无人机中的目标无人机暂停执行目标作业任务。
  11. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    检测用户的作业任务结束操作;
    根据所述作业任务结束操作,控制所述至少两个无人机结束执行目标作业任务或者控制所述至少两个无人机中的目标无人机结束执行目标作业任务。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还包括:
    调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上。
  13. 根据权利要求12所述的方法,其特征在于,所述调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上,包括:
    调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示预设返航点的位置信息的图标完整地显示在电子地图上。
  14. 根据权利要求12所述的方法,其特征在于,所述调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上,包括:
    调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示所述控制终端的位置信息的图标完整地显示在电子地图上。
  15. 一种无人机的控制方法,应用于无人机的控制终端,其特征在于,包括:
    检测用户的目标无人机选择操作,所述目标无人机是与所述控制终端通讯连接的至少两个无人机中的一个无人机;
    根据所述目标无人机选择操作,显示所述目标无人机对应的控制界面。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    检测用户在所述控制界面上的作业任务分配操作;
    根据检测到的作业任务分配操作,为所述目标无人机确定目标作业任务数据;
    将所述目标作业任务数据发送给目标无人机,以使目标无人机执行所述目标作业任务数据指示的目标作业任务。
  17. 根据权利要求15或16所述的方法,其特征在于,还包括:
    检测用户在所述控制界面上的飞行状态控制操作;
    根据检测到的飞行状态控制操作,确定飞行状态控制指令;
    将所述飞行状态控制指令发送给所述目标无人机,以控制所述目标无人机的飞行状态。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,还包括:
    接收所述目标无人机发送的目标作业任务执行状态信息;
    在所述控制界面上显示所述目标无人机发送的目标作业任务执行状态信息。
  19. 根据权利要求15-17任一项所述的方法,其特征在于,还包括:
    接收所述目标无人机发送的飞行状态信息;
    在所述控制界面上显示所述目标无人机发送的飞行状态信息。
  20. 根据权利要求15-17任一项所述的方法,其特征在于,还包括:
    接收所述目标无人机发送的故障信息;
    根据所述故障信息,在所述控制界面上显示与所述目标无人机相关联的故障指示信息。
  21. 根据权利要求20所述的方法,其特征在于,还包括:
    检测用户在所述控制界面上的故障信息查看操作;
    根据检测到的故障信息查看操作,在所述控制界面上显示所述目标无人机发送的故障信息。
  22. 一种无人机的控制终端,其特征在于,包括:处理器和通讯接口;
    所述处理器用于:
    检测用户的作业任务分配操作;
    根据检测到的作业任务分配操作,为与所述控制终端通信连接的至少两个无人机中的每一个确定目标作业任务数据;
    所述通讯接口用于将为与所述控制终端通信连接的至少两个无人机中的每一个确定的目标作业任务数据发送给对应的无人机,以使所述无人机执行所述目标作业任务数据指示的目标作业任务。
  23. 根据权利要求22所述的控制终端,其特征在于,所述处理器还用于:
    检测用户的飞行状态控制操作;
    根据所述飞行状态控制操作,控制所述至少两个无人机的飞行状态或者控制所述至少两个无人机中的目标无人机的飞行状态。
  24. 根据权利要求22或23所述的控制终端,其特征在于,还包括:显示组件;
    所述通讯接口还用于:
    接收所述至少两个无人机中每一个发送的目标作业任务执行状态信息;
    所述处理器还用于:
    控制所述显示组件显示所述至少两个无人机中所述每一个发送的目标作业任务执行状态信息。
  25. 根据权利要求22或23所述的控制终端,其特征在于,还包括:显示组件;
    所述通讯接口还用于:接收所述至少两个无人机中每一个发送的飞行状态信息;
    所述处理器还用于:
    控制所述显示组件显示所述至少两个无人机中每一个发送的飞行状态信息。
  26. 根据权利要求25所述的控制终端,其特征在于,
    所述飞行状态信息包括飞行速度、飞行高度、位置信息、电量信息中的一种或多种。
  27. 根据权利要求22或23所述的控制终端,其特征在于,还包括:显示组件;
    所述通讯接口还用于:
    接收所述至少两个无人机中的第一无人机发送的故障信息;
    所述处理器还用于:
    根据所述故障信息控制所述显示组件显示与第一无人机相关联的故障指示信息。
  28. 根据权利要求27所述的控制终端,其特征在于,所述处理器还用于:
    检测用户的故障信息查看操作;
    根据检测到的故障信息查看操作,控制所述显示组件显示所述第一无人机发送的故障信息。
  29. 根据权利要求22-28任一项所述的控制终端,其特征在于,所述处理器还用于:
    检测用户的起飞控制操作;
    根据所述起飞控制操作,控制所述至少两个无人机起飞或者控制所述至少两个无人机中的目标无人机起飞。
  30. 根据权利要求22-28任一项所述的控制终端,其特征在于,所述处理器还用于:
    检测用户的返航控制操作;
    根据所述返航控制操作,控制所述至少两个无人机返航或者控制所述至少两个无人机中的目标无人机返航。
  31. 根据权利要求22-28任一项所述的控制终端,其特征在于,所述处理器还用于:
    检测用户的作业任务暂停操作;
    根据所述作业任务暂停操作,控制所述至少两个无人机暂停执行目标作业任务或者控制所述至少两个无人机中的目标无人机暂停执行目标作业任务。
  32. 根据权利要求22-28任一项所述的控制终端,其特征在于,所述处理器还用于:
    检测用户的作业任务结束操作;
    根据所述作业任务结束操作,控制所述至少两个无人机结束执行目标作业任务或者控制所述至少两个无人机中的目标无人机结束执行目标作业任务。
  33. 根据权利要求22-32任一项所述的控制终端,其特征在于,所述处理器还用于:
    调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上。
  34. 根据权利要求33所述的控制终端,其特征在于,所述处理器调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上时,具体用于:
    调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示预设返航点的位置信息的图标完整地显示在电子地图上。
  35. 根据权利要求33所述的控制终端,其特征在于,所述处理器调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标完整地显示在电子地图上时,具体用于:
    调节显示的电子地图的缩放级别,以使指示所述至少两个无人机中每一个无人机的位置信息的图标和指示所述控制终端的位置信息的图标完整地显示在电子地图上。
  36. 一种无人机的控制终端,其特征在于,包括:处理器和显示组件;
    所述处理器用于:
    检测用户的目标无人机选择操作,所述目标无人机是与所述控制终端通讯连接的至少两个无人机中的一个无人机;
    根据所述目标无人机选择操作,控制所述显示组件显示所述目标无人机对应的控制界面。
  37. 根据权利要求36所述的控制终端,其特征在于,还包括:通讯接口;
    所述处理器还用于:
    检测用户在所述控制界面上的作业任务分配操作;
    根据检测到的作业任务分配操作,为所述目标无人机确定目标作业任务数据;
    所述通讯接口用于将所述目标作业任务数据发送给目标无人机,以使目标无人机执行所述目标作业任务数据指示的目标作业任务。
  38. 根据权利要求37所述的控制终端,其特征在于,所述处理器还用于:
    检测用户在所述控制界面上的飞行状态控制操作;
    根据检测到的飞行状态控制操作,确定飞行状态控制指令;
    所述通讯接口还用于:将所述飞行状态控制指令发送给所述目标无人机,以控制所述目标无人机的飞行状态。
  39. 根据权利要求37或38所述的控制终端,其特征在于,所述通讯接口还用于:
    接收所述目标无人机发送的目标作业任务执行状态信息;
    所述处理器还用于:
    控制所述显示组件在所述控制界面上显示所述目标无人机发送的目标作业任务执行状态信息。
  40. 根据权利要求37或38所述的控制终端,其特征在于,所述通讯接口还用于:
    接收所述目标无人机发送的飞行状态信息;
    所述处理器还用于:
    控制所述显示组件在所述控制界面上显示所述目标无人机发送的飞行状态信息。
  41. 根据权利要求37或38所述的控制终端,其特征在于,所述通讯接口还用于:接收所述目标无人机发送的故障信息;
    所述处理器还用于:
    根据所述故障信息,控制所述显示组件在所述控制界面上显示与所述目标无人机相关联的故障指示信息。
  42. 根据权利要求41所述的控制终端,其特征在于,所述处理器还用于:
    检测用户在所述控制界面上的故障信息查看操作;
    根据检测到的故障信息查看操作,控制所述显示组件在所述控制界面上显示所述目标无人机发送的故障信息。
PCT/CN2017/113653 2017-11-29 2017-11-29 无人机的控制方法及控制终端 WO2019104554A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780026702.9A CN109154828A (zh) 2017-11-29 2017-11-29 无人机的控制方法及控制终端
PCT/CN2017/113653 WO2019104554A1 (zh) 2017-11-29 2017-11-29 无人机的控制方法及控制终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113653 WO2019104554A1 (zh) 2017-11-29 2017-11-29 无人机的控制方法及控制终端

Publications (1)

Publication Number Publication Date
WO2019104554A1 true WO2019104554A1 (zh) 2019-06-06

Family

ID=64803848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113653 WO2019104554A1 (zh) 2017-11-29 2017-11-29 无人机的控制方法及控制终端

Country Status (2)

Country Link
CN (1) CN109154828A (zh)
WO (1) WO2019104554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210278834A1 (en) * 2018-07-17 2021-09-09 Emesent IP Pty Ltd. Method for Exploration and Mapping Using an Aerial Vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356984A (zh) * 2019-01-21 2020-06-30 深圳市大疆创新科技有限公司 任务显示方法及装置
WO2020199126A1 (zh) * 2019-04-02 2020-10-08 深圳市大疆创新科技有限公司 可移动平台的控制方法、控制终端及计算机可读存储介质
WO2020237458A1 (zh) * 2019-05-27 2020-12-03 深圳市大疆创新科技有限公司 飞行控制方法、控制终端和无人机
CN112166404A (zh) * 2019-08-08 2021-01-01 深圳市大疆创新科技有限公司 农机监管方法及装置
CN113467511B (zh) * 2021-07-15 2022-12-27 广西壮族自治区自然资源调查监测院 无人机任务协同方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098874A1 (en) * 2009-10-26 2011-04-28 Electronics And Telecommunications Research Institute Method and apparatus for navigating robot
CN106383646A (zh) * 2016-10-26 2017-02-08 广州极飞科技有限公司 一种无人飞行器启动植保作业的方法和装置
CN106502265A (zh) * 2016-10-26 2017-03-15 广州极飞科技有限公司 一种无人飞行器的航线生成方法和装置
CN106716288A (zh) * 2016-11-24 2017-05-24 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、地面控制端及存储介质
CN106774393A (zh) * 2016-09-22 2017-05-31 重庆零度智控智能科技有限公司 一种任务进度计算方法、装置及无人机
CN107390709A (zh) * 2017-08-25 2017-11-24 上海拓攻机器人有限公司 一种植保无人机多机协同作业方法及***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518487B (zh) * 2014-10-27 2017-09-12 深圳市大疆创新科技有限公司 飞行器的位置提示方法及装置
CN105892472A (zh) * 2015-02-13 2016-08-24 Lg电子株式会社 移动终端及其控制方法
WO2017079623A1 (en) * 2015-11-06 2017-05-11 Massachusetts Institute Of Technology Dynamic task allocation in an autonomous multi-uav mission
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
WO2018053815A1 (zh) * 2016-09-23 2018-03-29 深圳市大疆创新科技有限公司 应用于遥控器的信息提示方法及遥控器
WO2018058309A1 (zh) * 2016-09-27 2018-04-05 深圳市大疆创新科技有限公司 控制方法、控制装置、电子装置及飞行器控制***
CN106527481A (zh) * 2016-12-06 2017-03-22 重庆零度智控智能科技有限公司 无人机飞行控制方法、装置及无人机
CN106657320A (zh) * 2016-12-15 2017-05-10 北京佰人科技有限责任公司 基于地图定位的通讯方法和通讯装置
CN206658205U (zh) * 2017-05-04 2017-11-21 国网浙江省电力公司杭州供电公司 一种无人机数据传输***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098874A1 (en) * 2009-10-26 2011-04-28 Electronics And Telecommunications Research Institute Method and apparatus for navigating robot
CN106774393A (zh) * 2016-09-22 2017-05-31 重庆零度智控智能科技有限公司 一种任务进度计算方法、装置及无人机
CN106383646A (zh) * 2016-10-26 2017-02-08 广州极飞科技有限公司 一种无人飞行器启动植保作业的方法和装置
CN106502265A (zh) * 2016-10-26 2017-03-15 广州极飞科技有限公司 一种无人飞行器的航线生成方法和装置
CN106716288A (zh) * 2016-11-24 2017-05-24 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、地面控制端及存储介质
CN107390709A (zh) * 2017-08-25 2017-11-24 上海拓攻机器人有限公司 一种植保无人机多机协同作业方法及***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210278834A1 (en) * 2018-07-17 2021-09-09 Emesent IP Pty Ltd. Method for Exploration and Mapping Using an Aerial Vehicle

Also Published As

Publication number Publication date
CN109154828A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2019104554A1 (zh) 无人机的控制方法及控制终端
CN110531960B (zh) 用于通过虚拟世界,在现实世界中开发,测试以及部署数字现实应用程式的***与方法
CN109542119B (zh) 飞行器航线规划方法及***
EP3345832B1 (en) Unmanned aerial vehicle and method for controlling the same
CN108227746A (zh) 一种无人机集群控制***及方法
US11334077B2 (en) Method and device for locating faulty photovoltaic panel, and unmanned aerial vehicle
CN105763620B (zh) 一种无人机与飞手的匹配方法和***
US20180276997A1 (en) Flight tag obtaining method, terminal, and server
JP2017502397A (ja) 飛行ミッション処理方法、装置及びシステム
US11087633B2 (en) Simulation server capable of interacting with a plurality of simulators to perform a plurality of simulations
WO2019119200A1 (zh) 一种无人机的作业任务分配方法、相关设备及存储介质
WO2022247498A1 (zh) 无人机监控
CN113158116A (zh) 基于移动互联网的无人机控制平台
CN109714830A (zh) 一种飞行日志上传方法、装置及移动终端、无人机
WO2023040986A1 (zh) 一种无人机任务管理方法、装置、设备及存储介质
CN107622177B (zh) 基于eati方法的航空投送仿真方法
CN108693892A (zh) 一种跟踪方法、电子装置
CN107636551B (zh) 一种飞行控制方法、装置及智能终端
Tso et al. A human factors testbed for command and control of unmanned air vehicles
WO2019084952A1 (zh) 航线的分配方法、服务器、终端设备、控制设备及***
WO2023193604A1 (zh) 航线任务的在线规划方法及相关装置
CN110020217A (zh) 接机信息控制/显示方法/***,介质、服务端及车载端
CN109799841A (zh) 一种无人机地面控制***、设备和存储介质
US11164121B1 (en) Task communication and management system
CN109690439A (zh) 无人机控制方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933467

Country of ref document: EP

Kind code of ref document: A1