WO2023040986A1 - 一种无人机任务管理方法、装置、设备及存储介质 - Google Patents

一种无人机任务管理方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023040986A1
WO2023040986A1 PCT/CN2022/119127 CN2022119127W WO2023040986A1 WO 2023040986 A1 WO2023040986 A1 WO 2023040986A1 CN 2022119127 W CN2022119127 W CN 2022119127W WO 2023040986 A1 WO2023040986 A1 WO 2023040986A1
Authority
WO
WIPO (PCT)
Prior art keywords
task
execution
information
online
uav
Prior art date
Application number
PCT/CN2022/119127
Other languages
English (en)
French (fr)
Inventor
冯银华
冷杰
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2023040986A1 publication Critical patent/WO2023040986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • Embodiments of the present invention relate to the technical field of UAV control, and in particular, to a method, device, equipment and storage medium for managing UAV missions.
  • the tasks performed by the UAV are sent to the aircraft for execution in a one-to-one manner.
  • the task can only be sent to the UAV device connected to the mobile phone.
  • export the KML/KMZ file format import it to the application software side through the mobile phone/tablet software, and then send it to the drone device by the application software to execute the corresponding route task.
  • the delivery speed of drone tasks is slow, which affects the coordination of multiple drones performing the same task.
  • the present invention provides a UAV task management method, device, equipment and storage medium to achieve the effect of improving the speed of issuing tasks and the coordination of executing tasks.
  • an embodiment of the present invention provides a method for managing a UAV task, including:
  • the task information of generating the UAV according to the data configured by the user includes:
  • the task execution area is divided into routes according to the task type and the preset number of the UAVs, and at least one piece of route information is generated.
  • the task execution type includes pilot execution and machine nest execution
  • the task execution mode includes immediate execution and periodic execution; when the task execution mode is periodic execution, the execution parameters include at least execution cycle parameters and execution time;
  • the task information of the drone is generated according to the route information, the task execution type, the online drone, the task execution mode and execution parameters.
  • sending the task information to a preset number of online drones includes:
  • the corresponding receiving device Obtain the corresponding receiving device according to the default task execution type of the system and the online drone; if the task execution type is pilot execution, the receiving device is a remote controller connected to the online drone; if the task execution type is machine nest execution, the receiving device is the machine nest body connected to the online drone;
  • the task information is automatically sent to a corresponding preset number of receiving devices, and the receiving device forwards the task information to the online unmanned aerial vehicle connected thereto.
  • the automatically sending the task information to a corresponding preset number of receiving devices, and the receiving device forwards the task information to the online drone connected thereto further comprising:
  • the updated task information is sent to a preset number of receiving devices corresponding to the online drone selected by the user, and the receiving device forwards the task information to the connected online drone.
  • the real-time data returned when the online UAV executes the task information is acquired and displayed.
  • the online UAV executes the task information
  • the present invention also provides a UAV task management device, including:
  • the task acquisition module is used to generate the task information of the drone according to the data configured by the user;
  • a task delivery module configured to deliver the task information to a preset number of online drones
  • the task display module is used to display the task information and task delivery status by task type.
  • the present invention also provides a UAV task management device, the UAV task management device comprising:
  • processors one or more processors
  • the one or more processors are made to implement the UAV task management method according to any one of claims 1-7.
  • the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the UAV task management method as described in any one of the first aspects is implemented.
  • the task information of the drone is generated according to the data configured by the user, and the task information is sent to a preset number of online drones; the real-time data returned when the online drone performs the first task is obtained data and display it.
  • the sending task is slow, and the problem that the user cannot view multiple route tasks at the same time, and realize the simultaneous delivery of tasks to multiple UAVs , multiple UAVs cooperate to execute the same task at the same time, and display the task information of multiple routes at the same time, so as to improve the speed of issuing tasks and the coordination of task execution.
  • FIG. 1 is a schematic flow diagram of a method for managing a UAV mission provided by Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of sending mission information in a UAV mission management method provided by Embodiment 1 of the present invention
  • Embodiment 3 is a schematic diagram of task information delivery in another UAV task management method provided by Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of displaying task information in a UAV task management method provided in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of displaying flight data in a UAV task management method provided in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic flow diagram of another UAV task management method provided by Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of an unmanned aerial vehicle task management device provided in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a UAV task management device provided by Embodiment 3 of the present invention.
  • FIG. 1 is a schematic flowchart of a UAV task management method provided in Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of task delivery in a UAV task management method provided in Embodiment 1 of the present invention.
  • This embodiment is applicable to the situation where the UAV command center connects and controls at least one UAV, and performs task management on the UAV.
  • the method can be performed by the UAV task management device, and specifically includes the following steps:
  • Step 110 generating task information of the drone according to the data configured by the user.
  • the UAV command center is connected to control at least one UAV.
  • the UAV can be set in a fixed nest body, and can also be carried by the pilot to any place, and can be released and controlled by the remote control.
  • the tasks of UAVs can be divided into route tasks such as waypoints/polygons/rectangles.
  • the number of UAVs performing tasks can divide UAV tasks into single-machine tasks and multi-machine tasks.
  • the task information of the drone is generated according to the task type, task area and preset number of drones configured by the user.
  • Step 110 specifically includes:
  • Step 111 obtaining the task type, task execution area and preset number of drones selected by the user.
  • Step 112 divide the task execution area into routes according to the task type and the preset number of the drones, and generate at least one route information.
  • Users can delineate the task execution area on the electronic map interface, select the task type and the preset number of UAVs through the system's preset options, and divide the mission execution area according to the task type and the preset number of UAVs , generate at least one piece of route information, and when dividing the route, try to ensure that the route distance of each drone is equivalent. For example, when dividing the route, the task execution area is equally divided according to the preset number. When multiple drones cooperate to perform tasks, they can complete tasks as soon as possible, reduce task execution time, and improve task execution efficiency.
  • the preset number is at least 1, and the preset number is smaller than the number of currently idle drones.
  • the user can also manually select multiple waypoints such as waypoint 1, waypoint 2, and waypoint 3 on the electronic map, call the route algorithm library packaged by Autel SDK and combine the preset number of drones , to generate route information that the UAV needs to execute.
  • step 110 also includes:
  • Step 113 obtain the system default task execution type and online drone; the task execution type includes pilot execution and machine nest execution.
  • Step 114 Obtain system default task execution mode and execution parameters; the task execution mode includes immediate execution and periodic execution; when the task execution mode is periodic execution, the execution parameters include at least execution cycle parameters and execution time.
  • Step 115 generating task information of the drone according to the route information, the task execution type, the online drone, the task execution mode and execution parameters.
  • the flight mission of the UAV is not directly sent to the online UAV, but the server first sends the task information to the receiving device corresponding to the online UAV, such as the remote control or the machine nest body, and then the remote control and the machine nest Ontology forwards mission information to connected online drones.
  • the nest has the ability to monitor and control the flight and mission of the UAV, including a set of equipment for the launch and recovery control of the UAV.
  • the nest body is fixed; the remote control is controlled by the remote control unit on the ground or on the air platform.
  • the airborne flight control system is a device for controlling the drone, and an exemplary remote controller is an operating handle for the drone. Combining task execution types to generate task information can improve task execution efficiency.
  • the task execution area A when the task execution area A is designated to carry out a patrol mission whose mission type is a polygonal route flight, if the mission execution area A has at least one fixed nest body and unmanned aerial vehicle, then the default task execution type of the system is Nest execution, obtain the number of online drones in the task execution area A and the location information of the distribution, divide the task execution area A into routes according to the position information of the online drones, and generate at least one route task.
  • the pilot needs to manually release the UAV, and the mission execution type is pilot execution, then it is calculated according to the number of online UAVs and the route algorithm Find the optimal waypoint position and generate at least one route information.
  • the online drones are drones that are connected to the Internet and idle.
  • the flight task execution mode of the UAV can be immediate execution and periodic execution. Among them, after the immediate execution is the task issued, the UAV immediately executes the flight task and only executes it once, and does not automatically repeat the execution; the periodic execution includes automatic cycle Executing a flight mission and delaying the execution of a flight mission. Further, when the mission execution mode is periodic execution, the execution parameters include at least an execution cycle parameter and an execution time. Generate complete UAV mission information based on route information, mission execution type, online UAV, mission execution method and execution parameters.
  • the same mission can be performed by the same UAV in different time periods.
  • the execution time the flight mission can be flexibly issued in advance, and the UAV completes the flight mission at a fixed point and time.
  • the same route task can be executed successively by different UAVs in different time periods.
  • S3 is executed successively by three different UAVs respectively. After the first UAV executes the route S1, the second UAV starts to execute the route S2, and so on, and the cycle is performed according to the set cycle parameters Execution; different UAVs can also alternately execute route tasks according to periodic parameters in different time periods.
  • the date when the date is an odd number, it will be executed by the first UAV, and when the date is an even number , is executed by the second UAV, or the route task S is split into route S1, route S2 and route S3, and when the date is odd, it is executed successively by the first, second and third UAVs, When the date is an even number, the second, third, and fourth UAVs will continue to execute or the fourth, fifth, and sixth UAVs will continue to execute.
  • Personalize settings according to user needs or automatically set the cycle parameters and execution time of UAV tasks through the UAV control system, realize the flexible call of UAVs in idle state, realize the cooperation of multiple UAVs, and improve the efficiency of UAVs. usage efficiency.
  • Step 120 sending the task information to a preset number of online drones.
  • the task information needs to be sent to the receiving device corresponding to the online drone, for example, the remote control or the machine nest body, and then the remote control and the machine nest body will send the task information
  • the information is forwarded to the online drone it is connected to.
  • the task information can be automatically issued by the UAV command center, or manually issued by the user according to the demand.
  • step 120 When automatically delivering task information, step 120 includes:
  • Step 121 Obtain the corresponding receiving device according to the default task execution type of the system and the online UAV; if the task execution type is pilot execution, the receiving device is a remote controller connected to the online UAV; If the execution type is nest execution, the receiving device is the nest body connected to the online drone.
  • Step 122 automatically send the task information to a corresponding preset number of receiving devices, and the receiving devices forward the task information to the connected online drones.
  • the system After the task information is generated, the system automatically selects the online UAV that meets the task execution type, obtains the corresponding receiving device according to the task execution type and the online UAV, and the system automatically sends the task to the receiving device.
  • task execution area A performs a task of patrolling type
  • the preset number of online drones will be automatically selected according to the task information, and the preset number of online drones corresponding to The Nest body issues task information, and then the Nest body forwards the task information to the online drones connected to it; if the default task execution type of the system is pilot execution, it will automatically transfer to the preset number of online drones.
  • the corresponding remote control sends task information, and then the remote control forwards the task information to the connected online drone.
  • step 120 includes:
  • Step 123 according to the task execution type selected by the user, display the corresponding online drone.
  • Step 124 update the task information of the drone according to the task execution type selected by the user, the online drone, the task execution mode and the execution parameters.
  • Step 125 sending the updated task information to a preset number of receiving devices corresponding to the online drone selected by the user.
  • the display page 10 of UAV command center shows task execution type, task execution mode and execution parameter option button, and the user can adjust according to demand.
  • the selectable device list is different.
  • the device name of the corresponding online drone is displayed. The user can select the device according to the demand.
  • Click the Save button to save and send task information.
  • the display page 10 displays a list of periodic parameters, and the user can adjust the selected periodic parameters according to requirements.
  • the period parameter also includes the effective time of period execution, which can be selected through buttons.
  • the execution period can be selected as 1, and the effective time is selected as the preset start time to generate a timed task of the drone.
  • the UAV control center communicates with the nest body and the remote controller, after the task information is sent to the nest body and the remote controller, the nest body and the remote controller forward the task information to the connected online unmanned aerial vehicle.
  • the online UAV performs flight missions according to the updated mission information.
  • the online drone corresponds to the nest body and the remote control one by one. The way between the UAV control center and the nest body and the remote control ensures the stability of communication, and at the same time further reduces the number of wireless communication modules installed on the UAV to reduce the load on the UAV.
  • Step 130 displaying the task information and task delivery status by task type.
  • the user selects the task management button on the display interface 10, and a plurality of task information is displayed on the display interface 10 (as shown in 11, 12 and 13 in Figure 4), and the displayed content includes: route information, task name , task type, task creation time, task delivery status, task ID, etc., wherein the route information can be visually displayed through electronic maps (as shown in 11, 12 and 13 in Figure 4) and simulated routes.
  • the user can enlarge the target task information to a full screen for display by selecting the target task information, and the user can zoom in on the electronic map displaying the route information through the zoom operation, which is convenient for the user to view the display position of the route on the map more intuitively .
  • the user can choose to display the task information according to the status of the task information, which is convenient for the user to coordinate and control according to the status of the task information.
  • the UAV mission management method also includes:
  • Step 140 acquiring and displaying the real-time data returned when the online UAV executes the task information.
  • the online UAV When the online UAV performs a task, it sends back real-time data, including UAV real-time image transmission screen and UAV real-time flight data.
  • the UAV control center obtains the real-time data returned when the online UAV performs the first mission, and performs real-time image transmission on the display page 10 30, the display page 10 displays the real-time image transmission images of one or more drones and the real-time flight data of the drones according to the layout mode selected by the user.
  • all real-time data of the online UAV is transmitted from the online UAV to the corresponding machine nest body and remote control, and then the machine nest body and remote control report to the drone through the WebRtc DataChannel channel and the Netty transmission protocol channel control center.
  • the real-time dynamic display is convenient for users to understand the execution of the first mission of each UAV, and it is convenient for users to coordinate and command tasks.
  • Step 150 acquire the modification of the route information by the user, and update the route information.
  • the task information that the drone is performing can be adjusted according to the real-time data of the drone, so that the flight of the drone is more in line with the actual task situation.
  • the real-time image transmission screen returned by the online drones shows that the current drone flight altitude/angle/speed images do not meet the patrol image requirements
  • the user can dynamically and temporarily adjust parameters such as route height and flight speed to update route information.
  • the task information is updated according to the updated route information, and after parameter adjustment of the task information, it is sent to a preset number of online drones performing the task, and the online drones fly according to the new route information.
  • the real-time adjustment of parameters by the user according to the real-time image transmission screen sent back it is beneficial to ensure the safety of the online UAV when performing tasks and improve the completion effect of the task.
  • the task information of the drone is generated according to the data configured by the user, and the task information is sent to the receiving device corresponding to the preset number of online drones, and the receiving device forwards the task information to the corresponding receiving device.
  • the connected online UAV, the online UAV and the receiving device are connected in one-to-one correspondence; the task information and task delivery status are displayed according to the task type.
  • FIG. 7 is a schematic structural diagram of a UAV task management device provided in Embodiment 2 of the present invention. As shown in FIG. 7, a UAV task management device includes:
  • the mission acquisition module 210 is configured to generate the mission information of the UAV according to the data configured by the user.
  • the UAV command center connects and controls at least one UAV.
  • the UAV is set on a fixed nest body, and can be carried by the pilot to any place, and can be released and controlled by the remote control.
  • the tasks of the UAV can be divided into route tasks such as waypoint/polygon/rectangle, and according to the type of task content, the tasks of the UAV can be divided into tasks such as patrol, tracking, aerial photography modeling and live video.
  • the number of UAVs performing tasks can divide UAV tasks into single-machine tasks and multi-machine tasks.
  • the task information of the drone is generated according to the task type, task area and preset number of drones configured by the user.
  • the task acquisition module 210 includes:
  • the first configuration acquisition unit is configured to acquire the task type, task execution area and preset number of unmanned aerial vehicles selected by the user.
  • the route generation unit is configured to divide the task execution area into routes according to the task type and the preset number of the drones, and generate at least one route information.
  • Users can delineate the task execution area on the electronic map interface, select the task type and the preset number of UAVs through the system's preset options, and divide the mission execution area according to the task type and the preset number of UAVs , generate at least one piece of route information, and when dividing the route, try to ensure that the route distance of each drone is equivalent. For example, when dividing the route, the task execution area is equally divided according to the preset number. When multiple drones cooperate to perform tasks, they can complete tasks as soon as possible, reduce task execution time, and improve task execution efficiency.
  • the preset number is at least 1, and the preset number is smaller than the number of currently idle drones.
  • the task obtaining module 210 also includes:
  • the task execution type acquisition unit is used to obtain the default task execution type of the system and the online drone; the task execution type includes pilot execution and machine nest execution.
  • the task execution mode and execution parameter acquisition unit is used to obtain the default task execution mode and execution parameters of the system; the task execution mode includes immediate execution and periodic execution; when the task execution mode is periodic execution, the execution parameters include at least the execution period parameters and execution time.
  • a task information generating unit configured to generate task information of the drone according to the route information, the task execution type, the online drone, the task execution mode and execution parameters.
  • the task issuing module 220 is configured to issue the task information to a preset number of online drones.
  • the task information needs to be sent to the receiving device corresponding to the online drone, for example, the remote control or the machine nest body, and then the remote control and the machine nest body will send the task information
  • the information is forwarded to the online drone it is connected to.
  • the task information can be automatically issued by the UAV command center, or manually issued by the user according to the demand.
  • the task presentation module 230 includes:
  • the receiving device acquisition unit is used to obtain the corresponding receiving device according to the default task execution type of the system and the online drone; if the task execution type is pilot execution, the receiving device is connected to the online drone Remote control; if the task execution type is nest execution, the receiving device is a nest body connected to the online drone.
  • the automatic task delivery unit is configured to automatically deliver the task information to a corresponding preset number of receiving devices, and the receiving devices forward the task information to the connected online drones.
  • the task presentation module 230 includes:
  • the task execution type selection unit is used to display the corresponding online drone according to the task execution type selected by the user.
  • the task information update unit is used to update the task information of the drone according to the task execution type selected by the user, the online drone, the task execution mode and the execution parameters.
  • the updating task delivery unit is used to deliver the updated task information to a preset number of receiving devices corresponding to the online drone selected by the user.
  • the task display module 230 is configured to display the task information and task delivery status by task type.
  • the mission feedback obtaining module is used to obtain and display the real-time data returned when the online UAV performs the first mission.
  • the route information modification module is used to obtain the modification of the route information by the user and update the route information.
  • the task information of the drone is generated according to the data configured by the user, and the task information is sent to the receiving device corresponding to the preset number of online drones, and the receiving device forwards the task information to the corresponding receiving device.
  • the connected online UAV, the online UAV and the receiving device are connected in one-to-one correspondence; the task information and task delivery status are displayed according to the task type.
  • the UAV task management device provided in the embodiments of the present invention can execute the UAV task management method provided in any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • Fig. 8 is a schematic structural diagram of a UAV task management device provided by Embodiment 3 of the present invention.
  • the UAV task management device includes a processor 30, a memory 31, an input device 32 and an output device 33
  • the quantity of processor 30 in the unmanned aerial vehicle mission management equipment can be one or more, take a processor 30 as an example among Fig. 8;
  • the output device 33 can be connected via a bus or in other ways, and connection via a bus is taken as an example in FIG. 6 .
  • the processor 30 executes various functional applications and data processing of the UAV mission management device by running the software programs, instructions and modules stored in the memory 31, that is, realizes the above-mentioned UAV mission management method.
  • the memory 31 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 31 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 31 may further include memory located remotely relative to the processor 30, and these remote memories may be connected to the UAV mission management device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 32 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the UAV task management device.
  • the output device 33 may include a display device such as a display screen.
  • Embodiment 4 of the present invention also provides a storage medium containing computer-executable instructions, the computer-executable instructions are used to execute a UAV task management method when executed by a computer processor, the method comprising:
  • the storage medium containing computer-executable instructions provided by the embodiments of the present invention the computer-executable instructions are not limited to the method operations described above, and can also execute the UAV task management provided by any embodiment of the present invention. Related operations in the method.
  • the present invention can be realized by means of software and necessary general-purpose hardware, and of course it can also be realized by hardware, but in many cases the former is a better implementation mode .
  • the essence of the technical solution of the present invention or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including several instructions to make a computer device (which can be a personal computer) , server, or network device, etc.) execute the methods described in various embodiments of the present invention.
  • a computer-readable storage medium such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc
  • the units and modules included are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种无人机任务管理方法、装置、设备及存储介质。一种无人机任务管理方法,包括:根据用户配置的数据生成无人机的任务信息(110);将任务信息下发至预设数量的在线无人机(120);按任务类型展示任务信息和任务下发状态(130)。解决只能通过一对一方式下发任务至无人机设备中,下发任务较慢的问题,以及无法满足用户同时查看多个航线任务的问题,实现同时向多架无人机下发任务,多架无人机同时协同执行同一任务,同时展示多个航线任务信息,提高下发任务的速度和执行任务的协调性的效果。

Description

一种无人机任务管理方法、装置、设备及存储介质
本申请要求于2021年9月15日提交中国专利局、申请号为2021110821921、申请名称为“一种无人机任务管理方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无人机控制技术领域,尤其涉及一种无人机任务管理方法、装置、设备及存储介质。
背景技术
随着无人机技术的发展,无人机的应用范围越来越广泛,多架无人机协同工作已成为常态。
现有技术中,无人机执行的任务都是通过一对一方式下发任务到飞行器去执行,如手机端程序创建好任务后只能把任务发给与手机相连接的无人机设备,或者web端创建好需要执行的任务后,导出KML/KMZ文件格式,在通过手机/平板端软件导入到应用软件端,由应用软件再发送给无人机设备,执行对应的航线任务。存在无人机任务下发速度慢,影响多架无人机执行同一任务时的协调性的问题。
发明内容
本发明提供一种无人机任务管理方法、装置、设备及存储介质,以实现提高下发任务的速度和执行任务的协调性的效果。
第一方面,本发明实施例提供了一种无人机任务管理方法,包括:
根据用户配置的数据生成无人机的任务信息;
将所述任务信息下发至预设数量的在线无人机;
按任务类型展示所述任务信息和任务下发状态。
可选的,所述根据用户配置的数据生成无人机的任务信息,包括:
获取用户选定的任务类型、任务执行区域和无人机的预设数量;
根据所述任务类型和所述无人机的预设数量对所述任务执行区域进行航线划分,生成至少一条航线信息。
可选的,还包括:
获取***默认的任务执行类型和在线无人机;所述任务执行类型包括飞手执行和机巢执行;
获取***默认的任务执行方式和执行参数;所述任务执行方式包括立即执行和周期执行;所述任务执行方式为周期执行时,执行参数至少包括执行周期参数和执行时间;
根据所述航线信息、所述任务执行类型、在线无人机、所述任务执行方式和执行参数生成无人机的任务信息。
可选的,所述将所述任务信息下发至预设数量的在线无人机,包括:
根据***默认的任务执行类型和在线无人机获取对应的接收装置;若任务执行类型为飞手执行,则所述接收装置为与所述在线无人机连接的遥控器;若任务执行类型为机巢执行,则所述接收装置为与所述在线无人机连接的机巢本体;
自动将所述任务信息下发至对应的预设数量的接收装置,所述接收装置将 任务信息转发至与之连接的在线无人机。
可选的,所述自动将所述任务信息下发至对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机,还包括:
根据用户选定的任务执行类型,展示对应的在线无人机;
根据用户选定的任务执行类型、在线无人机、任务执行方式和执行参数更新无人机的任务信息;
将更新后的任务信息下发至用户选择的在线无人机对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机。
可选的,还包括:
获取所述在线无人机执行所述任务信息时返回的实时数据并进行展示。
可选的,在所述获取所述在线无人机执行所述任务信息时返回的实时数据并进行展示之后,还包括:
获取用户对航线信息的修改,更新航线信息。
第二方面,本发明还提供了一种无人机任务管理装置,包括:
任务获取模块,用于根据用户配置的数据生成无人机的任务信息;
任务下发模块,用于根将所述任务信息下发至预设数量的在线无人机;
任务展示模块,用于按任务类型展示所述任务信息和任务下发状态。
第三方面,本发明还提供了一种无人机任务管理设备,所述无人机任务管理设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多 个处理器实现如权利要求1-7中任一所述的无人机任务管理方法。
第四方面,本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面中任一所述的无人机任务管理方法。
本发明实施例的技术方案,通过根据用户配置的数据生成无人机的任务信息,将任务信息下发至预设数量的在线无人机;获取在线无人机执行第一任务时返回的实时数据并进行展示。解决只能通过一对一方式下发任务至无人机设备中,下发任务较慢的问题,以及无法满足用户同时查看多个航线任务的问题,实现同时向多架无人机下发任务,多架无人机同时协同执行同一任务,同时展示多个航线任务信息,提高下发任务的速度和执行任务的协调性的效果。
附图说明
图1为本发明实施例一提供的一种无人机任务管理方法的流程示意图;
图2为本发明实施例一提供的一种无人机任务管理方法中的任务信息下发的示意图;
图3为本发明实施例一提供的另一种无人机任务管理方法中的任务信息下发的示意图;
图4为本发明实施例一提供的一种无人机任务管理方法中的任务信息展示的示意图;
图5为本发明实施例一提供的一种无人机任务管理方法中的飞行数据展示的示意图;
图6为本发明实施例一提供的另一种无人机任务管理方法的流程示意图;
图7为本发明实施例二提供的一种无人机任务管理装置的结构示意图;
图8为本发明实施例三提供的一种无人机任务管理设备的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
实施例一
图1为本发明实施例一提供的一种无人机任务管理方法的流程示意图,图2为本发明实施例一提供的一种无人机任务管理方法中的任务下发的示意图。
本实施例可适用于无人机指挥中心连接控制至少一架无人机,对无人机的进行任务管理的情况,该方法可以由无人机任务管理装置来执行,具体包括如下步骤:
步骤110、根据用户配置的数据生成无人机的任务信息。
无人机指挥中心连接控制至少一架无人机,无人机可以设置于固定的机巢本体,还可由飞手携带至任意地点,通过遥控器进行放飞和控制。根据航线类型可以将无人机的任务分为航点/多边形/矩形等航线任务,根据任务内容类型可以将无人机的任务分为巡逻、追踪、航拍建模和视频直播等任务,根据参与任务执行的无人机的数量可以将无人机的任务分为单机任务和多机任务。根据用户配置的任务类型、任务区域和无人机预设数量等信息生成无人机的任务信息。
步骤110具体包括:
步骤111、获取用户选定的任务类型、任务执行区域和无人机的预设数量。
步骤112、根据所述任务类型和所述无人机的预设数量对所述任务执行区域进行航线划分,生成至少一条航线信息。
用户可以通过在电子地图界面上划定任务执行区域,通过***的预设选项选择任务类型和无人机的预设数量,根据任务类型和无人机的预设数量对任务执行区域进行航线划分,生成至少一条航线信息,划分航线时,尽量保证每架无人机的航线距离相当,示例性的,航线划分时,对按预设数量等分任务执行区域。在多架无人机进行协同合作执行任务时,可以尽快完成任务,减少任务执行时间,提高任务执行效率。其中,预设数量至少为1,且预设数量小于当前处于空闲状态的无人机的数量。
在另一实施例中,用户也可以在电子地图上手动选择航点1、航点2、航点3等多个航点,调用Autel SDK封装的航线算法库并结合无人机的预设数量,生成无人机需要执行的航线信息。
进一步的,步骤110还包括:
步骤113、获取***默认的任务执行类型和在线无人机;所述任务执行类型包括飞手执行和机巢执行。
步骤114、获取***默认的任务执行方式和执行参数;所述任务执行方式包括立即执行和周期执行;所述任务执行方式为周期执行时,执行参数至少包括执行周期参数和执行时间。
步骤115、根据所述航线信息、所述任务执行类型、在线无人机、所述任务执行方式和执行参数生成无人机的任务信息。
无人机的飞行任务不直接发送至在线无人机上,而是由服务器先将任务信 息发送至在线无人机对应的接收装置,例如,遥控器或机巢本体,再由遥控器和机巢本体将任务信息转发至与之连接的在线无人机。机巢具有对无人机飞行和任务进行监控和操纵的能力,包含对无人机发射和回收控制的一组设备,机巢本体固定设置;遥控器为受地面或空中平台上的遥控单元通过机载飞行控制***控制无人机的设备,示例性的遥控器为无人机配套操作手柄。结合任务执行类型生成任务信息可以提高任务执行效率。示例性的,当划定对任务执行区域A进行任务类型为多边形航线飞行的巡逻任务时,若任务执行区域A具有至少一个固定的机巢本体和无人机,则***默认的任务执行类型为机巢执行,获取任务执行区域A中的在线无人机数量和分布的位置信息,根据在线无人机的位置信息对任务执行区域A进行航线划分,生成至少一条航线任务。
在替代实施例中,若任务执行区域A没有固定的机巢本体和无人机,需要飞手手动放飞无人机,任务执行类型为飞手执行,则根据在线无人机数量和航线算法计算出最优航点位置和生成至少一条航线信息。其中,在线无人机均为处于联网并空闲状态的无人机。
无人机的飞行任务执行方式可以是立即执行和周期执行方式,其中,立即执行为任务下发后,无人机立即执行飞行任务且只执行一次,不自动重复执行;周期执行中包括自动循环执行飞行任务和延迟执行一次飞行任务,进一步的,任务执行方式为周期执行时,执行参数至少包括执行周期参数和执行时间。根据航线信息、任务执行类型、在线无人机、任务执行方式和执行参数生成完整的无人机的任务信息。示例性的,对任务执行区域的道路的日常巡逻等飞行任务,选择任务执行类型是机巢执行,生成的任务信息包括任务执行区域内的航线信息、周期执行方式,设置执行周期参数为每天一次,可以使得下发一次飞 行任务,达到无人机多次周期性执行的目的,简化任务下发操作,由存放在机巢本体的在线无人机执行固定区域的周期性任务可以减少人力成本。通过设置不同周期参数,可以使得同一任务分别由同一架无人机在不同时间段去执行航线任务。通过设置执行时间,可以灵活的提前下发飞行任务,无人机定点定时的完成飞行任务。通过周期参数和执行时间的设置,可以使得同一航线任务由不同无人机在不同时间段接续执行,示例性的,将航线飞行任务的航线S拆分为首尾相连的航线S1、航线S2、航线S3,分别由三架不同的无人机接续执行,在第一架无人机执行完航线S1后,第二架无人机开始执行航线S2,以此类推,并且按设置的周期参数进行周期执行;也可由不同无人机在不同时间段按周期参数交替执行航线任务,示例性的,对于同一航线任务,在日期为单数时,由第一架无人机执行,在日期为双数时,由第二架无人机执行,或者,航线任务S拆分为航线S1、航线S2和航线S3,日期为单数时,由第一架、第二架和第三架无人机接续执行,在日期为双数时,由第二架、第三架、第四架无人机接续执行或者由第四架、第五架、第六架无人机接续执行。根据用户需求个性化设置或通过无人机控制***自动设置无人机任务的周期参数和执行时间,实现灵活调用处于空闲状态的无人机,实现多架无人机协同合作,提高无人机的使用效率。
步骤120、将所述任务信息下发至预设数量的在线无人机。
根据生成的多条航线信息生成多个对应的任务信息,需要将任务信息下发至在线无人机对应的接收装置,例如,遥控器或机巢本体,再由遥控器和机巢本体将任务信息转发至与之连接的在线无人机。在任务信息下发时,可以由无人机指挥中心自动下发,也可以由用户根据需求手动下发。
自动下发任务信息时,步骤120包括:
步骤121、根据***默认的任务执行类型和在线无人机获取对应的接收装置;若任务执行类型为飞手执行,则所述接收装置为与所述在线无人机连接的遥控器;若任务执行类型为机巢执行,则所述接收装置为与所述在线无人机连接的机巢本体。
步骤122、自动将所述任务信息下发至对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机。
生成任务信息后,***自动选择满足任务执行类型的在线无人机,根据任务执行类型和在线无人机获取对应的接收装置,***自动向接收装置下发任务,示例性的,当划定对任务执行区域A进行类型为巡逻的任务时,若***默认的任务执行类型为机巢执行时,根据任务信息自动选择预设数量的在线无人机,向预设数量的在线无人机对应的机巢本体下发任务信息,再由机巢本体将任务信息转发至与之连接的在线无人机;若***默认的任务执行类型为飞手执行,则自动向预设数量的在线无人机对应的遥控器下发任务信息,再由遥控器将任务信息转发至与之连接的在线无人机。
用户手动下发任务信息时,步骤120包括:
步骤123、根据用户选定的任务执行类型,展示对应的在线无人机。
步骤124、根据用户选定的任务执行类型、在线无人机、任务执行方式和执行参数更新无人机的任务信息。
步骤125、将更新后的任务信息下发至用户选择的在线无人机对应的预设数量的接收装置。
如图2所示,在下发任务信息时,无人机指挥中心的显示页面10显示任务 执行类型、任务执行方式和执行参数选项按钮,用户可以根据需求进行调整。示例性的,选择的任务执行类型不同时,可选择的设备列表不同,根据用户选定的任务执行类型,展示对应的在线无人机的设备名称,用户可根据需求进行设备选择,选定后点击保存按钮进行保存和下发任务信息。如图3所示,当默认任务执行方式为周期执行或用户选择任务执行方式为周期执行时,显示页面10显示周期参数列表,用户可根据需求调整选定的周期参数。进一步的,周期参数还包括周期执行的有效时间,可通过按钮进行选择。进一步的,若任务信息为延迟任务,仅执行一次,不进行周期执行,可选择执行周期为1,并且选择有效时间为预设的开始时间,生成无人机的定时任务。在用户选定任务执行类型、在线无人机、任务执行方式和执行参数后,点击保存按钮进行保存,***更新无人机的任务信息,并将更新后的任务信息下发至用户选择的在线无人机对应的预设数量的接收装置,接收装置将任务信息转发至与之连接的在线无人机。在任务信息下发时,用户可根据需求个性化调整接收任务信息的目标在线无人机,并修改相应参数,提高了个性化设置功能,便于用户操作,提升了用户使用体验。
由于无人机控制中心与机巢本体和遥控器通信,因此,任务信息下发至机巢本体和遥控器后,再由机巢本体和遥控器将任务信息转发至与之连接的在线无人机,在线无人机根据更新后的任务信息执行飞行任务。其中,在线无人机与机巢本体和遥控器一一对应。无人机控制中心与机巢本体和遥控器的方式保证了通信的稳定性,同时进一步减少在无人机上设置无线通信模块,减轻无人机的负载。
步骤130、按任务类型展示所述任务信息和任务下发状态。
在创建和下发飞行任务信息时,可以创建一个任务信息下发给多个不同的无人机,也可以同时创建多个不同的航线任务信息,这些任务信息可以支持不同的飞机型号,任务信息创建和下发完成后,用户可以通过无人机控制中心的显示界面查看任务信息和任务下发状态,便于用户了解已创建的任务信息和任务下发状态,从而方便协调指挥。在显示界面按任务类型分别展示任务信息,便于用户快速选取特定类型的任务信息进行查看。如图4所示,用户选择显示界面10上的任务管理按钮,显示界面10上展示多个任务信息(如图4中的11、12和13所示),展示内容包括:航线信息、任务名称、任务类型、任务创建时间、任务下发状态、任务ID等,其中航线信息可以通过电子地图(如图4中的11、12和13所示)和模拟航线进行直观展示。进一步的,用户可以通过选中目标任务信息将目标任务信息放大至全屏进行展示,并且用户通过缩放操作可以对展示航线信息的电子地图进行缩放操作,便于用户更直观的查看航线在地图上的显示位置。
在一替代实施例中,用户可选择按下发状态进行任务信息的展示,便于用户按任务信息状态进行协调控制。
如图5所示,在上述实施例的基础上,无人机任务管理方法还包括:
步骤140、获取所述在线无人机执行所述任务信息时返回的实时数据并进行展示。
在线无人机执行任务时,传回实时数据,包括无人机实时图传画面和无人机实时飞行数据。如图6所示,当用户在显示页面10选择任务飞行按钮时,无人机控制中心获取在线无人机执行所述第一任务时返回的实时数据,并在显示页面10进行实时图传画面30的展示,显示页面10根据用户选择的布局方式展 示一个或多个无人机的实时图传画面和无人机的实时飞行数据。其中,在线无人机的所有实时数据都是由在线无人机传输至对应的机巢本体和遥控器,再由机巢本体和遥控器通过WebRtc DataChannel通道和Netty传输协议通道上报到无人机控制中心。实时动态展示方便用户了解各无人机对第一任务的执行情况,便于用户进行任务协调指挥。
进一步的,如图5所示,还包括:
步骤150、获取用户对航线信息的修改,更新航线信息。
在用户通过显示界面查看在线无人机的实时数据时,可以根据无人机的实时数据调整无人机正在执行的任务信息,从而使得无人机的飞行更符合实际任务情况,示例性的,在预设数量的在线无人机按任务信息对一片山林进行防火灾巡逻时,在线无人机返回的实时图传画面显示当前无人机飞行高度/角度/速度拍摄的图像不符合巡逻图像要求时,需要调整在线无人机的飞行高度/角度/速度,用户可以动态的临时调整航线高度、飞行速度等参数,更新航线信息。根据更新后的航线信息更新任务信息,在任务信息进行参数调整后,下发至执行此任务的预设数量的在线无人机,在线无人机根据新的航线信息进行飞行。通过用户根据传回的实时图传画面进行参数的实时调整,有利于保证在线无人机执行任务时的安全性和提高任务的完成效果。
本发明实施例的技术方案,通过根据用户配置的数据生成无人机的任务信息,将任务信息下发至预设数量的在线无人机对应的接收装置,由接收装置将任务信息转发至与之连接的在线无人机,在线无人机与接收装置一一对应连接;按任务类型展示任务信息和任务下发状态。解决只能通过一对一方式下发任务至无人机设备中,下发任务较慢的问题,以及无法满足用户同时查看多个航线 任务的问题,实现同时向多架无人机下发任务,多架无人机同时协同执行同一任务,同时展示多个航线任务信息,提高下发任务的速度和执行任务的协调性的效果。
实施例二
图7为本发明实施例二提供的一种无人机任务管理装置的结构示意图,如图7所示,一种无人机任务管理装置包括:
任务获取模块210,用于根据用户配置的数据生成无人机的任务信息。
无人机指挥中心连接控制至少一架无人机,无人机设置于固定的机巢本体,还可由飞手携带至任意地点,通过遥控器进行放飞和控制。根据航线类型可以将无人机的任务分为航点/多边形/矩形等航线任务,根据任务内容类型可以将无人机的任务分为巡逻、追踪、航拍建模和视频直播等任务,根据参与任务执行的无人机的数量可以将无人机的任务分为单机任务和多机任务。根据用户配置的任务类型、任务区域和无人机预设数量等信息生成无人机的任务信息。
可选的,任务获取模块210包括:
第一配置获取单元,用于获取用户选定的任务类型、任务执行区域和无人机的预设数量。
航线生成单元,用于根据所述任务类型和所述无人机的预设数量对所述任务执行区域进行航线划分,生成至少一条航线信息。
用户可以通过在电子地图界面上划定任务执行区域,通过***的预设选项选择任务类型和无人机的预设数量,根据任务类型和无人机的预设数量对任务执行区域进行航线划分,生成至少一条航线信息,划分航线时,尽量保证每架 无人机的航线距离相当,示例性的,航线划分时,对按预设数量等分任务执行区域。在多架无人机进行协同合作执行任务时,可以尽快完成任务,减少任务执行时间,提高任务执行效率。其中,预设数量至少为1,且预设数量小于当前处于空闲状态的无人机的数量。
进一步的,可选的,任务获取模块210还包括:
任务执行类型获取单元,用于获取***默认的任务执行类型和在线无人机;所述任务执行类型包括飞手执行和机巢执行。
任务执行方式和执行参数获取单元,用于获取***默认的任务执行方式和执行参数;所述任务执行方式包括立即执行和周期执行;所述任务执行方式为周期执行时,执行参数至少包括执行周期参数和执行时间。
任务信息生成单元,用于根据所述航线信息、所述任务执行类型、在线无人机、所述任务执行方式和执行参数生成无人机的任务信息。
任务下发模块220,用于根将所述任务信息下发至预设数量的在线无人机。
根据生成的多条航线信息生成多个对应的任务信息,需要将任务信息下发至在线无人机对应的接收装置,例如,遥控器或机巢本体,再由遥控器和机巢本体将任务信息转发至与之连接的在线无人机。。在任务信息下发时,可以由无人机指挥中心自动下发,也可以由用户根据需求手动下发。
自动下发任务信息时,任务展示模块230包括:
接收装置获取单元,用于根据***默认的任务执行类型和在线无人机,获取对应的接收装置;若任务执行类型为飞手执行,则所述接收装置为与所述在线无人机连接的遥控器;若任务执行类型为机巢执行,则所述接收装置为与所述在线无人机连接的机巢本体。
自动下发任务单元,用于自动将所述任务信息下发至对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机。
用户手动下发任务信息时,任务展示模块230包括:
任务执行类型选取单元,用于根据用户选定的任务执行类型,展示对应的在线无人机。
任务信息更新单元,用于根据用户选定的任务执行类型、在线无人机、任务执行方式和执行参数更新无人机的任务信息。
更新任务下发单元,用于将更新后的任务信息下发至用户选择的在线无人机对应的预设数量的接收装置。
任务展示模块230,用于按任务类型展示所述任务信息和任务下发状态。
在创建和下发飞行任务信息时,可以创建一个任务信息下发给多个不同的无人机,也可以同时创建多个不同的航线任务信息,这些任务信息可以支持不同的飞机型号,任务信息创建和下发完成后,用户可以通过无人机控制中心的显示界面查看任务信息和任务下发状态,便于用户了解已创建的任务信息和任务下发状态,从而方便协调指挥。在显示界面按任务类型分别展示任务信息,便于用户快速选取特定类型的任务信息进行查看。
在上述实施例的基础上,还包括:
任务反馈获取模块,用于获取所述在线无人机执行所述第一任务时返回的实时数据并进行展示。
在上述实施例的基础上,还包括:
航线信息修改模块,用于获取用户对航线信息的修改,更新航线信息。
本发明实施例的技术方案,通过根据用户配置的数据生成无人机的任务信 息,将任务信息下发至预设数量的在线无人机对应的接收装置,由接收装置将任务信息转发至与之连接的在线无人机,在线无人机与接收装置一一对应连接;按任务类型展示所述任务信息和任务下发状态。解决只能通过一对一方式下发任务至无人机设备中,下发任务较慢的问题,以及无法满足用户同时查看多个航线任务的问题,实现同时向多架无人机下发任务,多架无人机同时协同执行同一任务,同时展示多个航线任务信息,提高下发任务的速度和执行任务的协调性的效果。
本发明实施例所提供的无人机任务管理装置可执行本发明任意实施例所提供的无人机任务管理方法,具备执行方法相应的功能模块和有益效果。
实施例三
图8为本发明实施例三提供的一种无人机任务管理设备的结构示意图,如图8所示,该无人机任务管理设备包括处理器30、存储器31、输入装置32和输出装置33;无人机任务管理设备中处理器30的数量可以是一个或多个,图8中以一个处理器30为例;无人机任务管理设备中的处理器30、存储器31、输入装置32和输出装置33可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器31作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的无人机任务管理方法对应的程序指令/模块(例如,无人机任务管理装置中的任务获取模块、任务下发模块和任务展示模块)。处理器30通过运行存储在存储器31中的软件程序、指令以及模块,从而执行无人机任务管理设备的各种功能应用以及数据处理,即实现上述的无 人机任务管理方法。
存储器31可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器31可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器31可进一步包括相对于处理器30远程设置的存储器,这些远程存储器可以通过网络连接至无人机任务管理设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置32可用于接收输入的数字或字符信息,以及产生与无人机任务管理设备的用户设置以及功能控制有关的键信号输入。输出装置33可包括显示屏等显示设备。
实施例四
本发明实施例四还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种无人机任务管理方法,该方法包括:
根据用户配置的数据生成无人机的任务信息;
将所述任务信息下发至预设数量的在线无人机;
按任务类型展示所述任务信息和任务下发状态。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的无人机任务管理方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
值得注意的是,上述无人机任务管理装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种无人机任务管理方法,其特征在于,包括:
    根据用户配置的数据生成无人机的任务信息;
    将所述任务信息下发至预设数量的在线无人机;
    按任务类型展示所述任务信息和任务下发状态。
  2. 根据权利要求1所述的无人机任务管理方法,其特征在于,所述根据用户配置的数据生成无人机的任务信息,包括:
    获取用户选定的任务类型、任务执行区域和无人机的预设数量;
    根据所述任务类型和所述无人机的预设数量对所述任务执行区域进行航线划分,生成至少一条航线信息。
  3. 根据权利要求2所述的无人机任务管理方法,其特征在于,还包括:
    获取***默认的任务执行类型和在线无人机;所述任务执行类型包括飞手执行和机巢执行;
    获取***默认的任务执行方式和执行参数;所述任务执行方式包括立即执行和周期执行;所述任务执行方式为周期执行时,执行参数至少包括执行周期参数和执行时间;
    根据所述航线信息、所述任务执行类型、在线无人机、所述任务执行方式和执行参数生成无人机的任务信息。
  4. 根据权利要求1所述的无人机任务管理方法,其特征在于,所述将所述任务信息下发至预设数量的在线无人机,包括:
    根据***默认的任务执行类型和在线无人机获取对应的接收装置;若任务执行类型为飞手执行,则所述接收装置为与所述在线无人机连接的遥控器;若任务执行类型为机巢执行,则所述接收装置为与所述在线无人机连接的机巢本 体;
    自动将所述任务信息下发至对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机。
  5. 根据权利要求4所述的无人机任务管理方法,其特征在于,所述自动将所述任务信息下发至对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机,还包括:
    根据用户选定的任务执行类型,展示对应的在线无人机;
    根据用户选定的任务执行类型、在线无人机、任务执行方式和执行参数更新无人机的任务信息;
    将更新后的任务信息下发至用户选择的在线无人机对应的预设数量的接收装置,所述接收装置将任务信息转发至与之连接的在线无人机。
  6. 根据权利要求1所述的无人机任务管理方法,其特征在于,还包括:
    获取所述在线无人机执行所述任务信息时返回的实时数据并进行展示。
  7. 根据权利要求6所述的无人机任务管理方法,其特征在于,在所述获取所述在线无人机执行所述任务信息时返回的实时数据并进行展示之后,还包括:
    获取用户对航线信息的修改,更新航线信息。
  8. 一种无人机任务管理装置,其特征在于,包括:
    任务获取模块,用于根据用户配置的数据生成无人机的任务信息;
    任务下发模块,用于根将所述任务信息下发至预设数量的在线无人机;
    任务展示模块,用于按任务类型展示所述任务信息和任务下发状态。
  9. 一种无人机任务管理设备,其特征在于,所述无人机任务管理设备包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的无人机任务管理方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-中任一所述的无人机任务管理方法。
PCT/CN2022/119127 2021-09-15 2022-09-15 一种无人机任务管理方法、装置、设备及存储介质 WO2023040986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111082192.1A CN113821051A (zh) 2021-09-15 2021-09-15 一种无人机任务管理方法、装置、设备及存储介质
CN202111082192.1 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023040986A1 true WO2023040986A1 (zh) 2023-03-23

Family

ID=78914555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119127 WO2023040986A1 (zh) 2021-09-15 2022-09-15 一种无人机任务管理方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113821051A (zh)
WO (1) WO2023040986A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116126030A (zh) * 2023-04-17 2023-05-16 众芯汉创(北京)科技有限公司 一种基于人工智能的无人机机巢覆盖方法
CN118129761A (zh) * 2024-05-06 2024-06-04 山东省水文计量检定中心 一种水文塔用无人机巡航***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113821051A (zh) * 2021-09-15 2021-12-21 深圳市道通智能航空技术股份有限公司 一种无人机任务管理方法、装置、设备及存储介质
CN117255115B (zh) * 2023-11-16 2024-02-13 北京煜邦电力技术股份有限公司 一种智能机巢管控***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637040A (zh) * 2012-04-23 2012-08-15 清华大学 无人机集群可视导航任务协同方法和***
CN102707693A (zh) * 2012-06-05 2012-10-03 清华大学 一种时空联合的多架无人机协同控制***的构建方法
CN102768518A (zh) * 2012-07-11 2012-11-07 清华大学 多无人机平台协同控制***
US20120283897A1 (en) * 2011-05-05 2012-11-08 The Boeing Company Aircraft Task Management System
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法
CN104820431A (zh) * 2015-05-08 2015-08-05 西北工业大学 多无人机集群对地观测***及其编队控制方法
CN113821051A (zh) * 2021-09-15 2021-12-21 深圳市道通智能航空技术股份有限公司 一种无人机任务管理方法、装置、设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656310B (zh) * 2017-01-10 2020-09-04 贝耐特光学科技(昆山)有限公司 一种无人机任务执行方法及***
CN107390709B (zh) * 2017-08-25 2019-03-12 上海拓攻机器人有限公司 一种植保无人机多机协同作业方法及***
CN107679454A (zh) * 2017-08-28 2018-02-09 深圳市盛路物联通讯技术有限公司 环境监测方法和相关设备
CN108388268B (zh) * 2018-01-31 2020-12-08 南京奇蛙智能科技有限公司 一种基于云端的无人机航线规划方法
CN109283938A (zh) * 2018-09-27 2019-01-29 深圳市道通智能航空技术有限公司 一种无人机***和无人机***控制方法
CN109213200A (zh) * 2018-11-07 2019-01-15 长光卫星技术有限公司 多无人机协同编队飞行管理***及方法
CN109840600A (zh) * 2018-12-29 2019-06-04 天津大学 Bim辅助的供水渠道无人机在线协同巡检***
CN112313725B (zh) * 2019-08-29 2022-07-05 深圳市大疆创新科技有限公司 航线生成方法、地面端设备、无人机、***和存储介质
CN113313852A (zh) * 2021-05-26 2021-08-27 徐州新电高科电气有限公司 无人机巡检***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120283897A1 (en) * 2011-05-05 2012-11-08 The Boeing Company Aircraft Task Management System
CN102637040A (zh) * 2012-04-23 2012-08-15 清华大学 无人机集群可视导航任务协同方法和***
CN102707693A (zh) * 2012-06-05 2012-10-03 清华大学 一种时空联合的多架无人机协同控制***的构建方法
CN102768518A (zh) * 2012-07-11 2012-11-07 清华大学 多无人机平台协同控制***
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法
CN104820431A (zh) * 2015-05-08 2015-08-05 西北工业大学 多无人机集群对地观测***及其编队控制方法
CN113821051A (zh) * 2021-09-15 2021-12-21 深圳市道通智能航空技术股份有限公司 一种无人机任务管理方法、装置、设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116126030A (zh) * 2023-04-17 2023-05-16 众芯汉创(北京)科技有限公司 一种基于人工智能的无人机机巢覆盖方法
CN116126030B (zh) * 2023-04-17 2023-06-20 众芯汉创(北京)科技有限公司 一种基于人工智能的无人机机巢覆盖方法
CN118129761A (zh) * 2024-05-06 2024-06-04 山东省水文计量检定中心 一种水文塔用无人机巡航***

Also Published As

Publication number Publication date
CN113821051A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023040986A1 (zh) 一种无人机任务管理方法、装置、设备及存储介质
US11743219B2 (en) Dynamic configuration of application component tiles
US20210141518A1 (en) Graphical user interface customization in a movable object environment
CN108521788B (zh) 生成模拟航线的方法、模拟飞行的方法、设备及存储介质
US10567497B2 (en) Reticle control and network based operation of an unmanned aerial vehicle
EP3155493B1 (en) Messaging-enabled unmanned aerial vehicle
CN110622088B (zh) 飞行路径确定方法、信息处理装置、程序和记录介质
CN109669477A (zh) 一种面向无人机集群的协同控制***及控制方法
JP2017502397A (ja) 飛行ミッション処理方法、装置及びシステム
CN111597005A (zh) 一种大数据可视化三维gis云渲染项目生成***与方法
WO2022247498A1 (zh) 无人机监控
WO2019104554A1 (zh) 无人机的控制方法及控制终端
CN111569426B (zh) 游戏场景的编辑方法、装置、存储介质和电子装置
WO2018103462A1 (zh) 一种飞行器航向控制方法、装置和电子设备
WO2018090807A1 (zh) 飞行拍摄控制***和方法、智能移动通信终端、飞行器
WO2019119200A1 (zh) 一种无人机的作业任务分配方法、相关设备及存储介质
CN110597287A (zh) 一种多功能便携无人机地面站
JP2017224224A (ja) マップデータ作成装置及びマップデータ作成方法
CN108693892A (zh) 一种跟踪方法、电子装置
WO2021232273A1 (zh) 无人机及其控制方法和装置、遥控终端、无人机***
WO2023193604A1 (zh) 航线任务的在线规划方法及相关装置
WO2023040985A1 (zh) 一种无人机数据展示方法、装置、设备及存储介质
WO2023025202A1 (zh) 云台方向的控制方法、装置及终端
WO2022141122A1 (zh) 无人机的控制方法、无人机及存储介质
CN116566792A (zh) 一种多无人***分布式仿真方法和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE