WO2019065742A1 - 成形用樹脂組成物 - Google Patents

成形用樹脂組成物 Download PDF

Info

Publication number
WO2019065742A1
WO2019065742A1 PCT/JP2018/035711 JP2018035711W WO2019065742A1 WO 2019065742 A1 WO2019065742 A1 WO 2019065742A1 JP 2018035711 W JP2018035711 W JP 2018035711W WO 2019065742 A1 WO2019065742 A1 WO 2019065742A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
molding
acid
vinyl chloride
Prior art date
Application number
PCT/JP2018/035711
Other languages
English (en)
French (fr)
Inventor
寛 谷口
司 後藤
Original Assignee
積水化学工業株式会社
徳山積水工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65902564&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019065742(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社, 徳山積水工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201880032527.9A priority Critical patent/CN110621737B/zh
Priority to JP2018557433A priority patent/JP6674047B2/ja
Priority to KR1020197024230A priority patent/KR102578301B1/ko
Priority to US16/633,055 priority patent/US11866574B2/en
Priority to EP18860118.1A priority patent/EP3689962A4/en
Publication of WO2019065742A1 publication Critical patent/WO2019065742A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods

Definitions

  • the present invention relates to a resin composition for molding having excellent thermal stability and capable of producing a molded article having high impact resistance and surface smoothness, and a molded article using the resin composition for molding .
  • vinyl chloride resins (hereinafter referred to as PVC) have been used in many fields as materials excellent in mechanical strength, weather resistance and chemical resistance.
  • PVC a chlorinated vinyl chloride resin
  • CPVC chlorinated vinyl chloride resin
  • PVC has a low heat distortion temperature and can not be used for hot water because it has an upper limit temperature that can be used around 60 to 70 ° C
  • CPVC has a heat distortion temperature 20 to 40 ° C. higher than PVC, It can also be used for hot water, and is suitably used, for example, in heat-resistant pipes, heat-resistant joints, heat-resistant valves, heat-resistant plates and the like.
  • CPVC has a disadvantage that the surface (inner surface) of a molded body, for example, a tube, is inferior in smoothness because the viscosity is high and the stress relaxation time is long as compared with general PVC.
  • the inner surface of the tube is inferior in smoothness, retention tends to occur due to the influence of irregularities, and bacterial growth and waste accumulation tend to occur, making it difficult to use in ultrapure water piping and lining tubes for plants.
  • Patent Document 1 discloses a CPVC in which an organic tin-based stabilizer, an oxidized polyethylene wax, a modifier, a lubricant, a processing aid, a pigment, and the like are blended in a specific ratio.
  • the thermal stability is insufficient. For this reason, although many heat stabilizers are added, the result is that the heat resistance originally possessed is impaired.
  • a low molecular weight processing aid is used in order not to impair the thermal stability, no material satisfying the smoothness of the inner surface has been obtained.
  • Patent Document 2 a molded article having excellent heat resistance and smoothness by molding using CPVC having a chlorine content, a porosity, and a void volume of 0.001 to 0.1 ⁇ m within a predetermined range. How to get However, this method has a problem that the manufacturing process of the raw material resin becomes complicated.
  • the present invention provides a molding resin composition having excellent thermal stability and capable of producing a molded article having high impact resistance and surface smoothness, and a molded article using the molding resin composition. Intended to be provided.
  • the present invention is a molding resin composition containing a chlorinated vinyl chloride resin, an acrylic processing aid, and an impact modifier, and the acrylic processing aid has a weight average molecular weight of 500,000. 0.2 to 10 parts by mass of the acrylic processing aid and 0.5 to 8 of the impact modifier based on 100 parts by mass of the chlorinated polyvinyl chloride resin It is a resin composition for molding containing 0 parts by mass.
  • the present invention will be described in detail below.
  • an acrylic processing aid comprising an acrylic resin having a defined weight average molecular weight, and an impact resistance improvement, to a molding resin composition containing a chlorinated vinyl chloride resin. It has been found that the addition of a predetermined amount of an agent makes it possible to produce a molded article having excellent thermal stability and high impact resistance and surface smoothness, and the present invention has been completed. In particular, according to the present invention, in addition to the decrease in the surface roughness of the obtained molded body, it is possible to reduce the filter wave undulation.
  • the filter wave undulation in the inner part is closely related to the fluidity, so that the molded body obtained by using the molding resin composition of the present invention can suppress the filter undulation, and as a result, the thickness can be increased.
  • the internal pressure creep performance can be improved over a long period of time because the variation in H.sub.2 is small and a uniform wall thickness can be obtained.
  • the molding resin composition of the present invention contains a chlorinated vinyl chloride resin (hereinafter also referred to as "CPVC").
  • CPVC chlorinated vinyl chloride resin
  • the CPVC has structural units (a) to (c) represented by the following formulas (a) to (c), and the total mole number of the structural units (a), (b) and (c) is It is preferable that the ratio of the structural unit (a) is 17.5 mol% or less, the ratio of the structural unit (b) is 46.0 mol% or more, and the ratio of the structural unit (c) is 37.0 mol% or less.
  • Such CPVC has high thermal stability and good moldability.
  • the molar ratio of the structural units (a), (b) and (c) of the CPVC reflects the site where chlorine is introduced when the vinyl chloride resin (PVC) is chlorinated.
  • the PVC before chlorination is in a state where the structural unit (a) is approximately 0 mol%, the structural unit (b) is 50.0 mol%, and the structural unit (c) is 50.0 mol%.
  • the structural unit (c) decreases with chlorination, and the structural unit (b) and the structural unit (a) increase.
  • the ratio of the structural unit (a) is 17.5 mol% or less with respect to the total number of moles of the structural units (a), (b) and (c), but the structural unit (a)
  • the ratio of is preferably 16.0 mol% or less. Moreover, it is preferable that it is 2.0 mol% or more.
  • the ratio of the structural unit (b) is 46.0 mol% or more with respect to the total number of moles of the structural units (a), (b) and (c), but the ratio of the structural unit (b) Is preferably 53.5 mol% or more. Moreover, it is preferable that it is 70.0 mol% or less.
  • the ratio of the structural unit (c) is 37.0 mol% or less based on the total number of moles of the structural units (a), (b) and (c), but the ratio of the structural unit (c) 30.5 mol% or less is preferable. Moreover, it is preferable that it is 1.0 mol% or more.
  • the proportion of the structural unit (b) is preferably 58.0 mol% or more, and the proportion of the structural unit (c) is preferably 35.8 mol% or less.
  • the proportion of the structural unit (c) is preferably 35.8 mol% or less.
  • the molar ratio of the structural units (a), (b) and (c) of the above CPVC can be measured by molecular structure analysis using NMR.
  • NMR analysis is as described by R.S. A. Komoroski, R .; G. Parker, J.J. P. It can be carried out according to the method described in Shocker, Macromolecules, 1985, 18, 1257-1265.
  • the unchlorinated PVC part in the molecular structure of the above CPVC can be represented by the structural unit (d) shown in the following formula (d), which is herein referred to as a VC unit.
  • a VC unit As for CPVC used by the present invention, it is preferred that content of VC unit of four or more telelinks contained in molecular structure is 30.0 mol% or less.
  • a VC unit having four or more trains means a portion in which four or more VC units are continuously connected.
  • the VC unit present in the above CPVC is the origin of de-HCl, and when the VC unit is continuous, a continuous de-HCl reaction called zipper reaction tends to occur. That is, as the amount of VC units of four or more ligatures increases, de-HCl tends to occur, and the thermal stability in CPVC decreases. Therefore, it is preferable that it is 30.0 mol% or less, and it is more preferable that it is 28.0 mol% or less.
  • the VC unit of tetrad or more is preferably 18.0% by mol or less, more preferably 16.0% by mol or less .
  • the content of vinyl chloride units having four or more bonds contained in the above molecular structure can be measured by the above molecular structure analysis using NMR.
  • the above-mentioned CPVC preferably has a chlorine content of 63 to 72% by mass.
  • the heat resistance as a molded article becomes sufficient because the said chlorine content is 63 mass% or more, and a moldability improves by setting it as 72 mass% or less.
  • the said chlorine content it is more preferable that it is 66 mass% or more, and it is more preferable that it is 69 mass% or less.
  • the chlorine content in the above-mentioned CPVC can be measured by the method described in JIS K 7229.
  • the CPVC preferably has a gelation time of 100 to 200 seconds. More preferably, it is 110 to 190 seconds.
  • the above-mentioned gelation time is within the above-mentioned range, the disintegration and fusion of the resin appropriately progress, and the appearance and physical properties can be enhanced at the time of molding.
  • the above-mentioned gelation time refers to the time when the motor torque is most increased by rotating the rotor of a sample obtained by adding a heat stabilizer, lubricant, impact modifier to CPVC with a laboplast mill or the like.
  • the CPVC preferably has a UV absorbance at a wavelength of 216 nm of 8.0 or less, more preferably 0.8 or less.
  • the heterostructure in the molecular chain during the chlorination reaction can be quantified and used as an indicator of thermal stability.
  • the chlorine atom attached to the carbon next to the double bonded carbon is unstable. Therefore, dechlorination occurs from the chlorine atom. That is, as the value of the UV absorbance at a wavelength of 216 nm is larger, de-HCl tends to occur, resulting in lower thermal stability.
  • the value of the UV absorbance is preferably 0.8 or less.
  • the value of UV absorbance exceeds 0.8, the influence of the heterostructure in the molecular chain becomes large, and as a result, the thermal stability may be reduced.
  • the chlorine content of the said CPVC is 69 mass% or more and 72 mass% or less, it is preferable that the value of UV absorbance is 8.0 or less. When the value of the UV absorbance exceeds 8.0, the influence of the heterostructure in the molecular chain becomes large, and the thermal stability decreases.
  • the time required for the amount of HCl removal at 190 ° C. to reach 7000 ppm is preferably 60 seconds or more, and more preferably 100 seconds or more.
  • the above-mentioned CPVC is thermally decomposed at a high temperature and generates HCl gas.
  • the degree of chlorination of CPVC increases, the amount of HCl removal tends to decrease because the above-described VC unit decreases.
  • heterogeneous chlorination states and heterogeneous structures increase and thermal stability decreases. Therefore, by measuring the amount of HCl removal, it is possible to analyze the increase in heterogeneous chlorination state and heterostructure.
  • the time required for the amount of HCl removal at 190 ° C. to reach 7000 ppm can be used as an indicator of thermal stability, and the shorter the time, the lower the thermal stability.
  • the time required for the amount of HCl removal at 190 ° C. to reach 7000 ppm is 60 seconds or more. If the time is less than 60 seconds, the thermal stability is greatly impaired. Therefore, the time is preferably 60 seconds or more, more preferably 70 seconds or more, and still more preferably 80 seconds or more. Moreover, when the chlorine content of the said CPVC is 69 mass% or more and 72 mass% or less, it is preferable that this time is 100 seconds or more.
  • the thermal stability is greatly reduced, so it is preferably 100 seconds or more, more preferably 120 seconds or more, and still more preferably 140 seconds or more.
  • the time for the above-mentioned amount of HCl removal at 190 ° C. to reach 7000 ppm can be measured as follows. First, 1 g of a chlorinated vinyl chloride resin is placed in a test tube, and heated at 190 ° C. using an oil bath to recover generated HCl gas. The recovered HCl gas is dissolved in 100 ml of deionized water to measure pH.
  • the concentration of HCl (ppm) (ie, what g of HCl was generated per 1,000,000 g of chlorinated vinyl chloride resin) is calculated. Measure the time for the concentration of HCl to reach 7000 ppm.
  • the above-mentioned CPVC is a resin obtained by chlorination of a vinyl chloride resin (PVC).
  • PVC vinyl chloride resin
  • a vinyl chloride homopolymer, a copolymer of a monomer having an unsaturated bond copolymerizable with a vinyl chloride monomer and a vinyl chloride monomer, and a graft copolymer obtained by graft copolymerizing a vinyl chloride monomer to a polymer Etc. can be used.
  • These polymers may be used alone or in combination of two or more.
  • Examples of the monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer include ⁇ -olefins, vinyl esters, vinyl ethers, (meth) acrylic esters, aromatic vinyls, vinyl halides, N-substituted maleimides etc. may be mentioned, and one or more of these may be used.
  • Examples of the ⁇ -olefins include ethylene, propylene and butylene.
  • Examples of the above-mentioned vinyl esters include vinyl acetate and vinyl propionate.
  • Examples of the vinyl ethers include butyl vinyl ether and cetyl vinyl ether.
  • Examples of the (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl acrylate and phenyl methacrylate.
  • Examples of the aromatic vinyls include styrene and ⁇ -methylstyrene.
  • Examples of the halogenated vinyls include vinylidene chloride and vinylidene fluoride.
  • Examples of the N-substituted maleimides include N-phenyl maleimide, N-cyclohexyl maleimide and the like.
  • the polymer for graft copolymerization of vinyl chloride is not particularly limited as long as it graft-polymerizes vinyl chloride.
  • ethylene copolymer, acrylonitrile-butadiene copolymer, polyurethane, chlorinated polyethylene, chlorinated polypropylene and the like can be mentioned. These may be used alone or in combination of two or more.
  • ethylene copolymer examples include ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate-carbon monoxide copolymer, ethylene- Examples include methyl methacrylate copolymer, ethylene-propylene copolymer and the like.
  • the average degree of polymerization of PVC is not particularly limited, and is preferably 400 to 3,000, and more preferably 600 to 1,500, which is usually used.
  • the average degree of polymerization can be measured by the method described in JIS K 6720-2: 1999.
  • the polymerization method of the above-mentioned PVC is not particularly limited, and conventionally known water suspension polymerization, bulk polymerization, solution polymerization, emulsion polymerization and the like can be used.
  • the molding resin composition of the present invention contains an acrylic processing aid comprising an acrylic resin having a weight average molecular weight of 500,000 to 5,000,000.
  • an acrylic resin the acrylic acid, methacrylic acid, the homopolymer of (meth) acrylic acid ester, or the (meth) acrylic copolymer containing these is mentioned.
  • the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate and the like.
  • (meth) acrylic acid ester n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate and the like
  • the above (meth) acrylic acid indicates acrylic acid or methacrylic acid.
  • (meth) acrylic copolymer as another comonomer copolymerized with (meth) acrylic acid and (meth) acrylic acid ester, styrene, ⁇ -methylstyrene, vinyl toluene, acrylonitrile, methacrylonitrile are mentioned. A nitrile, vinyl acetate, etc. can be mentioned.
  • These comonomers can be present in the acrylic resin in the form of a random copolymer, a graft copolymer, or a block copolymer.
  • the acrylic resin has a weight average molecular weight of 500,000 to 5,000,000. By making the said weight average molecular weight into the said range, the molded article excellent in surface smoothness can be obtained.
  • the preferable lower limit of the weight average molecular weight is 750,000, and the preferable upper limit is 3,500,000.
  • the said weight average molecular weight (Mw) and number average molecular weight (Mn) are measured as a polystyrene conversion molecular weight by gel permeation chromatography (GPC) method.
  • the acrylic resin preferably has a glass transition temperature of 80 to 120 ° C. This makes it possible to obtain a molded article excellent in surface properties without losing the heat resistance of CPVC.
  • the acrylic resin preferably has a melting temperature of 90 to 150 ° C. This makes it possible to obtain a molded article excellent in surface properties without losing the heat resistance of CPVC.
  • the melting temperature can be measured, for example, using a device such as a flow tester according to JIS K 7210 A (starting the temperature rise from 80 ° C. to 5 ° C./min and measuring the flow start temperature) .
  • the content of the acrylic processing aid is 0.2 to 10 parts by mass with respect to 100 parts by mass of the chlorinated vinyl chloride resin.
  • an acrylic processing aid in this range, the smoothness of the surface of the resulting molded article can be further improved, and in particular, the filter can be made to have a small undulation.
  • the lower limit of the content of the acrylic processing aid is preferably 0.8 parts by mass, more preferably 1.0 parts by mass, the upper limit is preferably 7.5 parts by mass, and the upper limit is more preferably 5 parts by mass.
  • the content of the acrylic processing aid is preferably 150 to 650 parts by mass with respect to 100 parts by mass of the heat stabilizer.
  • the content of the above-mentioned acrylic processing aid with respect to the entire molding resin composition of the present invention is preferably 0.4 to 7.0% by mass.
  • the molding resin composition of the present invention contains an impact modifier.
  • the impact modifier is used for the purpose of modifying the impact resistance of the resulting molded article, and contains a rubber component.
  • the impact modifier is different from the acrylic processing aid.
  • the impact modifier examples include a copolymer of a (meth) acrylate monomer component and a rubber component, and a silicone acrylic rubber containing a (meth) acrylate monomer component and an organosiloxane monomer component.
  • an alkyl (meth) acrylate having 1 to 12 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2 -Ethyl (meth) acrylate, 2-ethylhexyl methacrylate and the like.
  • These monomer components may be used alone or two or more (for example, three) may be used in combination.
  • the content of the (meth) acrylate monomer component in the polymer constituting the above impact modifier is not particularly limited, it is preferably, for example, 20 to 40% by mass.
  • homopolymers and copolymers may be used as the rubber component.
  • the type of copolymer may be random copolymerization, alternating copolymerization, block copolymerization and graft copolymerization.
  • diene component examples include butadiene, isoprene and chloroprene. Also included are copolymers comprising monomer components selected from the group consisting of dienes, unsaturated nitriles, ⁇ -olefins and aromatic vinyls. More specifically, copolymers of unsaturated nitrile and diene (for example, acrylonitrile-butadiene copolymer), copolymers of aromatic vinyl and diene (for example, butadiene-styrene copolymer, styrene-isoprene) Copolymers), copolymers of olefin and diene (for example, ethylene-propylene-diene copolymer), and the like.
  • the content of the diene component in the polymer constituting the impact modifier is preferably 35 to 70% by mass, and more preferably 50 to 65% by mass.
  • non-diene component examples include polymers containing one or more monomer components selected from the group consisting of olefins and organosiloxanes. More specifically, olefin rubbers (eg, ethylene-propylene rubbers and the like) and silicone acrylic rubbers can be mentioned.
  • olefin rubbers eg, ethylene-propylene rubbers and the like
  • silicone acrylic rubbers can be mentioned.
  • methyl methacrylate-butadiene-styrene copolymer (MBS), acrylonitrile-butadiene-styrene copolymer (ABS), methyl methacrylate-acrylonitrile-butadiene-styrene copolymer (MABS), methyl methacrylate-butadiene copolymer (MB) and the like are preferably used.
  • methyl methacrylate-acrylic butadiene rubber copolymer, methyl methacrylate-acrylic butadiene rubber-styrene copolymer and methyl methacrylate- (acrylic silicone composite) copolymer are preferable.
  • methyl methacrylate-butadiene-styrene copolymer and / or acrylonitrile-butadiene-styrene copolymer are preferable.
  • unit of resin which contributes to an impact resistance effect among the structural components of the said impact modifier is less than 0 degreeC.
  • the content of the impact modifier is 0.5 to 8 parts by mass with respect to 100 parts by mass of the chlorinated vinyl chloride resin.
  • the lower limit of the content of the impact modifier is preferably 3 parts by mass, more preferably 4 parts by mass, and the upper limit is preferably 8 parts by mass, more preferably 7.5 parts by mass.
  • the content of the above impact modifier with respect to the entire molding resin composition of the present invention is preferably 2.5 to 6.0% by mass.
  • the ratio of the impact modifier to the acrylic processing aid is preferably 7.0 or less. By setting it in such a range, it is possible to obtain a molded product having both a good appearance and impact resistance.
  • the impact modifier / acrylic processing aid is preferably 0.7 to 7.0, and more preferably 0.7 to 4.0.
  • the impact modifier is preferably in the form of particles, and preferably has a small average particle size. The average particle size of the impact modifier particles is preferably about 0.1 to 200 ⁇ m.
  • the resin composition for molding of the present invention it is preferable to further contain a heat stabilizer.
  • the heat stabilizer is preferably an organotin-based stabilizer. Further, it is preferable to use one containing a calcium alkylcarboxylate and a zinc compound.
  • organotin-based stabilizer examples include alkyltins such as methyl, butyl and octyl, preferably salts of aliphatic monocarboxylic acids such as lauric acid of dialkyltins, or salts of dicarboxylic acids such as maleic acid and phthalic acid Can be mentioned.
  • alkyltins such as dibutyltin dilaurate, dioctyltin laurate, dibutyltin maleate, dibutyltin phthalate, dimethyltin bis (2-ethylhexyl thioglycolate), dibutyltin mercaptide, dimethyltin mercaptide, etc. Rupcapide etc. are mentioned.
  • the heat stabilizer containing the calcium alkylcarboxylate and the zinc compound does not contain heavy metals, so that a heavy metal-free molding resin composition can be obtained.
  • hydrochloric acid produced by thermal decomposition of a chlorinated vinyl chloride resin immediately reacts with a zinc compound to form zinc chloride.
  • the growth of polyene produced by dehydrochlorination of the chlorinated vinyl chloride resin is stopped by the binding with the calcium alkylcarboxylate, and the color development is suppressed.
  • zinc chloride produced has the property of promoting thermal decomposition of chlorinated vinyl chloride resin, but in the present invention, zinc chloride reacts with calcium alkylcarboxylate to produce calcium chloride and zinc alkylcarboxylate. Be done.
  • the above-mentioned heat stabilizer has a remarkable synergistic effect because the thermal decomposition promoting action of zinc chloride is suppressed while making use of the rapid hydrochloric acid scavenging action of the zinc compound.
  • Examples of the calcium alkylcarboxylate include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, cyclohexyl propionic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, 12-hydroxystearic acid, And calcium salts such as arachidic acid, behenic acid, lignoceric acid and montanic acid. Among them, calcium alkyl carbonate having 8 to 28 carbon atoms is preferably used.
  • an inorganic zinc compound or an organic zinc compound is mentioned.
  • the inorganic zinc compound include compounds from the group consisting of zinc carbonate, chloride, sulfate, oxide, hydroxide, basic oxide, and mixed oxide.
  • organozinc compounds examples include alkylzinc compounds such as di- and / or mono-alkylzinc, zinc organic aliphatic carboxylic acid, zinc unsubstituted or substituted organic aromatic carboxylic acid, zinc organic phosphorous acid, substituted or unsubstituted phenol Zinc, amino acids and their derivatives zinc, organic mercaptan zinc and the like can be mentioned.
  • organic aliphatic carboxylic acids that constitute the above organic aliphatic carboxylic acid zinc include montanic acid, rice bran fatty acid, behenic acid, erucic acid, stearic acid, oleic acid, linoleic acid, rice fatty acid, licinoleic acid, myristic acid And palmitic acid, lauric acid, lower fatty acid, octylic acid, isostearic acid, dimer acid, naphthenic acid, acetic acid and the like.
  • organic aliphatic carboxylic acids examples include azelaic acid, sebacic acid, adipic acid, succinic acid, malonic acid, maleic acid, crotonic acid, malic acid, and dicarboxylic acids such as tartaric acid, as well as monoesters thereof.
  • organic aliphatic carboxylic acid examples include citric acid and its monoester or diester, lactic acid, glycolic acid, thiodipropionic acid and its monoester, and the like.
  • Examples of the unsubstituted or substituted aromatic carboxylic acid constituting the above-mentioned unsubstituted or substituted zinc of organic aromatic carboxylic acid include benzoic acid, o-, m- and p-toluic acid, p-tert-butylbenzoic acid, Examples thereof include p-hydroxybenzoic acid, salicylic acid, phthalic acid of polybasic acid, metaphthalic acid, terephthalic acid, trimellitic acid and the like, and monoesters or diesters thereof.
  • organic phosphorous acid constituting the organic zinc phosphite examples include acid phosphite which is a reaction product of an aliphatic alcohol and phosphorus pentoxide. Specifically, butyl acid phosphite, octyl acid phosphite, stearyl acid phosphite, behenyl acid phosphite and the like can be mentioned.
  • Examples of the substituted or unsubstituted phenol constituting the above-mentioned substituted or unsubstituted phenol zinc include phenol, cresol, xylol, octylphenol, nonylphenol, dinonylphenol, cyclohexylphenol and phenylphenol. Further, examples of the substituted or unsubstituted phenol include bisphenol A, bisphenol S, bisphenol F, esters of p-hydroxybenzoic acid, esters of salicylic acid, and the like.
  • amino acid and its derivative a baking glutamic acid, glycine, an alanine etc. can be mentioned, for example.
  • organic mercaptan constituting the organic mercaptan zinc examples include lauryl mercaptan, thioglycolic acid and its ester, mercaptopropionic acid and its ester, thiomalic acid and its monoester or diester, and the like.
  • the heat stabilizer contains a calcium alkylcarboxylate and a zinc compound, and is preferably a mixture of the calcium alkylcarboxylate and the zinc compound.
  • a form of the said heat stabilizer a powder, a granular material, etc. are mentioned, for example. Such a form can be used as a one-pack heat stabilizer.
  • the heat stabilizer is in the form of powder, its particle size can be arbitrarily adjusted according to the purpose, and in general, the average particle size is preferably 50 ⁇ m to 5 mm, particularly preferably 70 ⁇ m to 2 mm .
  • Examples of the method for producing a heat stabilizer for the above-mentioned granular material include, for example, extrusion granulation method, spray granulation method, rotary disk granulation method, rolling granulation method, compression granulation method, etc.
  • the grain method can be used.
  • the heat stabilizer preferably has a heating loss at 230 ° C. of less than 5% by mass. If the heat loss rate at 230 ° C. is 5% by mass or more, bubbles may be contained in the inside of the molded article, resulting in insufficient strength or occurrence of streaks in the vicinity of the surface to cause appearance defects. is there.
  • the heat loss at 230 ° C. is more preferably less than 3% by mass. The lower limit is not particularly limited, but 0.1% by mass is preferable.
  • the rate of loss on heating at 230 ° C. can be measured by a thermogravimetry (TG) device.
  • the heat stabilizer contains a calcium alkylcarboxylate and a zinc compound, but the mixing ratio of the calcium alkylcarboxylate and the zinc compound (calcium calcium carboxylate: zinc compound) is 9: 1 to 4 : 6 is preferable. Further, the mixing ratio is more preferably 8: 2 to 5: 5.
  • the content of the heat stabilizer is preferably 0.4 to 10 parts by mass, and more preferably 0.6 to 7 parts by mass with respect to 100 parts by mass of the chlorinated vinyl chloride resin. More preferably, it is in the range of parts by mass. By including the heat stabilizer in this range, the thermal stability can be further improved, and the good appearance of the molded article can be maintained.
  • heavy metal means metal having high density and generally refers to metal having density of 4 to 5 g / cm 3 or more.
  • Heavy metal free means that the content of heavy metal is 1000 ppm or less. In addition, it is preferable that content of the said heavy metal is 100 ppm or less.
  • transition metals other than scandium For example, Mn, Ni, Fe, Cr, Co, Cu, Au etc. are mentioned.
  • metals of p-block elements of the fourth period or less for example, Sn, Pb, Bi), Cd, Hg and the like are also included.
  • the molding resin composition of the present invention preferably further contains an antioxidant.
  • an antioxidant a phenolic antioxidant, phosphoric acid type antioxidant, sulfur type antioxidant, an amine type antioxidant etc. can be used, for example. These may be used alone or in combination of two or more. Among them, phenolic antioxidants are preferable, and hindered phenolic antioxidants are particularly preferable.
  • hindered phenol-based antioxidants examples include 2,6-di-t-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-t-butyl- 4-hydroxyphenyl) propionate, distearyl (3,5-t-butyl-4-hydroxybenzyl) phosphonate, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis ( 4-ethyl-6-t-butylphenol), bis [3,3-bis (4-hydroxy-3-t-butylphenyl) butyric acid] glycol ester, 4,4′-butylidene bis (6-t-butyl- m-cresol), 2,2′-ethylidene bis (4,6-di-t-butylphenol), 2,2′-ethylidene bis -Sec-butyl-6-tert-butylphenol), 1,1,3-trimeth
  • 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, pentaerythrityl-tetrakis [methylene-3- (3,5-di-t-) Butyl 4-hydroxyphenyl) propionate] and the like are preferable. These may be used alone or in combination of two or more.
  • the antioxidant preferably has a heating loss at 200 ° C. of less than 5% by mass. If the heat loss rate at 200 ° C. is 5% by mass or more, bubbles may be contained inside the molded product to cause insufficient strength, or streaky patterns may be generated in the vicinity of the surface to cause appearance defects. .
  • the heating loss at 200 ° C. is more preferably less than 3% by mass.
  • the content of the antioxidant is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the chlorinated vinyl chloride resin, and 0.2 to 3 parts by mass. More preferably, it is in the range of 2.5 parts by mass. By including an antioxidant in this range, it is possible to obtain a molded article with little coloration due to yellowing.
  • the molding resin composition of the present invention preferably further contains a stabilization aid.
  • the thermal stability can be further improved by including the above-mentioned stabilizing aid.
  • the above-mentioned stabilizing assistant those not containing heavy metals can be used. Examples include organic acid salts, epoxy compounds, phosphoric acid compounds, metal hydroxides, sodium adipate, glycidyl (meth) acrylate copolymers, oxetanyl compounds, vinyl ether compounds and zeolite compounds.
  • the epoxy compound include epoxidized soybean oil, epoxidized linseed oil, epoxidized tetrahydro phthalate, epoxidized polybutadiene, and bisphenol A epoxy compound.
  • Examples of the above-mentioned phosphoric acid compound include organic phosphorus compounds, phosphite esters, phosphate esters and the like.
  • Examples of the metal hydroxide include calcium hydroxide and sodium hydroxide. These may be used alone or in combination of two or more.
  • the above-mentioned stabilizing assistant is different from calcium alkylcarboxylate and zinc compound. These may be used alone or in combination of two or more.
  • the above-mentioned stabilizing assistant is different from calcium alkylcarboxylate and zinc compound.
  • it is preferable that the heat-loss-loss rate in 200 degreeC of the said stabilization adjuvant is less than 5 mass%.
  • the molding resin composition of the present invention may be mixed with additives such as a lubricant, a processing aid, a heat resistance improver, an ultraviolet light absorber, a light stabilizer, a filler, a thermoplastic elastomer, and a pigment, if necessary. Good.
  • the lubricant examples include internal lubricants and external lubricants.
  • the internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin at the time of molding processing and preventing frictional heat generation.
  • the internal lubricant is not particularly limited, and examples thereof include butyl stearate, lauryl alcohol, stearyl alcohol, glycerin monostearate, stearic acid, bisamide and the like. These may be used alone or in combination of two or more.
  • the lubricant preferably has a heating loss at 200 ° C. of less than 5% by mass.
  • the external lubricant is used for the purpose of enhancing the sliding effect between the molten resin and the metal surface during molding.
  • the external lubricant is not particularly limited, and examples thereof include paraffin wax, polyolefin wax such as polyethylene lubricant, ester wax such as fatty acid ester lubricant, and montanic acid wax. These may be used alone or in combination of two or more.
  • the heat resistance improver is not particularly limited, and examples thereof include ⁇ -methylstyrene resins and N-phenylmaleimide resins.
  • the light stabilizer is not particularly limited, and examples thereof include light stabilizers such as hindered amines.
  • the ultraviolet absorber is not particularly limited, and examples thereof include ultraviolet absorbers such as salicylic acid ester type, benzophenone type, benzotriazole type and cyanoacrylate type.
  • the pigment is not particularly limited, and, for example, organic pigments such as azo, phthalocyanine, srene, dye lake, and the like; oxides such as titanium dioxide, inorganics such as sulfide / selenide, and ferrocyanide Pigment etc. are mentioned.
  • a plasticizer may be added to the resin composition for molding of the present invention for the purpose of improving the processability at the time of molding, it may be used in a large amount because it may lower the thermal stability of the molded body. Things are less desirable.
  • the plasticizer is not particularly limited, and examples thereof include dibutyl phthalate, di-2-ethylhexyl phthalate and di-2-ethylhexyl adipate.
  • thermoplastic elastomer may be added to the molding resin composition of the present invention for the purpose of improving the workability.
  • thermoplastic elastomer examples include nitrile thermoplastic elastomers, olefin thermoplastic elastomers, vinyl chloride thermoplastic elastomers, styrene thermoplastic elastomers, urethane thermoplastic elastomers, polyester thermoplastic elastomers, and polyamide thermoplastics.
  • An elastomer etc. are mentioned.
  • the nitrile thermoplastic elastomer include acrylonitrile-butadiene copolymer (NBR) and the like.
  • thermoplastic elastomer examples include ethylene-based thermoplastic elastomers such as ethylene-vinyl acetate copolymer (EVA) and ethylene-vinyl acetate-carbon monoxide copolymer (EVACO).
  • EVA ethylene-vinyl acetate copolymer
  • EVACO ethylene-vinyl acetate-carbon monoxide copolymer
  • vinyl chloride-based thermoplastic elastomer include vinyl chloride-vinyl acetate copolymer and vinyl chloride-vinylidene chloride copolymer. These thermoplastic elastomers may be used alone or in combination of two or more.
  • the molding resin composition of the present invention preferably contains no ⁇ -diketone.
  • ⁇ -diketones are components that are incorporated into conventional thermal stabilizers to improve thermal stability.
  • the appearance of the molded product tends to be impaired. For example, yellow to reddish brown streaks of about 0.1 to 1 mm in thickness parallel to the flow direction of the resin are generated on the surface of the molded body.
  • the molded object in which the appearance was impaired turns into inferior goods. Such a defect is likely to occur particularly when a die used for a long time is used.
  • a molding resin composition having excellent thermal stability can be provided without using a thermal stabilizer containing ⁇ -diketone.
  • Examples of the method for producing the molding resin composition of the present invention include the following methods. For example, in a reaction vessel, a vinyl chloride resin is suspended in an aqueous medium to prepare a suspension, chlorine is introduced into the reaction vessel, and the vinyl chloride resin is chlorinated by any conventionally known method. The step of preparing a chlorinated vinyl chloride resin is carried out. Thereafter, a method including a step of adding a predetermined amount of an acrylic processing aid and an impact resistance improving agent consisting of an acrylic resin having a weight average molecular weight of 500,000 to 5,000,000 to the above-mentioned chlorinated vinyl chloride resin is used. be able to.
  • a reaction container to be used for example, a commonly used container such as a stainless steel reaction container with glass lining or a titanium reaction container can be used. .
  • the method for preparing the suspension by suspending the above vinyl chloride resin in an aqueous medium is not particularly limited, and it may be a cake-like PVC obtained by demonomerizing PVC after polymerization, or dried May be suspended again in an aqueous medium.
  • a suspension obtained by removing substances undesirable for the chlorination reaction may be used from the polymerization system, it is preferable to use a cake-like resin obtained by demonomerizing PVC after polymerization.
  • aqueous medium for example, ion-exchanged pure water can be used.
  • the amount of the aqueous medium is not particularly limited, but in general, 150 to 400 parts by mass is preferable with respect to 100 parts by mass of PVC.
  • the chlorine introduced into the reaction vessel may be either liquid chlorine or gaseous chlorine.
  • Chlorine may be added during the reaction to adjust pressure or to replenish chlorine.
  • gaseous chlorine may be appropriately blown in addition to liquid chlorine. It is preferable to use chlorine after purging 5 to 10% by mass of cylinder chlorine.
  • the gauge pressure in the reaction vessel is not particularly limited, but is preferably in the range of 0.3 to 2 MPa because chlorine is more likely to penetrate into the PVC particles as the chlorine pressure is higher.
  • the method for chlorinating PVC in the suspended state is not particularly limited.
  • a method of promoting chlorination by exciting PVC bond or chlorine by thermal energy hereinafter referred to as thermal chlorination), ultraviolet light And the like (hereinafter referred to as “photochlorination”), etc., in which chlorination is promoted photoreactively by irradiating light energy such as, for example.
  • the heating method in the case of chlorination by thermal energy is not particularly limited, and, for example, heating by the outer jacket system from the reactor wall is effective.
  • light energy such as an ultraviolet ray
  • the apparatus which can be irradiated with light energy, such as ultraviolet irradiation under the conditions of high temperature and high pressure, is required.
  • the chlorination reaction temperature in the case of photochlorination is preferably 40 to 80.degree.
  • a thermal chlorination method which does not perform ultraviolet irradiation is preferable, and a method of exciting a bond or chlorine of a vinyl chloride resin with heat alone or heat and hydrogen peroxide to promote chlorination reaction is preferable.
  • the magnitude of the light energy required to chlorinate the PVC is greatly influenced by the distance between the PVC and the light source. Therefore, the amount of energy received differs between the surface and the inside of the PVC particles, and chlorination does not occur uniformly. As a result, CPVC with low uniformity is obtained.
  • the method of performing chlorination by heat without performing ultraviolet irradiation more uniform chlorination reaction becomes possible, and CPVC with high uniformity can be obtained.
  • the temperature is preferably in the range of 70 to 140.degree. If the temperature is too low, the chlorination rate is reduced. When the temperature is too high, a deHCl reaction occurs in parallel with the chlorination reaction, and the obtained CPVC is colored.
  • the heating temperature is more preferably in the range of 100 to 135.degree.
  • the heating method is not particularly limited, and for example, it can be heated from the reaction vessel wall by the outer jacket method.
  • the rate of chlorination can be improved by the addition of hydrogen peroxide.
  • Hydrogen peroxide is preferably added in an amount of 5 to 500 ppm, based on PVC, per hour of reaction time. If the amount added is too small, the effect of improving the rate of chlorination can not be obtained. If the amount is too large, the thermal stability of CPVC will be reduced.
  • the heating temperature can be relatively lowered because the chlorination rate is improved. For example, it may be in the range of 65 to 110.degree.
  • chlorination after reaching a point 5 mass% before the final chlorine content is carried out in a chlorine consumption rate in the range of 0.010 to 0.015 kg / PVC-Kg ⁇ 5 min, It is preferable to carry out chlorination after reaching the point of 3% by mass from the final chlorine content, in a chlorine consumption rate in the range of 0.005 to 0.010 kg / PVC-Kg ⁇ 5 min.
  • the chlorine consumption rate refers to chlorine consumption for 5 minutes per kg of the raw material PVC.
  • an acrylic processing aid and an impact modifier which comprise the above-mentioned chlorinated vinyl chloride resin, and an acrylic resin having a weight average molecular weight of 500,000 to 5,000,000.
  • a heat stabilizer and an antioxidant are added as required. It does not specifically limit as method to mix the said heat stabilizer and antioxidant, For example, the method by hot blending, the method by cold blending, etc. are mentioned.
  • a molding resin composition which has excellent thermal stability and does not contain heavy metals such as lead, cadmium and tin.
  • a molded article molded from the molding resin composition of the present invention.
  • Such a molded body is also one of the present invention.
  • a conventionally known arbitrary molding method may be adopted, and examples thereof include an extrusion molding method, an injection molding method and the like.
  • the molded article of the present invention is free of heavy metals like the molding resin composition of the present invention, it has the excellent advantage of not adversely affecting the environment, has excellent thermal stability, and has an appearance Since the condition of is good, it can be suitably used for applications such as building materials, pipework equipment, housing materials and the like.
  • the molded article of the present invention preferably has a surface roughness (Rmax) of 1.0 ⁇ m or less.
  • the filter undulation centerline average (WcA) of an outer surface is 5.0 micrometers or less.
  • the surface roughness (Rmax) can be measured by the method according to JIS B 0601, and the filtered wave center line average (WcA) can be measured by the method according to JIS B 0610.
  • a molding resin composition having excellent thermal stability and capable of producing a molded article having high impact resistance and high surface smoothness, and molding using the molding resin composition Can provide the body.
  • Example 1 (Preparation of chlorinated vinyl chloride resin) 200 kg of ion-exchanged water and 56 kg of vinyl chloride resin having a degree of polymerization of 1000 were charged into a glass-lined reaction container having an inner volume of 300 L. The mixture was stirred and more water was added to the reaction vessel to disperse the mixture in water. Then, the pressure was reduced to remove oxygen in the reaction vessel, and the temperature was raised to 90.degree. Next, chlorine is supplied into the reaction vessel so that the chlorine partial pressure is 0.4 MPa, and 0.2 mass% hydrogen peroxide is added at a rate of 1 mass part per hour (320 ppm / hour) , Chlorination reaction.
  • the reaction was continued until the chlorine content of the chlorinated vinyl chloride resin reached 61% by mass.
  • the addition amount of 0.2% by mass of hydrogen peroxide is 0.1 parts by mass per hour (200 ppm / hour).
  • the chlorination was advanced to chlorination by adjusting to an average chlorine consumption rate of 0.012 kg / PVC-kg ⁇ 5 min.
  • the addition amount of 0.2% by mass hydrogen peroxide is reduced to 150 ppm / hour per hour, and the average chlorine consumption rate is 0.008 kg. Adjusted to be / PVC-kg ⁇ 5 min and proceeded with chlorination.
  • a chlorinated vinyl chloride resin having a chlorine content of 67.3% by mass was obtained.
  • the chlorine content of the chlorinated vinyl chloride resin was measured in accordance with JIS K 7229. Further, the gelation time of the chlorinated vinyl chloride resin was measured using the following method.
  • Heat stabilizer manufactured by Nitto Kasei Kogyo Co., Ltd., TVS # 1380
  • Polyethylene-based lubricant Mitsubishi Chemical's Hiwax 220MP
  • Oxidized polyethylene lubricant Honeywell, A-C316A
  • Impact modifier manufactured by Kaneka, Kane ace M-5111
  • 59 g of a compound sample is put into a laboplast mill (4C150 manufactured by Toyo Seiki Co., Ltd.) at a temperature of 180 ° C. and preheated for 80 seconds, and then the rotor is rotated at a rotation speed of 30 rpm. It was gelation time.
  • MBS-1 methyl methacrylate-butadiene-styrene copolymer, methyl methacrylate component content 25 mass%, diene component content 55 mass%, average particle diameter 0.3 ⁇ m
  • resin (LG) A glass transition temperature of butadiene alone made by Kagaku Co., Ltd.-93 ° C) was used. Further, dimethyltin bis (2-ethylhexyl thioglycolate) was used as a heat stabilizer (organotin stabilizer).
  • a polyethylene-based lubricant manufactured by Mitsui Chemicals, Hiwax 220MP
  • a fatty acid ester-based lubricant manufactured by Emery Oleo Chemicals Japan, LOXIOL G-32
  • titanium dioxide manufactured by Ishihara Sangyo Co., Ltd.
  • TIPAQUE CR-90 was added. Thereafter, they were uniformly mixed by a super mixer to obtain a chlorinated vinyl chloride resin composition.
  • the obtained chlorinated vinyl chloride-based resin composition is supplied to a 50 mm-diameter biaxial counter-directional conical extruder ("SLM-50" manufactured by Nagata Mfg. Co., Ltd.), resin temperature 209.8 ° C., back pressure 291.0 kg
  • SLM-50 manufactured by Nagata Mfg. Co., Ltd.
  • resin temperature 209.8 ° C.
  • back pressure 291.0 kg
  • a pipe-shaped molded article having an inner size of 20 mm and a thickness of 3 mm was produced at an extrusion rate of 24.3 kg / hr / cm 2 / cm 2 .
  • Example 2 to 14 Chlorinated vinyl chloride in the same manner as in Example 1 except that the weight average molecular weight (Mw) described in Table 1, the polymethyl methacrylate having a melting temperature, and the impact modifier were used in the addition amounts described in Table 1 A system resin composition and an extrusion molded product were produced.
  • Mw weight average molecular weight
  • Example 11 an ABS (Blendex 338 manufactured by Galata Chemicals, an acrylonitrile-butadiene-styrene copolymer) resin was used as an impact modifier.
  • Examples 12 and 13 calcium stearate and zinc stearate were used in place of dimethyltin bis (2-ethylhexyl thioglycolate).
  • Example 14 instead of MBS-1, MBS-2 (methyl methacrylate-butadiene-styrene copolymer, methyl methacrylate component content 25 mass%, diene component content 40 mass%, average particle diameter 0.3 ⁇ m was used.
  • the conditions for extrusion molding were changed to those shown in Table 1.
  • Example 15 A chlorinated vinyl chloride resin composition and an extrusion-molded product were produced in the same manner as in Example 1 except that the chlorinated vinyl chloride resin having a gelation time described in Table 1 was used.
  • VST plastic-thermoplastic-Vicat softening temperature
  • the surface roughness (Rmax) was measured by a method according to JIS B 0601 using a surface roughness measuring device (SURFCOM 480A, manufactured by Tokyo Seimitsu Co., Ltd.). The measurement conditions were an evaluation length of 0.3 mm, a measurement speed of 0.3 mm / sec, and a cutoff of 0.08 mm.
  • the filter centerline average (filter center center waviness, WcA) of the outer surface was measured by a method according to JIS B 0610.
  • the measurement conditions were an evaluation length of 30 mm, a measurement speed of 3 mm / sec, and a cutoff of 0.25 to 8 mm.
  • a molding resin composition having excellent thermal stability and capable of producing a molded article having high impact resistance and high surface smoothness, and molding using the molding resin composition Can provide the body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、優れた熱安定性を有し、耐衝撃性及び表面平滑性の高い成形体を製造することが可能な成形用樹脂組成物、及び、成形用樹脂組成物を用いた成形体を提供する。 本発明は、塩素化塩化ビニル系樹脂と、アクリル系加工助剤と、耐衝撃改良剤とを含有する成形用樹脂組成物であって、前記アクリル系加工助剤は、重量平均分子量が50万~500万のアクリル系樹脂からなり、前記塩素化塩化ビニル系樹脂100質量部に対して、前記アクリル系加工助剤を0.2~10質量部、前記耐衝撃改良剤を0.5~8.0質量部含有する成形用樹脂組成物である。

Description

成形用樹脂組成物
本発明は、優れた熱安定性を有し、耐衝撃性及び表面平滑性の高い成形体を製造することが可能な成形用樹脂組成物、及び、成形用樹脂組成物を用いた成形体に関する。
従来より、塩化ビニル系樹脂(以下、PVCという)は機械的強度、耐候性、耐薬品性に優れた材料として、多くの分野に用いられている。しかしながら、耐熱性に劣るため、PVCを塩素化することにより耐熱性を向上させた塩素化塩化ビニル系樹脂(以下、CPVCという)が開発されている。PVCは熱変形温度が低く使用可能な上限温度が60~70℃付近であるため、熱水に対して使用できないのに対し、CPVCは熱変形温度がPVCよりも20~40℃も高いため、熱水に対しても使用可能であり、例えば、耐熱パイプ、耐熱継手、耐熱バルブ、耐熱プレート等に好適に使用されている。
しかしながら、CPVCは一般のPVCと比較して粘度が高く、応力緩和時間が長いため、成型体、例えば管の表面(内面)が平滑性に劣るという欠点があった。管の内面が平滑性に劣る場合、凹凸の影響により滞留が起こりやすく、細菌の繁殖やゴミの蓄積が起こりやすくなるため、プラント用の超純水配管及びライニング管での使用が難しかった。
これに対して、金属化合物や安定剤等を添加して、CPVCの熱安定性を高め、成形温度を上昇させて成形したり、金型内滞留時間を長くしたりして成形することにより表面平滑性を付与することが考えられる。
例えば、特許文献1には、有機錫系安定剤、酸化型ポリエチレンワックス、改質剤、滑剤、加工助剤及び顔料等を特定の割合で配合したCPVCが開示されている。
しかしながら、特許文献1の方法では、熱安定性が不充分なものとなっていた。このため、熱安定剤を多く添加することが行われているが、本来有する耐熱性を損なう結果となっていた。また、熱安定性を損なわないために、低分子量の加工助剤を使用することが行われているが、内面の平滑性を満足するものは得られていなかった。
また、特許文献2には、塩素含有率、空隙率、0.001~0.1μmの空隙容積が所定の範囲内であるCPVCを用いて成形することで、耐熱性、平滑性に優れる成形体を得る方法が記載されている。
しかしながら、この方法では、原料樹脂の製造工程が複雑になるという問題があった。
特開平9-316267号公報 特開2001-278992号公報
本発明は、優れた熱安定性を有し、耐衝撃性及び表面平滑性の高い成形体を製造することが可能な成形用樹脂組成物、及び、成形用樹脂組成物を用いた成形体を提供することを目的とする。
本発明は、塩素化塩化ビニル系樹脂と、アクリル系加工助剤と、耐衝撃改良剤とを含有する成形用樹脂組成物であって、前記アクリル系加工助剤は、重量平均分子量が50万~500万のアクリル系樹脂からなり、前記塩素化塩化ビニル系樹脂100質量部に対して、前記アクリル系加工助剤を0.2~10質量部、前記耐衝撃改良剤を0.5~8.0質量部含有する成形用樹脂組成物である。
以下に本発明を詳述する。
本発明者らは、鋭意検討の結果、塩素化塩化ビニル系樹脂を含有する成形用樹脂組成物に対して、重量平均分子量を規定したアクリル系樹脂からなるアクリル加工助剤、及び、耐衝撃改良剤を所定量添加することで、優れた熱安定性を有し、耐衝撃性及び表面平滑性の高い成形体を製造することが可能となることを見出し、本発明を完成させるに至った。
特に、本発明では、得られる成形体の表面粗さが低くなることに加えて、ろ波うねりについても低減させることが可能となる。管状部材においては、内部のろ波うねりが流動性により深く関係するため、本発明の成形用樹脂組成物を用いて得られる成形体は、ろ波うねりを抑えることができ、その結果、肉厚の変動が小さく均一な肉厚が得られるので、内圧クリープ性能を長期に渡って向上させることが可能となる。
本発明の成形用樹脂組成物は、塩素化塩化ビニル系樹脂(以降、「CPVC」ともいう)を含有する。
上記CPVCは、下記式(a)~(c)に示す構成単位(a)~(c)を有し、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(a)の割合が17.5モル%以下、構成単位(b)の割合が46.0モル%以上、構成単位(c)の割合が37.0モル%以下であることが好ましい。このようなCPVCは、熱安定性が高く、且つ、良好な成形加工性を有する。
Figure JPOXMLDOC01-appb-C000002
上記CPVCの構成単位(a)、(b)及び(c)のモル比は、塩化ビニル系樹脂(PVC)が塩素化される際の塩素が導入される部位を反映したものである。塩素化前のPVCは、理想的には、ほぼ、構成単位(a)が0モル%、構成単位(b)が50.0モル%、構成単位(c)が50.0モル%の状態にあるが、塩素化に伴って構成単位(c)が減少し、構成単位(b)及び構成単位(a)が増加する。この際、立体障害が大きく不安定な構成単位(a)が増えすぎたり、CPVCの同一粒子内で塩素化されている部位とされていない部位が偏ったりすると、塩素化状態の不均一性が大きくなる。この不均一性が大きくなると、CPVCの熱安定性が大きく損なわれる。
一方で、本発明では、上記CPVCの構成単位(a)、(b)及び(c)のモル比を上述の範囲内とすることで、CPVCの均一性が高くなり、良好な熱安定性を有する。
本発明では、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(a)の割合が17.5モル%以下であるが、上記構成単位(a)の割合は、16.0モル%以下が好ましい。また、2.0モル%以上であることが好ましい。
また、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(b)の割合が46.0モル%以上であるが、上記構成単位(b)の割合は、53.5モル%以上が好ましい。また、70.0モル%以下であることが好ましい。
更に、上記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(c)の割合が37.0モル%以下であるが、上記構成単位(c)の割合は、30.5モル%以下が好ましい。また、1.0モル%以上であることが好ましい。
本発明では、特に、構成単位(b)の割合が58.0モル%以上であり、構成単位(c)の割合が35.8モル%以下であることが好ましい。このような構成によれば、より高い熱安定性が得られる。
上記CPVCの構成単位(a)、(b)及び(c)のモル比は、NMRを用いた分子構造解析により測定することができる。NMR分析は、R.A.Komoroski,R.G.Parker,J.P.Shocker,Macromolecules,1985,18,1257-1265に記載の方法に準拠して行うことができる。
上記CPVCの分子構造中における塩素化されていないPVC部分は下記式(d)に示す構成単位(d)で表すことができ、本明細書ではこれをVC単位と称する。
本発明で用いるCPVCは、分子構造中に含まれる4連子以上のVC単位の含有量が30.0モル%以下であることが好ましい。ここで、4連子以上のVC単位とは、VC単位が4個以上連続して結合している部分を意味する。
Figure JPOXMLDOC01-appb-C000003
上記CPVC中に存在するVC単位は脱HClの起点となり、かつ、このVC単位が連続していると、ジッパー反応と言われる連続した脱HCl反応が起こりやすくなってしまう。即ち、この4連子以上のVC単位の量が大きくなるほど、脱HClが起こり易く、CPVC中の熱安定性が低くなる。そのため、4連子以上のVC単位は、30.0モル%以下であることが好ましく、28.0モル%以下であることがより好ましい。CPVC中の塩素含有量が69質量%以上72質量%未満の場合、4連子以上のVC単位は18.0モル%以下であることが好ましく、16.0モル%以下であることがより好ましい。
上記分子構造中に含まれる4連子以上の塩化ビニル単位の含有率は、上記のNMRを用いた分子構造解析により測定することができる。
上記CPVCは、塩素含有量が63~72質量%であることが好ましい。
上記塩素含有量が63質量%以上であることで、成形品としての耐熱性が充分なものとなり、72質量%以下とすることで、成形性が向上する。
上記塩素含有量は、66質量%以上であることがより好ましく、69質量%以下であることがより好ましい。
上記CPVC中の塩素含有量は、JIS K 7229に記載の方法により測定することができる。
上記CPVCは、ゲル化時間が100~200秒であることが好ましい。110~190秒であることがより好ましい。
上記ゲル化時間が上記範囲内であることで、樹脂の崩壊と融着が適切に進み成形時に外観や物性を高めることができる。
上記ゲル化時間は、CPVCに熱安定剤、滑剤、衝撃改質剤を添加したサンプルをラボプラストミル等でロータ回転させ、モータートルクが最も上昇した際の時間をいう。
上記CPVCは、216nmの波長におけるUV吸光度が8.0以下であることが好ましく、0.8以下であることがより好ましい。
また、紫外吸収スペクトルにおいて、216nmの波長は、CPVC中の異種構造である、-CH=CH-C(=O)-及び-CH=CH-CH=CH-が吸収を示す波長である。
上記CPVCのUV吸光度の値から、塩素化反応時の分子鎖中の異種構造を定量化し、熱安定性の指標とすることができる。CPVCの分子構造において、二重結合した炭素の隣の炭素に付いた塩素原子は不安定である。そのため、該塩素原子を起点として、脱HClが生じる。即ち、波長216nmにおけるUV吸光度の値が大きいほど脱HClが起こり易く、熱安定性が低いことになる。
特に、上記CPVCの塩素含有量が63質量%以上69質量%未満の場合、UV吸光度の値が0.8以下であることが好ましい。UV吸光度の値が0.8を超えると、分子鎖中の異種構造の影響が大きくなり、その結果、熱安定性が低下することがある。
また、上記CPVCの塩素含有量が69質量%以上、72質量%以下である場合は、UV吸光度の値が8.0以下であることが好ましい。上記UV吸光度の値が8.0を超えると、分子鎖中の異種構造の影響が大きくなり、熱安定性が低下する。
上記CPVCは、190℃における脱HCl量が7000ppmに到達するのに必要な時間は60秒以上であることが好ましく、100秒以上であることがより好ましい。
上記CPVCは高温で熱分解を起こし、その際にHClガスを発生する。一般に、CPVCはその塩素化度が高くなるにつれて、上述したVC単位が減少するため、脱HCl量が減少する傾向にある。しかし、塩素化度が高くなるにつれて、不均一な塩素化状態や異種構造が増加し、熱安定性が低下する。それ故、脱HCl量を測定することにより、不均一な塩素化状態や異種構造の増加を分析することができる。例えば、190℃における脱HCl量が7000ppmに到達するのに必要な時間を熱安定性の指標とすることができ、その時間が短いほど、熱安定性が低いと言える。
特に、上記CPVCの塩素含有量が63質量%以上、69質量%未満である場合は、190℃における脱HCl量が7000ppmに到達するのに必要な時間は60秒以上であることが好ましい。該時間が60秒未満であると、熱安定性が大きく損なわれる。よって、該時間は60秒以上であることが好ましく、70秒以上であることがより好ましく、80秒以上であることが更に好ましい。
また、上記CPVCの塩素含有量が69質量%以上、72質量%以下である場合は、該時間は100秒以上であることが好ましい。該時間が100秒未満であると、熱安定性が大きく低下してしまうため、100秒以上であることが好ましく、120秒以上であることがより好ましく、140秒以上であることが更に好ましい。
上記190℃における脱HCl量が7000ppmに到達する時間は、以下のように測定することができる。まず、塩素化塩化ビニル系樹脂1gを試験管に入れ、オイルバスを使用して190℃で加熱し、発生したHClガスを回収する。回収したHClガスを100mlのイオン交換水に溶解させてpHを測定する。pHの値に基づいて、HClの濃度(ppm)(即ち、塩素化塩化ビニル系樹脂100万gあたり何gのHClが発生したか)を算出する。HClの濃度が7000ppmに到達する時間を計測する。
上記CPVCは、塩化ビニル系樹脂(PVC)が塩素化されてなる樹脂である。
上記PVCとしては、塩化ビニル単独重合体、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体等を用いることができる。これら重合体は単独で用いられてもよいし、2種以上が併用されてもよい。
上記塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、α-オレフィン類、ビニルエステル類、ビニルエーテル類、(メタ)アクリル酸エステル類、芳香族ビニル類、ハロゲン化ビニル類、N-置換マレイミド類等が挙げられ、これらの1種若しくは2種以上が使用される。
上記α-オレフィン類としては、エチレン、プロピレン、ブチレン等が挙げられる。
上記ビニルエステル類としては、酢酸ビニル、プロピオン酸ビニル等が挙げられる。
上記ビニルエーテル類としては、ブチルビニルエーテル、セチルビニルエーテル等が挙げられる。
上記(メタ)アクリル酸エステル類としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート、フェニルメタクリレート等が挙げられる。
上記芳香族ビニル類としては、スチレン、α-メチルスチレン等が挙げられる。
上記ハロゲン化ビニル類としては、塩化ビニリデン、フッ化ビニリデン等が挙げられる。
上記N-置換マレイミド類としては、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
上記塩化ビニルをグラフト共重合する重合体としては、塩化ビニルをグラフト重合させるものであれば特に限定されない。例えば、エチレン共重合体、アクリロニトリル-ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらは単独で用いられてもよいし、2種以上が併用されても良い。
上記エチレン共重合体としては、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-一酸化炭素共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート-一酸化炭素共重合体、エチレン-メチルメタクリレート共重合体、エチレン-プロピレン共重合体等が挙げられる。
上記PVCの平均重合度は、特に限定されず、通常用いられる400~3,000のものが好ましく、より好ましくは600~1,500である。平均重合度は、JIS K 6720-2:1999に記載の方法より測定することができる。
上記PVCの重合方法は、特に限定されず、従来公知の水懸濁重合、塊状重合、溶液重合、乳化重合等を用いることができる。
本発明の成形用樹脂組成物は、重量平均分子量が50万~500万のアクリル系樹脂からなるアクリル系加工助剤を含有する。
上記アクリル系樹脂としては、アクリル酸、メタクリル酸や、(メタ)アクリル酸エステルの単独重合体、又は、これらを含む(メタ)アクリル共重合体が挙げられる。
上記(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート等が挙げられる。また、上記(メタ)アクリル酸エステルとしては、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート等がある。ただし上記の(メタ)アクリル酸とはアクリル酸もしくはメタクリル酸を示す。本発明では、上記アクリル系樹脂として、メチル(メタ)アクリレート(MMA)の重合体を用いることが好ましい。
上記(メタ)アクリル共重合体において、(メタ)アクリル酸、(メタ)アクリル酸エステル共に共重合される他の共単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等を挙げることができる。
これらの共単量体は、アクリル系樹脂中に、ランダム共重合体、グラフト共重合体、ブロック共重合体の形で存在することができる。
上記アクリル系樹脂は、重量平均分子量が50万~500万である。
上記重量平均分子量を上記範囲内とすることで、表面平滑性の優れた成形品を得ることができる。
上記重量平均分子量の好ましい下限は75万、好ましい上限は350万である。
上記重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパミエーションクロマトグラフィ(GPC)法によりポリスチレン換算分子量として測定される。
上記アクリル系樹脂は、ガラス転移温度が80~120℃であることが好ましい。
これにより、CPVCの耐熱性を損なうことなく表面性に優れた成形体を得ることができる。
上記アクリル系樹脂は、溶融温度が90~150℃であることが好ましい。
これにより、CPVCの耐熱性を損なうことなく表面性に優れた成形体を得ることができる。
上記溶融温度は、例えば、フローテスター等の機器を用いて、JIS K 7210Aに準拠した方法(80℃から5℃/minで昇温を開始し、流動開始温度を測定)により測定することができる。
本発明の成形用樹脂組成物において、上記アクリル系加工助剤の含有量は、塩素化塩化ビニル系樹脂100質量部に対して、0.2~10質量部である。この範囲でアクリル系加工助剤を含むことにより、得られる成形体表面の平滑性をより向上させることができ、特に、ろ波うねりが小さいものとすることができる。
上記アクリル系加工助剤の含有量の好ましい下限は0.8質量部、より好ましい下限は1.0質量部、好ましい上限は7.5質量部、より好ましい上限は5質量部である。
また、上記アクリル系加工助剤の含有量は、熱安定剤100質量部に対して、150~650質量部であることが好ましい。
更に、本発明の成形用樹脂組成物全体に対する上記アクリル系加工助剤の含有量は、0.4~7.0質量%であることが好ましい。
本発明の成形用樹脂組成物は、耐衝撃改良剤を含有する。
上記耐衝撃改質剤は、得られる成形体の耐衝撃性を改質する目的で用いられるものであり、ゴム成分を含有するものである。なお、上記耐衝撃改良剤は、上記アクリル系加工助剤とは異なるものである。
上記耐衝撃改質剤としては、例えば、(メタ)アクリレートモノマー成分とゴム成分との共重合体、(メタ)アクリレートモノマー成分とオルガノシロキサンモノマー成分とを含むシリコーンアクリルゴムが挙げられる。
上記(メタ)アクリレートモノマー成分としては、炭素数1以上12以下のアルキル(メタ)アクリレート、たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチル(メタ)アクリレート、2-エチルヘキシルメタクリレートなどが挙げられる。これらモノマー成分は、単独で用いられてもよいし、2種以上(たとえば3種)が併用されてもよい。
なお、上記耐衝撃改質剤を構成する重合体中の(メタ)アクリレートモノマー成分の含有量は特に限定されないが、たとえば20~40質量%であることが好ましい。
上記ゴム成分としては、ジエン成分、非ジエン成分を問わず、単独重合体および共重合体(二元共重合体および三元共重合体を含む)も問わない。共重合体の様式としては、ランダム共重合、交互共重合、ブロック共重合およびグラフト共重合を問わない。
上記ジエン成分としては、ブタジエン、イソプレンおよびクロロプレンなどが挙げられる。 また、ジエン、不飽和ニトリル、α-オレフィンおよび芳香族ビニルからなる群から選ばれるモノマー成分を含む共重合体が挙げられる。より具体的には、不飽和ニトリルとジエンとの共重合体(たとえば、アクリロニトリル-ブタジエン共重合体)、芳香族ビニルとジエンとの共重合体(たとえば、ブタジエン-スチレン共重合体、スチレン-イソプレン共重合体)、オレフィンとジエンとの共重合体(たとえば、エチレン-プロピレン-ジエン共重合体)等が挙げられる。
なお、上記耐衝撃改質剤を構成する重合体中のジエン成分の含有量は、35~70質量%が好ましく、50~65質量%であることがより好ましい。
上記非ジエン成分としては、オレフィン、およびオルガノシロキサンからなる群から選ばれる1種又は2種以上のモノマー成分を含む重合体が挙げられる。より具体的には、オレフィンゴム(たとえば、エチレン-プロピレンゴムなど)およびシリコーンアクリルゴムが挙げられる。
上記耐衝撃改質剤として、より具体的には、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS)、メチルメタクリレート-ブタジエン共重合体(MB)等が好ましく使用される。
また、上記耐衝撃改質剤としては、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体およびメチルメタクリレート-(アクリル・シリコーン複合体)共重合体が好ましく使用される。なかでも、メチルメタクリレート-ブタジエン-スチレン共重合体及び/又はアクリロニトリル-ブタジエン-スチレン共重合体が好ましい。
上記耐衝撃改質剤の構成成分のうち、耐衝撃性効果に寄与する樹脂の単体におけるガラス転移温度は0℃未満であることが好ましい。これにより、得られる成形体の耐熱性を損なうことなく耐衝撃性を向上させることができる。
本発明の成形用樹脂組成物において、上記耐衝撃改質剤の含有量は、塩素化塩化ビニル系樹脂100質量部に対して、0.5~8質量部である。この範囲で耐衝撃改質剤を含むことにより、得られる成形体の耐衝撃性をより向上させることができる。
上記耐衝撃改質剤の含有量の好ましい下限は3質量部、より好ましい下限は4質量部、好ましい上限は8質量部、より好ましい上限は7.5質量部である。
更に、本発明の成形用樹脂組成物全体に対する上記耐衝撃改質剤の含有量は、2.5~6.0質量%であることが好ましい。
本発明の成形用樹脂組成物において、耐衝撃改良剤とアクリル系加工助剤との比(耐衝撃改良剤/アクリル系加工助剤)は、7.0以下であることが好ましい。このような範囲内とすることで、良好な外観と耐衝撃性を両立した成形品を得ることができる。
上記耐衝撃改良剤/アクリル系加工助剤は、0.7~7.0であることが好ましく、0.7~4.0であることがより好ましい。
また、上記耐衝撃改質剤は、粒子状であることが好ましく、平均粒子径が小さいことが好ましい。耐衝撃改質剤粒子の平均粒子径は、0.1~200μm程度が好ましい。
本発明の成形用樹脂組成物において、更に、熱安定剤を含有することが好ましい。
本発明において、上記熱安定剤は、有機スズ系安定剤が好ましい。また、アルキルカルボン酸カルシウム及び亜鉛化合物を含有するものを使用することが好ましい。
上記有機スズ系安定剤としては、例えば、メチル、ブチル、オクチル等のアルキルスズ、好ましくはジアルキルスズのラウリン酸等の脂肪族モノカルボン酸の塩、或いはマレイン酸、フタル酸等のジカルボン酸の塩等が挙げられる。具体的には例えば、ジブチルスズジラウリレート、ジオクチルスズラウレート、ジブチルスズマレエート、ジブチルスズフタレート、ジメチルスズ ビス(2-エチルへキシルチオグリコレート)、ジブチルスズメルカプタイド、ジメチルスズメルカプタイド等のアルキルスズメルカプタイド等が挙げられる。
上記アルキルカルボン酸カルシウム及び亜鉛化合物を含有する熱安定剤は、重金属を含まないことから、重金属フリーの成形用樹脂組成物が得られる。
また、このような熱安定剤を用いた場合、塩素化塩化ビニル系樹脂の熱分解で生成した塩酸が、直ちに亜鉛化合物と反応して塩化亜鉛となる。また、塩素化塩化ビニル系樹脂の脱塩酸により生成したポリエンの成長がアルキルカルボン酸カルシウムとの結合で停止されて発色が抑えられる。
一方で、生成した塩化亜鉛は、塩素化塩化ビニル系樹脂の熱分解を促進させる性質があるが、本発明では、塩化亜鉛がアルキルカルボン酸カルシウムと反応して塩化カルシウムとアルキルカルボン酸亜鉛が生成される。その結果、上記熱安定剤は、亜鉛化合物の迅速な塩酸捕捉作用を生かしながら、塩化亜鉛の熱分解促進作用が抑制されるため、顕著な相乗効果を有する。
上記アルキルカルボン酸カルシウムとしては、例えば、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、シクロヘキシルプロピオン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、12-ヒドロキシステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、モンタン酸等のカルシウム塩が挙げられる。
なかでも、炭素数8~28のアルキルカルボン酸カルシウムを用いることが好ましい。
上記亜鉛化合物としては、無機亜鉛化合物又は有機亜鉛化合物が挙げられる。
上記無機亜鉛化合物としては、例えば、亜鉛の炭酸塩、塩化物、硫酸塩、酸化物、水酸化物、塩基性酸化物及び混合酸化物からなる系統からの化合物等が挙げられる。
上記有機亜鉛化合物としては、例えば、ジ及び/又はモノアルキル亜鉛等のアルキル亜鉛化合物、有機脂肪族カルボン酸亜鉛、非置換又は置換有機芳香族カルボン酸亜鉛、有機亜燐酸亜鉛、置換又は非置換フェノール亜鉛、アミノ酸及びその誘導体亜鉛、有機メルカプタン亜鉛等を挙げることができる。
上記有機脂肪族カルボン酸亜鉛を構成する有機脂肪族カルボン酸としては、例えば、モンタン酸、コメ糠脂肪酸、ベヘン酸、エルシン酸、ステアリン酸、オレイン酸、リノール酸、コメ脂肪酸、リシノレイン酸、ミリスチン酸、パルミチン酸、ラウリン酸、低級脂肪酸、オクチル酸、イソステアリン酸、ダイマー酸、ナフテン酸、酢酸等が挙げられる。
また、上記有機脂肪族カルボン酸としては、アゼライン酸、セバチン酸、アジピン酸、コハク酸、マロン酸、マレイン酸、クロトン酸、リンゴ酸、酒石酸等のジカルボン酸のほか、そのモノエステルが挙げられる。
更に、上記有機脂肪族カルボン酸としては、クエン酸及びそのモノエステル又はジエステル、乳酸、グリコール酸、チオジプロピオン酸及びそのモノエステル等が挙げられる。
上記非置換又は置換有機芳香族カルボン酸亜鉛を構成する無置換又は置換芳香族カルボン酸としては、例えば、安息香酸、o-,m-及びp-トルイル酸、p-第3級ブチル安息香酸、p-ヒドロキシ安息香酸、サルチル酸、多塩基酸のフタル酸、メタフタル酸、テレフタル酸、トリメリット酸等及びそれらのモノエステル又はジエステル等が挙げられる。
上記有機亜燐酸亜鉛を構成する有機亜燐酸としては、例えば、脂肪族アルコールと五酸化燐との反応物であるアシッドホスファイト等を挙げることができる。具体的には、ブチルアシッドホスファイト、オクチルアシッドホスファイト、ステアリルアシッドホスファイト、ベヘニルアシッドホスファイト等が挙げられる。 
上記置換又は非置換フェノール亜鉛を構成する置換又は非置換フェノールとしては、例えば、フェノール、クレゾール、キシロール、オクチルフェノール、ノニルフェノール、ジノニルフェノール、シクロヘキシルフェノール、フェニルフェノールが挙げられる。また、上記置換又は非置換フェノールとしては、ビスフェノールA、ビスフェノールS、ビスフェノールF、p-ヒドロキシ安息香酸のエステル、サルチル酸のエステル等を挙げることができる。
上記アミノ酸及びその誘導体としては、例えば、焼成グルタミン酸、グリシン、アラニン等を挙げることができる。 
上記有機メルカプタン亜鉛を構成する有機メルカプタンとしては、例えば、ラウリルメルカプタン、チオグリコール酸及びそのエステル、メルカプトプロピオン酸及びそのエステル、チオリンゴ酸およびそのモノエステル又はジエステル等を挙げることができる。
上記熱安定剤は、アルキルカルボン酸カルシウム及び亜鉛化合物を含有するものであるが、上記アルキルカルボン酸カルシウム及び亜鉛化合物の混合物であることが好ましい。
上記熱安定剤の形態としては、例えば、粉末、粒状物等が挙げられる。このような形態とすることで、ワンパックの熱安定剤として使用することができる。
上記熱安定剤が粉粒体である場合、その粒度は目的に応じて任意に調節することができ、一般に平均粒子径が50μm~5mmであることが好ましく、特に70μm~2mmであることが好ましい。
上記粒状物の熱安定剤を製造する方法としては、例えば、押出成形造粒法、噴霧造粒法、回転円盤造粒法、転動造粒法、圧縮造粒法等のそれ自体公知の造粒法を用いることができる。
上記熱安定剤は、230℃における加熱減量率が5質量%未満であることが好ましい。
上記230℃における加熱減量率が5質量%以上であると、成形品内部に気泡が含まれることで強度不足になったり、表面近傍に筋状の模様が発生し外観不良が生じたりすることがある。
上記230℃における加熱減量率は、3質量%未満であることがより好ましい。
下限については特に限定されないが0.1質量%が好ましい。
なお、上記230℃における加熱減量率は、熱重量測定(TG)装置によって測定することができる。
上記熱安定剤は、アルキルカルボン酸カルシウム及び亜鉛化合物を含有するものであるが、上記、アルキルカルボン酸カルシウムと亜鉛化合物との混合比(アルキルカルボン酸カルシウム:亜鉛化合物)は、9:1~4:6であることが好ましい。また、上記混合比は、8:2~5:5であることがより好ましい。
本発明の成形用樹脂組成物において、上記熱安定剤の含有量は、塩素化塩化ビニル系樹脂100質量部に対して、0.4~10質量部であることが好ましく、0.6~7質量部の範囲であることがより好ましい。この範囲で熱安定剤を含むことにより、熱安定性をより向上させることができるとともに、成形体の良好な外観を維持することができる。
上記熱安定剤として、アルキルカルボン酸カルシウム及び亜鉛化合物を含有するものを使用した場合、重金属フリーの成形用樹脂組成物が得られる。
本明細書において、重金属とは密度の大きい金属を意味し、一般に密度4~5g/cm以上の金属を指す。重金属フリーとは、重金属の含有量が1000ppm以下であることを意味する。なお、上記重金属の含有量は、100ppm以下であることが好ましい。
上記重金属としては、スカンジウム以外の遷移金属が挙げられ、例えば、Mn、Ni、Fe、Cr、Co、Cu、Au等が挙げられる。また、第4周期以下のp-ブロック元素の金属(例えばSn、Pb、Bi)、Cd、Hg等も含まれる。
本発明の成形用樹脂組成物は、更に、酸化防止剤を含有することが好ましい。
上記酸化防止剤としては、例えば、フェノール系酸化防止剤、リン酸系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤等を用いることができる。これらは、単独で使用しても良く、二種以上を併用しても良い。なかでも、フェノール系酸化防止剤が好ましく、特にヒンダードフェノール系酸化防止剤が好ましい。
上記ヒンダードフェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-t-ブチル-4-ヒドロキシベンジル)ホスホネート、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4’-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2’-エチリデンビス(4-sec-ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス〔2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、ペンタエリスリチル-テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2-t-ブチル-4-メチル-6-(2’-アクリロイルオキシ-3’-t-ブチル-5’-メチルベンジル)フェノール、3,9-ビス(1’,1’-ジメチル-2’-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、ビス〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのうちでは、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、ペンタエリスリチル-テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕等が好ましい。これらは単独でも2種以上混合しても用いることができる。
上記酸化防止剤は、200℃における加熱減量率が5質量%未満であることが好ましい。
上記200℃における加熱減量率が5質量%以上であると、成形品内部に気泡が含まれて強度不足になったり、表面近傍に筋状の模様が発生し外観不良が生じたりすることがある。
なお、上記200℃における加熱減量率は3質量%未満であることがより好ましい。
上記本発明の成形用樹脂組成物において、上記酸化防止剤の含有量は、塩素化塩化ビニル系樹脂100質量部に対して、0.1~3質量部であることが好ましく、0.2~2.5質量部の範囲であることがより好ましい。この範囲で酸化防止剤を含むことにより、黄変による着色の少ない成形品を得ることができる。
本発明の成形用樹脂組成物は、更に、安定化助剤を含むことが好ましい。上記安定化助剤を含むことにより、熱安定性をより向上させることができる。
上記安定化助剤としては、重金属を含まないものを用いることができる。例として、有機酸塩、エポキシ化合物、リン酸化合物、金属水酸化物、アジピン酸ナトリウム、グリシジル(メタ)アクリレート共重合体、オキセタニル化合物、ビニルエーテル化合物及びゼオライト化合物が挙げられる。
上記エポキシ化合物としては、エポキシ化大豆油、エポキシ化アマニ豆油エポキシ化テトラヒドロフタレート、エポキシ化ポリブタジエン、ビスフェノールA型エポキシ化合物等が挙げられる。
上記リン酸化合物としては、有機リン化合物、亜リン酸エステル、リン酸エステル等が挙げられる。
上記金属水酸化物としては、水酸化カルシウム、水酸化ナトリウム等が挙げられる。
これらは単独で使用しても良く、2種以上を併用してもよい。なお、上記安定化助剤は、アルキルカルボン酸カルシウム及び亜鉛化合物とは異なるものである。
これらは単独で使用しても良く、2種以上を併用してもよい。なお、上記安定化助剤は、アルキルカルボン酸カルシウム及び亜鉛化合物とは異なるものである。
また、上記安定化助剤は、200℃における加熱減量率が5質量%未満であることが好ましい。
本発明の成形用樹脂組成物は、必要に応じて、滑剤、加工助剤、耐熱向上剤、紫外線吸収剤、光安定剤、充填剤、熱可塑性エラストマー、顔料などの添加剤を混合してもよい。
上記滑剤としては、内部滑剤、外部滑剤が挙げられる。内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。上記内部滑剤としては特に限定されず、例えば、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、グリセリンモノステアレート、ステアリン酸、ビスアミド等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記滑剤は、200℃における加熱減量率が5質量%未満であることが好ましい。
上記外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。上記外部滑剤としては特に限定されず、例えば、パラフィンワックス、ポリエチレン系滑剤等のポリオレフィンワックス、脂肪酸エステル系滑剤等のエステルワックス、モンタン酸ワックス等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。
上記耐熱向上剤としては特に限定されず、例えばα-メチルスチレン系、N-フェニルマレイミド系樹脂等が挙げられる。
上記光安定剤としては特に限定されず、例えば、ヒンダードアミン系等の光安定剤等が挙げられる。
上記紫外線吸収剤としては特に限定されず、例えば、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤等が挙げられる。
上記顔料としては特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;二酸化チタン等の酸化物系、硫化物・セレン化物系、フェロシアニン化物系などの無機顔料などが挙げられる。
本発明の成形用樹脂組成物には成形時の加工性を向上させる目的で、可塑剤が添加されていてもよいが、成形体の熱安定性を低下させることがあるため、多量に使用することはあまり好ましくない。上記可塑剤としては特に限定されず、例えば、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジ-2-エチルヘキシルアジペート等が挙げられる。
本発明の成形用樹脂組成物には施工性を向上させる目的で、熱可塑性エラストマーが添加されていてもよい。上記熱可塑性エラストマーとしては、例えば、ニトリル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
上記ニトリル系熱可塑性エラストマーとしては、アクリルニトリル-ブタジエン共重合体(NBR)等が挙げられる。
上記オレフィン系熱可塑性エラストマーとしては、エチレン-酢酸ビニル共重合体(EVA)、エチレン-酢酸ビニル-一酸化炭素共重合体(EVACO)等のエチレン系熱可塑性エラストマーが挙げられる。
上記塩化ビニル系熱可塑性エラストマーとしては、塩化ビニル-酢酸ビニル共重合体や塩化ビニル-塩化ビニリデン共重合体等が挙げられる。
これらの熱可塑性エラストマーは、単独で用いられてもよいし、2種類以上が併用されてもよい。
本発明の成形用樹脂組成物は、β-ジケトンを含まないことが好ましい。β-ジケトンは、熱安定性を向上させるために従来の熱安定剤に配合されている成分である。しかしながら、β-ジケトンを含む熱安定剤を用いた場合、樹脂組成物を押出成形や射出成形により成形して成形体を製造する際に、成形体の外観が損なわれやすい。例えば、成形体の表面に、樹脂の流れ方向に平行な太さ0.1~1mm程度の黄色~赤褐色のすじが発生する。このように外観が損なわれた成形体は不良品となる。特に長時間使用したダイスを用いた場合に、このような不良品が発生しやすい。しかしながら、本発明によれば、β-ジケトンを含む熱安定剤を用いることなく、優れた熱安定性を有する成形用樹脂組成物を提供することができる。
本発明の成形用樹脂組成物を製造する方法としては、以下の方法が挙げられる。例えば、反応容器中において、塩化ビニル系樹脂を水性媒体に懸濁して懸濁液を調製し、上記反応容器内に塩素を導入し、従来公知の任意の方法で上記塩化ビニル系樹脂を塩素化して、塩素化塩化ビニル系樹脂を調製する工程を行う。その後、上記塩素化塩化ビニル系樹脂に、重量平均分子量が50万~500万のアクリル系樹脂からなるアクリル系加工助剤、耐衝撃改良剤を所定量添加して混合する工程を有する方法を用いることができる。
上記塩素化塩化ビニル系樹脂を調製する工程において、用いる反応容器としては、例えば、グラスライニングが施されたステンレス製反応容器、チタン製反応容器等の一般に使用されている容器を使用することができる。
上記塩化ビニル系樹脂を水性媒体に懸濁して懸濁液を調製する方法は、特に限定されず、重合後のPVCを脱モノマー処理したケーキ状のPVCを用いてもよいし、乾燥させたものを再度、水性媒体で懸濁化してもよい。また、重合系中より、塩素化反応に好ましくない物質を除去した懸濁液を使用してもよいが、重合後のPVCを脱モノマー処理したケーキ状の樹脂を用いることが好ましい。
上記水性媒体としては、例えば、イオン交換処理された純水を用いることができる。水性媒体の量は、特に限定されないが、一般にPVCの100質量部に対して150~400質量部が好ましい。
上記反応容器内に導入する塩素は、液体塩素及び気体塩素のいずれであってもよい。短時間に多量の塩素を仕込めるため、液体塩素を用いることが効率的である。圧力を調整するためや塩素を補給するために、反応途中に塩素を追加してもよい。このとき、液体塩素の他に気体塩素を適宜吹き込むこともできる。ボンベ塩素の5~10質量%をパージした後の塩素を用いるのが好ましい。
上記反応容器内のゲージ圧力は、特に限定されないが、塩素圧力が高いほど塩素がPVC粒子の内部に浸透し易いため、0.3~2MPaの範囲が好ましい。
上記懸濁した状態でPVCを塩素化する方法は、特に限定されず、例えば、熱エネルギーによりPVCの結合や塩素を励起させて塩素化を促進する方法(以下、熱塩素化という)、紫外光線等の光エネルギーを照射して光反応的に塩素化を促進する方法(以下、光塩素化という)等が挙げられる。熱エネルギーにより塩素化する際の加熱方法は、特に限定されず、例えば、反応器壁からの外部ジャケット方式による加熱が効果的である。また、紫外光線等の光エネルギーを使用する場合は、高温、高圧下の条件下での紫外線照射等の光エネルギー照射が可能な装置が必要である。光塩素化の場合の塩素化反応温度は、40~80℃が好ましい。
上記塩素化方法の中では、紫外線照射を行わない熱塩素方法が好ましく、熱のみ又は熱及び過酸化水素により塩化ビニル系樹脂の結合や塩素を励起させ塩素化反応を促進する方法が好ましい。
上記光エネルギーによる塩素化反応の場合、PVCが塩素化されるのに必要な光エネルギーの大きさは、PVCと光源との距離に大きく影響を受ける。そのため、PVC粒子の表面と内部とでは、受けるエネルギー量が相違し、塩素化が均一に生じない。その結果、均一性の低いCPVCが得られる。一方、紫外線照射を行わず、熱により塩素化する方法では、より均一な塩素化反応が可能となり、均一性の高いCPVCを得ることができる。
上記加熱のみで塩素化する場合は、70~140℃の範囲であることが好ましい。温度が低すぎると、塩素化速度が低下する。温度が高すぎると、塩素化反応と並行して脱HCl反応が起こり、得られたCPVCが着色する。加熱温度は、100~135℃の範囲であることがより好ましい。加熱方法は、特に限定されず、例えば、外部ジャケット方式で反応容器壁から加熱することができる。
上記塩素化において、懸濁液にさらに過酸化水素を添加することが好ましい。過酸化水素を添加することにより、塩素化の速度を向上させることができる。過酸化水素は、反応時間1時間毎に、PVCに対して5~500ppmの量を添加することが好ましい。添加量が少なすぎると、塩素化の速度を向上させる効果が得られない。添加量が多すぎると、CPVCの熱安定性が低下する。
上記過酸化水素を添加する場合、塩素化速度が向上するため、加熱温度を比較的低くすることができる。例えば、65~110℃の範囲であってよい。
上記塩素化の際に、最終塩素含有量から5質量%手前に達した時点以降の塩素化を、塩素消費速度が0.010~0.015kg/PVC-Kg・5minの範囲で行い、さらに、最終塩素含有量から3質量%手前に達した時点以降の塩素化を、塩素消費速度が0.005~0.010kg/PVC-Kg・5minの範囲で行うことが好ましい。ここで、塩素消費速度とは、原料PVC1kgあたりの5分間の塩素消費量を指す。
上記方法で塩素化を行うことにより、塩素化状態の不均一性が少なく、熱安定性の優れたCPVCを得ることができる。
本発明の成形用樹脂組成物を製造する方法では、次いで、上記塩素化塩化ビニル系樹脂に、重量平均分子量が50万~500万のアクリル系樹脂からなるアクリル系加工助剤、耐衝撃改良剤を所定量添加して混合し、必要に応じて熱安定剤、酸化防止剤を添加する工程を行う。
上記熱安定剤及び酸化防止剤を混合する方法としては、特に限定されず、例えば、ホットブレンドによる方法、コールドブレンドによる方法等が挙げられる。
以上述べたような本願発明の構成によれば、優れた熱安定性を有し、鉛、カドミウム、スズ等の重金属を含有しない成形用樹脂組成物を提供することができる。
更に、本発明の他の側面によれば、本発明の成形用樹脂組成物から成形された成形体が提供される。このような成形体もまた本発明の1つである。
上記成形の方法としては、従来公知の任意の成形方法が採用されてよく、例えば、押出成形法、射出成形法等が挙げられる。
本発明の成形体は、本発明の成形用樹脂組成物と同様に重金属フリーであるため、環境に悪影響を与えないという優れた利点を有し、優れた熱安定性を有し、且つ、外観の状態が良好であるため、建築部材、管工機材、住宅資材等の用途に好適に用いることができる。
本発明の成形体は、表面粗さ(Rmax)が、1.0μm以下であることが好ましい。
また、本発明の成形体は、外表面のろ波うねり中心線平均(WcA)が、5.0μm以下であることが好ましい。これにより、表面のムラが少なく、肉厚変動の小さい成形体となる。本発明では、表面粗さに加えて、ろ波うねり中心線平均が小さいことで、パイプ等に使用する場合、流水との摩擦が減少し流速を上げることができる。
なお、表面粗さ(Rmax)は、JIS B 0601に準拠した方法、ろ波うねり中心線平均(WcA)は、JIS B 0610に準拠した方法で測定することができる。
本発明によれば、優れた熱安定性を有し、耐衝撃性及び表面平滑性の高い成形体を製造することが可能な成形用樹脂組成物、及び、成形用樹脂組成物を用いた成形体を提供できる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
[実施例1]  
(塩素化塩化ビニル系樹脂の作製)
内容積300Lのグラスライニング製反応容器に、イオン交換水200kgと重合度1000の塩化ビニル系樹脂56kgを投入した。混合物を撹拌し、反応容器にさらに水を添加して、混合物を水中に分散させた。次いで、減圧して反応容器内の酸素を除去すると共に、90℃に昇温した。
次に、反応容器内に塩素を、塩素分圧が0.4MPaになるように供給し、0.2質量%過酸化水素を1時間当たり1質量部(320ppm/時間)の割合で添加しながら、塩素化反応を行った。塩素化された塩化ビニル系樹脂の塩素含有量が61質量%になるまで反応を継続した。塩素化された塩化ビニル系樹脂の塩素含有量が61質量%(5質量%手前)に達した時に、0.2質量%過酸化水素の添加量を1時間当たり0.1質量部(200ppm/時間)に減少し、平均塩素消費速度が0.012kg/PVC-kg・5minになるように調整して塩素化を進めた。さらに、塩素含有量が63質量%(3質量%手前)に達した時に、0.2質量%過酸化水素の添加量を1時間当たり150ppm/時間に減少し、平均塩素消費速度が0.008kg/PVC-kg・5minになるように調整して塩素化を進めた。このようにして、塩素含有量が67.3質量%の塩素化塩化ビニル系樹脂を得た。なお、塩素化塩化ビニル系樹脂の塩素含有量は、JIS K 7229に準拠して測定した。
また、以下の方法を用いて塩素化塩化ビニル系樹脂のゲル化時間を測定した。
(ゲル化時間測定)
塩素化塩化ビニル系樹脂100質量部に対して、熱安定剤1.2質量部、ポリエチレン系滑剤1.0質量部、酸化ポリエチレン系滑剤0.5質量部、耐衝撃改質剤5.5質量部を加え、混合することでコンパウンドサンプルを作製した。なお、熱安定剤、ポリエチレン系滑剤、酸化ポリエチレン系滑剤、耐衝撃改質剤としては、以下のものを用いた。
熱安定剤(日東化成工業社製、TVS#1380)
ポリエチレン系滑剤(三井化学社製、Hiwax220MP)
酸化ポリエチレン系滑剤(Honeywell社製、A-C316A)
耐衝撃改質剤(カネカ社製、カネエースM-511)
次いで、ラボプラストミル(東洋精機社製、4C150)に温度180℃でコンパウンドサンプル59gを投入し、80秒間予熱した後、回転数30rpmにてロータ回転させ、モータートルクが最も上昇した際の時間をゲル化時間とした。
(塩素化塩化ビニル系樹脂組成物の作製)
得られた塩素化塩化ビニル系樹脂(重合度:1000)100質量部に対して、アクリル系加工助剤としてポリメチルメタクリレート(三菱レイヨン社製、重量平均分子量:80万、ガラス転移温度75℃、溶融温度136℃)1.5質量部、耐衝撃改質剤5.5質量部を添加した。更に、熱安定剤1.5質量部、酸化防止剤としてペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(ヒンダードフェノール系酸化防止剤、イルガノックス1010、BASF社製、200℃の加熱減量率1.0質量%)0.5質量部を添加し混合した。なお、耐衝撃改質剤としては、MBS-1(メチルメタクリレート-ブタジエン-スチレン共重合体、メチルメタクリレート成分含有量25質量%、ジエン成分量55質量%、平均粒子径0.3μm)樹脂(LG化学社製、ブタジエン単体のガラス転移温度-93℃)を用いた。また、熱安定剤(有機スズ安定剤)としては、ジメチルスズ ビス(2-エチルへキシルチオグリコレート)を用いた。
更に、ポリエチレン系滑剤(三井化学社製、Hiwax220MP)2.0質量部、脂肪酸エステル系滑剤(エメリーオレオケミカルズジャパン社製、LOXIOL G-32)0.3質量部、二酸化チタン(石原産業社製、TIPAQUE CR-90)6.0質量部を添加した。その後、スーパーミキサーで均一に混合して、塩素化塩化ビニル系樹脂組成物を得た。
(押出成形体の作製)
得られた塩素化塩化ビニル系樹脂組成物を、直径50mmの2軸異方向コニカル押出機(長田製作所社製「SLM-50」)に供給し、樹脂温度209.8℃、背圧291.0kg/cm、押出量24.3kg/hrで内形20mm、厚さ3mmのパイプ状成形体を作製した。
[実施例2~14、比較例1~6]
表1に記載した重量平均分子量(Mw)、溶融温度を有するポリメチルメタクリレート、耐衝撃改質剤を、表1に記載の添加量で使用した以外は、実施例1と同様に塩素化塩化ビニル系樹脂組成物及び押出成形体を作製した。なお、実施例11では、耐衝撃改質剤として、ABS(Galata Chemicals社製 Blendex338、アクリロニトリル-ブタジエン-スチレン共重合体)樹脂を用いた。
また、実施例12、13では、ジメチルスズ ビス(2-エチルへキシルチオグリコレート)に代えて、ステアリン酸カルシウム及びステアリン酸亜鉛を用いた。
更に、実施例14では、MBS-1に代えて、MBS-2(メチルメタクリレート-ブタジエン-スチレン共重合体、メチルメタクリレート成分含有量25質量%、ジエン成分量40質量%、平均粒子径0.3μm)を用いた。
なお、押出成形時の条件については、表1に示すものに変更した。
[実施例15]
表1に記載したゲル化時間を有する塩素化塩化ビニル系樹脂を使用した以外は、実施例1と同様に塩素化塩化ビニル系樹脂組成物及び押出成形体を作製した。
<評価>
実施例及び比較例で得られた塩素化塩化ビニル系樹脂組成物及び成形体について以下の評価を行った。結果を表1に示した。
[塩素化塩化ビニル系樹脂組成物の評価]
<機械物性(アイゾッド衝撃強度、引張強度、引張弾性率、熱変形温度)>
得られた塩素化塩化ビニル系樹脂組成物を2本の8インチロールに供給し、205℃で3分間混練して、厚さ1.0mmのシートを作製した。得られたシートを重ね合わせて、205℃のプレスで3分間予熱した後、4分間加圧して、厚さ3mmのプレス板を得た。得られたプレス板から、機械加工により試験片を切り出した。この試験片を用いて、ASTM  D256に準拠してアイゾット衝撃強度を測定し、ASTM D638に準拠して引張強度及び引張弾性率を測定した。また、ASTM D648に準拠して負荷荷重186N/cmで熱変形温度を測定した。尚、熱変形温度は、得られたプレス板を90℃のギヤオーブンで、24時間アニール処理した後測定した。
<ビカット軟化温度>
JIS K 7206:2016(プラスチック-熱可塑性プラスチック-ビカット軟化温度(VST)の求め方 B50法)に準拠した方法で、ビカット軟化温度を測定した。
[成形体の評価]
<外観観察>
得られたパイプ状押出成形体の表面状態を目視で観察し、ヤケ(変色)の有無を評価した。
<表面粗さ>
表面粗さ測定装置(東京精密社製、SURFCOM480A)を用い、JIS B 0601に準拠した方法で、表面粗さ(Rmax)を測定した。なお、測定条件は、評価長さ0.3mm、測定速度0.3mm/sec、カットオフ0.08mmとした。
<ろ波うねり>
表面粗さ測定装置(東京精密社製、SURFCOM480A)を用い、JIS B 0610に準拠した方法で、外表面のろ波うねり中心線平均(ろ波中心うねり、WcA)を測定した。なお、測定条件は、評価長さ30mm、測定速度3mm/sec、カットオフ0.25~8mmとした。
Figure JPOXMLDOC01-appb-T000004
本発明によれば、優れた熱安定性を有し、耐衝撃性及び表面平滑性の高い成形体を製造することが可能な成形用樹脂組成物、及び、成形用樹脂組成物を用いた成形体を提供できる。

Claims (10)

  1. 塩素化塩化ビニル系樹脂と、アクリル系加工助剤と、耐衝撃改良剤とを含有する成形用樹脂組成物であって、
    前記アクリル系加工助剤は、重量平均分子量が50万~500万のアクリル系樹脂からなり、
    前記塩素化塩化ビニル系樹脂100質量部に対して、前記アクリル系加工助剤を0.2~10質量部、前記耐衝撃改良剤を0.5~8.0質量部含有する
    ことを特徴とする成形用樹脂組成物。
  2. 塩素化塩化ビニル系樹脂は、下記式(a)~(c)に示す構成単位(a)~(c)を有し、前記構成単位(a)、(b)及び(c)の合計モル数に対して、構成単位(a)の割合が17.5モル%以下、構成単位(b)の割合が46.0モル%以上、構成単位(c)の割合が37.0モル%以下であることを特徴とする請求項1記載の成形用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
  3. 塩素化塩化ビニル系樹脂中の塩素含有量は、63~72質量%であることを特徴とする請求項1又は2記載の成形用樹脂組成物。
  4. アクリル系樹脂は、メチル(メタ)アクリレートの重合体であることを特徴とする請求項1、2又は3記載の成形用樹脂組成物。
  5. 耐衝撃改良剤は、メチルメタクリレート-ブタジエン-スチレン共重合体である請求項1、2、3又は4記載の成形用樹脂組成物。
  6. 耐衝撃改良剤とアクリル系加工助剤との比(耐衝撃改良剤/アクリル系加工助剤)が、7.0以下である請求項1、2、3、4又は5記載の成形用樹脂組成物。
  7. 更に、熱安定剤を含有することを特徴とする請求項1、2、3、4、5又は6記載の成形用樹脂組成物。
  8. β-ジケトンを含まないことを特徴とする請求項1、2、3、4、5、6又は7記載の成形用樹脂組成物。
  9. 塩素化塩化ビニル系樹脂100質量部に対して、熱安定剤を0.4~10質量部含有することを特徴とする請求項1、2、3、4、5、6、7又は8記載の成形用樹脂組成物。
  10. 請求項1、2、3、4、5、6、7、8又は9記載の成形用樹脂組成物から成形されてなることを特徴とする成形体。
PCT/JP2018/035711 2017-09-27 2018-09-26 成形用樹脂組成物 WO2019065742A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880032527.9A CN110621737B (zh) 2017-09-27 2018-09-26 成形用树脂组合物
JP2018557433A JP6674047B2 (ja) 2017-09-27 2018-09-26 成形用樹脂組成物
KR1020197024230A KR102578301B1 (ko) 2017-09-27 2018-09-26 성형용 수지 조성물
US16/633,055 US11866574B2 (en) 2017-09-27 2018-09-26 Resin composition for molding
EP18860118.1A EP3689962A4 (en) 2017-09-27 2018-09-26 COMPOSITION OF RESIN INTENDED FOR A MOLDING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-187166 2017-09-27
JP2017187166 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065742A1 true WO2019065742A1 (ja) 2019-04-04

Family

ID=65902564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035711 WO2019065742A1 (ja) 2017-09-27 2018-09-26 成形用樹脂組成物

Country Status (7)

Country Link
US (1) US11866574B2 (ja)
EP (1) EP3689962A4 (ja)
JP (1) JP6674047B2 (ja)
KR (1) KR102578301B1 (ja)
CN (1) CN110621737B (ja)
TW (1) TWI791626B (ja)
WO (1) WO2019065742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065946A1 (ja) * 2019-09-30 2021-04-08 積水化学工業株式会社 成形用樹脂組成物及び成形体
WO2023243724A1 (ja) * 2022-06-17 2023-12-21 住友ベークライト株式会社 樹脂シート及び成形体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456576B (zh) * 2020-10-22 2024-04-09 中国石油化工股份有限公司 Cpvc耐热合金三元组合物及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474936B1 (ja) * 1968-05-10 1972-02-10
JPH06200102A (ja) * 1992-05-04 1994-07-19 B F Goodrich Co:The 硬質熱可塑性ハロポリマー化合物の熱発生率を低下させる方法
JPH09316267A (ja) 1996-06-03 1997-12-09 Sekisui Chem Co Ltd 塩素化塩化ビニル樹脂組成物
JPH10245492A (ja) * 1997-03-04 1998-09-14 Sekisui Chem Co Ltd 熱可塑性樹脂組成物及び押出成形物
JPH10296821A (ja) * 1997-04-25 1998-11-10 Sekisui Chem Co Ltd スプリンクラー配管用塩素化塩化ビニル樹脂管
JP2001261909A (ja) * 2000-03-15 2001-09-26 Sekisui Chem Co Ltd 塩素化塩化ビニル樹脂組成物及びその成形品
JP2001278992A (ja) 2000-03-30 2001-10-10 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂成形体及び樹脂管
JP2001335668A (ja) * 2000-05-30 2001-12-04 Mitsubishi Rayon Co Ltd ポリ塩化ビニル樹脂系樹脂組成物
JP2002003687A (ja) * 2000-05-03 2002-01-09 Rohm & Haas Co ポリマー組成物
WO2004096908A1 (ja) * 2003-04-25 2004-11-11 Kaneka Corporation 塩素化塩化ビニル系樹脂組成物
JP2005298766A (ja) * 2004-04-15 2005-10-27 Mitsubishi Plastics Ind Ltd 難燃性塩化ビニル系樹脂組成物および成形体
WO2008018521A1 (fr) * 2006-08-08 2008-02-14 Mitsubishi Plastics, Inc. Composition de résine de chlorure de vinyle transparente et de retardement des flammes et produit moulé
WO2009150727A1 (ja) * 2008-06-11 2009-12-17 電気化学工業株式会社 硬化性組成物
JP2012041484A (ja) * 2010-08-20 2012-03-01 Adeka Corp 塩化ビニル系樹脂組成物
JP2014224176A (ja) * 2013-05-15 2014-12-04 積水化学工業株式会社 熱塩素化塩化ビニル系樹脂組成物および成形体
WO2015046454A1 (ja) * 2013-09-27 2015-04-02 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139847A (en) 1975-05-30 1976-12-02 Kureha Chem Ind Co Ltd Chlorinated polyvinyl chloride resin composition
AU580617B2 (en) * 1984-09-10 1989-01-19 Mobil Oil Corporation Process for visbreaking resids in the presence of hydrogen- donor materials and organic sulfur compounds
JPH0696659B2 (ja) 1985-06-28 1994-11-30 徳山積水工業株式会社 塩素化塩化ビニル系樹脂組成物
JP3221946B2 (ja) * 1992-12-02 2001-10-22 積水化学工業株式会社 真空成形用プレート
JP3106922B2 (ja) 1994-11-08 2000-11-06 三菱化学エムケーブイ株式会社 塩化ビニル樹脂組成物
JP3506586B2 (ja) 1997-08-15 2004-03-15 信越化学工業株式会社 軟質塩化ビニル系樹脂組成物及びその成形品
JP2001182869A (ja) 1999-12-24 2001-07-06 Sekisui Chem Co Ltd 耐熱性塩化ビニル樹脂管
JP2002254576A (ja) 2001-02-28 2002-09-11 Mitsubishi Plastics Ind Ltd 塩化ビニル樹脂パイプ
JP2003097768A (ja) 2001-09-21 2003-04-03 Sekisui Chem Co Ltd 更生管用塩化ビニル系樹脂組成物及び更生管
JP3705770B2 (ja) * 2001-12-19 2005-10-12 電気化学工業株式会社 ポリ塩化ビニル系繊維
JP4421862B2 (ja) 2003-09-26 2010-02-24 水澤化学工業株式会社 安定化された塩素化塩化ビニル樹脂組成物
EP1881035B1 (en) * 2005-05-09 2010-09-08 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
JP4901130B2 (ja) 2005-05-25 2012-03-21 積水化学工業株式会社 塩素化塩化ビニル系樹脂の製造方法
JP2008208250A (ja) * 2007-02-27 2008-09-11 Takiron Co Ltd 塩化ビニル系樹脂成形体
JP2009083270A (ja) * 2007-09-28 2009-04-23 Mitsubishi Plastics Inc 制電性塩化ビニル系樹脂積層体
US8367764B2 (en) * 2007-10-30 2013-02-05 Arkema Inc. Acrylic copolymer for use in highly filled composites
JP5352017B1 (ja) * 2011-11-29 2013-11-27 徳山積水工業株式会社 押出成形用塩素化塩化ビニル樹脂組成物
JP6263129B2 (ja) 2013-09-27 2018-01-17 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
JP6219130B2 (ja) * 2013-11-05 2017-10-25 リケンテクノス株式会社 医療用塩化ビニル樹脂組成物およびそれからなる医療用器具
US10000634B2 (en) 2014-07-24 2018-06-19 Sekisui Chemical Co., Ltd. Resin composition for molding use

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS474936B1 (ja) * 1968-05-10 1972-02-10
JPH06200102A (ja) * 1992-05-04 1994-07-19 B F Goodrich Co:The 硬質熱可塑性ハロポリマー化合物の熱発生率を低下させる方法
JPH09316267A (ja) 1996-06-03 1997-12-09 Sekisui Chem Co Ltd 塩素化塩化ビニル樹脂組成物
JPH10245492A (ja) * 1997-03-04 1998-09-14 Sekisui Chem Co Ltd 熱可塑性樹脂組成物及び押出成形物
JPH10296821A (ja) * 1997-04-25 1998-11-10 Sekisui Chem Co Ltd スプリンクラー配管用塩素化塩化ビニル樹脂管
JP2001261909A (ja) * 2000-03-15 2001-09-26 Sekisui Chem Co Ltd 塩素化塩化ビニル樹脂組成物及びその成形品
JP2001278992A (ja) 2000-03-30 2001-10-10 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂成形体及び樹脂管
JP2002003687A (ja) * 2000-05-03 2002-01-09 Rohm & Haas Co ポリマー組成物
JP2001335668A (ja) * 2000-05-30 2001-12-04 Mitsubishi Rayon Co Ltd ポリ塩化ビニル樹脂系樹脂組成物
WO2004096908A1 (ja) * 2003-04-25 2004-11-11 Kaneka Corporation 塩素化塩化ビニル系樹脂組成物
JP2005298766A (ja) * 2004-04-15 2005-10-27 Mitsubishi Plastics Ind Ltd 難燃性塩化ビニル系樹脂組成物および成形体
WO2008018521A1 (fr) * 2006-08-08 2008-02-14 Mitsubishi Plastics, Inc. Composition de résine de chlorure de vinyle transparente et de retardement des flammes et produit moulé
WO2009150727A1 (ja) * 2008-06-11 2009-12-17 電気化学工業株式会社 硬化性組成物
JP2012041484A (ja) * 2010-08-20 2012-03-01 Adeka Corp 塩化ビニル系樹脂組成物
JP2014224176A (ja) * 2013-05-15 2014-12-04 積水化学工業株式会社 熱塩素化塩化ビニル系樹脂組成物および成形体
WO2015046454A1 (ja) * 2013-09-27 2015-04-02 積水化学工業株式会社 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Acrylic processing aids "METABLEN™ Type P"", MITSUBISHI CHEMICAL CORPORATION, 14 November 2018 (2018-11-14), XP055587149, Retrieved from the Internet <URL:https://www.m-chemical.co.jp/products/departments/mcc/metablen/product/1202133_8000.html> *
"Kaneka Vinyls and Chlor-Alkali Solutions Vehicle", 14 November 2018 (2018-11-14), pages 1, XP055680684, Retrieved from the Internet <URL:http://www.pvc.kaneka.co.jp/products/cpvc/data01.html> *
R. A. KOMOROSKIR. G. PARKERJ. P. SHOCKER, MACROMOLECULES, vol. 18, 1985, pages 1257 - 1265

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065946A1 (ja) * 2019-09-30 2021-04-08 積水化学工業株式会社 成形用樹脂組成物及び成形体
JPWO2021065946A1 (ja) * 2019-09-30 2021-11-25 積水化学工業株式会社 成形用樹脂組成物及び成形体
JP2022125111A (ja) * 2019-09-30 2022-08-26 積水化学工業株式会社 成形用樹脂組成物及び成形体
JP7488850B2 (ja) 2019-09-30 2024-05-22 積水化学工業株式会社 成形用樹脂組成物及び成形体
WO2023243724A1 (ja) * 2022-06-17 2023-12-21 住友ベークライト株式会社 樹脂シート及び成形体

Also Published As

Publication number Publication date
JP6674047B2 (ja) 2020-04-01
KR102578301B1 (ko) 2023-09-13
US11866574B2 (en) 2024-01-09
TW201920437A (zh) 2019-06-01
CN110621737A (zh) 2019-12-27
EP3689962A4 (en) 2021-06-16
KR20200055685A (ko) 2020-05-21
CN110621737B (zh) 2023-01-03
JPWO2019065742A1 (ja) 2019-11-14
TWI791626B (zh) 2023-02-11
US20200157335A1 (en) 2020-05-21
EP3689962A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6532875B2 (ja) 成形用樹脂組成物
JP6263129B2 (ja) 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
JP6263128B2 (ja) 塩素化塩化ビニル系樹脂を含む成形用樹脂組成物及びその成形体
WO2019065742A1 (ja) 成形用樹脂組成物
JP6589069B2 (ja) 射出成形用樹脂組成物
US11174381B2 (en) Resin composition for molding
JP7078415B2 (ja) 成形用樹脂組成物
US20220177690A1 (en) Resin composition for molding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557433

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018860118

Country of ref document: EP

Effective date: 20200428