WO2018056297A1 - 硬化反応性シリコーンゲルおよびその用途 - Google Patents

硬化反応性シリコーンゲルおよびその用途 Download PDF

Info

Publication number
WO2018056297A1
WO2018056297A1 PCT/JP2017/033869 JP2017033869W WO2018056297A1 WO 2018056297 A1 WO2018056297 A1 WO 2018056297A1 JP 2017033869 W JP2017033869 W JP 2017033869W WO 2018056297 A1 WO2018056297 A1 WO 2018056297A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
silicone gel
group
component
reaction
Prior art date
Application number
PCT/JP2017/033869
Other languages
English (en)
French (fr)
Inventor
弘 福井
香子 外山
涼太 道源
潮 嘉人
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to CN201780054446.4A priority Critical patent/CN109661436A/zh
Priority to EP17853067.1A priority patent/EP3517577A4/en
Priority to JP2018540256A priority patent/JP6799067B2/ja
Priority to US16/607,012 priority patent/US11279827B2/en
Priority to KR1020197010140A priority patent/KR102279871B1/ko
Publication of WO2018056297A1 publication Critical patent/WO2018056297A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device

Definitions

  • the present invention relates to a curing reactive silicone gel that changes its physical properties from a soft gel layer to a hard cured layer by a secondary curing reaction, and uses thereof.
  • Silicone gel can be obtained by curing reaction of organopolysiloxane having a reactive functional group so as to have a low crosslinking density, and has excellent heat resistance, weather resistance, oil resistance, cold resistance, electrical insulation, etc., and Unlike ordinary elastomer products, it is gel-like and has a low elastic modulus, low stress, and excellent stress buffering properties, so it is widely used for protection of damping materials for optical applications, automotive electronic components, consumer electronic components, etc. (For example, Patent Documents 1 to 7).
  • silicone gel is soft and easily deformed and can be arranged according to the unevenness of the substrate surface. And has the advantage of being less likely to cause a discrepancy.
  • silicone gels are “gelled”, they are vulnerable to external stress due to vibration and deformation due to internal stress due to expansion / contraction due to temperature changes, and the gel is destroyed, protected, and bonded.
  • adhesive deposits remain on the target, or the gel aggregates on the substrate. There is a case where it cannot be easily removed from the substrate or the electronic component due to destruction.
  • Such gel deposits are not preferable because they can cause defects in electronic components and the like, as well as obstructions during mounting of semiconductors and the like and cause defective products.
  • Patent Document 8 shows a tackiness required in the dicing process by the first-stage curing by a two-stage curing reaction, and shows a strong adhesiveness by the second-stage curing, which is suitable for a dicing die bond adhesive sheet.
  • a thermosetting composition for use in is disclosed.
  • the present applicants have proposed a curable silicone composition in Patent Document 9 that is excellent in initial curability and maintains high physical strength even when exposed to a high temperature of 250 ° C. or higher. .
  • the present invention has been made to solve the above problems, and is a soft silicone gel excellent in heat resistance, etc., having low elastic modulus, low stress and stress buffering properties and flexibility.
  • An object of the present invention is to provide a curing reactive silicone gel in which the silicone gel layer has a higher shape retention than before curing and changes to a hard cured product excellent in releasability.
  • the present invention is intended to provide a use of the silicone gel: adhesive, protective agent or sealant, a member for manufacturing an electronic component, and further a cured product of the curing reactive silicone gel.
  • An object of the present invention is to provide an electronic component.
  • the present inventors have found that the above-described problems can be solved by an adhesive, a protective agent or a sealant containing the curing reactive silicone gel, and a member for manufacturing an electronic component, and have reached the present invention.
  • the object of the present invention is achieved by the following curing reactive silicone gel.
  • a curing reactive silicone gel obtained by first curing a composition containing the following components in a gel state and further having secondary curing reactivity.
  • the storage elastic modulus G ′ cured of the cured product of the curing reactive silicone gel obtained by the curing reaction is increased by 100% or more as compared with the storage elastic modulus G ′ gel of the silicone gel layer before curing.
  • the curing reactive silicone gel according to any one of [1] to [5], which is secondary curing reactive to heating, irradiation with high energy rays, or a combination thereof.
  • the component (A) includes (A-1) a linear organopolysiloxane having at least two curing reactive groups in one molecule, and (A-2) in one molecule.
  • the curing reactive silicone gel according to [1] which is a mixture of a resinous or branched organopolysiloxane having at least two curing reactive groups.
  • the component (A) is (A-1) a linear organopolysiloxane having at least two alkenyl groups or photopolymerizable functional groups in one molecule, and (A-2) at least two alkenyl groups in one molecule or It is a mixture of resinous or branched organopolysiloxane having a photopolymerizable functional group, (B) component is an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule; (C) component is a curing reaction catalyst containing a hydrosilylation reaction catalyst, The silicon-bonded hydrogen atom in component (B) is in the range of 0.25 mol or more with respect to 1 mol of the alkenyl group in component (A-1) and component (A-2) in the composition.
  • the object of the present invention is also achieved by the use of a curing reactive silicone gel in the following form.
  • the adhesive according to [10] which is used for manufacturing an electronic component.
  • the object of the present invention is achieved by the following electronic component and electronic component manufacturing member.
  • the curing reactive silicone gel of the present invention is a soft silicone gel having excellent heat resistance before curing, low elastic modulus, low stress, and excellent stress buffering properties and flexibility before curing. In addition, it is possible to provide a hard cured layer that has high mold retention and excellent releasability. Furthermore, by using the curing reactive silicone gel of the present invention, it is difficult to cause problems such as adhesion of the silicone gel or cured product thereof to the base material or electronic component, and it is difficult to cause defects of electronic components or defective products. , An adhesive, a protective agent or a sealant, and a member for producing an electronic component, and further an electronic component having a cured product of the curing reactive silicone gel.
  • the curing-reactive silicone gel of the present invention exhibits a non-flowable gel shape, undergoes a curing reaction in response to heating, irradiation with high energy rays, etc., has a higher shape retention than before the curing reaction, and has a release property. It turns into an excellent hardened product.
  • the shape of the silicone gel is not particularly limited, but a layered shape is preferable, and when used for an electronic component manufacturing application described later, a substantially flat silicone gel layer is preferable.
  • the thickness of the silicone gel layer is not particularly limited, but the average thickness may be in the range of 10 to 500 ⁇ m, in the range of 25 to 300 ⁇ m, or in the range of 30 to 200 ⁇ m.
  • the gap (gap) derived from unevenness on the base material is difficult to be filled, and when it exceeds 500 ⁇ m, the silicone gel layer is formed for the purpose of placement at the time of temporary retention / processing of electronic components, especially in electronic component manufacturing applications. If used, it may be uneconomical.
  • the silicone gel is an organopolysiloxane crosslinked product having a relatively low crosslinking density.
  • the silicone gel loss coefficient tan ⁇ (viscoelasticity measuring device) (Measured at a frequency of 0.1 Hz) is preferably in the range of 0.01 to 1.00 at 23 ° C. to 100 ° C., and 0.03 to 0.95, 0.00 at 23 ° C. A range of 10 to 0.90 is more preferable.
  • the silicone gel of the present invention is such that the curing reaction hardly proceeds rapidly at 50 ° C. or lower, preferably 80 ° C. or lower, more preferably 100 ° C. or lower, and the loss coefficient tan ⁇ of the silicone gel is within the above temperature range. Satisfies the above range.
  • the silicone gel has a curing reactivity, and is characterized in that it changes from the above gel-like properties and physical properties to a hard cured product having higher shape retention and excellent releasability. More specifically, the storage elastic modulus G ′ cured of the cured silicone gel obtained by the curing reaction is preferably increased by 100% or more as compared to the storage elastic modulus G ′ gel of the silicone gel before curing. % Or more, 200% or more, or 300% or more is more preferable. That is, as G ′ cured / G ′ gel shows a larger value, it means that the soft and flexible gel-like product changes to a hard cured product with higher shape retention.
  • the curing reaction mechanism of the silicone gel is not particularly limited, for example, hydrosilylation reaction curing type by alkenyl group and silicon atom-bonded hydrogen atom; dehydration condensation reaction curing by silanol group and / or silicon atom-bonded alkoxy group Type, dealcoholization condensation curing type; peroxide curing reaction type by use of organic peroxide; and radical reaction curing type by irradiation of high energy rays for mercapto groups, etc. Since the reaction can be easily controlled, a hydrosilylation reaction curing type, a peroxide curing reaction type, a radical reaction curing type, and a combination thereof are desirable. These curing reactions proceed upon heating, irradiation with high energy rays, or a combination thereof.
  • the silicone gel When the silicone gel is cured by heating, the whole is cured by a curing reaction by heating at a temperature exceeding 100 ° C., preferably exceeding 120 ° C., more preferably 150 ° C. or more, and most preferably 170 ° C. or more. Including at least a step. Heating at 150 ° C. or more is particularly preferably employed when the silicone gel curing reaction mechanism is a peroxide curing reaction type mechanism or a curing reaction mechanism including an encapsulated hydrosilylation reaction catalyst. Is done. Practically, a range of 120 ° C. to 200 ° C. or 150 to 180 ° C. is preferably selected. Although it is possible to heat and cure at a relatively low temperature of 50 ° C. to 100 ° C., the silicone gel of the present invention preferably maintains a gel state at a low temperature. It is preferable not to proceed substantially, i.e., to maintain the gel state.
  • high energy rays examples include ultraviolet rays, electron beams, and radiation, but ultraviolet rays are preferable in terms of practicality.
  • ultraviolet ray generation source a high-pressure mercury lamp, a medium-pressure mercury lamp, a Xe—Hg lamp, a deep UV lamp, or the like is preferable.
  • irradiation with ultraviolet rays having a wavelength of 280 to 400 nm, preferably 350 to 400 nm is preferable.
  • the irradiation dose at this time is preferably 100 to 10,000 mJ / cm 2.
  • a selective hardening reaction is possible irrespective of said temperature conditions.
  • a preferable curing operation, a curing reaction mechanism and conditions for curing the curing reactive silicone gel of the present invention are as follows.
  • the heating time or the irradiation amount of ultraviolet rays can be appropriately selected according to the thickness of the silicone gel, the desired physical properties after curing, and the like.
  • the curing reactive silicone gel is obtained as a gel-like cured product (primary curing reaction) of the curable silicone composition.
  • an unreacted curing reactive functional group or an unreacted organic peroxide is present in the silicone cross-linked product constituting the silicone gel, and the curing reaction (secondary reaction) is further performed by the curing operation described above.
  • the curing reaction) proceeds to form a hard cured product with a higher crosslink density.
  • a curing reactive silicone gel layer which is a constituent of the present invention, is obtained by the primary curing reaction, and the silicone gel is harder by the secondary curing reaction. It changes into a hardened layer.
  • the silicone gel layer can be cured even with a functional group that is not curing reactive by another curing reaction mechanism, such as an alkyl group.
  • the primary curing reaction mechanism for forming the silicone gel from the curable silicone composition is not particularly limited.
  • hydrosilylation reaction curing type by alkenyl group and silicon atom-bonded hydrogen atom; silanol group and / or silicon atom bond
  • Dehydration condensation reaction curing type by alkoxy group or dealcoholization condensation reaction curing type
  • peroxide curing reaction type by use of organic peroxide
  • radical reaction curing type by irradiation of high energy rays for mercapto groups, etc .
  • photoactive platinum complex The hydrosilylation reaction hardening type by high energy ray irradiation using a curing catalyst etc. is mentioned.
  • the (secondary) curing reaction mechanism of the silicone gel and the mechanism of the primary curing reaction when forming the silicone gel may be the same or different.
  • the silicone gel layer is heated at a high temperature to cure the silicone gel. May be.
  • the same curing mechanism is selected as a primary curing reaction for obtaining a silicone gel from a curable silicone composition and a secondary curing reaction for further curing the silicone gel, a silicone obtained by first curing the curable silicone composition. It is necessary that unreacted curable reactive groups and curing agents remain in the gel.
  • the reactive functional group is not necessarily required, and a sufficient amount of unreacted organic peroxide is present in the silicone gel as a curing agent. If so, the secondary curing reaction proceeds by the organic peroxide.
  • the silicone gel is curing reactive, it preferably contains one or more curing agents selected from hydrosilylation reaction catalysts, organic peroxides, and photopolymerization initiators. These curing agents may be encapsulated.
  • an encapsulated curing agent particularly a hydrosilylation reaction catalyst. it can.
  • a hydrosilylation reaction catalyst such as a photoactive platinum complex curing catalyst that accelerates the hydrosilylation reaction by irradiation with high energy rays such as ultraviolet rays may be used.
  • These curing agents are designed in such a way that when a curing-reactive silicone gel is formed by primary curing of the curable silicone composition, it remains in the silicone gel as a curing agent after the primary curing. Or, select the conditions so that the primary curing reaction and the secondary curing reaction after the formation of the silicone gel are different, and add a curing agent corresponding to each, so that there is no reaction in the silicone gel. It can be left in the state.
  • Examples of the hydrosilylation reaction catalyst include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst, and a platinum-based catalyst is preferable because curing of the composition can be significantly accelerated.
  • Examples of the platinum catalyst include fine platinum powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, a platinum-carbonyl complex, and a platinum resin such as silicone resin, polycarbonate
  • Examples thereof include catalysts dispersed or encapsulated with thermoplastic resins such as resins and acrylic resins, and platinum-alkenylsiloxane complexes are particularly preferred.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferred because the platinum-alkenylsiloxane complex has good stability.
  • stimulates hydrosilylation reaction you may use non-platinum type metal catalysts, such as iron, ruthenium, and iron / cobalt.
  • the curing reactive silicone gel of the present invention may use a particulate platinum-containing hydrosilylation reaction catalyst dispersed or encapsulated with a thermoplastic resin.
  • a particulate platinum-containing hydrosilylation reaction catalyst dispersed or encapsulated with a thermoplastic resin.
  • the storage stability of the curing reactive silicone gel is improved and the temperature of the curing reaction is controlled.
  • the advantage is obtained. That is, at the time of forming the silicone gel by the primary curing reaction, the encapsulated curing agent is selected by selecting a temperature condition in which the thermoplastic resin such as wax forming the capsule (the capsule wall material containing the curing agent) does not melt. It can remain in the silicone gel in an unreacted and inert state.
  • curing agent can be anticipated. Furthermore, in the curing reaction (secondary curing reaction) of the silicone gel, by selecting high temperature conditions that exceed the melting temperature of the thermoplastic resin that forms the capsule, the reaction activity of the curing agent in the capsule can be controlled only under specific high temperature conditions. It can be expressed selectively. Thereby, it is possible to easily control the curing reaction of the silicone gel.
  • a thermoplastic resin such as wax (a capsule wall material containing a curing agent) is appropriately selected according to the temperature conditions for forming the silicone gel and the temperature conditions for curing the curing reactive silicone gel.
  • the curing agent is not limited to a platinum-containing hydrosilylation reaction catalyst.
  • a hydrosilylation reaction catalyst such as a photoactive platinum complex curing catalyst that accelerates the hydrosilylation reaction by irradiation with high energy rays such as ultraviolet rays may be used in addition to heating.
  • Such hydrosilylation reaction catalyst is preferably exemplified by a ⁇ -diketone platinum complex or a platinum complex having a cyclic diene compound as a ligand, such as trimethyl (acetylacetonato) platinum complex, trimethyl (2,4-pentanedionate).
  • the silicone gel is formed by the primary curing reaction or the silicone by the secondary curing using the curable silicone composition as a raw material without performing a heating operation.
  • the curing reaction of the gel can be advanced.
  • the content of the catalyst for hydrosilylation reaction is such that when the entire silicone gel is 100 parts by mass, the amount of metal atoms is in the range of 0.01 to 500 ppm by mass, and the amount is in the range of 0.01 to 100 ppm. Alternatively, the amount is preferably in the range of 0.01 to 50 ppm.
  • the organic peroxide examples include alkyl peroxides, diacyl peroxides, peroxide esters, and carbonates.
  • the 10-hour half-life temperature of the organic peroxide is preferably 70 ° C. or higher, and may be 90 ° C. or higher.
  • the primary curing reaction that forms the silicone gel when high energy ray irradiation is selected, it is preferable to select an organic peroxide that is not deactivated by the primary curing.
  • alkyl peroxides examples include dicumyl peroxide, di-tert-butyl peroxide, di-tert-butylcumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, , 5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, tert-butylcumyl, 1,3-bis (tert-butylperoxyisopropyl) benzene, 3,6,9-triethyl-3, An example is 6,9-trimethyl-1,4,7-triperoxonane.
  • diacyl peroxides examples include benzoyl peroxide such as p-methylbenzoyl peroxide, lauroyl peroxide, and decanoyl peroxide.
  • Peroxyesters include 1,1,3,3-tetramethylbutylperoxyneodecanoate, ⁇ -cumylperoxyneodecanoate, tert-butylperoxyneodecanoate, tert-butylperoxy Neoheptanoate, tert-butylperoxypivalate, tert-hexylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-amylperoxyl-2- Ethylhexanoate, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxyisobutyrate, di-tert-butylperoxyhexahydroterephthalate, tert-amylperoxy-3,5,5- Trimethylhexanoate, tert-butylperoxy-3,5,5 Trimethyl hexanoate, tert
  • peroxide carbonates examples include di-3-methoxybutyl peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, diisopropyl peroxycarbonate, tert-butylperoxyisopropyl carbonate, and di (4-tert-butylcyclohexyl).
  • Peroxydicarbonate, dicetyl peroxydicarbonate, and dimyristyl peroxydicarbonate are exemplified.
  • This organic peroxide preferably has a half-life of 10 hours and a temperature of 70 ° C. or higher, and may be 90 ° C. or higher or 95 ° C. or higher.
  • Such organic peroxides include p-methylbenzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, t-butylcumyl peroxide, 2,5- Dimethyl-2,5-di (tert-butylperoxy) hexane, 1,3-bis (tert-butylperoxyisopropyl) benzene, di- (2-tert-butylperoxyisopropyl) benzene, 3,6,9- An example is triethyl-3,6,9-trimethyl-1,4,7-triperoxonan.
  • the content of the organic peroxide is not limited, but it should be in the range of 0.05 to 10 parts by mass, or in the range of 0.10 to 5.0 parts by mass when the entire silicone gel is 100 parts by mass. Is preferred.
  • the photopolymerization initiator is a component that generates radicals upon irradiation with high energy rays such as ultraviolet rays and electron beams.
  • acetophenone, dichloroacetophenone, trichloroacetophenone, tert-butyltrichloroacetophenone, 2,2-diethoxyacetophenone, p- Acetophenone such as dimethylaminoacetophenone and derivatives thereof; benzoin and derivatives thereof such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin butyl ether, benzoin n-butyl ether; benzophenone, 2-chlorobenzophenone, p, p′-dichlorobenzophenone, p Benzophenones and derivatives thereof, such as, p'-bisdiethylaminobenzophenone; p-dimethylaminopropiophenone, Michler's ketone, be
  • the blending amount of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the whole silicone gel.
  • the silicone gel contains a photopolymerization initiator as a curing agent
  • other optional components such as n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthio are included in the silicone gel.
  • It may contain a photosensitizer such as urea, s-benzylisothiuronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate, and the like.
  • the silicone gel layer is not particularly limited by the composition and primary curing conditions of the curable silicone composition that is the raw material. After forming, it has good storage stability at room temperature to 100 ° C. and maintains a gel state, and is irradiated with high energy rays or heated at 100 ° C. or higher, preferably 120 ° C. or higher, more preferably 150 ° C. or higher. It is preferable that the secondary curing reaction proceeds selectively and the control thereof is easy.
  • the curable silicone composition as a raw material is gelled in a temperature range of room temperature to 100 ° C., that is, at a relatively low temperature. It is preferable to cure.
  • a curing mechanism including a hydrosilylation curing reaction or a curing reaction with an organic peroxide is selected as a secondary curing reaction after the formation of the silicone gel, these curing reactions proceed sufficiently at a low temperature of 100 ° C. or lower.
  • a curing reactive functional group or curing agent remains unreacted in the silicone gel formed by the primary curing reaction in the above temperature range, and a curing reactive silicone gel layer that can be selectively cured at a high temperature can be easily obtained. There are benefits to be gained.
  • Such a curing reactive silicone gel is obtained by curing a curable silicone composition containing at least a resinous or branched organopolysiloxane in a gel state, particularly when a hydrosilylation reaction is selected as a primary curing reaction.
  • a curable silicone composition containing a resinous organopolysiloxane having at least two alkenyl groups in one molecule is cured in a gel form.
  • the resin-like or branched-chain curing-reactive organopolysiloxane is composed of a tetrafunctional siloxy unit represented by SiO 4/2 or RSiO 3/2 (R is a monovalent organic group or hydroxyl group).
  • the curing reactive silicone gel of the present invention is obtained by first curing a curable silicone composition in a gel form.
  • the primary curing reaction for forming the silicone gel layer may be a curing reaction mechanism different from the secondary curing reaction of the silicone gel itself, or may be the same curing reaction mechanism.
  • the curable silicone composition is cured in a gel form in a temperature range of room temperature to 100 ° C.
  • Such a curable silicone composition contains A) an organopolysiloxane having at least two curable reactive groups and (C) a curing agent in one molecule, and optionally (B) an organohydrogen poly. Contains siloxane.
  • the above component (A) contains (A-1) at least two curing reactive groups in one molecule.
  • A-2) a mixture of a resinous or branched organopolysiloxane having at least two curing reactive groups in one molecule
  • B) Organohydrogenpolysiloxane and (C) a curing agent is not particularly limited, and examples thereof include a photopolymerizable functional group such as an alkenyl group or a mercapto group.
  • the curable silicone composition described above is a hydrosilylation reaction curing type with an alkenyl group and a silicon atom-bonded hydrogen atom; a dehydration condensation reaction curing type or a dealcoholization with a silanol group and / or a silicon atom-bonded alkoxy group.
  • a curing reactive silicone gel is formed by a curing reaction such as a hydrosilylation reaction curing type.
  • the peroxide curing reaction when selected, it may be a gel-like functional group that is a functional group that is not curing reactive by another curing reaction mechanism, such as an alkyl group.
  • the above-described curing reactive group includes at least an alkenyl group, and particularly includes an alkenyl group having 2 to 10 carbon atoms.
  • the alkenyl group having 2 to 10 carbon atoms include a vinyl group, an allyl group, a butenyl group, and a hexenyl group.
  • the alkenyl group having 2 to 10 carbon atoms is a vinyl group.
  • the curable silicone composition preferably contains an organohydrogenpolysiloxane having two or more Si—H bonds in the molecule as a crosslinking agent.
  • the alkenyl group of the organopolysiloxane can undergo a hydrosilylation reaction with the silicon atom-bonded hydrogen atom of the organohydrogenpolysiloxane to form a curing reactive silicone gel layer.
  • the primary curing reaction of the present invention is preferably performed at 100 ° C. or lower, preferably 80 ° C. or lower.
  • the primary curing reaction is a hydrosilylation curing reaction
  • high energy beam irradiation using a photoactive platinum complex curing catalyst or the like may be performed, and the curing reaction does not proceed sufficiently at low temperature, and the gel has a low crosslinking density. You may form a hardened
  • the above-mentioned curing reactive group is a silanol group (Si—OH) or a silicon atom-bonded alkoxy group
  • the alkoxy group includes a methoxy group, an ethoxy group, and a propoxy group.
  • Preferable examples include alkoxy groups having 1 to 10 carbon atoms such as groups.
  • the alkoxy group may be bonded to the side chain or terminal of the organopolysiloxane, may be in the form of an alkylalkoxysilyl group or an alkoxysilyl group-containing group bonded to a silicon atom via another functional group, And preferred.
  • the organopolysiloxane having a curing reactive group has a functional group of a dehydration condensation reaction curing type or a dealcoholization condensation reaction curing type, and has a curing reactive group by another curing mechanism in the same molecule. Also good.
  • a hydrosilylation reactive functional group or a photopolymerizable functional group may be present in the same molecule.
  • a curing reactive functional group is not particularly required. Therefore, a dehydration condensation reaction curing type or dealcoholization condensation reaction curing type curable silicone composition containing an organic peroxide is used.
  • a gel-like cured layer is formed by a condensation reaction, and then the gel layer is secondarily cured with an organic peroxide by heating or the like.
  • the curing reactive group has the general formula of silicon atom bond:
  • An alkoxysilyl group-containing group represented by the formula is suitably exemplified.
  • R 1 is the same or different monovalent hydrocarbon group having no aliphatic unsaturated bond, and is preferably a methyl group or a phenyl group.
  • R 2 is an alkyl group, and is preferably a methyl group, an ethyl group or a propyl group in order to constitute a dealcohol-condensation reactive alkoxy group.
  • R 3 is an alkylene group bonded to a silicon atom, preferably an alkylene group having 2 to 8 carbon atoms.
  • a is an integer of 0 to 2
  • p is an integer of 1 to 50. From the standpoint of dealcohol condensation reactivity, most preferably, a is 0, and it is preferably a trialkoxysilyl group-containing group.
  • a hydrosilylation reactive functional group or a photopolymerization reactive functional group may be included in the same molecule.
  • the primary curing reaction is a dehydration condensation reaction curing type or a dealcoholization condensation reaction curing type
  • the above-mentioned crosslinking agent is not necessary, but an organohydrogenpolysiloxane may be included to advance the secondary curing reaction. .
  • a condensation reaction catalyst is not particularly limited, and examples thereof include organic tin compounds such as dibutyltin dilaurate, dibutyltin diacetate, tin octenoate, dibutyltin dioctate, and tin laurate; tetrabutyl titanate, tetrapropyl Organic titanium compounds such as titanate and dibutoxybis (ethylacetoacetate); other acidic compounds such as hydrochloric acid, sulfuric acid and dodecylbenzenesulfonic acid; alkaline compounds such as ammonia and sodium hydroxide; 1,8-diazabicyclo [5.4.0] Examples include amine compounds such as undecene (DBU) and 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • DBU undecene
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • the curing reactive group may be a radical reactive functional group by peroxide, such as an alkyl group, an alkenyl group, an acrylic group, a hydroxyl group, etc.
  • Peroxide curing reactive functional groups can be used without limitation. However, as described above, since the peroxide curing reaction generally proceeds at a high temperature of 150 ° C. or higher, in the laminate of the present invention, the peroxide curing reaction is a curing of the silicone gel layer, that is, a secondary curing reaction. Preferably it is selected.
  • the curing reaction with most of the curing reactive functional groups is completely terminated, and a gel-like cured product layer is obtained. This is because it may not be possible.
  • some organic peroxides may be deactivated by high energy ray irradiation, it is preferable to appropriately select the type and amount of the organic peroxide according to the primary curing reaction.
  • the curing reactive functional group is a photopolymerizable functional group, a mercaptoalkyl group such as a 3-mercaptopropyl group, and an alkenyl group similar to the above, or Acrylamide groups such as N-methylacrylamidepropyl.
  • the conditions for irradiating the high energy beam irradiation are not particularly limited.
  • the composition is cooled at room temperature or cooled in air, in an inert gas such as nitrogen gas, argon gas, helium gas or in vacuum. A method of irradiating while heating to ⁇ 150 ° C.
  • the curable silicone composition may be coated.
  • ultraviolet rays having a wavelength of 280 to 450 nm, preferably 350 to 400 nm are used, and the curable silicone composition is first cured in a gel state at room temperature, the cured reactive silicone gel layer is subjected to other heating.
  • the curing reactive silicone gel comprises (A) an organopolysiloxane having a curing reactive group as described above, and (B) an organohydrogenpolysiloxane depending on the curing reaction, and (C) a curable silicone composition containing a curing agent.
  • the curable silicone composition comprises (A-1) a linear organopolysiloxane having at least two curing reactive groups in one molecule, and (A-2) at least two in one molecule. It is preferable to include a resinous or branched organopolysiloxane having a curing reactive group.
  • the component (A-1) is a linear organopolysiloxane having at least two curing reactive groups in one molecule.
  • the property at room temperature of the component (A-1) may be oily or raw rubber, and the viscosity of the component (A-1) is preferably 50 mPa ⁇ s or more, particularly 100 mPa ⁇ s or more at 25 ° C.
  • the component (A-1) preferably has a viscosity of 100,000 mPa ⁇ s or more at 25 ° C. or a raw rubber having a plasticity. .
  • the component (A-1) having a lower viscosity can be used.
  • the component (A-2) is a resinous or branched organopolysiloxane having at least two curing reactive groups in one molecule, and in particular, at least two curing reactions in one molecule.
  • the use of a resinous curing reactive organopolysiloxane (organopolysiloxane resin) having a functional group is particularly preferred.
  • the component (A-2) is, for example, an R 2 SiO 2/2 unit (D unit) and an RSiO 3/2 unit (T unit) (wherein R is independently of each other a monovalent organic group or a hydroxyl group).
  • a resin also referred to as MQ resin
  • MQ resin comprising R3SiO1 / 2 units (M units) and SiO4 / 2 units (Q units) and having at least two curing reactive groups, hydroxyl groups or hydrolyzable groups in the molecule. It is preferable to use it.
  • the hydroxyl group or hydrolyzable group is directly bonded to silicon such as T unit or Q unit in the resin, and is a group generated as a result of silane-derived or silane hydrolysis as a
  • the curing reactive functional groups of the component (A-1) and the component (A-2) may be functional groups related to the same curing reaction mechanism, or may be related to different curing reaction mechanisms. Further, the curing reactive functional groups of the component (A-1) and the component (A-2) may be functional groups related to two or more different curing reaction mechanisms in the same molecule.
  • the component (A-1) or the component (A-2) is an organopolysiloxane having a photopolymerizable functional group and / or a hydrosilylation reactive functional group and a condensation reactive functional group in the same molecule.
  • the structure may be linear in the component (A-1) and resinous or branched in the component (A-2).
  • the component (A-2) is preferably included, but as described above, the component (A-2) includes two or more different types. It may be and is preferably a resinous or branched organopolysiloxane having a functional group related to the curing reaction mechanism.
  • Component (B) is an organohydrogenpolysiloxane, which is an optional crosslinking component or molecular chain extension component, particularly when the curing reactive functional group is an alkenyl group and the curing agent includes a hydrosilylation reaction catalyst. It is preferable to contain.
  • the component (B) is an organohydrogenpolysiloxane having two or more Si—H bonds in the molecule.
  • Component (C) is a curing agent, and is one or more curing agents selected from the above hydrosilylation reaction catalyst, organic peroxide and photopolymerization initiator.
  • said curable silicone composition can contain components other than the said component.
  • curing retarder for example, curing retarder; adhesion-imparting agent; non-reactive organopolysiloxane such as polydimethylsiloxane or polydimethyldiphenylsiloxane; phenol, quinone, amine, phosphorus, phosphite, sulfur, or thioether Antioxidants such as triazoles or benzophenones; flame retardants such as phosphate esters, halogens, phosphorus, or antimony; cationic surfactants, anionic surfactants, or non One or more kinds of antistatic agents composed of ionic surfactants, dyes, pigments, reinforcing fillers, thermally conductive fillers, dielectric fillers, electrically conductive fillers, releasable components, and the like can be included.
  • the reinforcing filler is a component that imparts mechanical strength to the silicone gel and improves thixotropy, and the silicone gel layer softens against heating when the silicone gel layer undergoes a secondary curing reaction.
  • deterioration or deformation of the shape retention can be suppressed.
  • the mechanical strength, shape retention, and surface release properties of the cured product after the secondary curing reaction may be further improved by blending the reinforcing filler.
  • reinforcing filler examples include fumed silica fine powder, precipitated silica fine powder, calcined silica fine powder, fumed titanium dioxide fine powder, quartz fine powder, calcium carbonate fine powder, diatomaceous earth fine powder, oxidation
  • inorganic fillers such as aluminum fine powder, aluminum hydroxide fine powder, zinc oxide fine powder, and zinc carbonate fine powder, and these inorganic fillers include organoalkoxysilanes such as methyltrimethoxysilane and trimethylchlorosilane.
  • Siloxanes such as organosilazanes such as organohalosilanes, hexamethyldisilazanes, ⁇ , ⁇ -silanol-capped dimethylsiloxane oligomers, ⁇ , ⁇ -silanol-capped methylphenylsiloxane oligomers, ⁇ , ⁇ -silanol-capped methylvinylsiloxane oligomers
  • the surface-treated inorganic filler may be contained.
  • Thermally conductive filler or conductive filler is a component that imparts thermal conductivity or electrical conductivity to a cured silicone rubber obtained by curing the present composition, if desired, such as gold, silver, nickel, copper, etc.
  • Metal fine powder Fine powder obtained by depositing or plating a metal such as gold, silver, nickel, copper or the like on the surface of fine powder such as ceramic, glass, quartz, organic resin; metal compound such as aluminum oxide, aluminum nitride, zinc oxide, and the like A mixture of two or more of these is exemplified. Particularly preferred are silver powder, aluminum powder, aluminum oxide powder, zinc oxide powder, aluminum nitride powder or graphite.
  • the composition When the composition is required to have electrical insulation, it is preferably a metal oxide powder or a metal nitride powder, particularly an aluminum oxide powder, a zinc oxide powder, or an aluminum nitride powder. Preferably there is.
  • These heat conductive fillers or conductive fillers are preferably heated and mixed with the component (B) at a temperature of 100 to 200 ° C. under reduced pressure.
  • the component (B) is a siloxane having an alkoxysilyl-containing group, and the surface treatment of the thermally conductive filler or conductive filler may result in a composition having low viscosity and excellent handling workability even with high filling. is there.
  • the average particle diameter of such a heat conductive filler or conductive filler is preferably in the range of 1 to 100 ⁇ m in median diameter, and more preferably in the range of 1 to 50 ⁇ m.
  • the curable silicone composition includes an organic solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane; ⁇ , ⁇ -trimethylsiloxy group-blocked dimethylpolysiloxane, ⁇ , ⁇ -trimethylsiloxy group-blocked.
  • organic solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane
  • ⁇ , ⁇ -trimethylsiloxy group-blocked dimethylpolysiloxane ⁇ , ⁇ -trimethylsiloxy group-blocked.
  • Non-crosslinkable diorganopolysiloxane such as methylphenylpolysiloxane; Flame retardant such as carbon black; Antioxidant such as hindered phenolic antioxidant; Heat-resistant agent such as iron oxide; Hydroxydialkylsiloxy group at both ends of molecular chain Plasticizers such as blocked dialkylsiloxane oligomers; and other pigments, thixotropic agents, and fungicides may be optionally contained within a range that does not impair the object of the present invention.
  • a hydrosilylation reaction inhibitor may be added as a curing retarder. preferable.
  • the content of the curing retarder is not limited, but is preferably in the range of 10 to 10000 ppm by mass with respect to the cur
  • an organosilicon compound having at least one alkoxy group bonded to a silicon atom in one molecule is preferable.
  • the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is particularly preferable.
  • a halogen-substituted or unsubstituted monovalent hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group
  • Glycidoxyalkyl groups such as 3-glycidoxypropyl group and 4-glycidoxybutyl group
  • Examples include epoxycyclohexylalkyl groups; epoxyalkyl groups such as 3,4-epoxybutyl groups and 7,8-epoxyoctyl groups; acrylic group-containing monovalent organic groups such as 3-methacryloxypropyl groups; and hydrogen atoms.
  • This organosilicon compound preferably has an alkenyl group or a group capable of reacting with a silicon atom-bonded hydrogen atom in the composition, and specifically, preferably has a silicon atom-bonded hydrogen atom or an alkenyl group. Moreover, since it can provide favorable adhesiveness to various types of substrates, the organosilicon compound preferably has at least one epoxy group-containing monovalent organic group in one molecule. Examples of such organosilicon compounds include organosilane compounds, organosiloxane oligomers, and alkyl silicates.
  • organosiloxane oligomer or alkyl silicate examples include linear, partially branched linear, branched, cyclic, and network, particularly linear, branched, and network.
  • organosilicon compounds include silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane; silicon atoms in one molecule Siloxane compound having at least one bonded alkenyl group or silicon atom bonded hydrogen atom, and silicon atom bonded alkoxy group, silane compound or siloxane compound having at least one silicon atom bonded alkoxy group and silicon atom bonded hydroxy in one molecule Examples thereof include a mixture of a group and a siloxane compound each having at least one silicon-bonded alkenyl group, methyl polysilicate,
  • This adhesion-imparting agent is preferably a low-viscosity liquid, and the viscosity is not limited, but it is preferably in the range of 1 to 500 mPa ⁇ s at 25 ° C. Further, the content of the adhesion-imparting agent is not limited, but is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the curable silicone composition.
  • the silicone gel of the present invention has an alkenyl group or a photopolymerizable functional group as a curing reactive group in either the primary curing reaction of the curable silicone composition or the secondary curing reaction of the silicone gel.
  • organohydrogenpolysiloxane is contained as a cross-linking agent and they are cured by a hydrosilylation reaction catalyst.
  • the silicone gel layer according to the present invention is preferably a linear organopolysiloxane having at least two alkenyl groups or photopolymerizable functional groups in one molecule as the component (A-1).
  • Component (A-2) is a resinous or branched organopolysiloxane having at least two alkenyl groups or photopolymerizable functional groups in one molecule, and component (B) is at least in one molecule.
  • the component (C) may further contain an organic peroxide, and even if the above-mentioned curing reactive functional group is consumed during the gel formation in the primary curing reaction, the secondary curing is performed by heating. The reaction proceeds.
  • the content of each component in the composition is such that the curable silicone composition can be primarily cured in a gel state, and the silicone gel after the primary curing reaction can be subjected to a secondary curing reaction. is there.
  • the primary curing reaction is a hydrosilylation curing reaction
  • the silicon-bonded hydrogen atoms in the component (B) are 0.25 mol or more. It is preferable that it is 0.26 mol or more.
  • the preferred component (A-1) is a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer with both ends of the molecular chain, a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer with both ends of the molecular chain.
  • Polymer molecular chain both ends dimethylvinylsiloxy group-blocked dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked methylphenylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecule Examples thereof include dimethylsiloxane / methylvinylsiloxane copolymer blocked with both ends of the chain dimethylphenylsiloxy group and dimethylpolysiloxane blocked with molecular chain at both ends of the methylvinylphenylsiloxy group.
  • a suitable component (A-2) is a resinous organopolysiloxane having a hydrosilylation reactive group and / or a radical reactive group when heated in the presence of high energy beam irradiation or an organic peroxide.
  • triorganosiloxy unit (M unit) organo group is only methyl group, methyl group and vinyl group or phenyl group
  • diorganosiloxy unit (D unit) organo group is only methyl group, methyl group and A vinyl group or a phenyl group.
  • a monoorganosiloxy unit (T unit) (the organo group is a methyl group, a vinyl group, or a phenyl group) and an MQ resin comprising any combination of a siloxy unit (Q unit).
  • MDQ resin, MTQ resin, MDTQ resin, TD resin, TQ resin, and TDQ resin are examples of a siloxy unit
  • the preferred component (B) is a dimethylhydrogensiloxy group-capped methylphenyl polysiloxane having both molecular chain ends, a dimethylhydrogensiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer having both molecular chain terminals, and both molecular chain both ends.
  • Illustrative are siloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymers and mixtures of two or more of these organopolysiloxanes.
  • the component (B) is exemplified by a methylhydrogensiloxane / dimethylsiloxane copolymer blocked with a trimethylsiloxy group-blocked trimethylsiloxy group having a viscosity at 25 ° C. of 1 to 500 mPa ⁇ s.
  • a suitable component (C) contains the hydrosilylation reaction catalyst described above, and one or more curing agents selected from organic peroxides and photopolymerization initiators, depending on the choice of primary curing reaction or secondary curing reaction. It is preferable to contain.
  • a gravure coat, an offset coat, an offset gravure, a roll coat using an offset transfer roll coater, a reverse roll coat, an air knife coat, A curtain coat using a curtain flow coater, a comma coat, a Meyer bar, and other methods used for forming a known hardened layer can be used without limitation.
  • the silicone gel according to the present invention cures a curable silicone composition into a gel by a hydrosilylation reaction curing type, a dehydration condensation reaction curing type, a dealcoholization condensation reaction curing type, or a radical reaction curing type by high energy ray irradiation. It is preferable that In particular, a hydrosilylation reaction curable type at a low temperature of 100 ° C. or less, a radical reaction curable type by high energy ray irradiation at room temperature, or a hydrosilylation reaction curable type by high energy ray irradiation is suitable.
  • the secondary curing reaction of the silicone gel is preferably a curing reaction that proceeds at a high temperature exceeding 100 degrees, and is preferably a hydrosilylation reaction curing type or a peroxide curing reaction type. As described above, by using an encapsulated hydrosilylation reaction catalyst, it is also preferable to control the reaction so that secondary curing is performed under a temperature condition higher than the melting temperature of the thermoplastic resin that is the capsule wall material.
  • the curing reactive silicone gel of the present invention is gel-like, flexible and excellent in deformability and followability, so that the temporary adhesive that temporarily holds the base material or other members, or the base material and other members Can be suitably used as a semi-permanent adhesive for the purpose of semi-permanently bonding.
  • the curing-reactive silicone gel of the present invention does not contain an adhesion-imparting component after secondary curing, it can be effectively retained by contacting or arranging another member on the gel. The member can be easily separated from the cured surface by allowing the gel to undergo a secondary curing reaction.
  • the curing reactive silicone gel of the present invention is useful as a temporary adhesive.
  • an adhesive-imparting functional group such as an epoxy group is incorporated into the polymer as an adhesive component after secondary curing, or a known adhesion-imparting agent such as an epoxy silane is added to the curing reactive silicone gel of the present invention.
  • the adhesive mode of the cured material obtained by secondary curing of the gel with another member to be bonded is an adhesive state in which the fracture mode at the time of adhesive fracture is a cohesive mode, and is a semi-permanent adhesive.
  • the curing reactive silicone gel of the present invention can be used by adjusting the adhesion mode according to its use, and is particularly useful as an adhesive used in the production of electronic components.
  • the curing reactive silicone gel of the present invention is a gel-like, soft, low elastic modulus, low stress, excellent in stress buffering properties, and forms a hardened product by secondary curing, thereby protecting various members.
  • the curing reactive silicone gel of the present invention can also be used as a sealing material, a potting material, and a sealing material, and is also suitable for use as a sealant.
  • Such applications include building members, electrical / electronic parts, vehicle parts, and the like, and in particular, the curing reactive silicone gel of the present invention is useful as an adhesive used in the production of electronic parts.
  • the silicone gel of the present invention is particularly useful for the production of electronic components, and forms a silicone gel layer on various substrates to form an electronic component placement surface that is stable, flat, and excellent in stress relaxation properties.
  • processing defects of the electronic component are less likely to occur due to surface irregularities of the base material, positional displacement of the electronic component, and vibration displacement (damping) during the manufacture of the electronic component.
  • the silicone gel layer by curing the silicone gel layer, the electronic component can be easily peeled from the cured product, and defective products derived from residues (residue residue) such as silicone gel are less likely to occur. Have.
  • the silicone gel of the present invention is useful as a silicone gel layer constituting a laminate for producing an electronic component.
  • the laminate will be described.
  • the substrate on which the silicone gel layer is laminated may have irregularities, and it is particularly preferable that the irregularities are filled or followed without gaps by the silicone gel layer to form a flat silicone gel layer. Since the curing reactive silicone gel layer of the present invention is flexible and has excellent deformability and followability, it is less likely to cause gaps even on uneven substrates, and problems such as separation and deformation of the silicone gel surface are less likely to occur. Garage.
  • the base material used for this invention is not specifically limited, You may select a desired base material suitably.
  • adherends or substrates made of glass, ceramics, mortar, concrete, wood, aluminum, copper, brass, zinc, silver, stainless steel, iron, tin, tinplate, nickel-plated surfaces, epoxy resins, phenolic resins, etc. Is done.
  • examples include an adherend or a substrate made of a thermoplastic resin such as polycarbonate resin, polyester resin, ABS resin, nylon resin, polyvinyl chloride resin, polyphenylene sulfide resin, polyphenylene ether resin, polybutylene terephthalate resin. These may be rigid plate shapes or flexible sheet shapes. Further, it may be an extensible film-like or sheet-like substrate used for a substrate such as a dicing tape.
  • the base material used in the present invention may be subjected to surface treatment such as primer treatment, corona treatment, etching treatment, plasma treatment or the like for the purpose of improving the adhesion and adhesion to the curing reactive silicone gel layer.
  • surface treatment such as primer treatment, corona treatment, etching treatment, plasma treatment or the like for the purpose of improving the adhesion and adhesion to the curing reactive silicone gel layer.
  • the cured reactive silicone gel layer is cured to form a cured product layer excellent in mold retention and releasability, and even after low adhesion, the cured product layer and the base material It becomes possible to keep the adhesive force sufficiently high and to more easily separate the electronic components and the like disposed on the cured layer.
  • the substrate is a pedestal on which the electronic components are at least temporarily arranged during the production process, a semiconductor wafer for lamination, a ceramic element (including a ceramic capacitor), and an electronic circuit.
  • the base material etc. which can be utilized as a board
  • a base material that can be used as a pedestal for processing electronic parts, a circuit board, a semiconductor substrate, or a semiconductor wafer is preferable.
  • the material of these base materials is not particularly limited, but as a member suitably used as a circuit board or the like, an organic resin such as a glass epoxy resin, a bakelite resin or a phenol resin; a ceramic such as alumina; a copper or aluminum Examples of such materials include metals such as silicon wafers and semiconductor wafers. Furthermore, when the base material is used as a circuit board, a conductive wire made of a material such as copper, silver or palladium may be printed on the surface thereof.
  • the curing reactive silicone gel of the present invention has an advantage that a flat silicone gel surface can be formed by filling or following these irregularities on the surface of the circuit board without gaps.
  • the laminate of the present invention may be a laminate in which a curing reactive silicone gel layer is formed on a release layer of a sheet-like substrate (base R) provided with a release layer.
  • the silicone gel layer can be easily peeled off from the substrate R, and only the silicone gel layer can be transferred onto another substrate, preferably the above circuit board or semiconductor substrate.
  • the laminate of the present invention includes not only a laminate in which a silicone gel layer is formed on a non-peelable and uneven substrate such as a circuit board in advance, but also a silicone gel layer as a member of such a laminate. It also encompasses the concept of a peelable laminate for handling itself.
  • the sheet-like base material (base material R) provided with the release layer is substantially flat, and a base material having an appropriate width and thickness can be used without particular limitation depending on the use such as tape and film. Specifically, it is a composite type formed by laminating paper, synthetic resin film, cloth, synthetic fiber, metal foil (aluminum foil, copper foil, etc.), glass fiber, and a plurality of these sheet-like substrates.
  • the sheet-like base material is mentioned. In particular, it is preferably a synthetic resin film.
  • polyester polytetrafluoroethylene
  • polyimide polyphenylene sulfide
  • polyamide polycarbonate
  • polystyrene polypropylene
  • polyethylene polyvinyl chloride
  • polyvinylidene chloride polycarbonate
  • polyethylene terephthalate nylon
  • a resin film can be illustrated.
  • the thickness is not particularly limited, but is usually about 5 to 300 ⁇ m.
  • Examples of the release agent used to form the release layer include rubber elastomers such as olefin resins, isoprene resins, butadiene resins, long chain alkyl resins, alkyd resins, fluorine resins, silicone resins, and the like. Used.
  • a release agent comprising a silicone resin is preferred, and the use of a release agent containing a fluorine-modified silicone resin containing a fluoroalkyl group is particularly preferred.
  • the curing reactive silicone gel according to the present invention is formed on a sheet-like base material (base material R) having the release layer, the curing reactive silicone gel is different from the base material R.
  • surface treatment such as primer treatment, corona treatment, etching treatment, plasma treatment, etc. is applied to the silicone gel surface facing the substrate for the purpose of improving the adhesion and adhesion. Also good. Thereby, the adhesiveness to the other base material of the hardening reactive silicone gel isolate
  • the laminate of the present invention may be further characterized in that at least one electronic component is disposed on the silicone gel layer.
  • the type of the electronic component is not particularly limited as long as it can be arranged on the silicone gel layer.
  • the semiconductor wafer, the ceramic element (including the ceramic capacitor), the semiconductor chip, and the light emitting semiconductor, which are the element bodies of the semiconductor chip, can be used.
  • a chip is illustrated, and two or more electronic components that are the same or different may be arranged on a silicone gel layer.
  • the curing-reactive silicone gel layer in the laminate of the present invention is gel-like and the curing conditions can be selected, so that even when handled in a temperature range where the temperature is somewhat high, the curing reaction hardly proceeds.
  • the silicone gel layer can alleviate vibration and shock in the manufacturing process of electronic components. Even when the electronic component placed on the gel layer is stably held at a fixed position on the flat gel surface, and processing such as various pattern formation and dicing is performed on the electronic component. Further, there is an advantage that processing defects of the electronic component are hardly generated due to the surface unevenness of the base material, the positional deviation of the electronic component, and the vibration displacement (damping). In addition, holding
  • These electronic components may be arranged on the silicone gel layer at least partially with a configuration of an electronic circuit or an electrode pattern, an insulating film, etc., and after being arranged on the silicone gel layer, these electronic circuits
  • An electrode pattern, an insulating film, or the like may be formed.
  • a conventionally known means can be used without any particular limitation, and it is formed by a vacuum deposition method, a sputtering method, an electroplating method, a chemical plating method, an etching method, a printing method, or a lift-off method. May be.
  • the laminate of the present invention is used for the production of electronic components, it is particularly preferable to form an electronic circuit, an electrode pattern, an insulating film, etc. of the electronic component on the silicone gel layer. ) As described above, processing defects of these electronic components are suppressed by using the silicone gel layer.
  • the laminate of the present invention comprises a laminate in which at least one or more electronic components are disposed on a silicone gel layer, the silicone gel layer being cured, and at least on the substrate, the cured layer and the cured layer.
  • a laminate having a configuration in which one or more electronic components are arranged may be used.
  • the silicone gel layer forms a cured layer having excellent shape retention, hardness and surface releasability by curing. Therefore, in the laminate including the electronic component and the cured layer, only the electronic component from the cured layer is formed. Can be easily separated, and foreign matters such as residues (glue residue) derived from the silicone gel are less likely to adhere to the electronic component, and defective products are less likely to occur.
  • the laminate of the present invention is formed by forming a silicone gel layer on a base material.
  • a curable silicone composition which is a raw material composition of the silicone gel layer, is applied onto a target base material. And can be produced by curing in a gel form.
  • base material R sheet-like base material provided with said peeling layer, it can manufacture also by isolate
  • a step (A-1) of applying a curable silicone composition capable of forming a silicone gel layer by a primary curing reaction on at least one type of substrate And it can obtain by the manufacturing method which has the process (A-2) of forming the hardening reactive silicone gel layer by carrying out the primary hardening of the said curable silicone composition on a base material in a gel form.
  • the base material may be a sheet-like base material (base material R) provided with the above-described release layer, and in that case, the obtained laminate may be composed of a curing reactive silicone gel layer as a member. It is a peelable laminated body for transferring on the base material.
  • the laminate of the present invention is a process in which a curable silicone composition capable of forming a silicone gel layer by a primary curing reaction is applied onto a release layer of a sheet-like substrate (base R) provided with a release layer.
  • B-1 A step (B-2) of forming a curing reactive silicone gel layer by first curing the curable silicone composition in a gel state on the release layer, and a silicone gel layer of the laminate obtained in the above step, It can also be obtained by a production method including a step of disposing only the base material R by disposing on at least one kind of base material different from the base material R described above.
  • the surface of the laminated silicone gel layer which is different from the base material R and faces at least one kind of base material, is used for the purpose of improving its adhesion and adhesiveness.
  • Surface treatment such as primer treatment, corona treatment, etching treatment, and plasma treatment may be preferably performed on the surface of the silicone gel facing the material.
  • the improvement in the adhesion has an advantage that the substrate R can be easily separated.
  • a curing-reactive silicone gel layer is formed on a sheet-like base material (base material R) provided with the release layer, and then separated from the release layer and handled as a sheet-like member, the following method is used to obtain a uniform A silicone gel layer having a surface may be formed.
  • the curing reactive silicone gel layer is substantially flat.
  • the curable silicone composition as a raw material is applied onto a substrate having a release layer by a usual method, the cured silicone is particularly cured.
  • the thickness of the gel layer is 50 ⁇ m or more, the surface of the resulting silicone gel layer may be non-uniform by forming a non-uniform surface with a concave coating surface.
  • a base material having a release layer is applied to the curable silicone composition and the silicone gel layer, and an uncured coated surface is provided with each release layer (the above-mentioned base material R; separator) ) To form a flattened layer that is physically uniformized to obtain a flattened curing-reactive silicone gel layer.
  • a laminate in which an uncured curable silicone composition is applied between separators having a release layer is rolled using a known rolling method such as roll rolling. It is preferable.
  • An electronic component manufacturing method using the above laminate is as follows.
  • the method includes a step (III) of separating the electronic component from the cured product obtained by curing a part or all of the silicone gel layer by the above-described step.
  • the electronic component is as described in the section of [Laminated body including electronic component].
  • an electronic circuit is disposed on the electronic component after being disposed on the silicone gel layer, A step of forming an electrode pattern, an insulating film and the like may be included, and is preferable. Moreover, you may optionally divide the said laminated body into pieces (dicing).
  • the step (II) of curing part or all of the silicone gel layer is a step of secondarily curing the curable silicone gel layer.
  • the silicone gel layer has a higher shape retention than before the curing reaction, and has a release property. It turns into an excellent hard hardened layer.
  • the electronic components arranged on the silicone gel layer are easily separated, and hardly cause problems such as adhesion of the silicone gel or its cured product to the base material or the electronic component. Is.
  • ⁇ Hydrosilylation reaction inhibitor> Component (C1): 1,3,5,7-tetramethyl-1,3,5,7-tetravinyl-cyclotetrasiloxane (vinyl group content: 30.2% by weight).
  • Examples 1 to 7 ⁇ Composition: Examples 1 to 7>
  • components (A1-1), (A1-2), (A2), (B1), (C1), (D1), (E1) and (E1) E3) was used.
  • the amount of silicon atom-bonded hydrogen atoms (Si—H) of component (B1) was from 0.25 to 0.50 mol per mol of vinyl group.
  • Example 8-9 As shown in Table 2, components (A1-2), (A1-3), (B1), (D1), (E2) and (E3) were used. At that time, the sulfur atom-bonded hydrogen atom (SH) of the component (B2) was used in an amount of 0.25 mol per mol of vinyl group.
  • SH sulfur atom-bonded hydrogen atom
  • Examples 10 to 12> In Examples 10-12, as described in Table 3, (A1-2), (A1-3), (B3), (C1), (D1), and (E1) were used. At that time, the amount of silicon atom-bonded hydrogen atom (Si—H) of component (B3) was 1.2 mol per mol of vinyl group.
  • dealcoholization-type curing reactive curable silicone composition moisture-curing type SE9120 (manufactured by Dow Corning Toray) is listed in a weight ratio (40:60, 30:70 and 20:80).
  • the amount of silicon atom-bonded hydrogen atoms (Si—H) of component (B1) in the range shown in the table per mole of vinyl groups in the composition (0 The same components as in Example 1-7 were used except that the amount was 2 to 0.25 mol).
  • the amount was 2 to 0.25 mol.
  • Example 1-7 Comparative Examples 1-4 and 7
  • a UV irradiation apparatus MODEL UAW365-654-3030F, Sentec Co., Ltd.
  • a 365 nm light source about 40 mW / cm 2
  • irradiation was performed twice for 90 seconds (irradiation amount per unit area was 7200 mJ / cm 2 ).
  • Example 1-7 after measuring the amount of compressive deformation, the flat probe was raised at a rate of 0.34 mm per second to a height equal to or greater than the initial thickness of the curable gel, The value was measured as tack. Since the measured value is obtained as a negative value, the absolute value is shown in the table. A higher value means more tack, (2)
  • a pre-cured liquid silicone composition was applied on a glass plate with a spacer so as to have a thickness of 360 ⁇ m, and a product prepared under the above conditions was used. The presence or absence of tack was judged by touching with a hand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Sealing Material Composition (AREA)

Abstract

[課題]耐熱性等に優れ、低弾性率、低応力かつ応力緩衝性と柔軟性に優れたソフトなシリコーンゲルであり、硬化後は、当該シリコーンゲル層が硬化前よりも保型性が高く、離型性に優れたハードな硬化物へと変化する硬化反応性シリコーンゲルを提供することを目的とする。さらに、本発明は、当該シリコーンゲルの用途:接着剤、保護剤または封止剤、電子部品製造用部材を提供することを目的とするものであり、さらに、当該硬化反応性シリコーンゲルの硬化物を有する、電子部品を提供することを目的とする。 [解決手段]以下の成分を含有してなる組成物をゲル状に一次硬化させてなり、さらに二次硬化反応性を有する、硬化反応性シリコーンゲルおよびその使用。 (A)一分子中に、少なくとも2個の硬化反応性基を有するオルガノポリシロキサン、 (B)任意で、オルガノハイドロジェンポリシロキサン、 (C)硬化剤。

Description

硬化反応性シリコーンゲルおよびその用途
本発明は、二次硬化反応により、ソフトなゲル層からハードな硬化物層へと物性変化する硬化反応性シリコーンゲルおよびその用途に関するものである。
シリコーンゲルは反応性官能基を有するオルガノポリシロキサンを低い架橋密度となるように硬化反応させることにより得ることができ、耐熱性、耐候性、耐油性、耐寒性、電気絶縁性等に優れ、かつ、通常のエラストマー製品と異なり、ゲル状であるために低弾性率、低応力かつ応力緩衝性に優れることにより、光学用途のダンピング材、車載電子部品、民生用電子部品の保護等に広く用いられている(例えば、特許文献1~7)。特に、シリコーンゲルは、ソフトで変形しやすく、基材表面の凹凸にあわせて配置できるため、シリコーンエラストマーやハードな硬化物と異なり、平坦でない基材に対しても良好な追従性を示し、間隙や乖離を生じにくいという利点を有する。
しかしながら、このようなシリコーンゲルは、「ゲル状」であるために、振動などによる外部応力や温度変化に伴う膨張・収縮による内部応力による変形に対して弱く、ゲルが破壊されたり、保護、接着または応力緩衝が必要な電子部材等から分離または切断(ダイシング操作等)する必要が生じた場合には、対象に対して粘着質の付着物が残留してしまったり、ゲルが基材上で凝集破壊して基材や電子部品等から容易に除去できなくなる場合がある。このようなゲルの付着物は電子部品等の欠陥となりうる他、半導体等の実装時の障害、不良品の原因となるために好ましくない。一方、オルガノポリシロキサンの架橋密度を上げて完全硬化させてしまうと、シリコーンゲルの優位性である低弾性率、低応力かつ応力緩衝性に優れるという性質が実現できず、かつ、平坦でない基材に対するゲル層の追従性が悪化し、間隙や基材からの乖離を生じる場合がある。このため、従来のシリコーンゲル材料やシリコーンエラストマー等の硬化物では、上記の課題を全く解決し得ないものであった。
一方、接着性フィルムや半導体封止剤の分野では、異なる硬化反応条件を想定し、多段階で硬化反応が進行する硬化性組成物が提案されている。例えば、特許文献8では、2段階の硬化反応により、第1段階の硬化によりダイシング工程で要求される粘着性を、第2段階の硬化により強固な接着性を示し、ダイシング・ダイボンド接着シートに好適に使用される熱硬化性組成物が開示されている。また、本出願人らは、特許文献9において、初期硬化性に優れ、かつ、250℃以上の高温に暴露した場合にも高い物理的強度を維持する、硬化性シリコーン組成物を提案している。
しかしながら、従来公知の多段階硬化を想定した硬化性組成物において、シリコーンゲルを形成させることや、ソフトなゲルからハードな完全硬化物に変化する際の技術的利益等は何ら記載も示唆もされていない。
特開昭59-204259号公報 特開昭61-048945号公報 特開昭62-104145号公報 特開2003-213132号公報(特許登録3865638号) 特開2012-017458号公報(特許登録5594232号) 国際公開WO2015/155950号パンフレット(特許登録5794229号) 特開2011-153249号公報 特開2007-191629号公報(特許登録4628270号) 特開2016-124967号公報
本発明は、上記課題を解決すべくなされたものであり、耐熱性等に優れ、低弾性率、低応力かつ応力緩衝性と柔軟性に優れたソフトなシリコーンゲルであり、硬化後は、当該シリコーンゲル層が硬化前よりも保型性が高く、離型性に優れたハードな硬化物へと変化する硬化反応性シリコーンゲルを提供することを目的とする。さらに、本発明は、当該シリコーンゲルの用途:接着剤、保護剤または封止剤、電子部品製造用部材を提供することを目的とするものであり、さらに、当該硬化反応性シリコーンゲルの硬化物を有する、電子部品を提供することを目的とする。
鋭意検討の結果、本発明者らは、以下の成分を含有してなる組成物をゲル状に一次硬化させてなり、さらに二次硬化反応性を有する、硬化反応性シリコーンゲルにより、上記課題を解決できる事を見出し、本発明に到達した。
(A)一分子中に、少なくとも2個の硬化反応性基を有するオルガノポリシロキサン、
(B)任意で、オルガノハイドロジェンポリシロキサン、
(C)硬化剤
さらに、本発明者らは、当該硬化反応性シリコーンゲルを含有する接着剤、保護剤または封止剤、電子部品製造用部材により上記課題を解決できる事を見出し、本発明に到達した。
加えて、本発明者らは、当該硬化反応性シリコーンゲルにより、の硬化物を有する、電子部品により上記課題を解決できる事を見出し、本発明に到達した。
すなわち、本発明の目的は、以下の硬化反応性シリコーンゲルにより達成される。
[1] 以下の成分を含有してなる組成物をゲル状に一次硬化させてなり、さらに二次硬化反応性を有する、硬化反応性シリコーンゲル。
(A)一分子中に、少なくとも2個の硬化反応性基を有するオルガノポリシロキサン、
(B)任意で、オルガノハイドロジェンポリシロキサン、
(C)硬化剤。
[2] 損失係数tanδが、23℃~100℃において、0.01~1.00の範囲にあることを特徴とする、[1]に記載の硬化反応性シリコーンゲル。
[3] 硬化反応により得られる硬化反応性シリコーンゲルの硬化物の貯蔵弾性率G’curedが、硬化前のシリコーンゲル層の貯蔵弾性率G’gelに比べて100%以上上昇することを特徴とする、[1]または[2]に記載のシリコーンゲル。
[4] ヒドロシリル化反応触媒、過酸化物および光重合開始剤から選ばれる1種類以上の硬化剤を含有する、[1]~[3]のいずれか1項の硬化反応性シリコーンゲル。
[5] 一次硬化が室温~80℃の温度範囲において行われることを特徴とする、[1]~[4]のいずれか1項のの硬化反応性シリコーンゲル。
[6] 加熱、高エネルギー線の照射またはこれらの組み合わせに対して二次硬化反応性である、[1]~[5]のいずれか1項に記載の硬化反応性シリコーンゲル。
[7] 前記の(A)成分が、(A-1)一分子中に、少なくとも2個の硬化反応性基を有する直鎖状のオルガノポリシロキサン、および
(A-2)一分子中に、少なくとも2個の硬化反応性基を有する、樹脂状または分岐鎖状のオルガノポリシロキサン
の混合物である、[1]に記載の硬化反応性シリコーンゲル。
[8] (A)成分が、
(A-1)一分子中に、少なくとも2個のアルケニル基または光重合性官能基を有する直鎖状のオルガノポリシロキサン、および
(A-2)一分子中に、少なくとも2個のアルケニル基または光重合性官能基を有する樹脂状または分岐鎖状のオルガノポリシロキサン
の混合物であり、
(B)成分が、一分子中に、少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンであり、
(C)成分が、ヒドロシリル化反応触媒を含有する硬化反応触媒であり、
組成物中の(A-1)成分および(A-2)成分中のアルケニル基1モルに対して、(B)成分中のケイ素原子結合水素原子が、0.25モル以上の範囲であることを特徴とする、[1]に記載の硬化反応性シリコーンゲル。
[9] 平均厚みが10~500μmの範囲にあるフィルム状またはシート状の形態である、[1]~[8]のいずれか1項に記載の硬化反応性シリコーンゲル。
また、本発明の目的は、以下の形態における硬化反応性シリコーンゲルの使用によって達成される。
[10] [1]~[9]のいずれか1項に記載の硬化反応性シリコーンゲルを含有する、接着剤。
[11] [10]の接着剤であって、電子部品の製造に用いるもの。
[12] [1]~[9]のいずれか1項に記載の硬化反応性シリコーンゲルを含有する、保護剤または封止剤。
[13] [12]の保護剤または封止剤であって、電子部品の製造に用いるもの。
同様に、本発明の目的は、以下の電子部品及び電子部品製造用部材によって達成される。
[14] [1]~[9]のいずれか1項に記載の硬化反応性シリコーンゲルの硬化物を有する、電子部品。
[15] [1]~[9]のいずれか1項に記載の硬化反応性シリコーンゲルの硬化物を有する、電子部品製造用部材。
本発明の硬化反応性シリコーンゲルにより、硬化前は耐熱性等に優れ、低弾性率、低応力かつ応力緩衝性と柔軟性に優れたソフトなシリコーンゲルであって、硬化後は、硬化前よりも保型性が高く、離型性に優れたハードな硬化層へと変化するものが提供される。さらに、本発明の硬化反応性シリコーンゲルを用いることにより、基材や電子部品へのシリコーンゲルまたはその硬化物の付着物等の問題を生じにくく、電子部品の欠陥や不良品の問題を生じにくい、接着剤、保護剤または封止剤、電子部品製造用部材を提供することができ、さらに、当該硬化反応性シリコーンゲルの硬化物を有する、電子部品を提供することができる。
[硬化反応性のシリコーンゲル]
本発明の硬化反応性シリコーンゲルは非流動性のゲル状を呈し、加熱、高エネルギー線の照射等に応答して硬化反応を起こし、硬化反応前よりも保型性が高く、離型性に優れたハードな硬化物に変化する。シリコーンゲルの形状は特に限定されるものではないが、層状が好ましく、後述する電子部品の製造用途に用いる場合、実質的に平坦なシリコーンゲル層であることが好ましい。シリコーンゲル層の厚みについても特に限定されるものではないが、平均厚みが10~500μmの範囲、25~300μmの範囲または30~200μmの範囲であってよい。平均厚みが10μm未満では基材上の凹凸に由来する間隙(ギャップ)が埋まりにくく、500μmを超えると、特に電子部品製造用途において、電子部品の仮留/加工時の配置目的でシリコーンゲル層を使用する場合には、不経済となることがある。
シリコーンゲルは、架橋密度の比較的低いオルガノポリシロキサン架橋物であり、ゲルに求められる柔軟性、低弾性率、低応力および応力緩衝性の見地から、シリコーンゲルの損失係数tanδ(粘弾性測定装置より、周波数 0.1Hzにて測定されるもの)が、23℃~100℃において、0.01~1.00の範囲にあることが好ましく、23℃において0.03~0.95、0.10~0.90の範囲であることがより好ましい。なお、本発明のシリコーンゲルは50℃以下、好ましくは80℃以下、より好ましくは100℃以下において、硬化反応が急激に進行しにくいものであり、上記の温度範囲において、シリコーンゲルの損失係数tanδが前記範囲を満たすものである。
当該シリコーンゲルは、硬化反応性であり、上記のゲル状の性状および物性から、より保型性が高く、離型性に優れたハードな硬化物に変化することを特徴とする。より具体的には、硬化反応により得られるシリコーンゲルの硬化物の貯蔵弾性率G’curedが、硬化前のシリコーンゲルの貯蔵弾性率G’gelに比べて100%以上上昇することが好ましく、150%以上、200%以上または300%以上上昇することがより好ましい。すなわち、G’cured/G’gelが大きな値を示すほど、ソフトで柔軟なゲル状物が、より保型性の高いハードな硬化物に変化することを意味している。
当該シリコーンゲルの硬化反応機構は、特に限定されるものではないが、例えば、アルケニル基とケイ素原子結合水素原子によるヒドロシリル化反応硬化型;シラノール基および/またはケイ素原子結合アルコキシ基による脱水縮合反応硬化型、脱アルコール縮合反応硬化型;有機過酸化物の使用による過酸化物硬化反応型;およびメルカプト基等に対する高エネルギー線照射によるラジカル反応硬化型等が挙げられ、比較的速やかに全体が硬化し、反応を容易にコントロールできることから、ヒドロシリル化反応硬化型、過酸化物硬化反応型、ラジカル反応硬化型およびこれらの組み合わせであることが望ましい。これらの硬化反応は、加熱、高エネルギー線の照射またはこれらの組み合わせに対して進行する。
加熱により、当該シリコーンゲルを硬化させる場合、100℃を超える温度、好ましくは120℃を超える温度、より好ましくは150℃以上、最も好ましくは170℃以上での加熱による硬化反応により、全体を硬化させる工程を少なくとも含む。なお、150℃以上での加熱は、特に、当該シリコーンゲルの硬化反応機構が、過酸化物硬化反応型の機構またはカプセル化したヒドロシリル化反応触媒を含む硬化反応機構の場合に、特に好適に採用される。実用上、120℃~200℃または150~180℃の範囲が好適に選択される。50℃~100℃の比較的低温で加熱硬化させることも可能であるが、本発明のシリコーンゲルは、低温ではゲル状を維持することが好ましいので、特に、50℃以下の加熱では硬化反応が実質的に進行しない、すなわち、ゲル状を維持し続けることが好ましい。
高エネルギー線(活性エネルギー線とも言われる)としては、紫外線、電子線、放射線等が挙げられるが、実用性の点で紫外線が好ましい。紫外線発生源としては高圧水銀ランプ、中圧水銀ランプ、Xe-Hgランプ、ディープUVランプ等が好適であり、特に、波長280~400nm、好適には波長350~400nmの紫外線照射が好ましい。その際の照射量は、100~10000mJ/cm2が好ましい。なお、高エネルギー線によりシリコーンゲルを硬化させる場合には、上記の温度条件によらず、選択的な硬化反応が可能である。
実用上、本発明の硬化反応性のシリコーンゲルを硬化させる上で好ましい硬化操作、硬化反応機構およびその条件は以下のとおりである。なお、加熱時間ないし紫外線の照射量は、シリコーンゲルの厚み、目的とする硬化後の物性等に応じ、適宜選択することができる。
(i)120~200℃でのシリコーンゲルの加熱操作:ヒドロシリル化反応硬化型、過酸化物硬化反応型、またはそれらの組み合わせ
(ii)シリコーンゲルへの紫外線の照射操作:高エネルギー線照射によるラジカル反応硬化型、光活性型白金錯体硬化触媒を用いたヒドロシリル化反応硬化型、またはそれらの組み合わせ
(iii)上記の(i)および(ii)の硬化操作、硬化機構および条件の組み合わせ、特に同時または時差をおいての硬化操作の組み合わせを含む。
硬化反応性のシリコーンゲルは、硬化性シリコーン組成物のゲル状硬化物(一次硬化反応)として得られる。ここで、当該シリコーンゲルを構成するシリコーン架橋物中には、未反応の硬化反応性の官能基または未反応の有機過酸化物が存在しており、上記の硬化操作によりさらに硬化反応(二次硬化反応)が進行して、より架橋密度の高い、ハードな硬化物が形成される。なお、硬化性シリコーン組成物を出発物質とすると、一次硬化反応により、本発明の構成要件である硬化反応性のシリコーンゲル層が得られ、さらに、二次硬化反応により、シリコーンゲルはよりハードな硬化層へと変化する。なお、過酸化物硬化反応を含む硬化反応においては、アルキル基等、他の硬化反応機構では硬化反応性ではない官能基であってもシリコーンゲル層を硬化することができる。
硬化性シリコーン組成物からシリコーンゲルを形成する一次硬化反応機構は、特に限定されるものではなく、例えば、アルケニル基とケイ素原子結合水素原子によるヒドロシリル化反応硬化型;シラノール基および/またはケイ素原子結合アルコキシ基による脱水縮合反応硬化型または脱アルコール縮合反応硬化型;有機過酸化物の使用による過酸化物硬化反応型;およびメルカプト基等に対する高エネルギー線照射によるラジカル反応硬化型;光活性型白金錯体硬化触媒等を用いた高エネルギー線照射によるヒドロシリル化反応硬化型等が挙げられる。なお、シリコーンゲルの(二次)硬化反応機構と、シリコーンゲルを形成する際の一次硬化反応の機構は同一であっても異なってもよい。例えば、加熱操作を行わない脱水縮合反応、脱アルコール縮合反応または高エネルギー線照射によりシリコーンゲルを基材上に形成させた後、当該シリコーンゲル層を高温で加熱することにより、シリコーンゲルを硬化させてもよい。なお、硬化性シリコーン組成物からシリコーンゲルを得る一次硬化反応と、当該シリコーンゲルをさらに硬化する二次硬化反応として同一の硬化機構を選択する場合、硬化性シリコーン組成物を一次硬化してなるシリコーンゲル中には、未反応の硬化性反応基および硬化剤が残っていることが必要である。なお、一次硬化および二次硬化反応が過酸化物硬化反応である場合には、反応性官能基は必ずしも必要ではなく、硬化剤として未反応の有機過酸化物がシリコーンゲル中に十分量存在していれば当該有機過酸化物により、二次硬化反応は進行する。
上記のとおり、シリコーンゲルは硬化反応性であるので、ヒドロシリル化反応触媒、有機過酸化物および光重合開始剤から選ばれる1種類以上の硬化剤を含有することが好ましい。これらの硬化剤はカプセル化されていてもよく、特に、シリコーンゲルの保存安定性およびその硬化反応のコントロールの見地から、カプセル化された硬化剤、特に、ヒドロシリル化反応触媒を好適に用いることができる。さらに、紫外線等の高エネルギー線照射によりヒドロシリル化反応を促進する光活性型白金錯体硬化触媒等のヒドロシリル化反応触媒を用いてもよい。
これらの硬化剤は、硬化性シリコーン組成物を一次硬化することにより、硬化反応性のシリコーンゲルを形成する際に、一次硬化後も硬化剤としてシリコーンゲル中に残留するようにその量を設計する、または、一次硬化反応とシリコーンゲル形成後の二次硬化反応が異なる硬化反応となるように条件を選択し、各々に対応した硬化剤を添加しておくこと等により、シリコーンゲル中に未反応の状態で残留させることができる。
ヒドロシリル化反応用触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
加えて、本発明の硬化反応性シリコーンゲルは、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。このようなカプセル化した硬化剤を用いることにより、従来の取扱作業性および組成物のポットライフの改善という利点に加え、硬化反応性シリコーンゲルの保存安定性の改善およびその硬化反応の温度によるコントロールという利点が得られる。すなわち、一次硬化反応によるシリコーンゲル形成時には、当該カプセルを形成するワックス等の熱可塑性樹脂(硬化剤を内包するカプセルの壁材)が溶融しない温度条件を選択することで、カプセル化した硬化剤を未反応かつ不活性な状態でシリコーンゲル中に残存させることができる。これにより、硬化剤を含むシリコーンゲルの保存安定性の改善が期待できる。さらに、シリコーンゲルの硬化反応(二次硬化反応)においてはカプセルを形成する熱可塑性樹脂の溶融温度をこえる高温条件を選択することで、カプセル内の硬化剤の反応活性を特定の高温条件でのみ選択的に発現させることができる。これにより、シリコーンゲルの硬化反応を容易にコントロールすることが可能である。なお、このようなワックス等の熱可塑性樹脂(硬化剤を内包するカプセルの壁材)は、シリコーンゲルを形成させる温度条件や、硬化反応性シリコーンゲルを硬化させる際の温度条件に応じて適宜選択することができ、硬化剤は白金含有ヒドロシリル化反応触媒に限られない。
本発明においては、加熱以外、紫外線等の高エネルギー線照射によりヒドロシリル化反応を促進する光活性型白金錯体硬化触媒等のヒドロシリル化反応触媒を用いてもよい。このようなヒドロシリル化反応触媒は、β-ジケトン白金錯体又は環状ジエン化合物を配位子に持つ白金錯体が好適に例示され、トリメチル(アセチルアセトナト)白金錯体、トリメチル(2,4-ペンタンジオネ-ト)白金錯体、トリメチル(3,5-ヘプタンジオネート)白金錯体、トリメチル(メチルアセトアセテート)白金錯体、ビス(2,4-ペンタンジオナト)白金錯体、ビス(2,4-へキサンジオナト)白金錯体、ビス(2,4-へプタンジオナト)白金錯体、ビス(3,5-ヘプタンジオナト)白金錯体、ビス(1-フェニル-1,3-ブタンジオナト)白金錯体、ビス(1,3-ジフェニル-1,3-プロパンジオナト)白金錯体、(1,5-シクロオクタジエニル)ジメチル白金錯体、(1,5-シクロオクタジエニル)ジフェニル白金錯体、(1,5-シクロオクタジエニル)ジプロピル白金錯体、(2,5-ノルボラジエン)ジメチル白金錯体、(2,5-ノルボラジエン)ジフェニル白金錯体、(シクロペンタジエニル)ジメチル白金錯体、(メチルシクロペンタジエニル)ジエチル白金錯体、(トリメチルシリルシクロペンタジエニル)ジフェニル白金錯体、(メチルシクロオクタ-1,5-ジエニル)ジエチル白金錯体、(シクロペンタジエニル)トリメチル白金錯体、(シクロペンタジエニル)エチルジメチル白金錯体、(シクロペンタジエニル)アセチルジメチル白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、(メチルシクロペンタジエニル)トリヘキシル白金錯体、(トリメチルシリルシクロペンタジエニル)トリメチル白金錯体、(トリメチルシリルシクロペンタジエニル)トリヘキシル白金錯体、(ジメチルフェニルシリルシクロペンタジエニル)トリフェニル白金錯体、及び(シクロペンタジエニル)ジメチルトリメチルシリルメチル白金錯体からなる群から選ばれる白金錯体が具体的に例示される。
上記の高エネルギー線照射によりヒドロシリル化反応を促進する硬化剤を用いた場合、加熱操作を行うことなく、硬化性シリコーン組成物を原料として、一次硬化反応によるシリコーンゲルの形成または二次硬化によるシリコーンゲルの硬化反応を進行させることができる。
ヒドロシリル化反応用触媒の含有量は、シリコーンゲル全体を100質量部としたとき、金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、あるいは、0.01~50ppmの範囲内となる量であることが好ましい。
有機過酸化物としては、過酸化アルキル類、過酸化ジアシル類、過酸化エステル類、および過酸化カーボネート類が例示される。特に、高温選択的に硬化反応性シリコーンゲル層の硬化を進行させる場合、当該有機過酸化物の10時間半減期温度が70℃以上であることが好ましく、90℃以上であってよい。なお、シリコーンゲルを形成する一次硬化反応において、高エネルギー線照射を選択する場合には、当該一次硬化により失活しない有機過酸化物を選択することが好ましい。
過酸化アルキル類としては、ジクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、ジ-tert-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3、tert-ブチルクミル、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、3,6,9-トリエチル-3,6,9-トリメチル-1,4,7-トリパーオキソナンが例示される。
 過酸化ジアシル類としては、p-メチルベンゾニルパーオキサイド等のベンゾイルパーオキサイド、ラウロイルパーオキサイド、デカノイルパーオキサイドが例示される。
過酸化エステル類としては、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシネオヘプタノエート、tert-ブチルパーオキシピバレート、tert-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-アミルパーオキシル-2-エチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソブチレート、ジ-tert-ブチルパーオキシヘキサヒドロテレフタレート、tert-アミルパーオキシ-3,5,5―トリメチルヘキサノエート、tert-ブチルパーオキシ-3,5,5―トリメチルヘキサノエート、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエート、ジ-ブチルパーオキシトリメチルアディペートが例示される。
 過酸化カーボネート類としては、ジ-3-メトキシブチルパーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシカーボネート、tert-ブチルパーオキシイソプロピルカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネートが例示される。
 この有機過酸化物は、その半減期が10時間である温度が70℃以上であるものが好ましく、90℃以上あるいは95℃以上であってもよい。このような有機過酸化物としては、p-メチルベンゾニルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、ジ-(2-t-ブチルペルオキシイソプロピル)ベンゼン、3,6,9-トリエチル-3,6,9-トリメチル-1,4,7-トリパーオキソナンが例示される。
 有機過酸化物の含有量は限定されないが、シリコーンゲル全体を100質量部としたとき、0.05~10質量部の範囲内、あるいは0.10~5.0質量部の範囲内であることが好ましい。
光重合開始剤は紫外線や電子線などの高エネルギー線照射によりラジカルを発生する成分であり、例えば、アセトフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、tert-ブチルトリクロロアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン等のアセトフェノンおよびその誘導体;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインブチルエーテル、ベンゾインn-ブチルエーテル等のベンゾインおよびその誘導体;ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ジクロロベンゾフェノン、p,p’-ビスジエチルアミノベンゾフェノン等のベンゾフェノンおよびその誘導体;p-ジメチルアミノプロピオフェノン、ミヒラーケトン、ベンジル、ベンジルジメチルケタール、テトラメチルチウラムモノサルファイド、チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、アゾイソブチロニトリル、ベンゾインパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、メチルベンゾイルフォーメート、ジフェニルスルファイド、アントラセン、1-クロロアントラキノン、ジフェニルジスルファイド、ジアセチル、ヘキサクロロブタジエン、ペンタクロロブタジエン、オクタクロロブタジエン、1-クロロメチルナフタリンが挙げられ、好ましくは、アセトフェノン、ベンゾイン、ベンゾフェノン、およびこれらの誘導体である。
この光重合開始剤の配合量は特に限定されないが、好ましくは、シリコーンゲル全体を100質量部に対して、0.1~10質量部の範囲内である。
なお、シリコーンゲルが硬化剤として光重合開始剤を含有する場合、当該シリコーンゲル中には、その他任意の成分として、例えば、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジルイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート等の光増感剤を含んでいてもよい。
本発明に係るシリコーンゲルは、上記の硬化反応性を有するシリコーンゲルである限り、特にその原料となる硬化性シリコーン組成物の組成や一次硬化条件において制約されるものではないが、シリコーンゲル層を形成した後の室温~100℃における保存安定性が良好でゲル状を維持し、かつ、高エネルギー線の照射または100℃以上、好適には120℃以上、さらに好適には150℃以上の加熱により、選択的に二次硬化反応が進行し、かつそのコントロールが容易であることが好ましい。このため、特に高温選択的にシリコーンゲルの硬化反応が進行するように設計する場合、その原料となる硬化性シリコーン組成物を、室温~100℃の温度範囲、すなわち、比較的低温においてゲル状に硬化させることが好ましい。特に、シリコーンゲルを形成した後の二次硬化反応として、ヒドロシリル化硬化反応または有機過酸化物による硬化反応を含む硬化機構を選択した場合、100℃以下の低温ではこれらの硬化反応が十分に進行しないので、前記の温度範囲における一次硬化反応で形成されたシリコーンゲル内には硬化反応性官能基または硬化剤が未反応で残存し、高温選択的に硬化可能な硬化反応性シリコーンゲル層を容易に得られる利点がある。
このような硬化反応性シリコーンゲルは、特に一次硬化反応としてヒドロシリル化反応を選択した場合、少なくとも樹脂状または分岐鎖状のオルガノポリシロキサンを含有する硬化性シリコーン組成物をゲル状に硬化させてなるものが好ましく、特に、一分子中に、少なくとも2個のアルケニル基を有する樹脂状のオルガノポリシロキサンを含有する硬化性シリコーン組成物をゲル状に硬化させてなることが好ましい。なお、樹脂状または分岐鎖状の硬化反応性オルガノポリシロキサンは、SiO4/2で表される四官能性シロキシ単位またはRSiO3/2(Rは一価有機基または水酸基)で表される三官能性シロキシ単位を含有するオルガノポリシロキサンであって、一次硬化反応によりシリコーンゲルを形成可能な硬化反応性の官能基を有するものである。
[硬化性シリコーン組成物]
本発明の硬化反応性シリコーンゲルは、硬化性シリコーン組成物をゲル状に一次硬化させてなるものである。上記のとおり、シリコーンゲル層を形成するための一次硬化反応は、シリコーンゲル自体の二次硬化反応と異なる硬化反応機構であってもよく、同一の硬化反応機構であってもよい。一方、100℃以下でのシリコーンゲル層の安定性の見地から、硬化性シリコーン組成物を室温~100℃の温度範囲においてゲル状に硬化させることが好ましい。
このような、硬化性シリコーン組成物は、A)一分子中に、少なくとも2個の硬化反応性基を有するオルガノポリシロキサンおよび(C)硬化剤を含有し、任意で(B)オルガノハイドロジェンポリシロキサンを含有する。特に、一次硬化反応または二次硬化反応がヒドロシリル化反応硬化型の反応機構である場合、上記の(A)成分は、(A-1)一分子中に、少なくとも2個の硬化反応性基を有する直鎖状のオルガノポリシロキサン、および(A-2)一分子中に、少なくとも2個の硬化反応性基を有する、樹脂状または分岐鎖状のオルガノポリシロキサンの混合物であることが好ましく、(B)オルガノハイドロジェンポリシロキサン、(C)硬化剤を含有してなるものである。ここで、硬化反応性基は特に限定されるものではないが、アルケニル基またはメルカプト基等の光重合性官能基が例示される。
上記の硬化性シリコーン組成物は、一次硬化機構に応じて、アルケニル基とケイ素原子結合水素原子によるヒドロシリル化反応硬化型;シラノール基および/またはケイ素原子結合アルコキシ基による脱水縮合反応硬化型または脱アルコール縮合反応硬化型;有機過酸化物の使用による過酸化物硬化反応型;およびメルカプト基等に対する高エネルギー線照射によるラジカル反応硬化型;光活性型白金錯体硬化触媒等を用いた高エネルギー線照射によるヒドロシリル化反応硬化型等の硬化反応により硬化反応性シリコーンゲルを形成する。なお、過酸化物硬化反応を選択した場合、アルキル基等、他の硬化反応機構では硬化反応性ではない官能基であってゲル状に硬化することができる場合がある。
一次硬化反応がヒドロシリル化硬化反応である場合、上記の硬化反応性基は少なくともアルケニル基を含み、特に炭素数2~10のアルケニル基を含む。炭素数2~10のアルケニル基としては、ビニル基、アリル基、ブテニル基、及びヘキセニル基が挙げられる。好ましくは、炭素数2~10のアルケニル基は、ビニル基である。
同様に、一次硬化反応がヒドロシリル化硬化反応である場合、硬化性シリコーン組成物は、架橋剤としてSi-H結合を分子中に2以上有するオルガノハイドロジェンポリシロキサンを含むことが好ましい。この場合において、オルガノポリシロキサンのアルケニル基がオルガノハイドロジェンポリシロキサンのケイ素原子結合水素原子とヒドロシリル化反応して、硬化反応性シリコーンゲル層を形成することができる。その際には、上記同様のヒドロシリル化反応触媒を用いることが必要である。
上記のとおり、本発明の一次硬化反応は100℃以下、好適には80℃以下で行うことが好ましい。一次硬化反応がヒドロシリル化硬化反応である場合、光活性型白金錯体硬化触媒等を用いた高エネルギー線照射を行ってもよく、低温で当該硬化反応を十分に進行させず、架橋密度の低いゲル状の硬化物を形成させてもよい。
脱水縮合反応硬化型または脱アルコール縮合反応硬化型である場合、上記の硬化反応性基はシラノール基(Si-OH)またはケイ素原子結合アルコキシ基であり、アルコキシ基として、メトキシ基、エトキシ基、プロポキシ基等の炭素原子数1~10のアルコキシ基が好適に例示される。当該アルコキシ基は、オルガノポリシロキサンの側鎖または末端に結合してもよく、他の官能基を介してケイ素原子に結合したアルキルアルコキシシリル基またはアルコキシシリル基含有基の形態であってもよく、かつ好ましい。さらに、当該硬化反応性基を有するオルガノポリシロキサンは、脱水縮合反応硬化型または脱アルコール縮合反応硬化型の官能基のほか、他の硬化機構による硬化反応性基を同一分子内に有していてもよい。たとえば、ケイ素原子結合アルコキシ基またはシラノール基に加えて、ヒドロシリル化反応性の官能基または光重合性の官能基を同一分子内に有してもよい。なお、過酸化物硬化反応においては、特に硬化反応性の官能基は不要であるので、有機過酸化物を含む脱水縮合反応硬化型または脱アルコール縮合反応硬化型の硬化性シリコーン組成物を用いて、縮合反応によりゲル状の硬化層を形成させた後、当該ゲル層を加熱等により有機過酸化物で二次硬化させることは本発明の好適な形態の一つである。
特に、硬化反応性基としてケイ素原子結合アルコキシ基を選択する場合、当該硬化反応性基は、ケイ素原子結合の一般式:
Figure JPOXMLDOC01-appb-C000001
で表されるアルコキシシリル基含有基が好適に例示される。
上式中、Rは同じかまたは異なる、脂肪族不飽和結合を有さない一価炭化水素基であり、メチル基またはフェニル基が好ましい。Rはアルキル基であり、脱アルコール縮合反応性のアルコキシ基を構成するため、メチル基、エチル基またはプロピル基であることが好ましい。Rはケイ素原子に結合するアルキレン基であり、炭素原子数2~8のアルキレン基が好ましい。aは0~2の整数であり、pは1~50の整数である。脱アルコール縮合反応性の見地から、最も好適には、aは0であり、トリアルコキシシリル基含有基であることが好ましい。なお、上記のアルコキシシリル基含有基に加えて、ヒドロシリル化反応性の官能基または光重合反応性の官能基を同一分子内に有してもよい。
一次硬化反応が脱水縮合反応硬化型または脱アルコール縮合反応硬化型である場合、上記の架橋剤は不要であるが、二次硬化反応を進行させるためにオルガノハイドロジェンポリシロキサンを含んでいてもよい。
脱水縮合反応硬化型または脱アルコール縮合反応硬化型である場合、硬化剤として、縮合反応触媒を用いることが好ましい。このような縮合反応触媒は特に制限されるものではないが、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、オクテン酸錫、ジブチル錫ジオクテート、ラウリン酸錫等の有機錫化合物;テトラブチルチタネート、テトラプロピルチタネート、ジブトキシビス(エチルアセトアセテート)等の有機チタン化合物;その他、塩酸、硫酸、ドデシルベンゼンスルホン酸等の酸性化合物;アンモニア、水酸化ナトリウム等のアルカリ性化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等のアミン系化合物が例示される。
一次硬化反応が過酸化物硬化反応である場合には、上記の硬化反応性基は過酸化物によるラジカル反応性の官能基であればよく、アルキル基、アルケニル基、アクリル基、ヒドロキシル基等の過酸化物硬化反応性官能基を制限なく用いることができる。ただし、上記のとおり、過酸化物硬化反応は一般に150℃以上の高温で進行するため、本発明の積層体においては、過酸化物硬化反応はシリコーンゲル層の硬化、すなわち、二次硬化反応に選択されることが好ましい。高エネルギー線硬化反応性の官能基を含め、過酸化物硬化反応が進行する温度条件下では、大部分の硬化反応性官能基による硬化反応が完全に終結し、ゲル状の硬化物層が得られなくなる場合があるためである。なお、一部の有機過酸化物は高エネルギー線照射により失活する場合があるので、一次硬化反応に応じて、有機過酸化物の種類および量を適宜選択することが好ましい。
一次硬化反応が高エネルギー線照射によるラジカル反応硬化型である場合、硬化反応性官能基は、光重合性官能基であり、3-メルカプトプロピル基等のメルカプトアルキル基および上記同様のアルケニル基、またはN-メチルアクリルアミドプロピル等のアクリルアミド基である。ここで、高エネルギー線照射を照射する条件は特に限定されず、例えば、空気中、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガス中または真空中でこの組成物を室温下または冷却もしくは50~150℃に加熱しながら照射する方法が挙げられ、特に空気中かつ室温下で照射することが好ましい。また、一部の光重合性官能基は空気に接触することで硬化不良を起こすことがあるので、高エネルギー線照射の際には、任意で高エネルギー線を透過する合成樹脂フィルム等を用いて硬化性シリコーン組成物の表面を被覆してもよい。ここで、波長280~450nm、好適には波長350~400nmの紫外線を用いて、室温で硬化性シリコーン組成物をゲル状に一次硬化させた場合、硬化反応性シリコーンゲル層に、他の加熱を伴う硬化系、特にヒドロシリル化硬化反応または過酸化物硬化反応の硬化反応性基および硬化剤を未反応で残存させることができるため、二次硬化反応として加熱硬化反応を選択することで、容易に二次硬化反応をコントロールできるという利点がある。
硬化反応性シリコーンゲルは、(A)上記のような硬化反応性基を有するオルガノポリシロキサン、硬化反応によっては(B)オルガノハイドロジェンポリシロキサン、および(C)硬化剤を含有する硬化性シリコーン組成物から形成されるものであるが、本発明のシリコーンゲル層を形成する一次硬化反応またはシリコーンゲル層から硬化層を形成する二次硬化反応のいずれかにヒドロシリル化硬化反応が含まれる場合、当該硬化性シリコーン組成物は、(A-1)一分子中に、少なくとも2個の硬化反応性基を有する直鎖状のオルガノポリシロキサン、および(A-2)一分子中に、少なくとも2個の硬化反応性基を有する、樹脂状または分岐鎖状のオルガノポリシロキサンを含むことが好ましい。
(A-1)成分は、一分子中に、少なくとも2個の硬化反応性基を有する直鎖状のオルガノポリシロキサンである。(A-1)成分の室温における性状はオイル状または生ゴム状であってもよく、(A-1)成分の粘度は25℃において50mPa・s以上、特に100mPa・s以上であることが好ましい。特に、硬化性シリコーン組成物が溶剤型である場合には、(A-1)成分は、25℃において100,000mPa・s以上の粘度を有するか、可塑度を有する生ゴム状であることが好ましい。但し、より低粘度の(A-1)成分であっても、利用可能である。
(A-2)成分は、一分子中に、少なくとも2個の硬化反応性基を有する、樹脂状または分岐鎖状のオルガノポリシロキサンであり、特に、一分子中に、少なくとも2個の硬化反応性基を有する樹脂状の硬化反応性オルガノポリシロキサン(オルガノポリシロキサンレジン)の使用が特に好ましい。(A-2)成分は、例えば、RSiO2/2単位(D単位)及びRSiO3/2単位(T単位)(式中、Rは互いに独立して、一価有機基または水酸基)からなり、分子中に少なくとも2個の硬化反応性基、水酸基または加水分解性基を有するレジン、T単位単独からなり、分子中に少なくとも2個の硬化反応性基、水酸基または加水分解性基を有するレジン、並びにR3SiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなり、分子中に少なくとも2個の硬化反応性基、水酸基または加水分解性基を有するレジンなどを挙げることができる。特に、R3SiO1/2単位(M単位)及びSiO4/2単位(Q単位)からなり、分子中に少なくとも2個の硬化反応性基、水酸基または加水分解性基を有するレジン(MQレジンとも呼ばれる)を使用することが好ましい。なお、水酸基または加水分解性基は、レジン中のT単位またはQ単位などのケイ素に直接結合しており、原料となるシラン由来またはシランが加水分解した結果、生じた基である。
(A-1)成分および(A-2)成分の硬化反応性官能基は、同一の硬化反応機構に関する官能基であってもよく、異なる硬化反応機構に関する物であってもよい。また、(A-1)成分および(A-2)成分の硬化反応性官能基は、同一分子内において異なる2種類以上の硬化反応機構に関する官能基であってもよい。たとえば、(A-1)成分または(A-2)成分は、光重合性官能基および/またはヒドロシリル化反応性の官能基と、縮合反応性の官能基を同一分子内に有するオルガノポリシロキサンであってよく、その構造は、(A-1)成分においては直鎖状であり、(A-2)成分においては樹脂状または分岐鎖状である。一次硬化反応または二次硬化反応のいずれかにおいてヒドロシリル化反応を用いる場合には、(A-2)成分を含むことが好ましいが、上記のとおり、(A-2)成分は、異なる2種類以上の硬化反応機構に関する官能基を有する樹脂状または分岐鎖状のオルガノポリシロキサンであってよく、かつ、好ましい。
(B)成分はオルガノハイドロジェンポリシロキサンであり、任意の架橋成分または分子鎖延長成分であり、特に、硬化反応性官能基がアルケニル基であり、硬化剤がヒドロシリル化反応触媒を含む場合に、含有することが好ましい。好適には、(B)成分は、Si-H結合を分子中に2以上有するオルガノハイドロジェンポリシロキサンである。
(C)成分は硬化剤であり、上記のヒドロシリル化反応触媒、有機過酸化物および光重合開始剤から選ばれる1種類以上の硬化剤である。
本発明の技術的効果を損なわない範囲において、上記の硬化性シリコーン組成物は、上記成分以外の成分を含むことができる。例えば、硬化遅延剤;接着付与剤;ポリジメチルシロキサンまたはポリジメチルジフェニルシロキサンなどの非反応性のオルガノポリシロキサン;フェノール系、キノン系、アミン系、リン系、ホスファイト系、イオウ系、またはチオエーテル系などの酸化防止剤;トリアゾール系またはベンゾフェノン系などの光安定剤;リン酸エステル系、ハロゲン系、リン系、またはアンチモン系などの難燃剤;カチオン系界面活性剤、アニオン系界面活性剤、または非イオン系界面活性剤などからなる1種類以上の帯電防止剤;染料;顔料;補強性フィラー;熱伝導性フィラー;誘電性フィラー;電気伝導性フィラー;離型性成分などを含むことができる。
特に、補強性フィラーは、シリコーンゲルに機械的強度を付与し、チクソ性を改善する成分であり、シリコーンゲル層が二次硬化反応する際の加熱等に対して当該シリコーンゲル層が軟化して保型性の低下あるいは変形することを抑制することができる場合がある。これにより、シリコーンゲル層上に配置された電子部品等がシリコーンゲル層中に埋没したり、硬化層上から電子部品等を分離しにくくなる事態が効率よく抑止される点で有効である。さらに、補強性フィラーの配合により、二次硬化反応後の硬化物の機械的強度、保型性および表面離型性がさらに改善される場合がある。このような補強性フィラーとしては、例えば、ヒュームドシリカ微粉末、沈降性シリカ微粉末、焼成シリカ微粉末、ヒュームド二酸化チタン微粉末、石英微粉末、炭酸カルシウム微粉末、ケイ藻土微粉末、酸化アルミニウム微粉末、水酸化アルミニウム微粉末、酸化亜鉛微粉末、炭酸亜鉛微粉末等の無機質充填剤を挙げることができ、これらの無機質充填剤をメチルトリメトキシシラン等のオルガノアルコキシシラン、トリメチルクロロシラン等のオルガノハロシラン、ヘキサメチルジシラザン等のオルガノシラザン、α,ω-シラノール基封鎖ジメチルシロキサンオリゴマー、α,ω-シラノール基封鎖メチルフェニルシロキサンオリゴマー、α,ω-シラノール基封鎖メチルビニルシロキサンオリゴマー等のシロキサンオリゴマー等の処理剤により表面処理した無機質充填剤を含有してもよい。
熱伝導性フィラーまたは導電性フィラーは、所望により、本組成物を硬化して得られるシリコーンゴム硬化物に熱伝導性または電気伝導性を付与する成分であり、金、銀、ニッケル、銅等の金属微粉末;セラミック、ガラス、石英、有機樹脂等の微粉末表面に金、銀、ニッケル、銅等の金属を蒸着またはメッキした微粉末;酸化アルミニウム、窒化アルミニウム、酸化亜鉛等の金属化合物、およびこれらの2種以上の混合物が例示される。特に好適には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、窒化アルミニウム粉末またはグラファイトである。また、本組成物に、電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末であることが好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、または窒化アルミニウム粉末であることが好ましい。また、これらの熱伝導性フィラーまたは導電性フィラーは、減圧下、100~200℃の温度で、前記の(B)成分等と加熱混合することが好ましい。特に、(B)成分はアルコキシシリル含有基を有するシロキサンであり、熱伝導性フィラーまたは導電性フィラーの表面処理により、高充填しても低粘度で取扱作業性に優れる組成物を得られる場合がある。
このような熱伝導性フィラーまたは導電性フィラーの平均粒子径としては、メジアン径で1~100μmの範囲内であることが好ましく、特に、1~50μmの範囲内であることが好ましい。
また、当該硬化性シリコーン組成物は、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、ヘプタン等の有機溶剤;α,ω-トリメチルシロキシ基封鎖ジメチルポリシロキサン、α,ω-トリメチルシロキシ基封鎖メチルフェニルポリシロキサン等の非架橋性のジオルガノポリシロキサン;カーボンブラック等の難燃剤;ヒンダードフェノール系酸化防止剤等の酸化防止剤;酸化鉄等の耐熱剤;分子鎖両末端ヒドロキシジアルキルシロキシ基封鎖ジアルキルシロキサンオリゴマー等の可塑剤;その他、顔料、チクソ性付与剤、防カビ剤を、本発明の目的を損なわない範囲で任意に含有してもよい。
特に、硬化性シリコーン組成物をゲル状に一次硬化する反応またはシリコーンゲルを二次硬化する反応のいずれかにおいてヒドロシリル化反応を選択する場合、硬化遅延剤としてヒドロシリル化反応抑制剤を配合することが好ましい。具体的には、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサン等のアルケニル基含有低分子量シロキサン;メチル-トリス(1,1-ジメチルプロピニルオキシ)シラン、ビニル-トリス(1,1-ジメチルプロピニルオキシ)シラン等のアルキニルオキシシランが例示される。この硬化遅延剤の含有量は限定されないが、硬化性シリコーン組成物に対して、質量単位で、10~10000ppmの範囲内であることが好ましい。
接着付与剤としては、ケイ素原子に結合したアルコキシ基を一分子中に少なくとも1個有する有機ケイ素化合物が好ましい。このアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基が例示され、特に、メトキシ基が好ましい。また、有機ケイ素化合物中のアルコキシ基以外のケイ素原子に結合する基としては、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等のハロゲン置換もしくは非置換の一価炭化水素基;3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基;3,4-エポキシブチル基、7,8-エポキシオクチル基等のエポキシアルキル基;3-メタクリロキシプロピル基等のアクリル基含有一価有機基;水素原子が例示される。この有機ケイ素化合物は本組成物中のアルケニル基またはケイ素原子結合水素原子と反応し得る基を有することが好ましく、具体的には、ケイ素原子結合水素原子またはアルケニル基を有することが好ましい。また、各種の基材に対して良好な接着性を付与できることから、この有機ケイ素化合物は一分子中に少なくとも1個のエポキシ基含有一価有機基を有するものであることが好ましい。こうした有機ケイ素化合物としては、オルガノシラン化合物、オルガノシロキサンオリゴマー、アルキルシリケートが例示される。このオルガノシロキサンオリゴマーあるいはアルキルシリケートの分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が例示され、特に、直鎖状、分枝鎖状、網状であることが好ましい。有機ケイ素化合物としては、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のシラン化合物;一分子中にケイ素原子結合アルケニル基もしくはケイ素原子結合水素原子、およびケイ素原子結合アルコキシ基をそれぞれ少なくとも1個ずつ有するシロキサン化合物、ケイ素原子結合アルコキシ基を少なくとも1個有するシラン化合物またはシロキサン化合物と一分子中にケイ素原子結合ヒドロキシ基とケイ素原子結合アルケニル基をそれぞれ少なくとも1個ずつ有するシロキサン化合物との混合物、メチルポリシリケート、エチルポリシリケート、エポキシ基含有エチルポリシリケートが例示される。この接着付与剤は低粘度液状であることが好ましく、その粘度は限定されないが、25℃において1~500mPa・sの範囲内であることが好ましい。また、この接着付与剤の含有量は限定されないが、硬化性シリコーン組成物の合計100質量部に対して0.01~10質量部の範囲内であることが好ましい。
特に好適には、本発明のシリコーンゲルは、硬化性シリコーン組成物の一次硬化反応又はシリコーンゲルの二次硬化反応のいずれかにおいて、硬化反応性基としてアルケニル基または光重合性官能基を有し、架橋剤としてオルガノハイドロジェンポリシロキサンを含み、それらがヒドロシリル化反応触媒により硬化してなることが好ましい。すなわち、本発明に係るシリコーンゲル層は、好適には、(A-1)成分として、一分子中に、少なくとも2個のアルケニル基または光重合性官能基を有する直鎖状のオルガノポリシロキサン、(A-2)成分として、一分子中に、少なくとも2個のアルケニル基または光重合性官能基を有する樹脂状または分岐鎖状のオルガノポリシロキサン、(B)成分として、一分子中に、少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンを含む架橋剤、および(C)成分として、ヒドロシリル化反応触媒を含有する硬化反応触媒を含有する硬化反応性シリコーン組成物をゲル状に硬化してなる。なお、(C)成分は、さらに、有機過酸化物を含有していてもよく、上記の硬化反応性官能基が一次硬化反応におけるゲル形成の際に消費されていても、加熱により二次硬化反応が進行する。
ここで、組成物中の各成分の含有量は、硬化性シリコーン組成物がゲル状に一次硬化することが可能であり、かつ、一次硬化反応後のシリコーンゲルが二次硬化反応可能な量である。一次硬化反応がヒドロシリル化硬化反応である場合、組成物中の(A)成分中のアルケニル基の総和を1モルとした場合、(B)成分中のケイ素原子結合水素原子が0.25モル以上であることが好ましく、0.26モル以上がより好ましい。
この場合、好適な(A-1)成分は、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルフェニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端メチルビニルフェニルシロキシ基封鎖ジメチルポリシロキサンが例示される。
同様に、好適な(A-2)成分は、ヒドロシリル化反応性基および/または高エネルギー線照射または有機過酸化物の存在下で加熱した場合にラジカル反応性基を有する樹脂状オルガノポリシロキサンであり、トリオルガノシロキシ単位(M単位)(オルガノ基はメチル基のみ、メチル基とビニル基またはフェニル基である。)、ジオルガノシロキシ単位(D単位)(オルガノ基はメチル基のみ、メチル基とビニル基またはフェニル基である。)、モノオルガノシロキシ単位(T単位)(オルガノ基はメチル基、ビニル基、またはフェニル基である。)及びシロキシ単位(Q単位)の任意の組み合わせからなるMQ樹脂、MDQ樹脂、MTQ樹脂、MDTQ樹脂、TD樹脂、TQ樹脂、TDQ樹脂が例示される。
同様に、好適な(B)成分は、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、およびこれらのオルガノポリシロキサンの2種以上の混合物が例示される。本発明において、(B)成分は、25℃における粘度が1~500mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体が例示される。なお、(B)成分として樹脂状のオルガノハイドロジェンポリシロキサンレジンを含んでもよい。
同様に、好適な(C)成分は上記のヒドロシリル化反応触媒を含有し、一次硬化反応または二次硬化反応の選択により、有機過酸化物および光重合開始剤から選ばれる1種類以上の硬化剤を含むことが好ましい。
なお、硬化反応性のシリコーンゲルを基材上に形成する際の塗工方法としては、グラビアコート、オフセットコート、オフセットグラビア、オフセット転写ロールコーター等を用いたロールコート、リバースロールコート、エアナイフコート、カーテンフローコーター等を用いたカーテンコート、コンマコート、マイヤーバー、その他公知の硬化層を形成する目的で使用される方法が制限なく使用できる。
[好適な一次硬化反応機構および二次硬化反応機構の組み合わせ]
本発明に係るシリコーンゲルは、硬化性シリコーン組成物をヒドロシリル化反応硬化型、脱水縮合反応硬化型、脱アルコール縮合反応硬化型または高エネルギー線照射によるラジカル反応硬化型の硬化機構によりゲル状に硬化されていることが好ましい。特に、100℃以下の低温下でヒドロシリル化反応硬化型または室温下での高エネルギー線照射によるラジカル反応硬化型または高エネルギー線照射によるヒドロシリル化反応硬化型が好適である。
シリコーンゲルの二次硬化反応は、好適には、100度を超える高温で進行する硬化反応であり、ヒドロシリル化反応硬化型または過酸化物硬化反応型であることが好ましい。なお、上記のとおり、カプセル化されたヒドロシリル化反応触媒を用いることにより、カプセルの壁材である熱可塑性樹脂の溶融温度より高い温度条件で二次硬化するように反応を制御することも好ましい。
[接着剤としての使用]
本発明の硬化反応性シリコーンゲルは、ゲル状であり、柔軟で変形性、追従性に優れるため、基材または他の部材を一時的に保持する一時接着剤、または当該基材および他の部材を半永久的に接着することを目的とした半永久接着剤として好適に用いることができる。具体的には、本発明の硬化反応性シリコーンゲルは、二次硬化後の接着付与成分を含まない場合には、ゲル上に他の部材を接触乃至配置することで効果的に保持することができ、かつ、ゲルを二次硬化反応させることで、当該部材を硬化面から容易に分離することができる。特に、このとき、残留接着物(糊残り)の問題を生じないことから、本発明の硬化反応性シリコーンゲルは、一時接着剤として有用である。一方、本発明の硬化反応性シリコーンゲルに、二次硬化後の接着成分として、エポキシ基等の接着付与性官能基をポリマー中に組み込んだり、エポキシシラン類等の公知の接着付与剤を添加することにより、ゲル上に接触乃至配置した他の部材に対して半永久的な接着性を有する硬化物を形成することが可能である。このとき、接着対象である他の部材と、ゲルを二次硬化してなる硬化物の接着モードは、接着破壊時の破壊モードが凝集モードとなる接着状態が可能であり、半永久的な接着剤として使用することができる。したがって、本発明の硬化反応性シリコーンゲルは、その用途に応じて接着モードを調整して利用することができ、特に、電子部品の製造に用いる接着剤として有用である。
[保護剤または封止剤としての使用]
本発明の硬化反応性シリコーンゲルは、ゲル状であり、柔軟で低弾性率、低応力かつ応力緩衝性に優れ、かつ二次硬化により強固な硬化物を形成することにより、各種部材の保護剤として利用可能である。また、本発明の硬化反応性シリコーンゲルは、シーリング材、ポッティング材、シール材としても用いることができ、封止剤としての利用にも適する。このような用途は、建築用部材や、電気・電子部品や車両用部品などを含むものであるが特に、本発明の硬化反応性シリコーンゲルは、電子部品の製造に用いる接着剤として有用である。
[電子部品の製造用途]
本発明のシリコーンゲルは、特に、電子部品の製造に有用であり、各種基材上にシリコーンゲル層を形成して、安定かつ平坦で、応力緩和性に優れた電子部品の配置面を形成することにより、電子部品の製造時における基材の表面凹凸や電子部品の位置ずれ、振動変位(ダンピング)に伴う電子部品の加工不良が発生しにくいという利益を実現しうる。また、シリコーンゲル層を硬化させることにより、電子部品を当該硬化物から容易に剥離することができ、かつ、シリコーンゲル等の残留物(糊残り)に由来する不良品が発生しにくいという利点を有する。
[電子部品の製造に用いる積層体]
具体的には、本発明のシリコーンゲルは、電子部品を製造するための積層体を構成するシリコーンゲル層として有用であり、以下、当該積層体に付いて説明する。
[基材]
シリコーンゲル層を積層する基材は凹凸があってよく、シリコーンゲル層により当該凹凸が隙間なく充填乃至追従され、平坦なシリコーンゲル層を形成していることが特に好ましい。本発明の硬化反応性シリコーンゲル層は柔軟で変形性、追従性に優れるため、凹凸のある基材に対しても間隙を生じにくく、乖離やシリコーンゲル表面の変形などの問題を生じにくいという利点がる。
本発明に用いる基材は、特に限定されるものではなく、所望の基材を適宜選択してよい。例えば、ガラス、陶磁器、モルタル、コンクリート、木、アルミニウム、銅、黄銅、亜鉛、銀、ステンレススチール、鉄、トタン、ブリキ、ニッケルメッキ表面、エポキシ樹脂、フェノール樹脂などからなる被着体または基体が例示される。また、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、ナイロン樹脂、ポリ塩化ビニル樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ポリブチレンテレフタレート樹脂などの熱可塑性樹脂からなる被着体または基体が例示される。これらは剛直な板状であっても、柔軟なシート状であってもよい。また、ダイシングテープ等の基材に用いられるような伸張性のあるフィルム状乃至シート状基材であってもよい。
本発明に用いる基材には、硬化反応性シリコーンゲル層との密着性及び接着性を改善する目的で、プライマー処理、コロナ処理、エッチング処理、プラズマ処理等の表面処理がなされていてもよい。これにより、硬化反応性シリコーンゲル層が硬化して、保型性と離型性に優れた硬化物層を形成し、低粘着化した後であっても、当該硬化物層と基材間の密着力を十分に高く保ち、当該硬化層上に配置した電子部品等の分離をより容易にすることが可能となる。
一方、本発明の積層体を電子部品の製造に用いる場合、基材は当該製造過程で電子部品を少なくとも一時的に配置する台座、積層用途の半導体ウェハ、セラミックス素子(セラミックコンデンサ含む)、電子回路用途の基板として利用可能な基材等が例示される。特に電子部品加工用の台座、回路基板、半導体基板または半導体ウェハとして利用可能な基材であることが好ましい。
これらの基材の材質については特に制限されるものではないが、回路基板等として好適に用いられる部材として、ガラスエポキシ樹脂,ベークライト樹脂,フェノール樹脂等の有機樹脂;アルミナ等のセラミックス;銅,アルミニウム等の金属、半導体用途のシリコンウェハ等の材質が例示される。さらに、当該基材を回路基板として用いる場合、その表面には銅,銀一パラジウム等の材質からなる導線が印刷されていてもよい。本発明の硬化反応性シリコーンゲルはこれらの回路基板の表面の凹凸についても間隙なく充填乃至追従し、平坦なシリコーンゲル表面を形成できる利点がある。
一方、本発明の積層体は、剥離層を備えたシート状基材(基材R)の剥離層上に硬化反応性のシリコーンゲル層が形成された積層体であってもよい。この場合、当該シリコーンゲル層は、基材Rから容易に剥離することができ、他の基材、好適には上記の回路基板乃至半導体基板上にシリコーンゲル層のみを転写することができる。すなわち、本発明の積層体は、予め回路基板等の非剥離性かつ凹凸のある基材上にシリコーンゲル層が形成された積層体だけでなく、そのような積層体の部材として、シリコーンゲル層それ自体を取り扱うための剥離性積層体の概念をも包含する。
剥離層を備えたシート状基材(基材R)は、実質的に平坦であり、テープ、フィルム等の用途に応じて適度な幅と厚みを持った基材を特に制限なく使用することができるが、具体的には、紙,合成樹脂フィルム,布,合成繊維,金属箔(アルミニウム箔、銅箔など),ガラス繊維およびこれらのうちの複数のシート状基材を積層してなる複合型のシート状基材が挙げられる。特に、合成樹脂フィルムであることが好ましく、ポリエステル、ポリテトラフルオロエチレン、ポリイミド、ポリフェニレンスルフィド、ポリアミド、ポリカーボネート、ポリスチレン、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート、ポリエチレンテレフタレート、ナイロンなどの合成樹脂フィルムを例示することができる。その厚さは特に制限されないが、通常5~300μm程度である。
剥離層を形成させるために用いる剥離剤としては、例えばオレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂などのゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂、シリコーン系樹脂などが用いられる。特に、シリコーン系樹脂からなる剥離剤の使用が好ましく、フルオロアルキル基を含有するフッ素変性シリコーン樹脂を含有する剥離剤の使用が特に好ましい。
本発明に係る硬化反応性のシリコーンゲルは、上記の剥離層を備えたシート状基材(基材R)上に形成されている場合には、硬化反応性シリコーンゲルを基材Rと異なる基材に対して転写する際に、その密着性及び接着性を改善する目的で、基材と対向するシリコーンゲル面に、プライマー処理、コロナ処理、エッチング処理、プラズマ処理等の表面処理がなされていてもよい。これにより、基材Rから分離された硬化反応性シリコーンゲルの他の基材への密着性が改善される。
[電子部品を含む積層体]
本発明の積層体は、さらに、少なくとも1個以上の電子部品がシリコーンゲル層上に配置されていることを特徴とするものであってよい。電子部品は、シリコーンゲル層上に配置可能であれば、特にその種類は制限されるものではないが、半導体チップの素体となる半導体ウェハ、セラミックス素子(セラミックコンデンサ含む)、半導体チップおよび発光半導体チップが例示され、同一または異なる2個以上の電子部品をシリコーンゲル層上に配置したものであってもよい。本発明の積層体における硬化反応性シリコーンゲル層は、ゲル状であり、かつ、硬化条件を選択可能なので、ある程度高温となる温度領域で取り扱った場合であっても、硬化反応が殆ど進行せず、適度に柔軟かつ追従性・変形性に優れるため、安定かつ平坦な電子部品の配置面を形成することができ、さらに、当該シリコーンゲル層が電子部品の製造工程における振動や衝撃を緩和するため、ゲル層上に配置した電子部品を平坦なゲル表面上の定位置に安定的に保持し、電子部品に対して各種パターン形成等の処理およびダイシング等の加工処理を行った場合であっても、基材の表面凹凸や電子部品の位置ずれ、振動変位(ダンピング)に伴う電子部品の加工不良が発生しにくいという利点を有する。なお、ゲル上における電子部品等の保持は、ゲルの粘弾性に由来するものであり、ゲル自体の弱い粘着力によるものと、ゲルの変形による電子部品の担持の両方を含む。
これらの電子部品は、少なくとも部分的に電子回路または電極パターン、絶縁膜等の構成を有した状態でシリコーンゲル層上に配置されてもよく、シリコーンゲル層上に配置された後にこれらの電子回路、電極パターン、絶縁膜等を形成するものであっても良い。電極パターン等の形成の際には、従来公知の手段を特に制限なく用いることができ、真空蒸着法、スパッタ法、電気めっき法、化学めっき法、エッチング法、印刷工法またはリフトオフ法に形成されていてもよい。本発明の積層体を電子部品の製造に用いる場合、シリコーンゲル層上で電子部品の電子回路、電極パターン、絶縁膜等を形成することが特に好ましく、任意で当該積層体を個片化(ダイシング)してもよい。上記のとおり、シリコーンゲル層を用いることで、これらの電子部品の加工不良が抑制される。
本発明の積層体は、上記の少なくとも1個以上の電子部品がシリコーンゲル層上に配置された積層体において、当該シリコーンゲル層を硬化させてなり、基材、硬化層および硬化層上に少なくとも1個以上の電子部品が配置された構成を有する積層体であってもよい。
上記のシリコーンゲル層は硬化により、保型性、硬質性および表面離型性に優れた硬化層を形成するので、上記の電子部品および硬化層を含む積層体において、当該硬化層から電子部品のみを容易に分離することができ、かつ、シリコーンゲルに由来する残留物(糊残り)等の異物が電子部品に付着しにくく、不良品が発生しにくいという利点がある。
[積層体の製造方法]
本発明の積層体は、基材上にシリコーンゲル層を形成してなるものであり、所望により、シリコーンゲル層の原料組成物である硬化性シリコーン組成物を目的となる基材上に塗布してゲル状に硬化させることで製造可能である。同様に、上記の剥離層を備えたシート状基材(基材R)を用いる場合には、剥離層からシリコーンゲル層を分離し、他の基材上に転写することによっても製造可能である。
すなわち、本発明の積層体は少なくとも1種の基材上に、一次硬化反応によりシリコーンゲル層を形成可能な硬化性シリコーン組成物を塗布する工程(A-1)、
および、基材上で当該硬化性シリコーン組成物をゲル状に一次硬化させることにより、硬化反応性シリコーンゲル層を形成する工程(A-2)を有する製造方法により得ることができる。なお、ここで、基材は、前記の剥離層を備えたシート状基材(基材R)であってよく、その場合、得られる積層体は、硬化反応性シリコーンゲル層を部材として、他の基材上に転写するための剥離性積層体である。
同様に、本発明の積層体は、剥離層を備えたシート状基材(基材R)の剥離層上に、一次硬化反応によりシリコーンゲル層を形成可能な硬化性シリコーン組成物を塗布する工程(B-1)、
剥離層上で当該硬化性シリコーン組成物をゲル状に一次硬化させることにより、硬化反応性シリコーンゲル層を形成する工程(B-2)、および
前記工程で得た積層体のシリコーンゲル層を、上記の基材Rとは異なる、少なくとも1種類の基材上に配置し、基材Rのみを除去する工程を含む製造方法によっても得ることができる。なお、この場合、積層体のシリコーンゲル層であって、上記の基材Rとは異なる、少なくとも1種類の基材に対向する面には、その密着性及び接着性を改善する目的で、基材と対向するシリコーンゲル面に、プライマー処理、コロナ処理、エッチング処理、プラズマ処理等の表面処理がなされていてもよく、かつ好ましい。当該密着性の改善により、基材Rを容易に分離できる利点がある。
上記の剥離層を備えたシート状基材(基材R)に硬化反応性のシリコーンゲル層を形成させ、後に剥離層から分離してシート状の部材として取り扱う場合、以下の方法により、均一な表面を有するシリコーンゲル層を形成させてもよい。
[剥離層を有するセパレータ間での硬化を用いた製法]
硬化反応性のシリコーンゲル層は実質的に平坦であることが好ましいが、その原料となる硬化性シリコーン組成物を、通常の方法で剥離層を有する基材上に塗布すると、特に硬化後のシリコーンゲル層の厚みが50μm以上となる場合には、その塗布面が凹んだ不均一な表面を形成して、得られるシリコーンゲル層表面が不均一となる場合がある。しかしながら、当該硬化性シリコーン組成物およびシリコーンゲル層に対して剥離層を有する基材を適用し、未硬化の塗布面を各々の剥離層を備えたシート状基材(上記の基材R;セパレータ)で挟み込み、物理的に均一化された平坦化層を形成することで、平坦化された硬化反応性のシリコーンゲル層を得ることができる。なお、上記の平坦化層の形成にあたっては、剥離層を有するセパレータ間に未硬化の硬化性シリコーン組成物が塗布されてなる積層体を、ロール圧延等の公知の圧延方法を用いて圧延加工することが好ましい。
[電子部品の製造方法]
上記の積層体を用いた電子部品の製造方法は、
本発明の積層体のシリコーンゲル層上に少なくとも1個以上の電子部品を配置する工程(I)、シリコーンゲル層の一部または全部を硬化させる工程(II)、および任意で、
上記工程によりシリコーンゲル層の一部または全部を硬化させて得た硬化物上から、電子部品を分離する工程(III)を有するものである。
電子部品については[電子部品を含む積層体]の項にて説明した通りであり、本発明の電子部品の製造方法においては、シリコーンゲル層上に配置された後に当該電子部品上に電子回路、電極パターン、絶縁膜等を形成する工程を有してよく、かつ好ましい。また、任意で、当該積層体を個片化(ダイシング)してもよい。
シリコーンゲル層の一部または全部を硬化させる工程(II)は、硬化性シリコーンゲル層を二次硬化させる工程であり、シリコーンゲル層は硬化反応前よりも保型性が高く、離型性に優れたハードな硬化層に変化する。これにより、続く工程(III)において、シリコーンゲル層上に配置された電子部品は容易に分離され、かつ、基材や電子部品へのシリコーンゲルまたはその硬化物の付着物等の問題を生じにくいものである。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例では下記の化合物ないし組成物を原料に用いた。
・成分(A1-1):両末端ビニルジメチルシロキシ基封鎖、ジメチルシロキサンポリマー(シロキサン重合度:約540,ビニル基の含有量:0.13重量%)
・成分(A1-2):両末端ビニルジメチルシロキシ基封鎖、ジメチルシロキサンポリマー(シロキサン重合度:約315,ビニル基の含有量:0.22重量%)
・成分(A1-3):両末端トリメチルシロキシ基封鎖、ジメチルシロキサン-ビニルメチルシロキサンコポリマー (シロキサン重合度:約1330,ビニル基の含有量: 約0.47重量%)
・成分(A2):トリメチルシロキシ単位(M単位)、ビニルジメチルシロキシ単位(MVi単位)、およびQ単位からなる樹脂状オルガノポリシロキサン (ビニル基の含有量: 約4.1重量%)
・成分(B1):両末端ハイドロジェンジメチルシロキシ基封鎖ジメチルシロキサンポリマー(シロキサン重合度:約14,ケイ素結合水素基の含有量: 0.13重量%)
・成分(B2):両末端トリメチルシロキシ基封鎖ジメチルシロキサン-メルカプトプロピルメチルシロキサンコポリマー(シロキサン重合度:約60,硫黄結合水素基の含有量:: 0.11重量%)
・成分(B3):両末端トリメチルシロキシ基封鎖ジメチルシロキサン-ハイドロジェンメチルシロキサンコポリマー(シロキサン重合度:約8,ケイ素結合水素基の含有量:: 0.76重量%)。
<ヒドロシリル化反応抑制剤>
・成分(C1):1,3,5,7-テトラメチル-1,3,5,7-テトラビニル-シクロテトラシロキサン(ビニル基の含有量:30.2重量%)。
<フィラー>
・成分(D1):ヘキサメチルジシラザン処理シリカ微粒子(日本アエロジル製、商品名「アエロジル200V」を処理したもの) 
<硬化剤>
・成分(E1):白金-ジビニルテトラメチルジシロキサン錯体のビニルシロキサン溶液(白金金属濃度で約0.6重量%)
・成分(E2):2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン
・成分(E3):2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン-両末端トリメチルシロキシ基封鎖シロキサンポリマー混合物(2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン濃度で約50重量%)
<脱アルコール縮合型硬化反応性シリコーン組成物>
SE9120(東レ・ダウコーニング社製)
*アルコキシシリル基含有オルガノポリシロキサンを主剤とし、縮合反応触媒を含有する縮合硬化性シリコーン組成物
<組成:実施例1~7>
以下の実施例1-7では、表1に記載の通り、成分(A1-1)、(A1-2)、(A2)、(B1)、(C1)、(D1)、(E1)および(E3)を用いた。その際、ビニル基1モル当たり、成分(B1)のケイ素原子結合水素原子(Si-H)が0.25~0.50モルとなる量とした。
<組成:実施例8,9>
実施例8-9では、表2に記載の通り、成分(A1-2)、(A1-3)、(B1)、(D1)、(E2)および(E3)を用いた。その際、ビニル基1モル当たり、成分(B2)の硫黄原子結合水素原子(S-H)が0.25モルとなる量で用いた。
<組成:実施例10~12>
実施例10-12では、表3に記載の通り、(A1-2)、(A1-3)、(B3)、(C1)、(D1)、(E1)を用いた。その際、ビニル基1モル当たり、成分(B3)のケイ素原子結合水素原子(Si-H)が1.2モルとなる量とした。得られた硬化前液状シリコーン組成物に、脱アルコール縮合型硬化反応性の硬化性シリコーン組成物(湿気硬化型)SE9120(東レ・ダウコーニング社製)を表に記載の重量比(40:60、30:70および20:80)で混合して用いた。
<組成:比較例1~4>
比較例1-4では、表4に記載の通り、組成物中のビニル基1モル当たり、成分(B1)のケイ素原子結合水素原子(Si-H)が表に記載の範囲となる量(0.2~0.25モル)で用いた以外は実施例1-7と同様の成分を使用した。当該組成では、表4に示したとおり、同一条件で硬化してもゲル状に硬化せず、硬化反応性のシリコーンゲル層を形成することができない。
<組成:比較例5、6、7>
表4に記載の通り、比較例5では(E2)を、比較例6では(E3)のみを硬化剤として使用した以外は実施例8-9と同様の成分を使用した。比較例7では(E1)のみを硬化剤として用いた以外は実施例1-7と同様の成分を使用した。当該組成では、表4に示したとおり、同一条件で硬化してもシリコーンゲル層が二次硬化性を有しない。
[硬化性ゲル層の作製条件]
(1)実施例1-7、比較例1-4および7
硬化前(液状)シリコーン組成物を80℃で2時間かけて加熱することにより、ヒドロシリル化反応を進行させてゲル状物を得た。
(2)実施例8-9および比較例5-6
硬化前液状組成物を室温にて、UV照射装置(MODEL UAW365-654-3030F、株式会社センテック)を用いて行った。その際、波長は365nmの光源(約40mW/cm)を使用し、90秒間、2回照射することで行った(単位面積当たりの照射量は7200mJ/cm)。その際、高エネルギー線硬化性シリコーン組成物と空気との接触を避けるため、剥離剤をコートした厚さ50ミクロンのPETフィルムを被せて紫外線の照射を行った。なお、比較例6については、成分(E2)がないためゲル層を作製できなかった。

(3)実施例10-12
硬化前液状組成物を室温にて、1時間放置することによりゲル状物を得た。
[二次硬化物の作製条件]
(1)実施例1-9および比較例1-4および7
硬化性ゲル層を窒素中170℃で1時間かけて二次硬化させることで行った。
(2)実施例10-12
硬化性ゲル層を150℃で30分かけて二次硬化させることで行った。
[得られた材料の物性の測定方法]
1.硬化反応性シリコーンゲルの圧縮変形量測定
実施例1-7の硬化前液状組成物をガラス製シャーレー(直径70mm)に、15g投入し、上記条件で作製したものを使用した。テクスチャーアナライザー TA.XT Plus(英弘精機株式会社製)を用いて室温で測定を行った。平坦プローブ(6mm直径)を毎秒0.17mmの速度で降下させて、最大圧縮力0.5Nに達成後の硬化性ゲルの圧縮変形量を測定した。

2.タックの測定
硬化反応性シリコーンゲル
(1)実施例1-7において、圧縮変形量の測定後、平坦プローブを硬化性ゲルの初期の厚み以上の高さまで毎秒0.34mmの速度で上昇させて、荷重の最大値をタックとして測定した。測定値はマイナス値で得られるため、表中にはその絶対値を示した。この値が高いほどタックがあることを意味する、
(2)実施例10-12において、スペーサーを使用してガラス板上に硬化前液状シリコーン組成物を厚み360μmとなるように塗布し、上記条件で作製したものを使用した。手で触れてタックの有無を判定した。

二次硬化物
実施例10-12において、作製した硬化性ゲルを上記条件で硬化させることで二次硬化物を得た。得られた二次硬化物に手で触れてタックの有無を判定した。

3.粘弾性の測定
硬化反応性シリコーンゲル
アルミニウム製容器(直径50mm)に、硬化前液状シリコーン組成物を厚さ約1.5mmとなるように投入し、上記条件にて得られた硬化反応性シリコーンゲルから直径8mmとなるように試験体を切り出し使用した。MCR302粘弾性測定装置(Anton Paar社製)を用い、直径8mmのパラレルプレートに切り出したサンプルを貼り付け測定を行った。23℃にて、周波数0.01~10Hzの範囲で、ひずみ0.5%の条件で行った。各表に0.1Hzでの貯蔵弾性率と損失正接(損失弾性率/貯蔵弾性率)を示す。

二次硬化物
上記同様、アルミニウム製容器を用い、硬化反応性シリコーンゲルを作製した。さらに上記作製条件にて硬化させることで二次硬化物が得られた。得られた二次硬化物から直径8mmとなるように試験体を切り出し使用した。MCR302(アントンパール社製)を用い、直径8mmのパラレルプレートに切り出したサンプルを貼り付け測定を行った。23℃にて、周波数0.01~10Hzまで、ひずみ0.1%の条件で行った。各表に0.1Hzでの貯蔵弾性率を示す。
Figure JPOXMLDOC01-appb-T000002


*マイナス値のため絶対値
Figure JPOXMLDOC01-appb-T000003


Figure JPOXMLDOC01-appb-T000004


**成分A~Eを使用して作製した硬化前液状シリコーン組成物との混合物(100重量%として)中の割合。
Figure JPOXMLDOC01-appb-T000005

*ゲル層を形成できない。

Claims (15)

  1. 以下の成分を含有してなる組成物をゲル状に一次硬化させてなり、さらに二次硬化反応性を有する、硬化反応性シリコーンゲル。
    (A)一分子中に、少なくとも2個の硬化反応性基を有するオルガノポリシロキサン、
    (B)任意で、オルガノハイドロジェンポリシロキサン、および
    (C)硬化剤
  2. 損失係数tanδが、23℃~100℃において、0.01~1.00の範囲にあることを特徴とする、請求項1に記載の硬化反応性シリコーンゲル。
  3. 硬化反応により得られる硬化反応性シリコーンゲルの硬化物の貯蔵弾性率G’curedが、硬化前のシリコーンゲル層の貯蔵弾性率G’gelに比べて100%以上上昇することを特徴とする、請求項1または請求項2に記載のシリコーンゲル。
  4. ヒドロシリル化反応触媒、過酸化物および光重合開始剤から選ばれる1種類以上の硬化剤を含有する、請求項1~請求項3のいずれか1項に記載の硬化反応性シリコーンゲル。
  5. 一次硬化が室温~80℃の温度範囲において行われることを特徴とする、請求項1~請求項4のいずれか1項に記載の硬化反応性シリコーンゲル。
  6. 加熱、高エネルギー線の照射またはこれらの組み合わせに対して二次硬化反応性である、請求項1~請求項5のいずれか1項に記載の硬化反応性シリコーンゲル。
  7. 前記の(A)成分が、(A-1)一分子中に、少なくとも2個の硬化反応性基を有する直鎖状のオルガノポリシロキサン、および
    (A-2)一分子中に、少なくとも2個の硬化反応性基を有する、樹脂状または分岐鎖状のオルガノポリシロキサン
    の混合物である、請求項1に記載の硬化反応性シリコーンゲル。
  8. (A)成分が、
    (A-1)一分子中に、少なくとも2個のアルケニル基または光重合性官能基を有する直鎖状のオルガノポリシロキサン、および
    (A-2)一分子中に、少なくとも2個のアルケニル基または光重合性官能基を有する樹脂状または分岐鎖状のオルガノポリシロキサン
    の混合物であり、
    (B)成分が、一分子中に、少なくとも2個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンであり、
    (C)成分が、ヒドロシリル化反応触媒を含有する硬化反応触媒であり、
    組成物中の(A-1)成分および(A-2)成分中のアルケニル基1モルに対して、(B)成分中のケイ素原子結合水素原子が、0.25モル以上の範囲であることを特徴とする、請求項1に記載の硬化反応性シリコーンゲル。
  9. 平均厚みが10~500μmの範囲にあるフィルム状またはシート状の形態である、請求項1~請求項8のいずれか1項に記載の硬化反応性シリコーンゲル。
  10. 請求項1~請求項9のいずれか1項に記載の硬化反応性シリコーンゲルを含有する、接着剤。
  11. 請求項10の接着剤であって、電子部品の製造に用いるもの。
  12. 請求項1~請求項9のいずれか1項に記載の硬化反応性シリコーンゲルを含有する、保護剤または封止剤。
  13. 請求項12の保護剤または封止剤であって、電子部品の製造に用いるもの。
  14. 請求項1~請求項9のいずれか1項に記載の硬化反応性シリコーンゲルの硬化物を有する、電子部品。
  15. 請求項1~請求項9のいずれか1項に記載の硬化反応性シリコーンゲルの硬化物を有する、電子部品製造用部材。
PCT/JP2017/033869 2016-09-26 2017-09-20 硬化反応性シリコーンゲルおよびその用途 WO2018056297A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780054446.4A CN109661436A (zh) 2016-09-26 2017-09-20 固化反应性有机硅凝胶及其用途
EP17853067.1A EP3517577A4 (en) 2016-09-26 2017-09-20 CURABLE REACTIVE SILICONE GEL AND USE THEREOF
JP2018540256A JP6799067B2 (ja) 2016-09-26 2017-09-20 硬化反応性シリコーンゲルおよびその用途
US16/607,012 US11279827B2 (en) 2016-09-26 2017-09-20 Curing reactive silicone gel and use thereof
KR1020197010140A KR102279871B1 (ko) 2016-09-26 2017-09-20 경화 반응성 실리콘 겔 및 이의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-186544 2016-09-26
JP2016186544 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056297A1 true WO2018056297A1 (ja) 2018-03-29

Family

ID=61690989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033869 WO2018056297A1 (ja) 2016-09-26 2017-09-20 硬化反応性シリコーンゲルおよびその用途

Country Status (7)

Country Link
US (1) US11279827B2 (ja)
EP (1) EP3517577A4 (ja)
JP (1) JP6799067B2 (ja)
KR (1) KR102279871B1 (ja)
CN (1) CN109661436A (ja)
TW (1) TWI762511B (ja)
WO (1) WO2018056297A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049950A1 (ja) * 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 ラジカル反応性を有するシリコーンエラストマー硬化物およびその用途
JP2019190078A (ja) * 2018-04-23 2019-10-31 信越ポリマー株式会社 表面保護基材付き封止材
WO2020075411A1 (ja) * 2018-10-12 2020-04-16 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
WO2020084899A1 (ja) * 2018-10-22 2020-04-30 信越化学工業株式会社 付加硬化型シリコーン組成物
WO2020121930A1 (ja) * 2018-12-13 2020-06-18 ダウ・東レ株式会社 シリコーン粘着剤組成物およびその用途
JP2020523422A (ja) * 2018-06-29 2020-08-06 ダウ シリコーンズ コーポレーション 無溶剤シリコーン感圧接着剤並びにその製造方法及び使用方法
WO2020166692A1 (ja) * 2019-02-14 2020-08-20 ダウ・東レ株式会社 オルガノポリシロキサン硬化物フィルム、その用途、製造方法および製造装置
WO2022050103A1 (ja) * 2020-09-03 2022-03-10 信越化学工業株式会社 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
WO2022138345A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 シリコーン粘着剤組成物およびその用途
CN115595116A (zh) * 2022-10-24 2023-01-13 中山市皇冠胶粘制品有限公司(Cn) 一种硅凝胶及其制备方法和电子产品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447557B2 (ja) * 2016-03-24 2019-01-09 日亜化学工業株式会社 発光装置の製造方法
CN110446766A (zh) 2017-04-06 2019-11-12 陶氏东丽株式会社 液态固化性有机硅粘接剂组合物、其固化物和其用途
CN113227302B (zh) * 2018-12-07 2023-07-07 信越化学工业株式会社 紫外线固化型有机硅压敏粘合剂组合物及其固化物
WO2021199355A1 (ja) * 2020-03-31 2021-10-07 株式会社寺岡製作所 樹脂組成物及び粘着テープ
CN116888191A (zh) * 2021-02-09 2023-10-13 瓦克化学股份公司 硅氧烷组合物及其应用
CN114045122A (zh) * 2021-11-04 2022-02-15 埃肯有机硅(上海)有限公司 医用双面胶带及其制造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204259A (ja) 1983-05-06 1984-11-19 Hitachi Ltd 半導体装置の封止方法
JPS6148945A (ja) 1984-08-16 1986-03-10 Toshiba Corp ハイプリツドicモジユ−ル
JPS62104145A (ja) 1985-10-31 1987-05-14 Mitsubishi Electric Corp 半導体装置
JPH1112546A (ja) * 1997-04-30 1999-01-19 Toray Dow Corning Silicone Co Ltd シリコーン系接着性シート、その製造方法、および半導体装置
JP2003213132A (ja) 2002-01-23 2003-07-30 Shin Etsu Chem Co Ltd オルガノポリシロキサンゲル組成物
JP2006063092A (ja) * 2004-07-29 2006-03-09 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物、その硬化方法、光半導体装置および接着促進剤
JP2007191629A (ja) 2006-01-20 2007-08-02 Shin Etsu Chem Co Ltd 熱硬化性組成物
JP2010159411A (ja) * 2008-12-12 2010-07-22 Nitto Denko Corp 半硬化状シリコーン樹脂シート
JP2011153249A (ja) 2010-01-28 2011-08-11 Kaneka Corp 硬化性組成物およびその硬化物
JP2012017458A (ja) 2010-06-11 2012-01-26 Shin-Etsu Chemical Co Ltd 硬化性シリコーンゲル組成物
JP2015015324A (ja) * 2013-07-04 2015-01-22 パナソニック株式会社 半導体装置およびその製造方法
JP5794229B2 (ja) 2010-04-26 2015-10-14 スリーボンドファインケミカル株式会社 光硬化性シリコーンゲル組成物及びその用途
WO2015155950A1 (ja) 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP2016124967A (ja) 2014-12-26 2016-07-11 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、それからなる半導体用封止剤および半導体装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115661A (ja) 1983-11-28 1985-06-22 Shin Etsu Chem Co Ltd プライマ−組成物
JPH0616524B2 (ja) 1984-03-12 1994-03-02 日東電工株式会社 半導体ウエハ固定用接着薄板
JPS618945A (ja) 1984-06-25 1986-01-16 Nec Corp 半導体集積回路装置
US5006378A (en) 1987-11-13 1991-04-09 Toa Neryo Kogyo Kabushiki Kaisha Polyethylene composite film
JPH0832829B2 (ja) 1987-11-18 1996-03-29 東芝シリコーン株式会社 硬化性ポリオルガノシロキサン組成物
DE3825676A1 (de) 1988-07-28 1990-02-15 Wacker Chemie Gmbh Verwendung von zu elastomeren haertbaren organopolysiloxanmassen als klebstoffe
US4929669A (en) 1988-12-27 1990-05-29 Dow Corning Corporation Organosiloxane compositions yielding elastomers with improved recovery following prolonged compression
US5985371A (en) 1996-12-05 1999-11-16 Shin-Etsu Chemical Co., Ltd. Primer compositions
JP3539167B2 (ja) 1996-12-05 2004-07-07 信越化学工業株式会社 プライマー組成物
US5916981A (en) 1997-03-24 1999-06-29 Dow Corning Corporation Silicone pressure sensitive adhesive compositions
JP2000086897A (ja) 1998-09-16 2000-03-28 Dow Corning Toray Silicone Co Ltd 免震積層体用硬化性シリコーン組成物
JP4809988B2 (ja) 2001-03-21 2011-11-09 日東電工株式会社 シリコーン系感圧接着剤組成物およびそれを用いた感圧接着テープ
JP3901615B2 (ja) 2002-08-21 2007-04-04 信越化学工業株式会社 シリコーン接着剤及び接着フイルム
JP4314454B2 (ja) 2002-09-20 2009-08-19 信越化学工業株式会社 自己接着性加熱硬化型液状シリコーンゴム組成物
JP5247979B2 (ja) 2005-06-01 2013-07-24 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 透明な硬化物を与えるポリオルガノシロキサン組成物
JP2007231195A (ja) 2006-03-02 2007-09-13 Shin Etsu Chem Co Ltd 高温硬化性ポリオルガノシロキサン組成物
JP5060074B2 (ja) 2006-05-11 2012-10-31 東レ・ダウコーニング株式会社 接着促進剤、硬化性オルガノポリシロキサン組成物、および半導体装置
JP2008045091A (ja) 2006-08-21 2008-02-28 Nitto Denko Corp 加工用粘着シート
WO2009158383A2 (en) 2008-06-26 2009-12-30 Dow Corning Corporation Method of forming a curable adhesive tape and an insulating layer on a conductive substrate
EP2196503B1 (en) 2008-12-12 2015-02-18 Nitto Denko Corporation Thermosetting silicone resin composition, silicone resin, silicone resin sheet and use thereof
JP5404174B2 (ja) 2009-05-14 2014-01-29 日東電工株式会社 熱剥離性感圧接着テープ又はシート
JP5561986B2 (ja) 2009-09-30 2014-07-30 積水化成品工業株式会社 光硬化性樹脂組成物及び粘着性高分子ゲル
JP5801028B2 (ja) * 2009-10-21 2015-10-28 株式会社Adeka ケイ素含有硬化性組成物及びその硬化物
TWI502004B (zh) 2009-11-09 2015-10-01 Dow Corning 群集官能性聚有機矽氧烷之製法及其使用方法
WO2011162294A1 (ja) 2010-06-24 2011-12-29 積水化学工業株式会社 光半導体装置用封止剤及びそれを用いた光半導体装置
JP5447337B2 (ja) 2010-10-29 2014-03-19 信越化学工業株式会社 シリコーン構造体の製造方法及び半導体装置
JP2012219113A (ja) 2011-04-04 2012-11-12 Dow Corning Toray Co Ltd 室温硬化性シリコーンゴム組成物
WO2012140740A1 (ja) 2011-04-12 2012-10-18 日立化成工業株式会社 粘着剤組成物及びそれを用いた粘着材、並びにそれらの使用方法
JP2014534296A (ja) 2011-10-10 2014-12-18 バイヤー・インテレクチュアル・プロパティー・ゲーエムベーハーBayer Intellectual Property Gmbh B−ステージ化可能なシリコーン接着剤
JP5583703B2 (ja) * 2012-01-18 2014-09-03 信越化学工業株式会社 光半導体装置の製造方法
JP2013232580A (ja) 2012-05-01 2013-11-14 Dow Corning Toray Co Ltd 熱硬化性フィルム状シリコーン封止材
US20150284590A1 (en) 2012-10-09 2015-10-08 Dow Corning Toray Co., Ltd. Curable organopolysiloxane composition, sheet-like article having a cured layer formed from said composition, and laminate
JP6098116B2 (ja) 2012-10-29 2017-03-22 日立化成株式会社 ゲル状硬化性樹脂組成物、画像表示用装置、及び画像表示用装置の製造方法
JP5977717B2 (ja) * 2013-07-29 2016-08-24 信越化学工業株式会社 半導体封止用基材付封止材、半導体封止用基材付封止材の製造方法、及び半導体装置の製造方法
CN113214651A (zh) 2013-08-28 2021-08-06 杜邦东丽特殊材料株式会社 可固化有机硅组合物、其固化产物以及光学半导体器件
JPWO2015079904A1 (ja) 2013-11-26 2017-03-16 リンテック株式会社 電子部品の仮固定用粘着シートおよび電子部品の仮固定用粘着シートの使用方法
TW201638223A (zh) * 2015-03-31 2016-11-01 羅傑斯公司 雙溫度固化型聚矽氧組合物、其製造方法及由其製備之物件
KR101579710B1 (ko) 2015-11-12 2015-12-22 동우 화인켐 주식회사 광학적층체 및 이를 포함하는 화상표시장치
TWI738684B (zh) * 2015-12-09 2021-09-11 德商漢高智慧財產控股公司 可脫黏組合物
EP3450159B1 (en) 2016-04-26 2021-11-24 Dow Toray Co., Ltd. Flexible laminate and flexible display provided with same
EP3517292A4 (en) 2016-09-26 2020-05-20 Dow Toray Co., Ltd. LAMINATE, METHOD FOR MANUFACTURING SAME, AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
CN110446766A (zh) * 2017-04-06 2019-11-12 陶氏东丽株式会社 液态固化性有机硅粘接剂组合物、其固化物和其用途

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204259A (ja) 1983-05-06 1984-11-19 Hitachi Ltd 半導体装置の封止方法
JPS6148945A (ja) 1984-08-16 1986-03-10 Toshiba Corp ハイプリツドicモジユ−ル
JPS62104145A (ja) 1985-10-31 1987-05-14 Mitsubishi Electric Corp 半導体装置
JPH1112546A (ja) * 1997-04-30 1999-01-19 Toray Dow Corning Silicone Co Ltd シリコーン系接着性シート、その製造方法、および半導体装置
JP2003213132A (ja) 2002-01-23 2003-07-30 Shin Etsu Chem Co Ltd オルガノポリシロキサンゲル組成物
JP3865638B2 (ja) 2002-01-23 2007-01-10 信越化学工業株式会社 オルガノポリシロキサンゲル組成物
JP2006063092A (ja) * 2004-07-29 2006-03-09 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物、その硬化方法、光半導体装置および接着促進剤
JP4628270B2 (ja) 2006-01-20 2011-02-09 信越化学工業株式会社 熱硬化性組成物
JP2007191629A (ja) 2006-01-20 2007-08-02 Shin Etsu Chem Co Ltd 熱硬化性組成物
JP2010159411A (ja) * 2008-12-12 2010-07-22 Nitto Denko Corp 半硬化状シリコーン樹脂シート
JP2011153249A (ja) 2010-01-28 2011-08-11 Kaneka Corp 硬化性組成物およびその硬化物
JP5794229B2 (ja) 2010-04-26 2015-10-14 スリーボンドファインケミカル株式会社 光硬化性シリコーンゲル組成物及びその用途
JP2012017458A (ja) 2010-06-11 2012-01-26 Shin-Etsu Chemical Co Ltd 硬化性シリコーンゲル組成物
JP5594232B2 (ja) 2010-06-11 2014-09-24 信越化学工業株式会社 硬化性シリコーンゲル組成物
JP2015015324A (ja) * 2013-07-04 2015-01-22 パナソニック株式会社 半導体装置およびその製造方法
WO2015155950A1 (ja) 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP2016124967A (ja) 2014-12-26 2016-07-11 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、それからなる半導体用封止剤および半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517577A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049950A1 (ja) * 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 ラジカル反応性を有するシリコーンエラストマー硬化物およびその用途
US11981814B2 (en) 2017-09-11 2024-05-14 Dow Toray Co., Ltd. Cured silicone elastomer having radical reactivity and use of same
JP2019190078A (ja) * 2018-04-23 2019-10-31 信越ポリマー株式会社 表面保護基材付き封止材
JP7161864B2 (ja) 2018-04-23 2022-10-27 信越ポリマー株式会社 表面保護基材付き封止材
JP2020523422A (ja) * 2018-06-29 2020-08-06 ダウ シリコーンズ コーポレーション 無溶剤シリコーン感圧接着剤並びにその製造方法及び使用方法
WO2020075411A1 (ja) * 2018-10-12 2020-04-16 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
JP7476793B2 (ja) 2018-10-12 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
JPWO2020075411A1 (ja) * 2018-10-12 2021-09-02 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
JPWO2020084899A1 (ja) * 2018-10-22 2021-09-16 信越化学工業株式会社 付加硬化型シリコーン組成物
JP7476795B2 (ja) 2018-10-22 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物
WO2020084899A1 (ja) * 2018-10-22 2020-04-30 信越化学工業株式会社 付加硬化型シリコーン組成物
JPWO2020121930A1 (ja) * 2018-12-13 2021-11-11 ダウ・東レ株式会社 シリコーン粘着剤組成物およびその用途
JP7469232B2 (ja) 2018-12-13 2024-04-16 ダウ・東レ株式会社 シリコーン粘着剤組成物およびその用途
WO2020121930A1 (ja) * 2018-12-13 2020-06-18 ダウ・東レ株式会社 シリコーン粘着剤組成物およびその用途
WO2020166692A1 (ja) * 2019-02-14 2020-08-20 ダウ・東レ株式会社 オルガノポリシロキサン硬化物フィルム、その用途、製造方法および製造装置
WO2022050103A1 (ja) * 2020-09-03 2022-03-10 信越化学工業株式会社 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
JP7439940B2 (ja) 2020-09-03 2024-02-28 信越化学工業株式会社 硬化性シリコーンゲル組成物及びシリコーンゲル硬化物
WO2022138345A1 (ja) * 2020-12-25 2022-06-30 ダウ・東レ株式会社 シリコーン粘着剤組成物およびその用途
CN115595116A (zh) * 2022-10-24 2023-01-13 中山市皇冠胶粘制品有限公司(Cn) 一种硅凝胶及其制备方法和电子产品

Also Published As

Publication number Publication date
EP3517577A1 (en) 2019-07-31
CN109661436A (zh) 2019-04-19
KR102279871B1 (ko) 2021-07-21
US11279827B2 (en) 2022-03-22
TWI762511B (zh) 2022-05-01
TW201819539A (zh) 2018-06-01
US20200087514A1 (en) 2020-03-19
JPWO2018056297A1 (ja) 2019-07-25
KR20190051022A (ko) 2019-05-14
JP6799067B2 (ja) 2020-12-09
EP3517577A4 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
JP6799067B2 (ja) 硬化反応性シリコーンゲルおよびその用途
JP6728374B2 (ja) 積層体、その製造方法および電子部品の製造方法
JP7228519B2 (ja) ラジカル反応性を有するシリコーンエラストマー硬化物およびその用途
JP7411014B2 (ja) 積層体および電子部品の製造方法
KR102478213B1 (ko) 액상 경화성 실리콘 접착제 조성물, 그 경화물 및 그 용도
JP7450388B2 (ja) 電子装置用基板の封止方法及び封止された電子装置用基板
WO2024135806A1 (ja) ホットメルト性硬化性シリコーン組成物、当該組成物を用いる積層体、および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010140

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017853067

Country of ref document: EP

Effective date: 20190426