WO2018043753A1 - 隊列走行管理システム - Google Patents

隊列走行管理システム Download PDF

Info

Publication number
WO2018043753A1
WO2018043753A1 PCT/JP2017/031906 JP2017031906W WO2018043753A1 WO 2018043753 A1 WO2018043753 A1 WO 2018043753A1 JP 2017031906 W JP2017031906 W JP 2017031906W WO 2018043753 A1 WO2018043753 A1 WO 2018043753A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
order
vehicles
information
platoon
Prior art date
Application number
PCT/JP2017/031906
Other languages
English (en)
French (fr)
Inventor
裕樹 長谷部
Original Assignee
ナブテスコオートモーティブ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコオートモーティブ 株式会社 filed Critical ナブテスコオートモーティブ 株式会社
Priority to JP2018537594A priority Critical patent/JP6748213B2/ja
Publication of WO2018043753A1 publication Critical patent/WO2018043753A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a convoy travel management system that manages the order of convoy travel vehicles.
  • a system for the purpose of facilitating traffic flow, energy saving, etc., a system has been developed that realizes platooning in which a plurality of vehicles run in a platoon.
  • the vehicles that form the platoon travel so as to maintain a predetermined inter-vehicle distance while communicating with each other at short intervals.
  • a system for electronically connecting a leading truck driven by a driver and an unmanned truck is being studied.
  • the platoon is formed not only by the vehicle type but also by vehicles having different specifications such as the size of the vehicle body, the drive source, the configuration of the brake system, and the like.
  • Patent Document 1 proposes a system that forms a platoon from a vehicle group composed of vehicles with a large projected area and a vehicle group composed of vehicles with a small projected area.
  • the projected area corresponds to a product of the vehicle width and the total height.
  • the inter-vehicle distance assumed for platooning is as short as several meters to about 10 meters, so that even if the leading vehicle brakes suddenly, each subsequent vehicle can safely decelerate or stop. It has been demanded.
  • it is not taken into consideration until the vehicle decelerates safely even when sudden braking is activated.
  • the vehicles are arranged in order of increasing braking distance from the head toward the rear in the formation.
  • the fuel efficiency improvement effect may be reduced.
  • the current situation is that further studies are needed on the formation method when forming formations with vehicles having different specifications.
  • An object of the present invention is to provide a convoy travel management system capable of organizing a convoy in a vehicle order that matches a state predicted when the convoy travels even when the convoy is composed of vehicles having different specifications.
  • the convoy travel management system is a convoy travel management system that manages the order of a plurality of vehicles in the convoy travel, and that obtains prediction information that predicts at least one of time and environment during convoy travel
  • An information acquisition unit a vehicle information acquisition unit that acquires vehicle information including the braking distance of each vehicle that forms a platoon and vehicle body information of the vehicle, and the order of the vehicles according to the acquired prediction information,
  • a first vehicle order in which vehicles are arranged in descending order of the braking distance from the head toward the tail in the platoon, or a vehicle having the highest air resistance among the plurality of vehicles based on the vehicle body information is placed at the head in the platoon
  • a convoy formation unit set to the second vehicle order set to the second vehicle order.
  • the platoon formation unit improves the fuel efficiency by reducing the vehicle order in the platooning, the first vehicle order in which the vehicles are arranged in the platoon in the descending order of the braking distance, or by reducing the air resistance of the following vehicle.
  • the first vehicle sequence for example, when the leading vehicle activates the sudden brake, the vehicles can be prevented from colliding with each other by stopping in order from the rear vehicle.
  • the second vehicle order the air resistance of the following vehicle is reduced by the leading vehicle, so that the fuel efficiency of the entire platoon can be improved.
  • the platooning can be carried out with a high vehicle order.
  • the vehicle learns by relating the total vehicle weight and the braking distance, and the formation unit determines the order of the vehicles based on the braking distance associated with the total vehicle weight of the vehicle. May be.
  • the braking distance tends to increase as the total vehicle weight increases.
  • the braking distance is learned on the vehicle side in association with the total vehicle weight that changes according to the load of the load, and the formation organization unit determines the vehicle order using the braking distance. Therefore, since the braking distance predicted on the vehicle side can be brought close to the actual braking distance, a collision between vehicles can be avoided more reliably.
  • the platoon forming unit arranges the vehicle having the maximum air resistance based on the vehicle body information at the top and sets the other vehicles at the top. May be set in an order in which the braking distances are arranged from the longest toward the rear.
  • the vehicles other than the leading vehicle are arranged in the platoon in order of increasing braking distance. Therefore, while improving the fuel efficiency of the entire platoon, Collisions can be avoided.
  • the formation unit may set the vehicles in an order in which the vehicles are arranged in descending order from the head toward the rear. .
  • the formation unit sets the order of the vehicles to the first vehicle order or the second vehicle order, and then moves from the head vehicle of the formation to the rear vehicle. Each vehicle may be instructed to increase the maximum deceleration.
  • the vehicles are arranged in a line in order of increasing braking distance from the leading vehicle to the trailing vehicle, and the maximum deceleration increases on the vehicle side.
  • the fuel efficiency of the entire platoon is improved by arranging the vehicle having the largest air resistance at the head of the platoon, and the maximum deceleration as it moves from the leading vehicle to the trailing vehicle.
  • the platoon can be formed in a vehicle order that matches a state predicted when the platoon travels.
  • summary of platooning The block diagram explaining schematic structure of a convoy travel system.
  • the vehicle 100 that forms the formation is a truck.
  • a destination is set for the vehicle 100, and the vehicle 100 travels in a predetermined section between the departure point and the destination.
  • the vehicle 100 passes through the hub base 101 for organizing the convoy before arriving at the destination, that is, the hub base 101 that is the starting point of the convoy travel.
  • the hub base 101 is provided, for example, in the vicinity of an entrance / exit of a road capable of platooning such as an expressway or in a service area of an expressway.
  • Each vehicle 100 is driven from the departure place to the hub base 101 by a driver.
  • the vehicle 100 arriving at the hub base 101 communicates with the platoon management device 11.
  • the convoy management device 11 only needs to be able to communicate with the vehicle 100 or the like of the hub base 101 and may be provided at the hub base 101 or may be provided at a place other than the hub base 101. Further, the convoy management device 11 may be provided for each hub base 101, or one convoy management device 11 may be provided corresponding to a plurality of hub bases 101.
  • the vehicle 100 has an authentication code for performing platooning, and the platoon management device 11 authenticates the vehicle 100.
  • the convoy management device 11 collects information on the vehicle 100 and information on the route from the vehicle 100 and the like when authenticating the vehicle 100 that has arrived at the hub base 101.
  • the convoy management device 11 selects the vehicle 100 that forms the convoy based on route information such as information on the route from the departure point to the destination. Since the convoy management device 11 selects the vehicle 100 that forms the convoy according to the destination, etc., the vehicle type of the selected vehicle, the loading amount, the vehicle information such as the vehicle width and the total length, the vehicle gross weight, the configuration of the drive source
  • the structure of the brake system is not necessarily the same, and is often different from each other.
  • the convoy management device 11 determines the order of vehicles in the convoy.
  • the platoon management device 11 transmits information including the identifier of the vehicle 100 that forms the platoon and the vehicle order to each vehicle 100.
  • the vehicle 100 receives these pieces of information, the vehicle 100 forms a row based on the received information and travels on a road that can be driven in a row such as an expressway.
  • the leading vehicle 100 that is the head of the platoon is driven by a driver or monitored by a supervisor, and the vehicles 100 other than the leading vehicle travel in unmanned driving (automatic driving). Note that the leading vehicle may also travel in unmanned operation.
  • the vehicle 100 (front vehicle) that forms the platoon transmits speed and acceleration / deceleration information to subsequent vehicles, for example, every several milliseconds to several tens of milliseconds.
  • the succeeding vehicle is accelerated or decelerated based on the received speed and acceleration / deceleration so that the speed is the same as that of the preceding vehicle, so that the inter-vehicle distance from the preceding vehicle becomes a predetermined distance.
  • the target inter-vehicle distance in the platoon is several meters to several tens of meters (for example, 1 m to 15 m), and the target speed maintained in the platooning is, for example, 60 to 80 km / h.
  • the vehicle 100 that forms the platoon arrives at the hub base 101 that is the end point, it is driven by the driver and heads for the destination. It should be noted that the vehicle 100 that forms the row may leave the row before the hub base 101 when there is a destination before the hub base 101 or the like.
  • the convoy travel management system 10 includes a convoy management device 11 and a convoy travel control system mounted on the vehicle 100.
  • the control system of the vehicle 100 includes a convoy travel control device 20, a vehicle information storage unit 21, and a communication unit 22, which are connected to each other via an in-vehicle network 29.
  • the convoy travel control device 20 includes a calculation unit, a volatile storage unit as a calculation region, and a nonvolatile storage unit.
  • the calculation unit performs various calculations for platooning according to a program stored in the nonvolatile storage unit.
  • the convoy travel control device 20 performs road-to-vehicle communication, vehicle-to-vehicle communication, and the like via the communication unit 22.
  • a speed signal is input from the vehicle speed sensor 23 to the platooning control device 20.
  • the convoy travel control device 20 calculates the speed and acceleration / deceleration of the vehicle 100 based on the speed signal, and transmits information including the speed and acceleration / deceleration to the other vehicle 100 that forms the convoy via the communication unit 22.
  • the vehicle 100 further includes a host vehicle position detection unit 24 and a route guide unit 25.
  • the own vehicle position detection unit 24 is, for example, a GPS sensor, and detects the own vehicle position such as latitude and longitude.
  • the route guide unit 25 searches for a route from the departure place to the destination and generates route information.
  • the route guide unit 25 guides the vehicle 100 to travel along the searched route based on the vehicle position and route information.
  • the vehicle information storage unit 21 stores vehicle information including information on the vehicle body such as the vehicle width and overall height, and the braking distance.
  • the braking distance is information learned by the brake ECU 26 that controls the brake system of the vehicle 100.
  • the braking distance is learned at a predetermined timing such as when the vehicle 100 stops and is recorded in a state associated with the total vehicle weight.
  • the braking distance is a moving distance of the vehicle 100 from when the brake is activated and the vehicle 100 starts decelerating until the vehicle 100 stops.
  • the total vehicle weight is calculated, for example, by adding the loaded weight to the weight of the vehicle without a load.
  • the vehicle weight when there is no load is a fixed value, and the loaded weight can be obtained by, for example, detecting a pressure in a load detection sensor or an air circuit of an air suspension system.
  • the braking distance may be learned in association with at least one of the speed when the vehicle 100 starts decelerating and the brake pressure in addition to the total vehicle weight. By learning the braking distance based on the speed or brake pressure and the total weight of the vehicle, the relationship between the speed or brake pressure and the braking distance can be grasped, so that the braking distance at the maximum deceleration can be calculated accurately. it can.
  • the braking distance is learned in association with at least one of the road surface condition (curvature radius of curvature, slope angle, road surface friction coefficient, road surface temperature, etc.) and vehicle condition (tire pressure, tire temperature, brake shoe temperature, etc.). May be.
  • the road surface state can be acquired from road map data stored in the route guidance unit 25, analysis results of imaging data such as an infrared camera and a visible light camera provided in the vehicle 100, and information received from a roadside communication device. it can.
  • the state of the vehicle 100 can be acquired from a pressure sensor or a temperature sensor provided on the wheel.
  • the convoy travel control device 20 sends vehicle information including the identifier of the vehicle 100, the braking distance, and the total vehicle weight via the communication unit 22 at a predetermined timing, such as when the hub base 101 that is the starting point of the convoy travel is reached. Transmit to the convoy management device 11. In addition, the convoy travel control device 20 manages convoys via the communication unit 22 with respect to the destination and route information acquired from the route guide unit 25 and the scheduled traveling time passing through a predetermined point such as the hub base 101 on the route. Transmit to device 11.
  • Vehicle information and route information may be provided by a delivery management terminal 31 connected to the convoy management device 11 via the network 30.
  • the delivery management terminal 31 is a terminal that manages the travel route, estimated travel time, driver, and the like of each vehicle 100, and has information related to the delivery plan of the vehicle 100.
  • the delivery management terminal 31 can transmit vehicle information and route information to the platoon management device 11 before the date when the vehicle 100 arrives at the hub base 101, for example.
  • the convoy management apparatus 11 can plan the formation of the convoy before the day when the convoy travel is performed.
  • the delivery management terminal 31 includes a delivery management unit 32, a vehicle information storage unit 33, and a route information storage unit 34.
  • the delivery management unit 32 transmits and receives various information via the network 30.
  • vehicle information storage unit 33 vehicle information of each vehicle 100 to be managed by the delivery management terminal 31 is recorded. This vehicle information is information that is common with information stored in the vehicle information storage unit 21 of the vehicle 100.
  • the route information storage unit 34 records route information of each vehicle 100 that is a management target. This route information is information common to the information stored in the vehicle information storage unit 21 of the vehicle 100. Note that the vehicle information and the route information may be stored in the same storage unit.
  • the convoy management device 11 includes a control unit 12, a communication unit 16, and a convoy information storage unit 17.
  • the control unit 12 includes a calculation unit, a volatile storage unit, and a non-volatile storage unit, and performs various operations for formation of the formation and management of the formation in accordance with a program stored in the non-volatile storage unit. Further, the control unit 12 communicates with the communication unit 22 and the delivery management terminal 31 of each vehicle 100 via the communication unit 16. Further, the control unit 12 communicates with an external server that provides various information such as traffic information and weather information via the communication unit 16.
  • the control unit 12 includes a prediction information acquisition unit 13, a vehicle information acquisition unit 14, and a formation organization unit 15.
  • the prediction information acquisition unit 13 uses the external server or the control unit itself to predict prediction information that predicts the state during the platooning from the hub base 101 that is the starting point of the platooning to the hub base 101 that is the ending point of the platooning. Acquired from a storage unit or the like.
  • the prediction information includes information related to the time of arrival at the hub base 101 at the end point, information related to the traveling environment between the hub bases 101, and the like. Examples of information relating to the driving environment include static information that does not change, such as road shape information, and dynamic information such as weather and traffic information.
  • forecast information includes time zones such as daytime and nighttime, weather information such as fine weather and rainy weather, road surface conditions such as the presence or absence of freezing, road information indicating the vertical gradient and curvature of roads, congestion and congestion, roads There is traffic information about the presence or absence of regulations.
  • the vehicle information acquisition unit 14 collects vehicle information from each vehicle 100 gathered at the hub base 101 and the delivery management terminal 31 and records the collected vehicle information in the platoon information storage unit 17. Further, the vehicle information acquisition unit 14 collects the destination, route information, estimated travel time, and the like for each vehicle from each vehicle 100 and the delivery management terminal 31 and records the information in the platoon information storage unit 17.
  • the formation organization unit 15 selects the vehicle 100 that forms the formation based on the route information and the like.
  • the formation organization unit 15 selects a vehicle 100 that is scheduled to start a formation run later than the point in time when the vehicle 100 is selected, among vehicles passing through one hub base 101.
  • the formation unit 15 passes through the same hub base 101 excluding the start point of the formation run and the scheduled time of passing through the hub base 101 based on the destination, route information, scheduled travel time, etc.
  • the vehicle 100 is selected on the condition that it is. A certain number of vehicles may be used to form a convoy, or may be within a predetermined range.
  • the row forming unit 15 may select the vehicle 100 having the same maximum load capacity or the specifications of the brake system and the like. Alternatively, the vehicle 100 and the manufacturer may select the same vehicle 100. In addition, the convoy formation unit 15 may transmit a notification to the effect that the convoy is not formed to the vehicle 100 or the delivery management terminal 31 when the number of candidates for the vehicle 100 is less than the planned number.
  • the formation organization unit 15 determines the vehicle order based on the prediction information acquired by the prediction information acquisition unit 13.
  • a plurality of vehicle order determination criteria are set, and one of them is a criterion in which the vehicles 100 are arranged in descending order of the braking distance from the head of the platoon to the tail.
  • the vehicle order of the platoon is set to the order in which the braking distance is long (first vehicle order). At this time, it is preferable to use the braking distance at the maximum deceleration as the braking distance information.
  • the inter-vehicle distance, speed, and acceleration / deceleration are transmitted and received between the vehicles. Therefore, when the leading vehicle starts decelerating, the other vehicles also follow the leading vehicle and start decelerating.
  • the time difference between the timing at which the leading vehicle begins to decelerate and the timing at which the following vehicle begins to decelerate is very short, so there is a fluctuation in the inter-vehicle distance during normal deceleration for speed adjustment, but the vehicles collide. It does n’t happen.
  • the leading vehicle activates sudden braking
  • the vehicles 100 that form the platoon stop in the order from the rearmost vehicle 100 to the first vehicle 100 in the platoon the vehicle 100 is prevented from colliding with the vehicle 100 in front of it. it can.
  • a method for stopping the vehicle 100 in such an order there is a method of adjusting the pressure of the brake system of each vehicle so that the braking force increases from the first vehicle toward the last vehicle.
  • the safety can be improved only by adjusting the braking force
  • the specification of the braking system of each vehicle 100 is different and the adjustment of the braking force is intended. There is a possibility that it will not be met. Therefore, a mechanism to increase safety is necessary. Therefore, in a state where it is predicted that there is a high possibility that sudden braking will occur, after adjusting the braking force, the vehicle order of the platoon is set in order of increasing braking distance.
  • the braking distance tends to increase as the total vehicle weight increases. Since the total vehicle weight greatly varies depending on whether or not there is a load and the type of the load, for example, the braking distance of the vehicle 100 measured in the absence of the load deviates from the braking distance of the vehicle 100 in the presence of the load. . On the other hand, since the brake characteristics of the vehicle 100 are not reflected only by the total vehicle weight, the braking distance cannot be estimated appropriately. Therefore, the braking distance associated with the total vehicle weight is used to determine the vehicle order.
  • the braking distance that reflects the total weight of the vehicle to determine the vehicle order, even when a platoon is formed by the unloaded vehicle 100 and the loaded vehicle 100, it is possible to Collisions between vehicles can be suppressed.
  • the weather information is rainy, snowfall, fog, etc.
  • the platooning time is at night, or when the road surface is frozen
  • the road undulations of the travel section are large, when the travel section includes a sharp curve, when there are road regulations, etc., it may be other than this.
  • the vehicle 100 is arranged in the platoon so that the fuel efficiency of the entire platoon is improved.
  • the vehicle with the highest air resistance is arranged at the head of the platoon (second vehicle order). Air resistance is proportional to the product of the front projected area of the vehicle and the square of speed.
  • the front projection area is an area when viewed from the front of the vehicle 100 and can be roughly estimated by a product of the vehicle width and the total height.
  • the order of the vehicles other than the leading vehicle is set in order of increasing braking distance.
  • each rear vehicle By organizing the formation in such a vehicle order, the air resistance of each rear vehicle is reduced by the leading vehicle, and the fuel efficiency of each rear vehicle is improved. As a result, the fuel efficiency of the entire formation is improved.
  • the vehicles other than the leading vehicle in the platoon in order of increasing braking distance, even if the leading vehicle suddenly brakes, each vehicle except the leading vehicle stops in order from the rearmost vehicle in the platoon. Can be.
  • all the vehicles 100 that form the platoon may be arranged in the descending order of the front projected area.
  • the formation organization unit 15 calculates the front projection area of each vehicle 100 by multiplying the vehicle width and the total height included in the vehicle information. Then, the vehicle order is set in order of increasing front projection area.
  • the vehicle information may include the front projection area and the magnitude of the air resistance of the vehicle 100. When the magnitude of air resistance is included in the vehicle information, the vehicle order may be set in order of increasing air resistance.
  • the convoy management device 11 determines the vehicles 100 that form the convoy and the order in the convoy, the identifiers and the order of the vehicles 100 that form the convoy, together with the scheduled departure time from the hub base 101, the vehicles 100 Alternatively, it is transmitted to an unspecified number of vehicles 100 at the hub base 101.
  • the convoy management device 11 adjusts the maximum deceleration of each vehicle 100.
  • the platoon management device 11 sets a maximum deceleration for each vehicle 100 that increases from the leading vehicle 100 to the trailing vehicle 100 in the determined vehicle order, and sets the set maximum deceleration to the identifier of the corresponding vehicle 100 and Send it in association.
  • the brake system of the vehicle 100 is a pneumatic brake system that operates a brake using, for example, compressed air, and an air circuit through which the compressed air flows is provided with a valve mechanism and a pressure sensor that adjust the air pressure.
  • the brake ECU 26 of the vehicle 100 stores the pressure of the air circuit and the deceleration in association with each other.
  • the brake ECU 26 targets the deceleration received from the other vehicles 100 that form the platoon, and refers to the information on the pressure associated with the deceleration to associate the air circuit pressure with the target deceleration.
  • the valve mechanism is controlled so as to achieve the set pressure. For example, when an instruction to decelerate at the maximum deceleration is received from another vehicle 100, the vehicle is decelerated at the maximum deceleration received from the platoon management device 11.
  • the procedure of formation of the formation of the formation management device 11 will be described together with its operation.
  • the vehicle 100 that performs the platooning has an authentication code for performing the platooning.
  • the convoy management device authenticates the vehicle 100 when the vehicle 100 arrives at the hub base 101.
  • the vehicle information acquisition unit 14 of the convoy management device 11 acquires vehicle information (step S1).
  • the convoy management apparatus 11 acquires vehicle information by communicating with the vehicles 100 assembled at the hub base 101.
  • the convoy management device 11 acquires vehicle information from the delivery management terminal 31 via the network 30.
  • the vehicle information acquisition unit 14 of the platoon management device 11 acquires route information, a destination, and a scheduled travel time (step S2).
  • the platoon management device 11 acquires route information and the like from the vehicle 100 after authenticating the vehicle 100.
  • the procession management apparatus 11 acquires route information and the like from the delivery management terminal 31 via the network 30.
  • the prediction information acquisition unit 13 of the platoon management device 11 acquires the prediction information from the external server or its own storage unit (step S3).
  • the convoy management device 11 acquires all the prediction information between the hub bases 101 that can be the start point and the end point of the convoy travel.
  • the platoon management device 11 may acquire prediction information between predetermined hub bases.
  • the formation organization unit 15 of the formation management device 11 selects the vehicle 100 that forms the formation (step S4). Based on the route information transmitted from each vehicle 100, the formation organization unit 15 selects the vehicle 100 in which the hub base 101 at the start point and the hub base 101 at the end point are included in the route information as candidates. For example, when the number of selected candidates exceeds a predetermined number range, the vehicles 100 that form a platoon may be further narrowed down based on vehicle information or the like. For example, a platoon is formed from vehicles of the same manufacturer and the same specifications.
  • the row formation unit 15 determines the order of the vehicles in the row based on the prediction information or the like (step S5).
  • the vehicle order is set in descending order of the braking distance based on the vehicle information.
  • the vehicle with the largest front projection area is placed at the top in the platoon, and the vehicles other than the leading vehicle are arranged in order of increasing braking distance. They are arranged or arranged in order of increasing front projection area.
  • the convoy formation unit 15 transmits the information on the identifier and the vehicle order of each vehicle 100 that forms the convoy together with the scheduled departure time of the hub base 101 that is the starting point (step S6).
  • the platoon management device 11 may transmit the information on the identifier and the vehicle order of each vehicle 100 that forms the platoon to each vehicle 100 that arrives at the hub base 101 and plans to form the platoon. Alternatively, it may be transmitted to the delivery management terminal 31.
  • the delivery management terminal 31 uses the received information for each vehicle that is subject to convoy formation. To 100.
  • the vehicle 100 that is the object of formation formation forms the formation in the vehicle order designated by the formation management device 11, and the hub base that is the starting point 101 departs at the scheduled departure time.
  • the convoy management device 11 improves the fuel efficiency by reducing the vehicle resistance in the convoy travel, the first vehicle order in which the vehicles 100 are arranged in the convoy in descending order of the braking distance, or by reducing the air resistance of the following vehicle.
  • the vehicle order In the case of the first vehicle sequence, for example, when the leading vehicle activates a sudden brake, the vehicles 100 can be prevented from colliding with each other by stopping in order from the rear vehicle 100.
  • the air resistance of the following vehicle is reduced by the leading vehicle, so that the fuel efficiency of the entire platoon can be improved.
  • the braking distance is learned on the vehicle side in association with the total vehicle weight that changes according to the load of the load, and the platoon management device 11 determines the vehicle order using the braking distance. Therefore, since the braking distance predicted on the vehicle 100 side can be brought close to the actual braking distance, a collision between the vehicles 100 can be avoided more reliably.
  • the vehicles 100 other than the head vehicle are arranged in a row in the order of increasing braking distance or in descending order of air resistance. If the vehicles 100 are arranged in order of increasing braking distance, it is possible to improve the fuel efficiency of the entire platoon and to avoid collisions between the vehicles 100 when sudden braking occurs. If the vehicles 100 are arranged in the descending order of the air resistance, all the vehicles 100 are arranged in the platoon in the descending order of the air resistance, so that the fuel efficiency improvement effect of the entire platoon can be enhanced.
  • the vehicles 100 are arranged in the row in order of increasing braking distance from the leading vehicle 100 toward the trailing vehicle 100.
  • the vehicle 100 can be prevented from colliding with each other when sudden braking occurs by adjusting the maximum deceleration on the vehicle 100 side.
  • the fuel efficiency of the entire platoon is improved by arranging the vehicle 100 having the maximum air resistance at the head of the platoon, and as the head vehicle 100 moves toward the rear vehicle 100, By making adjustments so that the maximum deceleration is increased, it is possible to avoid collisions between the vehicles 100 when sudden braking occurs. Therefore, it is possible to perform platooning according to a vehicle order that has a high merit in the state at the time, while improving safety when sudden braking occurs.
  • the said embodiment can also be suitably changed and implemented as follows.
  • the vehicle 100 has learned the braking distance in association with the total vehicle weight.
  • the vehicle total weight at that time is calculated by an arithmetic expression for calculating the braking distance at the maximum deceleration based on the braking distance when the vehicle 100 is not loaded (no-loading state) and the total vehicle weight.
  • a braking distance according to the above may be calculated. In this way, the braking distance at the maximum deceleration can be acquired without learning the braking distance.
  • the vehicle order is determined in the first vehicle order or the second vehicle order, and the maximum deceleration is adjusted to increase from the head toward the tail.
  • the maximum deceleration is adjusted to increase from the head toward the tail.
  • the convoy management device 11 is provided in addition to the vehicle 100. Instead, the convoy management device 11 may be provided in the vehicle 100.
  • each vehicle 100 performs inter-vehicle communication to form a platoon, and determines whether to set the vehicle order to the first vehicle order or the second vehicle order based on the prediction information. .
  • the vehicle 100 compares the braking distance of the own vehicle with the braking distance of the other vehicle, and if the braking distance of the own vehicle is shorter than the braking distance of the other vehicle. Others line up behind the vehicle. If this is repeated in sequence, the vehicles 100 are arranged in order of increasing braking distance.
  • the front projection area of the own vehicle and the front projection area of the other vehicle are compared, and the front projection area of the own vehicle is larger than the front projection area of the other vehicle. If it is small, it will line up behind the other vehicle. If this is repeated in sequence, the vehicles 100 are arranged in descending order of the front projection area.
  • the vehicles other than the leading vehicle are compared with the braking distance of the own vehicle and the braking distance of the other vehicle. If the braking distance of the own vehicle is smaller than the braking distance of the other vehicle, the vehicles are arranged behind the other vehicles. May be. In this case, each vehicle 100 may start formation of a convoy while traveling alone.
  • the vehicles 100 gather at the hub base 101 that is the start point, and perform platooning from the hub base 101 that is the start point to the hub base 101 that is the end point.
  • the vehicle 100 that travels alone may communicate with other vehicles 100 and the convoy management device 11 while traveling to form a convoy and a vehicle that share a common route.
  • the vehicle 100 may be newly added to the platoon, or the vehicle 100 may be removed from the platoon. Good.
  • the vehicle order is transmitted to the vehicle 100.
  • the determined vehicle order and the estimated traveling time are output to an output device such as a display or a printer, and the driver drives the vehicle 100 based on the output result, and the vehicle 100 in the designated vehicle order. May be arranged.
  • the vehicle 100 has been described as a truck, but the vehicle 100 may be another cargo vehicle or a passenger car.
  • SYMBOLS 10 Convoy travel management system, 11 ... Convoy management apparatus, 12 ... Control part, 13 ... Prediction information acquisition part, 14 ... Vehicle information acquisition part, 15 ... Convoy formation part, 16 ... Communication part, 17 ... Convoy information storage part, DESCRIPTION OF SYMBOLS 20 ... Convoy travel control apparatus, 21 ... Vehicle information storage part, 22 ... Communication part, 23 ... Vehicle speed sensor, 24 ... Own vehicle position detection part, 25 ... Route guidance part, 26 ... Brake ECU, 31 ... Delivery management terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

仕様が異なる車両により隊列を編成する場合にも、隊列走行時に予測される状態に合わせた車両順序で隊列を編成することのできる隊列走行管理システムを提供する。隊列走行での車両の順序を管理する隊列走行管理システムであって、隊列走行時に予測される状態を取得する予測情報取得部(13)と、隊列を編成する車両の制動距離と当該車両の車体情報とを含む車両情報を取得する車両情報取得部(14)と、前記取得した状態に応じて、車両順序を、先頭から後尾に向かって前記制動距離が長い順とする第1の車両順序、及び前記車体情報に基づき空気抵抗の大きい車両を先頭車両とする第2の車両順序のいずれかに従って前記車両の順序を決定し、決定した車両順序を前記車両に通知する隊列編成部(15)とを備える。

Description

隊列走行管理システム
 本発明は、隊列走行を行う車両の隊列における順序を管理する隊列走行管理システムに関する。
 近年では、交通流の円滑化、省エネルギー等を目的として、複数の車両が隊列を編成して走行する隊列走行を実現するシステムの開発が行われている。隊列を編成する車両は、短い間隔で互いに通信を行いながら所定の車間距離を保つように走行する。例えば、物流の分野では、運転者により運転される先頭のトラックと、無人のトラックとを電子的に連結するシステムが検討されている。このようなシステムが商用として実用化された場合には、車種だけでなく、車体の大きさや、駆動源、ブレーキシステムの構成等の仕様が異なる車両により隊列が編成されることが想定される。
 また、隊列走行では、車間距離を短くすることによって各車両の空気抵抗が低減し、燃費が向上することが知られている。車種が同じ車両により隊列を編成する場合は、各車両の空気抵抗が同じとなるため車両順序は隊列全体の燃費に影響を及ぼさない。しかしながら、車体の大きさ等の仕様が互いに異なる車両により隊列を編成する場合には、隊列走行での車両順序が隊列全体の燃費に影響を及ぼす。このため、仕様が異なる車両から隊列を編成する場合であっても、燃費向上効果を大きくできるような編成について検討がなされている。
 例えば、特許文献1では、投影面積が大きい車両からなる車群と、投影面積が小さい車両からなる車群とから隊列を形成するシステムが提案されている。投影面積は、車幅と全高との乗算値に対応する。投影面積が大きい車両を先頭車群に含め、投影面積が小さい車両を後尾車群に含めることで、後尾車群の空気抵抗を低減し、隊列全体の消費エネルギーの低減を図っている。
特開2014-211714号公報
 一方、隊列走行において想定されている車間距離は、数メートルから10メートル程度と短いため、先頭車両が急ブレーキをかけた場合等にも、それに後続する各車両が安全に減速又は停止することが求められている。しかし、上記特許文献に記載されたシステムにおいては、急ブレーキ作動時にも車両が安全に減速することまでは考慮されていない。また、急ブレーキ作動時に後続する各車両が安全に減速又は停止するためには、例えば、隊列において先頭から後尾に向かうに伴い制動距離が長い順に車両を配置することが考えられる。しかしながら、この場合には、燃費向上効果が低減される可能性がある。このように、仕様が異なる車両で隊列を編成するときの隊列編成方法についてはさらなる検討が必要であるのが現状である。
 本発明の目的は、仕様が異なる車両により隊列を編成する場合にも、隊列走行時に予測される状態に合わせた車両順序で隊列を編成することのできる隊列走行管理システムを提供することにある。
 一態様では、隊列走行管理システムは、隊列走行の隊列における複数の車両の順序を管理する隊列走行管理システムであって、隊列走行時の時間及び環境の少なくとも一方を予測した予測情報を取得する予測情報取得部と、隊列を編成する各車両の制動距離と当該車両の車体情報とを含む車両情報を取得する車両情報取得部と、前記取得した予測情報に合わせて、前記車両の順序を、前記隊列において先頭から後尾に向かって前記制動距離が長い順に車両を配置する第1の車両順序、又は前記車体情報に基づき前記複数の車両のうち空気抵抗が最大である車両を前記隊列において先頭に配置する第2の車両順序に設定する隊列編成部と、を備える。
 上記構成によれば、隊列編成部は、隊列走行での車両順序を、制動距離が長い順に隊列に車両を配置する第1の車両順序、又は後続車両の空気抵抗の低減により燃費向上を図る第2の車両順序に設定する。第1の車両順序の場合、例えば先頭車両が急ブレーキを作動させたときに、後尾の車両から順に停止することによって車両同士の衝突を回避することができる。第2の車両順序の場合には、先頭車両によって後続車両の空気抵抗が低減されるため、隊列全体の燃費を向上することができる。従って、隊列走行時に予測される状態に応じて車両順序を決定することによって、車体の大きさやブレーキシステムの構成等の仕様が異なる車両で隊列を編成する場合にも、その時々の状態でメリットが高い車両順序により隊列走行を行うことができる。
 一実施形態では、前記車両は、車両総重量と前記制動距離とを関連付けて学習し、前記隊列編成部は、前記車両の車両総重量に関連付けられた制動距離に基づき前記車両の順序を決定してもよい。
 制動距離は、車両総重量が大きくなるに伴い長くなる傾向にある。上記構成によれば、車両側で、積荷の荷重に応じて変化する車両総重量と関連付けて制動距離が学習され、隊列編成部は、その制動距離を用いて車両順序を決定する。したがって、車両側で予測する制動距離を、実際の制動距離に近付けることができるため、車両同士の衝突をより確実に回避することができる。
 一実施形態では、前記隊列編成部は、前記車両の順序を前記第2の車両順序に設定する際、前記車体情報に基づき空気抵抗が最大である車両を先頭に配置し、他の車両を先頭から後尾に向かって前記制動距離が長い順に配置する順序に設定してもよい。
 上記構成によれば、第2の車両順序の場合に、先頭車両以外の車両は制動距離が長い順に隊列に配置されるため、隊列全体の燃費を向上しつつ、急ブレーキ発生時の車両同士の衝突を回避することができる。
 一実施形態では、前記隊列編成部は、前記車両の順序を前記第2の車両順序に設定する際、先頭から後尾に向かって前記車両を空気抵抗が大きい順に配置する順序に設定してもよい。
 上記構成によれば、第2の車両順序の場合に、全ての車両が空気抵抗の大きい順に隊列に配置されるため、隊列全体の燃費向上効果を高めることができる。
 一実施形態では、前記隊列編成部は、前記車両の順序を、前記第1の車両順序又は前記第2の車両順序に設定した上で、前記隊列の先頭の車両から後尾の車両に向かうに伴い最大減速度が大きくなるように各車両に指示してもよい。
 上記構成によれば、第1の車両順序の場合には、車両が、先頭の車両から後尾の車両に向かうに伴い制動距離が長い順に隊列に並ぶこと、及び車両側で最大減速度が大きくなるように調整されることの両方によって、急ブレーキ発生時の車両同士の衝突を回避することができる。また、第2の車両順序の場合には、空気抵抗が最大の車両を隊列の先頭に配置することによって隊列全体の燃費を向上するとともに、先頭の車両から後尾の車両に向かうに伴い最大減速度が大きくなるように調整がなされることによって急ブレーキ発生時の車両同士の衝突を回避することができる。従って、急ブレーキ発生時の安全性を高めながら、その時々の状態でメリットが高い車両順序により隊列走行を行うことができる。
 本発明によれば、仕様が異なる車両により隊列を編成する場合にも、隊列走行時に予測される状態に合わせた車両順序で隊列を編成することができる。
隊列走行の概要を説明する概念図。 隊列走行システムの概略構成を説明するブロック図。 隊列を編成する手順を説明するフローチャート。
 以下、隊列走行管理システムの一実施形態を説明する。
 図1を参照して、隊列走行の概略について説明する。ここでは隊列を編成する車両100は、トラックである。車両100には目的地が設定されており、車両100は出発地と目的地との間の所定区間で隊列を編成して走行する。
 車両100は、目的地に到着する前に隊列を編成するためのハブ拠点101、すなわち、隊列走行の開始地点であるハブ拠点101を経由する。ハブ拠点101は、例えば高速道路等の隊列走行が可能な道路の出入口付近や、高速道路のサービスエリアに設けられている。各車両100は、出発地からハブ拠点101までは運転者により運転される。
 ハブ拠点101に到着した車両100は、隊列管理装置11と通信を行う。隊列管理装置11は、ハブ拠点101の車両100等と通信可能であればよく、ハブ拠点101に設けられていてもよいし、ハブ拠点101以外の場所に設けられていてもよい。また、隊列管理装置11は、ハブ拠点101毎に設けられていてもよいし、1つの隊列管理装置11が複数のハブ拠点101に対応させて設けられていてもよい。例えば、車両100は隊列走行を行うための認証コードを有しており、隊列管理装置11は、車両100に対して認証を行う。
 隊列管理装置11は、ハブ拠点101に到着した車両100に対して認証を行うと、車両100等から、車両100に関する情報や経路に関する情報を収集する。隊列管理装置11は、出発地から目的地までの経路の情報などの経路情報等に基づき、隊列を編成する車両100を選択する。隊列管理装置11は、目的地等に応じて隊列を編成する車両100を選択するため、選択される車両の車種、積載量、車幅や全長等の車体情報、車両総重量、駆動源の構成、ブレーキシステムの構成等は必ずしも同じではなく、互いに異なっている場合が多い。また、隊列管理装置11は、隊列における車両の順序を決定する。隊列を編成する各車両100、及び車両順序を決定すると、隊列管理装置11は、隊列を編成する車両100の識別子を含めた情報と、車両順序とを各車両100に送信する。車両100は、これらの情報を受信すると、受信した情報に基づき隊列を編成して、高速道路等の隊列走行が可能な道路を走行する。
 隊列走行では、隊列の先頭となる先頭の車両100は、運転者によって運転されるか又は監視者によって監視され、先頭車両を除く車両100は無人運転(自動運転)で走行する。なお、先頭車両も無人運転で走行してもよい。隊列を編成する車両100(前方車両)は、後続車両に対し、速度や加減速度の情報を例えば数ミリ秒~数十ミリ秒毎に送信する。後続車両は、受信した速度や加減速度に基づき、前方車両と速度が同じとなるように加速又は減速することによって、前方車両との車間距離が所定の距離となるようにする。例えば、隊列における目標車間距離は数メートルから十数メートル(例えば1m~15m)であり、隊列走行で維持される目標速度は、例えば、時速60~80km等である。
 隊列を編成する車両100は、終了地点であるハブ拠点101に到着すると、運転者により運転されて、目的地にそれぞれ向かう。なお、隊列を編成する車両100は、ハブ拠点101よりも手前に目的地がある場合等に、ハブ拠点101よりも手前で隊列を離脱するようにしてもよい。
 次に図2を参照して、隊列走行管理システム10の構成について説明する。隊列走行管理システム10は、隊列管理装置11及び車両100に搭載された隊列走行用の制御システムを有する。車両100の制御システムは、隊列走行制御装置20、車両情報記憶部21、及び通信部22を備え、これらは車載ネットワーク29を介して互いに接続されている。隊列走行制御装置20は、演算部、演算領域としての揮発性記憶部、不揮発性記憶部を有している。演算部は、不揮発性記憶部に格納されたプログラムに従って、隊列走行のための各種演算を行う。隊列走行制御装置20は、通信部22を介して、路車間通信、車車間通信等を行う。
 また、隊列走行制御装置20には、車速センサ23から速度信号が入力される。隊列走行制御装置20は、速度信号に基づき車両100の速度及び加減速度を算出し、速度及び加減速度を含む情報を、通信部22を介して隊列を編成する他の車両100に送信する。
 さらに車両100は、自車位置検出部24及び経路案内部25を備えている。自車位置検出部24は、例えば、GPSセンサ等であって、例えば、緯度や経度等の自車位置を検出する。経路案内部25は、出発地から目的地までの経路を探索して経路情報を生成する。経路案内部25は、自車位置及び経路情報に基づき、探索された経路に沿って車両100が走行するように案内する。
 車両情報記憶部21には、車幅、全高等の車体に関する情報と、制動距離とを含む車両情報が記録されている。制動距離は、車両100のブレーキシステムを制御するブレーキECU26によって学習された情報である。制動距離は、車両100が停止したとき等の所定のタイミングで学習され、車両総重量と関連付けられた状態で記録されている。制動距離は、ブレーキが作動して車両100が減速を開始してから車両100が停止するまでの車両100の移動距離である。車両総重量は、例えば、積荷のない状態の車両重量に、積載重量を加算することによって算出されている。積荷のない状態の車両重量は固定値であり、積載重量は、例えば、荷重検出センサ、又はエアサスペンションシステムの空気回路内の圧力を検知すること等により求めることができる。なお、制動距離は、車両総重量のほかに、車両100が減速を開始したときの速度、及びブレーキ圧力の少なくとも一つと関連付けられて学習されていてもよい。速度又はブレーキ圧力と、車両総重量とに基づいて制動距離を学習することによって、速度又はブレーキ圧力と制動距離との関係を把握できるため、最大減速度での制動距離を精度よく算出することができる。さらに、制動距離は、路面の状態(カーブの曲率半径、傾斜角度、路面摩擦係数、路面温度等)、車両の状態(タイヤ空気圧、タイヤ温度、ブレーキシュー温度等)の少なくとも一つと関連付けられて学習されていてもよい。路面の状態は、経路案内部25に格納された道路地図データ、車両100に設けられた赤外線カメラや可視光カメラ等の撮像データの解析結果、路側の通信機から受信した情報から取得することができる。また、車両100の状態は、車輪に設けられた圧力センサや温度センサから取得することができる。
 隊列走行制御装置20は、隊列走行の開始地点であるハブ拠点101の到着時等、所定のタイミングで、車両100の識別子、制動距離、車両総重量を含む車両情報を、通信部22を介して隊列管理装置11に送信する。また、隊列走行制御装置20は、経路案内部25から取得した目的地や経路情報と、経路上のハブ拠点101等の所定地点を通過する走行予定時間とを、通信部22を介して隊列管理装置11に送信する。
 車両情報及び経路情報は、隊列管理装置11にネットワーク30を介して接続された配送管理端末31により提供されてもよい。配送管理端末31は、各車両100の走行経路、走行予定時間、運転者等を管理する端末であり、車両100の配送計画に関する情報を有している。配送管理端末31は、例えば車両100がハブ拠点101に到着する日よりも前に車両情報、経路情報を隊列管理装置11に送信することが可能である。この場合には、隊列管理装置11は、隊列走行を行う日よりも前に隊列の編成を計画することができる。
 配送管理端末31は、配送管理部32、車両情報記憶部33、経路情報記憶部34を備えている。配送管理部32は、ネットワーク30を介して各種情報を送受信する。車両情報記憶部33には、配送管理端末31の管理対象の各車両100の車両情報が記録されている。この車両情報は、車両100の車両情報記憶部21に記憶された情報と共通する情報である。また、経路情報記憶部34には、管理対象である各車両100の経路情報が記録されている。この経路情報は、車両100の車両情報記憶部21に記憶された情報と共通する情報である。なお、車両情報及び経路情報は、同一の記憶部に記憶されていてもよい。
 次に、隊列管理装置11の構成について説明する。隊列管理装置11は、制御部12、通信部16、及び隊列情報記憶部17を備えている。制御部12は、演算部、揮発性記憶部、及び不揮発性記憶部を有し、不揮発性記憶部に記憶されたプログラムに従って、隊列の編成、及び隊列管理のための各種演算を行う。また、制御部12は、通信部16を介して、各車両100の通信部22や配送管理端末31と通信を行う。また、制御部12は、通信部16を介して、交通情報や天候情報等の各種情報を提供する外部サーバ等と通信を行う。
 制御部12は、予測情報取得部13と、車両情報取得部14と、隊列編成部15とを含む。予測情報取得部13は、隊列走行の開始地点であるハブ拠点101から隊列走行の終了地点であるハブ拠点101までの隊列走行時における状態を予測した予測情報を、外部サーバや、制御部自身の記憶部等から取得する。予測情報としては、終了地点のハブ拠点101に到着する時刻に関する情報、ハブ拠点101間の走行環境に関する情報等がある。走行環境に関する情報としては、例えば道路形状の情報等といった変動のない静的情報、天候や交通情報等の動的情報等がある。具体的には、予測情報としては、昼間・夜間等の時間帯、晴天や雨天等の天候情報、凍結の有無等の路面状態、道路の縦勾配や曲率を示す道路情報、渋滞や混雑、道路規制等の有無に関する交通情報等がある。
 また、車両情報取得部14は、ハブ拠点101に集合した各車両100や配送管理端末31から車両情報を収集し、収集した車両情報を隊列情報記憶部17に記録する。また、車両情報取得部14は、各車両100や配送管理端末31から、車両毎の目的地、経路情報、走行予定時間等を収集し、それらの情報を隊列情報記憶部17に記録する。
 隊列編成部15は、経路情報等に基づき隊列を編成する車両100を選択する。隊列編成部15は、一つのハブ拠点101を経由する車両のうち、車両100の選択を行う時点よりも、隊列走行を開始する予定時刻が遅い車両100を対象として選択を行う。隊列編成部15は、目的地、経路情報、走行予定時間等に基づき、隊列走行の開始地点を除く同一のハブ拠点101を通過すること、及びそのハブ拠点101を通過する予定時刻が同じ時間帯であること等を条件に車両100を選択する。隊列を編成する車両は、一定の台数であってもよいし、所定範囲内の台数であってもよい。このとき、隊列を編成する予定台数以上の候補が検出された場合には、隊列編成部15は、最大積載量が同じ範囲の車両100を選択するようにしてもよいし、ブレーキシステム等の仕様が類似する車両100、メーカーが同一の車両100を選択するようにしてもよい。また、隊列編成部15は、車両100の候補が予定台数より少ない場合に、隊列を編成しない旨の通知を、車両100や配送管理端末31へ送信してもよい。
 隊列を編成する車両100を選択すると、隊列編成部15は、予測情報取得部13が取得した予測情報に基づき、車両順序を決定する。
 車両順序の決定基準(規定)は、複数設定されており、そのうちの一つは、隊列の先頭から後尾にかけて制動距離が長い順に車両100を配置するという基準である。例えば、急ブレーキが発生する可能性が高い状態が予測される場合には、隊列の車両順序を、制動距離が長い順序(第1の車両順序)に設定する。なお、このとき、制動距離の情報としては、最大減速度での制動距離を用いることが好ましい。隊列走行時は、車両間で車間距離、速度や加減速度を送受信するので、先頭車両が減速を開始すると、他の車両も先頭車両に追従して減速を開始する。先頭車両が減速を開始するタイミングと、後続車両が減速を開始するタイミングとの時間差は非常に短いため、速度調整のための通常の減速時は、車間距離の変動はあるものの、車両同士が衝突するまでには至らない。
 一方、先頭車両が急ブレーキを作動させた場合には、車両同士の衝突を回避する制御を行う必要がある。この際、隊列を編成する各車両100が、隊列の最後尾の車両100から先頭の車両100に向かう順番で停止していくと、車両100がその前方の車両100に衝突することを防ぐことができる。このような順番で車両100が停止するための方法として、先頭車両から最後尾の車両に向かってブレーキ力が大きくなるように各車両のブレーキシステムの圧力を調整する方法がある。
 しかし、ブレーキ力の調整だけでも安全性は高められるものの、車種等が互いに異なる車両100から隊列を編成する場合には、各車両100のブレーキシステムの仕様が相違し、ブレーキ力の調整が意図に沿わない可能性が考えられる。そのため、より安全性を高めるための仕組みが必要である。したがって、急ブレーキが発生する可能性が高いことが予測される状態では、ブレーキ力を調整した上で、隊列の車両順序を、制動距離が長い順に設定する。
 また、制動距離は、車両総重量が大きくなるに伴い長くなる傾向にあることが知られている。この車両総重量は、積荷の有無や積荷の種別によって大きく異なるため、例えば積荷の無い状態で計測された車両100の制動距離は、積荷がある状態での車両100の制動距離と乖離してしまう。一方、車両総重量だけでは、車両100のブレーキ特性が反映されていないため、制動距離を適切に推測することができない。したがって、車両順序の決定には、車両総重量に関連付けられた制動距離を用いる。このように車両順序の決定に、車両総重量を反映した制動距離を用いることで、たとえ積荷のない車両100と積荷のある車両100とで隊列を編成する場合であっても、急ブレーキ時の車両同士の衝突を抑制することができる。なお、急ブレーキで停止することが予測される状態とは、例えば、天候情報が雨天、降雪、霧等であるとき、隊列走行を行う時間帯が夜間であるとき、路面が凍結しているとき、走行区間の道路の起伏が大きいとき、走行区間に急カーブが含まれているとき、道路規制等があるとき等であるが、これ以外であってもよい。
 また、車両順序の決定基準として、隊列全体の燃費が向上するように隊列に車両100を配置するという基準がある。この基準においては、例えば、隊列を編成する車両のうち、空気抵抗が最大である車両を隊列において先頭に配置する(第2の車両順序)。空気抵抗は、車両の前面投影面積と、速度の2乗との積に比例する。前面投影面積は、車両100の前方から見たときの面積であり、車幅と全高との乗算値で概算することができる。さらに、隊列を編成する各車両のうち、先頭車両を除く各車両の順序を、制動距離の長い順に設定する。このような車両順序で隊列を編成することにより、先頭車両によって後方の各車両の空気抵抗が低減され、後方の各車両の燃費が向上される。その結果、隊列全体の燃費が向上される。また、先頭車両を除く各車両を制動距離が長い順に隊列に配置することにより、先頭車両が急ブレーキをかけた場合にも、先頭車両を除く各車両が隊列の後尾側の車両から順に停止するようにすることができる。
 また、隊列全体で燃費が向上される他の車両順序として、例えば、隊列を編成する全ての車両100を、前面投影面積が大きい順に配置してもよい。隊列編成部15は、車両情報に含まれる車幅、全高を乗算して各車両100の前面投影面積を算出する。そして、車両順序を、前面投影面積が大きい順に設定する。なお、車両情報に前面投影面積や、車両100の空気抵抗の大きさを含めるようにしてもよい。車両情報に空気抵抗の大きさが含まれている場合には、車両順序を、空気抵抗の大きい順に設定してもよい。
 隊列管理装置11は、隊列を編成する車両100と、隊列におけるその順序とを決定すると、隊列を編成する車両100の識別子及びその順序を、ハブ拠点101を出発する予定時刻とともに、それらの車両100又はハブ拠点101の不特定多数の車両100に送信する。
 また、隊列管理装置11は、各車両100の最大減速度の調整を行う。隊列管理装置11は、決定した車両順序において、先頭の車両100から後尾の車両100にかけて大きくなるような最大減速度を車両100毎に設定し、設定した最大減速度を対応する車両100の識別子と関連付けて送信する。
 車両100のブレーキシステムは、例えば圧縮空気を用いてブレーキを作動させる空気圧ブレーキシステムであって、圧縮空気が流れる空気回路には、空気圧を調整する弁機構と圧力センサとが設けられている。車両100のブレーキECU26は、空気回路の圧力と減速度とを関連付けて記憶している。隊列走行時は、ブレーキECU26は、隊列を編成する他の車両100から受信した減速度を目標とし、減速度に関連付けられた圧力の情報を参照して、空気回路の圧力が目標減速度に関連付けられた圧力となるように、弁機構を制御する。例えば、他の車両100から最大減速度で減速する旨の指示を受信した場合には、隊列管理装置11から受信した最大減速度で減速を行う。
 次に図3を参照して、隊列管理装置11の隊列編成の手順について、その動作とともに説明する。例えば、隊列走行を行う車両100は、隊列走行を行うための認証コードを有している。隊列管理装置は、車両100がハブ拠点101に到着したときに車両100に対して認証を行う。
 隊列管理装置11の車両情報取得部14は、車両情報を取得する(ステップS1)。例えば、隊列管理装置11は、ハブ拠点101に集合した車両100と通信することにより、車両情報を取得する。又は、隊列管理装置11は、ネットワーク30を介して配送管理端末31から車両情報を取得する。
 また、隊列管理装置11の車両情報取得部14は、経路情報、目的地及び走行予定時間を取得する(ステップS2)。例えば、隊列管理装置11は、車両100に対して認証を行った後に、車両100から経路情報等を取得する。又は、隊列管理装置11は、ネットワーク30を介して配送管理端末31から経路情報等を取得する。
 さらに隊列管理装置11の予測情報取得部13は、外部サーバや自身の記憶部から、予測情報を取得する(ステップS3)。隊列管理装置11は、隊列走行の開始地点や終点地点となりうるハブ拠点101の間の全ての予測情報を取得する。又は、隊列管理装置11は、所定のハブ拠点間の予測情報を取得してもよい。
 次いで、隊列管理装置11の隊列編成部15は、隊列を編成する車両100を選択する(ステップS4)。隊列編成部15は、各車両100から送信された経路情報に基づき、開始地点のハブ拠点101および終了地点のハブ拠点101が経路情報に含まれる車両100を候補として選択する。例えば、選択された候補の台数が所定の台数範囲を超える場合には、車両情報等に基づき、隊列を編成する車両100をさらに絞り込んでもよい。例えば、同じメーカー、同じ仕様の車両から隊列を編成する。
 さらに、隊列編成部15は、隊列を編成する車両100を選択すると、予測情報等に基づき隊列内の車両の順序を決定する(ステップS5)。隊列走行区間の状態が、急ブレーキが発生しやすい状態であることが予測される場合には、車両情報に基づき、車両順序を制動距離が長い順に設定する。隊列走行区間の状態が、急ブレーキが発生しやすい状態ではないと予測される場合には、前面投影面積が最大の車両を隊列において先頭に配置し、先頭車両以外の車両を制動距離の長い順に配置するか、又は前面投影面積が大きい順に配置する。
 隊列編成部15は、車両順序を決定すると、隊列を編成する各車両100の識別子及び車両順序に関する情報を、開始地点であるハブ拠点101の出発予定時刻とともに送信する(ステップS6)。このとき、隊列管理装置11は、隊列を編成する各車両100の識別子及び車両順序に関する情報を、ハブ拠点101に到着し、隊列を編成する予定の各車両100に対して送信するようにしてもよいし、配送管理端末31に送信するようにしてもよい。隊列を編成する各車両100の識別子及び車両順序に関する情報が配送管理端末31に対して送信された場合には、配送管理端末31は、受信したそれらの情報を、隊列編成の対象となる各車両100に配信する。
 隊列を編成する各車両100の識別子及び車両順序に関する情報を受信すると、隊列編成の対象である車両100は、隊列管理装置11から指定された車両順序で隊列を編成し、開始地点であるハブ拠点101を出発予定時刻に出発する。
 以上説明したように、上記実施形態によれば、以下に列挙する効果が得られるようになる。
 (1)隊列管理装置11は、隊列走行での車両順序を、制動距離が長い順に隊列に車両100を配置する第1の車両順序、又は後続車両の空気抵抗の低減により燃費向上を図る第2の車両順序に設定する。第1の車両順序の場合、例えば先頭車両が急ブレーキを作動させたときに、後尾の車両100から順に停止することによって車両100同士の衝突を回避することができる。第2の車両順序の場合には、先頭車両によって後続車両の空気抵抗が低減されるため、隊列全体の燃費を向上することができる。従って、隊列走行時に予測される状態に応じて車両順序を決定することによって、車体の大きさやブレーキシステムの構成等の仕様が異なる車両100で隊列を編成する場合にも、その時々の状態でメリットが高い車両順序により隊列走行を行うことができる。
 (2)車両側で積荷の荷重に応じて変化する車両総重量と関連付けて制動距離が学習され、隊列管理装置11は、その制動距離を用いて車両順序を決定する。したがって、車両100側で予測する制動距離を、実際の制動距離に近付けることができるため、車両100同士の衝突をより確実に回避することができる。
 (3)空気抵抗が最大である車両100を先頭に配置する第2の車両順序の場合に、先頭車両以外の車両100は制動距離が長い順又は空気抵抗が大きい順に隊列に配置される。制動距離が長い順に車両100を配置すると、隊列全体の燃費を向上しつつ、急ブレーキ発生時の車両100同士の衝突を回避することができる。空気抵抗が大きい順に車両100を配置すると、全ての車両100が空気抵抗の大きい順に隊列に配置されるので、隊列全体の燃費向上効果を高めることができる。
 (4)制動距離が長い順に隊列に車両100を配置する第1の車両順序の場合には、車両100が、先頭の車両100から後尾の車両100に向かうに伴い制動距離が長い順に隊列に並ぶこと、及び車両100側で最大減速度が大きくなるように調整されることの両方によって、急ブレーキ発生時の車両100同士の衝突を回避することができる。また、第2の車両順序の場合には、空気抵抗が最大の車両100を隊列の先頭に配置することによって隊列全体の燃費を向上するとともに、先頭の車両100から後尾の車両100に向かうに伴い最大減速度が大きくなるように調整がなされることによって急ブレーキ発生時の車両100同士の衝突を回避することができる。従って、急ブレーキ発生時の安全性を高めながら、その時々の状態でメリットが高い車両順序により隊列走行を行うことができる。
 (他の実施形態)
 なお、上記実施形態は、以下のように適宜変更して実施することもできる。
 ・上記実施形態では、車両100は、制動距離を車両総重量に関連付けて学習した。これに代えて、車両100に積荷が無い状態(無積載状態)での制動距離と車両総重量とに基づき最大減速度での制動距離を算出するための演算式により、そのときの車両総重量に応じた制動距離を算出するようにしてもよい。このようにすると、制動距離を学習しなくても、最大減速度での制動距離を取得することができる。
 ・上記実施形態では、第1の車両順序又は第2の車両順序で車両の順序を決定した上で、先頭から後尾に向かうに伴い最大減速度が大きくなるように調整した。これに代えて、制動距離が長い順に車両100を配置するのみで、最大減速度で停止したときに車両100の衝突が回避されるような車間距離が維持されているような場合等には、最大減速度の調整を行わなくてもよい。
 ・上記実施形態では、隊列管理装置11を車両100以外に設けるようにした。これに代えて、隊列管理装置11を、車両100に備えるようにしてもよい。この場合には、各車両100が、車々間通信を行って隊列を編成し、予測情報に基づいて車両順序を第1の車両順序に設定するか、第2の車両順序に設定するかを決定する。さらに、第1の車両順序を選択した場合には、車両100は、自車両の制動距離と他車両の制動距離とを比較して、自車両の制動距離が他車両の制動距離よりも短ければ、その他車両の後方に並ぶ。これを順次繰り返していくと、車両100は制動距離が長い順に並ぶようになる。また、第2の車両順序を選択した場合には、例えば、自車両の前面投影面積と他車両の前面投影面積とを比較して、自車両の前面投影面積が他車両の前面投影面積よりも小さければ、その他車両の後方に並ぶ。これを順次繰り返していくと、車両100は前面投影面積が大きい順に並ぶようになる。また、先頭車両以外の車両は、自車両の制動距離と他車両の制動距離とを比較して、自車両の制動距離が他車両の制動距離よりも小さければ、その他車両の後方に並ぶようにしてもよい。この場合には、各車両100は、単独走行中に隊列の編成を開始するようにしてもよい。
 ・上記実施形態では、車両100が開始地点であるハブ拠点101に集合し、開始地点であるハブ拠点101から終了地点であるハブ拠点101まで隊列走行を行うようにした。これに代えて、単独走行を行う車両100が、走行中に他の車両100や隊列管理装置11と通信を行って、経路が共通する車両と隊列を編成するようにしてもよい。又はハブ拠点101を経由する度に、新たに車両100が隊列に加わる、又は車両100が隊列から離脱するなど、所定のハブ拠点101間の隊列走行以外の態様で隊列走行を行うようにしてもよい。
 ・上記実施形態では、隊列管理装置11が車両順序を決定した際、その車両順序を車両100に送信するようにした。これに代えて、決定した車両順序や、走行予定時間をディスプレイやプリンタ等の出力装置に出力し、その出力結果に基づき、運転者が車両100を運転して、指定された車両順序で車両100を並べるようにしてもよい。
 ・上記実施形態では、車両100をトラックとして説明したが、車両100は、他の貨物車両や、乗用車であってもよい。
 10…隊列走行管理システム、11…隊列管理装置、12…制御部、13…予測情報取得部、14…車両情報取得部、15…隊列編成部、16…通信部、17…隊列情報記憶部、20…隊列走行制御装置、21…車両情報記憶部、22…通信部、23…車速センサ、24…自車位置検出部、25…経路案内部、26…ブレーキECU、31…配送管理端末。

Claims (5)

  1.  隊列走行の隊列における複数の車両の順序を管理する隊列走行管理システムであって、
     隊列走行時の時間及び環境の少なくとも一方を予測した予測情報を取得する予測情報取得部と、
     隊列を編成する各車両の制動距離と当該車両の車体情報とを含む車両情報を取得する車両情報取得部と、
     前記取得した予測情報に合わせて、前記車両の順序を、前記隊列において先頭から後尾に向かって前記制動距離が長い順に車両を配置する第1の車両順序、又は前記車体情報に基づき前記複数の車両のうち空気抵抗が最大である車両を前記隊列において先頭に配置する第2の車両順序に設定する隊列編成部と、を備える
     隊列走行管理システム。
  2.  前記車両は、車両総重量と前記制動距離とを関連付けて学習し、
     前記隊列編成部は、前記車両の車両総重量に関連付けられた制動距離に基づき前記車両の順序を決定する
     請求項1に記載の隊列走行管理システム。
  3.  前記隊列編成部は、前記車両の順序を前記第2の車両順序に設定する際、前記車体情報に基づき空気抵抗が最大である車両を先頭に配置し、他の車両を先頭から後尾に向かって前記制動距離が長い順に配置する順序に設定する
     請求項1又は2に記載の隊列走行管理システム。
  4.  前記隊列編成部は、前記車両の順序を前記第2の車両順序に設定する際、先頭から後尾に向かって前記車両を空気抵抗が大きい順に配置する順序に設定する
     請求項1又は2に記載の隊列走行管理システム。
  5.  前記隊列編成部は、前記車両の順序を、前記第1の車両順序又は前記第2の車両順序に設定した上で、前記隊列の先頭の車両から後尾の車両に向かうに伴い最大減速度が大きくなるように各車両に指示する
     請求項1~4のいずれか1項に記載の隊列走行管理システム。
PCT/JP2017/031906 2016-09-05 2017-09-05 隊列走行管理システム WO2018043753A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537594A JP6748213B2 (ja) 2016-09-05 2017-09-05 隊列走行管理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172469 2016-09-05
JP2016172469 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018043753A1 true WO2018043753A1 (ja) 2018-03-08

Family

ID=61301781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031906 WO2018043753A1 (ja) 2016-09-05 2017-09-05 隊列走行管理システム

Country Status (2)

Country Link
JP (2) JP6748213B2 (ja)
WO (1) WO2018043753A1 (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10216195B2 (en) 2011-07-06 2019-02-26 Peloton Technology, Inc. Applications for using mass estimations for vehicles
CN109597414A (zh) * 2018-12-06 2019-04-09 英华达(上海)科技有限公司 自驾车车队平均能量消耗的驾驶***及其方法
US10254764B2 (en) 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
WO2019189224A1 (ja) * 2018-03-28 2019-10-03 株式会社 東芝 隊列走行運用システムおよび隊列走行運用方法
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
CN110466528A (zh) * 2019-08-30 2019-11-19 广州小鹏汽车科技有限公司 一种剩余停车距离的获取方法、***及车辆
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
JP2020011555A (ja) * 2018-07-17 2020-01-23 先進モビリティ株式会社 隊列走行システム
JP2020052558A (ja) * 2018-09-25 2020-04-02 株式会社Subaru 隊列走行システム
JP2020064572A (ja) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 車両制御装置、運転支援装置、インフラストラクチャの制御装置、車両用運転制御システム、運転制御方法及び運転制御プログラム
KR102118845B1 (ko) * 2020-03-13 2020-06-29 김근배 플래투닝을 이용하여 물품을 유통하는 방법 및 이를 위한 장치
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
KR20200095360A (ko) * 2019-01-31 2020-08-10 주식회사 스트라드비젼 주행 중에 운전자로부터 추가적인 지시없이, 대상 차량이 군집 주행할 수 있도록 주행 모드를 변경하는 방법 및 장치
CN111583624A (zh) * 2019-02-19 2020-08-25 上海博泰悦臻网络技术服务有限公司 基于信息共享的车队组合方法及***、共享平台、车辆
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
CN111627247A (zh) * 2019-02-28 2020-09-04 上海汽车集团股份有限公司 一种多车编队控制方法及装置
CN112016784A (zh) * 2019-05-30 2020-12-01 丰田自动车株式会社 队列编排装置、队列编排方法以及队列编排程序
JP2020204982A (ja) * 2019-06-19 2020-12-24 日野自動車株式会社 車両制御システム
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
WO2021019955A1 (ja) * 2019-07-26 2021-02-04 日立オートモティブシステムズ株式会社 車両制御装置、車両制御方法、及び車両追従走行システム
JP2021028748A (ja) * 2019-08-09 2021-02-25 本田技研工業株式会社 隊列走行システム
CN112508294A (zh) * 2020-12-16 2021-03-16 交控科技股份有限公司 基于车群信息共享的目标列车控制方法,装置及列车
RU2746046C2 (ru) * 2020-08-18 2021-04-06 Сергей Алексеевич Касай Способ управления движением военной автомобильной техники в составе колонны с учётом состояния опорной поверхности
JP2021075107A (ja) * 2019-11-06 2021-05-20 ナブテスコオートモーティブ株式会社 車両および車両群
WO2021181625A1 (ja) * 2020-03-12 2021-09-16 本田技研工業株式会社 車両追従走行システム、情報処理装置、情報処理方法、及びプログラム
JP2021149203A (ja) * 2020-03-16 2021-09-27 西日本旅客鉄道株式会社 専用車線または専用道路で走行する車両のための車両編成方法、車両編成装置および車両編成システム
KR20210145286A (ko) * 2019-05-29 2021-12-01 베이징 징동 콴시 테크놀로지 코., 엘티디. 배송 로봇의 제어 방법, 장치, 기기, 시스템 및 저장매체
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
KR102395844B1 (ko) * 2020-10-30 2022-05-06 주식회사 카카오모빌리티 차량의 근접에 따른 군집 합류 안내 방법, 이를 수행하는 장치
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
WO2022103392A1 (en) * 2020-11-12 2022-05-19 Compagnie Generale Des Etablissements Michelin Method for heavy truck platooning order on wet roads using tire tread volumetric void percentage
US20220250464A1 (en) * 2019-07-12 2022-08-11 Jaguar Land Rover Limited Active vane control system and method
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
US11586220B2 (en) 2019-06-04 2023-02-21 Cummins Inc. Vehicle platoon controls providing improved fuel efficiency and vehicle collision mitigation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102262782B1 (ko) * 2020-10-26 2021-06-09 임성빈 차량의 자율 주행 제어 장치의 자율 주행 제어 방법
JPWO2022208697A1 (ja) * 2021-03-30 2022-10-06

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293899A (ja) * 1997-04-21 1998-11-04 Fujitsu Ten Ltd 車両群形成制御装置および方法
JPH11321597A (ja) * 1998-05-15 1999-11-24 Fujitsu Ten Ltd 車両走行制御装置および走行路
JP2002222485A (ja) * 2001-01-26 2002-08-09 Toshiba Corp 車間異常時保安システム及び車間異常時保安方法
WO2014133425A1 (en) * 2013-02-27 2014-09-04 Volvo Truck Corporation System and method for determining an aerodynamically favorable position between ground traveling vehicles
JP2014211715A (ja) * 2013-04-17 2014-11-13 株式会社デンソー 隊列走行システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003016575A (ja) 2001-06-29 2003-01-17 Toshiba Corp 自動走行車両発着用駅
JP4848855B2 (ja) 2006-06-20 2011-12-28 トヨタ自動車株式会社 車載用隊列編成装置及び車両の隊列編成方法
JP4929980B2 (ja) 2006-10-27 2012-05-09 トヨタ自動車株式会社 車両走行制御装置
JP4899914B2 (ja) * 2007-02-19 2012-03-21 トヨタ自動車株式会社 隊列走行制御装置
JP4930367B2 (ja) * 2007-12-27 2012-05-16 株式会社エクォス・リサーチ 隊列走行システム
CA2861215C (en) 2012-09-12 2015-09-08 Omron Corporation Data flow control order generating apparatus and sensor managing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293899A (ja) * 1997-04-21 1998-11-04 Fujitsu Ten Ltd 車両群形成制御装置および方法
JPH11321597A (ja) * 1998-05-15 1999-11-24 Fujitsu Ten Ltd 車両走行制御装置および走行路
JP2002222485A (ja) * 2001-01-26 2002-08-09 Toshiba Corp 車間異常時保安システム及び車間異常時保安方法
WO2014133425A1 (en) * 2013-02-27 2014-09-04 Volvo Truck Corporation System and method for determining an aerodynamically favorable position between ground traveling vehicles
JP2014211715A (ja) * 2013-04-17 2014-11-13 株式会社デンソー 隊列走行システム

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10216195B2 (en) 2011-07-06 2019-02-26 Peloton Technology, Inc. Applications for using mass estimations for vehicles
US11360485B2 (en) 2011-07-06 2022-06-14 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US10234871B2 (en) 2011-07-06 2019-03-19 Peloton Technology, Inc. Distributed safety monitors for automated vehicles
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10254764B2 (en) 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10921822B2 (en) 2016-08-22 2021-02-16 Peloton Technology, Inc. Automated vehicle control system architecture
US10906544B2 (en) 2016-08-22 2021-02-02 Peloton Technology, Inc. Dynamic gap control for automated driving
WO2019189224A1 (ja) * 2018-03-28 2019-10-03 株式会社 東芝 隊列走行運用システムおよび隊列走行運用方法
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
JP2020011555A (ja) * 2018-07-17 2020-01-23 先進モビリティ株式会社 隊列走行システム
JP7195035B2 (ja) 2018-07-17 2022-12-23 先進モビリティ株式会社 隊列走行システム
JP2020052558A (ja) * 2018-09-25 2020-04-02 株式会社Subaru 隊列走行システム
JP7230422B2 (ja) 2018-10-19 2023-03-01 トヨタ自動車株式会社 運転支援装置、車両用運転制御システム、運転制御方法及び運転制御プログラム
JP2020064572A (ja) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 車両制御装置、運転支援装置、インフラストラクチャの制御装置、車両用運転制御システム、運転制御方法及び運転制御プログラム
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11341856B2 (en) 2018-10-29 2022-05-24 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
CN109597414B (zh) * 2018-12-06 2022-03-18 英华达(上海)科技有限公司 自驾车车队平均能量消耗的驾驶***及其方法
CN109597414A (zh) * 2018-12-06 2019-04-09 英华达(上海)科技有限公司 自驾车车队平均能量消耗的驾驶***及其方法
KR102321001B1 (ko) 2019-01-31 2021-11-03 주식회사 스트라드비젼 주행 중에 운전자로부터 추가적인 지시없이, 대상 차량이 군집 주행할 수 있도록 주행 모드를 변경하는 방법 및 장치
KR20200095360A (ko) * 2019-01-31 2020-08-10 주식회사 스트라드비젼 주행 중에 운전자로부터 추가적인 지시없이, 대상 차량이 군집 주행할 수 있도록 주행 모드를 변경하는 방법 및 장치
JP2020126620A (ja) * 2019-01-31 2020-08-20 株式会社ストラドビジョンStradvision,Inc. 走行中に運転者からのさらなる指示なしに、対象車両が群集走行し得るように走行モードを変更する方法及び装置{method and device for switching driving modes to support subject vehicle to perform platoon driving without additional instructions from driver during driving}
CN111583624A (zh) * 2019-02-19 2020-08-25 上海博泰悦臻网络技术服务有限公司 基于信息共享的车队组合方法及***、共享平台、车辆
CN111583624B (zh) * 2019-02-19 2022-01-28 上海博泰悦臻网络技术服务有限公司 基于信息共享的车队组合方法及***、共享平台、车辆
CN111627247A (zh) * 2019-02-28 2020-09-04 上海汽车集团股份有限公司 一种多车编队控制方法及装置
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
JP2022534653A (ja) * 2019-05-29 2022-08-03 北京京東乾石科技有限公司 配送ロボットの制御方法、装置、デバイス、システム及び記憶媒体
KR20210145286A (ko) * 2019-05-29 2021-12-01 베이징 징동 콴시 테크놀로지 코., 엘티디. 배송 로봇의 제어 방법, 장치, 기기, 시스템 및 저장매체
KR102648383B1 (ko) * 2019-05-29 2024-03-14 베이징 징동 콴시 테크놀로지 코., 엘티디. 배송 로봇의 제어 방법, 장치, 기기, 시스템 및 저장매체
JP7353387B2 (ja) 2019-05-29 2023-09-29 北京京東乾石科技有限公司 配送ロボットの制御方法、装置、デバイス、システム及び記憶媒体
JP7290998B2 (ja) 2019-05-30 2023-06-14 日野自動車株式会社 隊列編成装置、隊列編成方法及び隊列編成プログラム
CN112016784A (zh) * 2019-05-30 2020-12-01 丰田自动车株式会社 队列编排装置、队列编排方法以及队列编排程序
JP2020194477A (ja) * 2019-05-30 2020-12-03 日野自動車株式会社 隊列編成装置、隊列編成方法及び隊列編成プログラム
US11586220B2 (en) 2019-06-04 2023-02-21 Cummins Inc. Vehicle platoon controls providing improved fuel efficiency and vehicle collision mitigation
JP7234046B2 (ja) 2019-06-19 2023-03-07 日野自動車株式会社 車両制御システム
JP2020204982A (ja) * 2019-06-19 2020-12-24 日野自動車株式会社 車両制御システム
US20220250464A1 (en) * 2019-07-12 2022-08-11 Jaguar Land Rover Limited Active vane control system and method
JP7368975B2 (ja) 2019-07-26 2023-10-25 日立Astemo株式会社 車両制御装置、車両制御方法、及び車両追従走行システム
US20220250621A1 (en) * 2019-07-26 2022-08-11 Hitachi Astemo, Ltd. Vehicle Control Apparatus, Vehicle Control Method, and Vehicle Following Running System
JP2021020533A (ja) * 2019-07-26 2021-02-18 日立オートモティブシステムズ株式会社 車両制御装置、車両制御方法、及び車両追従走行システム
WO2021019955A1 (ja) * 2019-07-26 2021-02-04 日立オートモティブシステムズ株式会社 車両制御装置、車両制御方法、及び車両追従走行システム
CN112435459A (zh) * 2019-08-09 2021-03-02 本田技研工业株式会社 编队行驶***
JP2021028748A (ja) * 2019-08-09 2021-02-25 本田技研工業株式会社 隊列走行システム
CN112435459B (zh) * 2019-08-09 2023-05-02 本田技研工业株式会社 编队行驶***
JP7241642B2 (ja) 2019-08-09 2023-03-17 本田技研工業株式会社 隊列走行システム
CN110466528A (zh) * 2019-08-30 2019-11-19 广州小鹏汽车科技有限公司 一种剩余停车距离的获取方法、***及车辆
CN110466528B (zh) * 2019-08-30 2021-06-04 广州小鹏汽车科技有限公司 一种剩余停车距离的获取方法、***及车辆
JP2021075107A (ja) * 2019-11-06 2021-05-20 ナブテスコオートモーティブ株式会社 車両および車両群
JP7297143B2 (ja) 2020-03-12 2023-06-23 本田技研工業株式会社 車両追従走行システム、情報処理装置、情報処理方法、及びプログラム
JPWO2021181625A1 (ja) * 2020-03-12 2021-09-16
WO2021181625A1 (ja) * 2020-03-12 2021-09-16 本田技研工業株式会社 車両追従走行システム、情報処理装置、情報処理方法、及びプログラム
KR102118845B1 (ko) * 2020-03-13 2020-06-29 김근배 플래투닝을 이용하여 물품을 유통하는 방법 및 이를 위한 장치
JP7281746B2 (ja) 2020-03-16 2023-05-26 西日本旅客鉄道株式会社 専用車線または専用道路で走行する車両のための車両編成方法、車両編成装置および車両編成システム
JP2021149203A (ja) * 2020-03-16 2021-09-27 西日本旅客鉄道株式会社 専用車線または専用道路で走行する車両のための車両編成方法、車両編成装置および車両編成システム
RU2746046C2 (ru) * 2020-08-18 2021-04-06 Сергей Алексеевич Касай Способ управления движением военной автомобильной техники в составе колонны с учётом состояния опорной поверхности
KR102395844B1 (ko) * 2020-10-30 2022-05-06 주식회사 카카오모빌리티 차량의 근접에 따른 군집 합류 안내 방법, 이를 수행하는 장치
WO2022103392A1 (en) * 2020-11-12 2022-05-19 Compagnie Generale Des Etablissements Michelin Method for heavy truck platooning order on wet roads using tire tread volumetric void percentage
CN112508294A (zh) * 2020-12-16 2021-03-16 交控科技股份有限公司 基于车群信息共享的目标列车控制方法,装置及列车
CN112508294B (zh) * 2020-12-16 2024-05-21 交控科技股份有限公司 基于车群信息共享的目标列车控制方法,装置及列车

Also Published As

Publication number Publication date
JP7048682B2 (ja) 2022-04-05
JPWO2018043753A1 (ja) 2019-06-24
JP2020194566A (ja) 2020-12-03
JP6748213B2 (ja) 2020-08-26

Similar Documents

Publication Publication Date Title
JP7048682B2 (ja) 隊列走行管理システム、隊列走行管理方法及び隊列走行管理プログラム
US11872999B2 (en) Self-driving safety evaluation method, apparatus, and system
JP6904224B2 (ja) 運転支援装置
US20170197626A1 (en) Management of autonomous vehicle lanes
JP6422812B2 (ja) 運転支援装置および運転支援方法
CN111436217A (zh) 运输服务方法、车辆队列运行方法、车辆组运行***、可协作行驶自走车辆、组车辆引导机
CN101327770B (zh) 行驶控制装置
CN103718220A (zh) 交通控制***、车辆控制***、交通管理***及交通控制方法
US8825367B2 (en) Vehicle system and method for controlling vehicle system
WO2016098361A1 (ja) 路側制御装置、コンピュータプログラム及び情報処理方法
CN111260946A (zh) 一种基于智能网联***的自动驾驶货车运营控制***
US20200020234A1 (en) Safety technologies for connected automated vehicle highway systems
CN106461406A (zh) 车道选择装置、车辆控制***及车道选择方法
JP7166958B2 (ja) サーバ、車両支援システム
US20130054049A1 (en) Driving assistance apparatus
JP7007879B2 (ja) 渋滞前減速報知装置
SE537618C2 (sv) Metod och system för gemensam körstrategi för fordonståg
JPH10293899A (ja) 車両群形成制御装置および方法
WO2019220717A1 (ja) 車両制御装置
SE1250310A1 (sv) Förfarande och system för avståndsanpassning under färd vidett fordonståg
JP2016177638A (ja) 路側制御装置、コンピュータプログラム及び情報処理方法
SE1450598A1 (sv) Förfarande och system för att anpassa ett fordons acceleration vid framförande av fordonet utmed en färdväg
JP2019194871A (ja) 輸送サービス方法および車両隊列運行方法、車両グループ運行システム、連携走行可能な自走式車両、グループ車両誘導機
CN112061125B (zh) 用于动态适配车辆之间的纵向距离的方法
US20230368673A1 (en) Autonomous fleet recovery scenario severity determination and methodology for determining prioritization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846756

Country of ref document: EP

Kind code of ref document: A1