WO2017211100A1 - 一种有机电致发光器件 - Google Patents

一种有机电致发光器件 Download PDF

Info

Publication number
WO2017211100A1
WO2017211100A1 PCT/CN2017/075951 CN2017075951W WO2017211100A1 WO 2017211100 A1 WO2017211100 A1 WO 2017211100A1 CN 2017075951 W CN2017075951 W CN 2017075951W WO 2017211100 A1 WO2017211100 A1 WO 2017211100A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron transport
layer
organic electroluminescent
inert metal
electroluminescent device
Prior art date
Application number
PCT/CN2017/075951
Other languages
English (en)
French (fr)
Inventor
段炼
宾正杨
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2017211100A1 publication Critical patent/WO2017211100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the invention relates to the technical field of organic electroluminescent devices, in particular to an organic electroluminescent device in which an inert metal is doped in an electron transport layer containing a coordination ability material to achieve an n-type doping effect.
  • OLED organic light emitting diode
  • the commonly used electron transport material has a LUMO level near -3.0 eV, while the metal cathode typically has a work function greater than 4.0 eV, so when electrons are directly injected from the metal cathode into the electron transport layer, there is a The large energy gap hinders the injection of electrons, which makes the device drive voltage higher, and at the same time makes the electron holes reaching the light-emitting layer unbalanced, reducing device efficiency and shortening device lifetime. Therefore, the n-type doping method can be used to improve the transmission characteristics of the electron transporting material, reduce the LUMO energy level of the electron transporting material, and further promote the injection of electrons from the electrode.
  • n-type doping The mechanism of n-type doping is that the dopant transfers electrons to the LUMO level of the ETM, thereby achieving charge transfer and increasing the free carrier concentration.
  • the LUMO level of the electron transport material is around -3.0 eV, which requires that the dopant work function must be below 3.0 eV in order to efficiently transfer electrons to the LUMO level of the ETM.
  • a substance having a work function of less than 3.0 eV is highly reductive and easily oxidized by oxygen in the air, so that n-type dopants suitable for OLEDs are less.
  • alkali metal the work function of alkali metal is less than 3.0eV, so the alkali metal and ETM are co-doped, which can achieve high-efficiency n-type doping effect.
  • alkali metal is particularly active and easy to be in the air. Oxidation, sodium, potassium, barium, etc. even spontaneously ignite in the air, so it is difficult to store for a long time, and the operation is inconvenient.
  • the method of producing an active alkali metal in situ by vacuum thermal decomposition of an alkali metal compound can avoid the use of an active alkali metal directly in the air to enhance its stability in air. However, the alkali metal compound is severely decomposed in a vacuum.
  • the deflation phenomenon makes the degree of vacuum at the time of vapor deposition of the film poor, and the film forming property and the atmosphere are unstable, and it is difficult to obtain practical use.
  • the inert metal is stable in air and can be stored and used for a long time.
  • charge transfer cannot occur between the ETM and the ETM, so there is no n-type doping effect, and it is not a good n-type dopant.
  • CN201110325422.2 discloses the use of active metal M doping ETM to achieve n-type doping effect, wherein such active metal has a low work function, directly acts as a strong reducing n-type dopant, and does not in the air. Stable, difficult to store and use for a long time, is not conducive to industrial production.
  • the present invention provides an organic electroluminescent device which is doped with an inert metal in an electron transporting material having a coordinating ability, and a coordination reaction with an inert metal cation by an electron transporting material promotes the loss of electrons of the inert metal.
  • the process thereby reducing the work function of the inert metal, enables the inert metal to achieve an n-type doping effect similar to that of a reactive metal, lowering the LUMO energy level of the electron transporting material, thereby reducing the electron injection barrier, thereby significantly reducing the device driving voltage Improve device efficiency.
  • An organic electroluminescent device comprising a substrate, and a light emitting device sequentially formed on the substrate, the light emitting device package
  • the electron transport layer comprising an electron transport host material and an inert metal doped in the electron transport host material;
  • the electron transport host material is an electron transport material having coordination properties.
  • the doping ratio of the inert metal is from 1 vol% to 99 vol%, preferably from 5 vol% to 30 vol%.
  • the inert metal is a metal which is stable in air and has a work function higher than 4.0 eV, specifically titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co).
  • Ni nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Tc), ruthenium (Ru), rhenium (Rh), lead (Pd) , silver (Ag), cadmium (Cd), tantalum (Ta), tungsten (W), antimony (Re), antimony (Os), antimony (Ir), gold (Au), platinum (Pt), mercury (Hg) One or a mixture of several of them.
  • the inert metal is a metal atom having a strong coordination ability, such as cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), silver (Ag), iridium (Ir), gold (Au) or Platinum (Pt).
  • the electron transporting host material has an adjacent heterocyclic ring containing N or O, and can form a better coordination structure, and the molecular formula is as shown in the formulas (1) to (12):
  • R 1 to R 8 are the same or different and are respectively selected from an alkyl group (C n H m ), a conjugated aromatic group, a conjugated heterocyclic ring, a methoxy group (OCH 3 ), an amino group, and an alkyl-substituted amino group (NR).
  • x H 2-x cyano (CN), halo (X), aldehyde and keto (CHO, COR 2 ), ester (COOR) and acetylacetonate (COCH 2 COR).
  • the conjugated aromatic group is a phenyl (Ph), naphthyl or anthracenyl group; the conjugated heterocyclic ring is a pyridyl group (Py) or a quinolyl group.
  • the electron transporting material having the coordination property is a structural formula represented by the formula (2-1) to the formula (9-1):
  • the device further includes a hole injection layer and/or a hole transport layer disposed between the first electrode layer and the light emitting layer, and a hole blocking layer between the light emitting layer and the electron transport layer.
  • the electron transport layer of the present invention can promote the n-type doping effect of the inert metal based on the coordination effect, specifically, the inert metal M is co-doped with the electron transport material ETM having a coordination property (such as Bphen), and can be combined with the ETM.
  • the coordination of Mn + promotes the loss of electrons in the inert metal M, lowering its work function, making the inert metal achieve n-type doping effect similar to that of the active alkali metal, improving the transmission characteristics of the electron transporting material, reducing the electron injection barrier, and enhancing Injection of electrons.
  • the inert metal can also achieve an n-type dopant similar to the active metal, which is a new n-type doping idea, which can avoid active use.
  • the alkali metal produces an inexpensive, stable and efficient OLED device.
  • the material used in the invention is an inert metal, which is stable in air, convenient to store and use, and can be repeatedly used, which is beneficial to the worker. Production; no venting phenomenon, the evaporation atmosphere is relatively stable, can be mass-produced; after the inert metal doping electron transport material, improve the transmission characteristics of the electron transport material, reduce the LUMO energy level of the electron transport material, and can be more with the cathode Good matching, reduce electron injection barrier, improve electron injection efficiency; more inert metals, can choose some inert metals with lower evaporation temperature, wider selection surface; electron transport materials are organic materials, poor thermal stability, blending The heterogeneous inorganic inert metal forms a complex which significantly improves its thermal stability.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device of the present invention
  • Figure 2 is a graph showing the current density-voltage of the device 1-6 of Example 1;
  • Figure 5 is a graph showing the current density-luminance of the device 7-11 of Example 2;
  • Figure 6 is a graph showing the power efficiency-luminance of the device 7-11 of the second embodiment
  • Figure 8 is a graph showing the luminance-voltage of the device 12-16 of the third embodiment.
  • Figure 9 is a graph showing the current density-luminance of the device 12-16 of Example 3.
  • Figure 10 is a graph showing the power efficiency-luminance of the device 12-16 of the third embodiment.
  • Figure 11 is a mass spectrum of an electron transport layer doped with a polytype metal of the present invention.
  • An organic electroluminescent device includes a substrate 01, and a light emitting device sequentially formed on the substrate 01, the light emitting device including a first electrode layer 02 (anode), a hole injection layer 04, and a hole transport layer 05, a light emitting layer 06, a hole blocking layer 07, an electron transport layer 08, and a second electrode layer 03 (cathode);
  • the electron transport layer 08 includes an electron transport host material and an inert metal doped in the electron transport host material; the electron transport host material is an electron transport material having coordination properties.
  • the doping ratio of the inert metal is from 1 vol% to 99 vol%, preferably from 5 vol% to 30 vol%.
  • the inert metal is a metal which is stable in air and has a work function higher than 4.0 eV, specifically titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co).
  • Ni nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), tantalum (Tc), ruthenium (Ru), rhenium (Rh), lead (Pd) , silver (Ag), cadmium (Cd), tantalum (Ta), tungsten (W), antimony (Re), antimony (Os), antimony (Ir), gold (Au), platinum (Pt), mercury (Hg) One or a mixture of several of them.
  • the inert metal is cobalt cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), silver (Ag), iridium (Ir), gold (Au) or platinum (Pt).
  • the electron transport host material has an adjacent hetero ring containing N or O, and can form a better coordination structure, and the molecular formula is as shown in formula (1). As shown in equation (12):
  • R 1 to R 8 are the same or different and may be selected from, but not limited to, alkyl (C n H m ), conjugated aromatic groups, conjugated heterocyclic ring, methoxy (OCH 3 ), amino group and alkyl substituted Amino group (NR x H 2-x ), cyano group (CN), halogen group (X), aldehyde group and ketone group (CHO, COR 2 ), ester group (COOR) and acetylacetonate group (COCH 2 COR).
  • the conjugated aromatic group is a phenyl (Ph), naphthyl or anthracenyl group; and the conjugated heterocyclic ring is a pyridyl group (Py) or a quinolyl group.
  • the electron transporting material having the coordination property is a structural formula represented by the formula (2-1) to the formula (9-1):
  • the preparation process of the organic electroluminescent device of the present invention is the same as the prior art, wherein the evaporation rate of the metal in the electron transport layer 08 should be slow, 0.1 ⁇ /sec, at which the electron transport layer has coordination properties.
  • the contact between the host material and the inert metal of the dopant material is more sufficient, and the inert metal M is more uniformly dispersed in the host material ETM, which is advantageous for the combination of the two.
  • First electrode layer 02 (anode ITO) / hole transport layer 05 (BCP) / hole blocking layer 07 (Bphen) / electron transport layer 08 (10% M-ETM) / second electrode layer 03 (cathode Al)
  • the host material of the electron transport layer in this embodiment is Bphen, the doped inert metal is Ag, and the active metal Cs (decomposed by cesium carbonate in vacuum) is used in the comparative device.
  • device 1 is a curve corresponding to Al
  • device 2 is a curve corresponding to Ag/Al
  • device 3 is a curve corresponding to Cs/Al
  • device 4 is a curve corresponding to CsBphen/Al
  • device 5 is AgBphen/Al.
  • device 6 is the curve corresponding to AgBcp/Al
  • the cathodes of devices 1-6 are all Al, where:
  • the electron transport layer 08 of the device 1 is Bphen (ie, is not doped with an inert metal), and has no electron injection layer;
  • the electron transport layer 08 of the device 2 is Bphen, and the electron injection layer is Ag (1 nm);
  • the electron transport layer 08 of the device 3 is Bphen, and the electron injection layer is Cs (3 nm);
  • the electron transport layer 08 (10% M-ETM) in device 4 uses Cs:Bphen co-doped with Cs and Bphen, and the doping ratio is 10 vol%, that is, 100 angstroms of electron transport host material is doped with 10 angstroms.
  • Ag:Bphen used in electron transport layer 08 (10%M-ETM) in device 5 is co-doped with Ag and Bphen, and the doping ratio is 10 vol%, that is, 100 angstroms of electron transport host material is doped with 10 angstroms of inertia. metal;
  • the Ag:Bcp used in the electron transport layer 08 (10%M-ETM) of the device 6 is co-doped with Ag and Bcp, and the doping ratio is 10 vol%, that is, 100 angstroms of electron transport host material is doped with 10 angstroms of inertia. metal.
  • the current density-voltage curves of device 1, device 2, device 3, device 4, device 5 and device 6 are shown in Fig. 2. It can be seen from Fig. 2 that the inert metal Ag and Bphen are co-doped as an electron transport layer, which can achieve high efficiency. Electron injection, and active metal Cs doped Bphen can achieve similar effects. In addition, due to steric hindrance, Bphen's coordination ability is slightly better than Bcp, so the Ag and Bphen doping effect is slightly better than Ag and Bcp. Where Bphen is as shown in formula (1-1) and Bcp is as shown in formula (1-2):
  • Figure 11 illustrates that the molecular composition of the doped film can be found by Mardi-Tof, and the bulk peak of Bphen+H, a single coordination structure formed by Ag with a single molecule Bphen, or one Ag forms a double coordination with two Bphens.
  • the structure is as follows.
  • ITO/HAT-CN (10 nm) / NPB (30 nm) / Alq 3 (30 nm) / Bphen (20 nm) / x% Ag: Bphen 10 nm / Ag
  • First electrode layer 02 anode ITO
  • hole injection layer 04 HAT-CN
  • hole transport layer 05 NPB
  • light-emitting layer 06 Alq 3
  • hole blocking layer 07 Bphen
  • electron transport layer 08 x%Ag: Bphen
  • second electrode layer 03 cathode Ag
  • the host material of the electron transport layer in this embodiment is Bphen, and the doped inert metal is Ag.
  • device 7 is the curve corresponding to Ag
  • device 8 is the curve corresponding to Mg:Ag
  • device 9 is the corresponding curve of 5%
  • device 10 is the curve corresponding to 10%
  • device 11 is 25%.
  • Corresponding curves, Ag, Mg:Ag in device 7 and device 8 are respectively metal cathodes
  • the electron transport layer material is Bphen
  • the metal cathodes of device 9, device 10 and device 11 are Ag;
  • the material of the electron transport layer in the device 9 is co-doped with Ag and Bphen, and the doping ratio is 5 vol% (that is, the vapor deposition thickness is 100 angstroms Bphen while the vapor deposition is doped with a thickness of 5 angstroms Ag);
  • the material of the electron transport layer in the device 10 is co-doped with Ag and Bphen, and the doping ratio is 10 vol% (ie, the vapor deposition thickness is 100 angstroms Bphen and the vapor deposition thickness is 10 angstroms Ag);
  • the material of the electron transport layer in the device 11 is co-doped with Ag and Bphen, and the doping ratio is 25 vol% (that is, the vapor deposition thickness is 100 ⁇ Bphen while the vapor deposition is doped with a thickness of 25 angstroms Ag).
  • the current density-voltage curve of device 7, device 8, device 9, device 10, device 11 is shown in Figure 3.
  • the luminance-voltage curve is shown in Figure 4.
  • the current density-luminance curve is shown in Figure 5.
  • Power efficiency-luminance curve See Figure 6. It can be seen from Fig. 3 to Fig. 6 that when the inert electrode Ag is used, since there is a large injection barrier between the electrode and the electron transporting material, electrons are difficult to be implanted, and the device performance is lower than that of the device prepared by the active Mg:Ag electrode. a lot of.
  • the injection barrier can be reduced, the electron injection efficiency is greatly improved, the performance of the device is improved overall, and the preparation is slightly better than the active Mg:Ag/Ag electrode.
  • the device's performance allows the fabrication of high performance devices using inert electrodes.
  • ITO/HATCN (10 nm) / NPB (30 nm) / Alq 3 (30 nm) / Bphen (20 nm) / x% Ag-Bphen 10 nm / Mg: Ag / Ag
  • First electrode layer 02 anode ITO
  • hole injection layer 04 HTCN
  • hole transport layer 05 NPB
  • light-emitting layer 06 Alq 3
  • hole blocking layer 07 Bphen
  • electron transport layer 08 x%Ag-Bphen
  • second electrode layer 03 cathode Mg: Ag/Ag
  • the host material of the electron transport layer in this embodiment is Bphen, and the doped inert metal is Ag.
  • the device 12 is a curve corresponding to Ag
  • the device 13 is a curve corresponding to Mg:Ag
  • the device 14 is a 5% corresponding curve
  • the device 15 is a 10% corresponding curve
  • the device 16 is 20%.
  • Corresponding curves, Ag, Mg:Ag in device 12 and device 13 are respectively metal cathodes
  • the electron transport layer material is Bphen
  • the metal cathodes of device 14, device 15 and device 16 are Ag;
  • the material of the electron transport layer in the device 14 is co-doped with Ag and Bphen, and the doping ratio is 5 vol% (that is, the vapor deposition thickness is 100 angstroms Bphen while the vapor deposition is doped with a thickness of 5 angstrom Ag);
  • the material of the electron transport layer in the device 15 is co-doped with Ag and Bphen, and the doping ratio is 10 vol% (that is, the vapor deposition thickness is 100 angstroms Bphen while the vapor deposition is doped with a thickness of 10 angstroms Ag);
  • the material of the electron transport layer in the device 16 is co-doped with Ag and Bphen, and the doping ratio is 20 vol% (that is, the vapor deposition thickness of 100 ⁇ Bphen is simultaneously vapor-doped with a thickness of 20 angstroms Ag).
  • the current density-voltage curve of device 12, device 13, device 14, device 15, device 16 is shown in Figure 7, the luminance-voltage curve is shown in Figure 8, and the current density-luminance curve is shown in Figure 9.
  • Power efficiency - luminance curve See Figure 10. It can be seen from Fig. 7 to Fig. 10 that when the device electrode is prepared by using an active Mg:Ag electrode, by introducing an appropriate proportion of Ag into the electron transport layer, that is, using the AgBphen mixture, the injection barrier can be further reduced and the electrons can be improved. Injection efficiency, overall improved device performance.
  • the performance of the Ag electrode is poor. Generally, replacing the Ag electrode with a Mg:Ag electrode can greatly improve the device performance, but the Mg:Ag electrode is a live electrode and the device is not stable. While the device 12 uses Ag as the cathode and the electron transport layer 08 uses the co-doped material of the present invention, a similar effect of the Mg:Ag electrode can still be achieved.
  • the structure of the device 17 to the device 42 is the same as that of the device 12, wherein the electron transport layer 08 is constructed as follows:
  • EMT in the above table is the electron transport host material
  • M represents an inert metal
  • the doping ratio vol% refers to the doping ratio of the inert metal in the electron transporting host material, for example, 15 vol% means that the doping ratio of the inert metal in the electron transporting host material is 15 vol%, that is, 100 angstroms of the electron transporting host material is doped. Mixed with 15 angstroms of inert metal.
  • the structure of the device 43 to the device 45 is the same as that of the device 12, wherein the EMT in the electron transport layer 08 is doped with a compound of the formula (6-1), the formula (6-2), and the formula (6-3), respectively.
  • the metals M are ⁇ Ru, ⁇ Rh, and lead Pd, respectively, and the doping ratios are 20 vol%, 30 vol%, and 40 vol%, respectively.
  • the structure of the device 46 to the device 48 is the same as that of the device 12, wherein the EMT in the electron transport layer 08 adopts the equations (7-1) and (7-2), respectively.
  • the compound of the structure represented by the formula (7-3), the doped metal M is silver Ag, cadmium Cd, and yttrium Ta, respectively, and the doping ratios are 22 vol%, 25 vol%, and 28 vol%, respectively.
  • the structure of the device 49 to the device 119 is the same as that of the device 12, in which the EMT in the electron transport layer 08 is a compound of the structure shown in the formula (8-1) to the formula (8-71), and the device 49 is a metal doped with the device 60.
  • M is silver Ag, the doping ratio is 22 vol%; the metal M doped by device 61 to device 80 is cadmium Cd, and the doping ratio is 25 vol%; the metal M doped by device 81 to device 100 are both ⁇ Ta, the doping ratio was 28 vol%; the metal M doped by the device 101 to the device 119 was platinum Pt, and the doping ratio was 30 vol%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件,包括基板(01),以及依次形成在基板上的发光器件,发光器件包括第一电极层(02)、空穴注入层(04)、空穴传输层(05)、发光层(06)、空穴阻挡层(07)、电子传输层(08)和第二电极层(03),电子传输层(08)包括具有配位能力的电子传输主体材料和掺杂在电子传输主体材料中的惰性金属;电子传输主体材料为具有配位性能的电子传输材料,能与惰性金属阳离子发生配位反应,促进惰性金属失去电子的过程,从而降低惰性金属的功函数,使惰性金属也能实现与活泼金属类似的n型掺杂效果,降低电子传输材料的LUMO能级,进而促进电子的注入,从而显著降低器件的驱动电压,提高器件的效率。

Description

一种有机电致发光器件 技术领域
本发明涉及有机电致发光器件技术领域,特别是一种含有配位能力材料的电子传输层中掺杂惰性金属实现n型掺杂效果的有机电致发光器件。
背景技术
有机发光二极管(OLED)是一种多层有机薄膜结构、可通过电致发光的器件。它拥有多种超越LCD(液晶显示器)的显示特性和品质,凭借其低能耗和柔韧性等优良特性,具有很好的应用前景,将成为下一代主流平板显示器。
在OLED中,通常使用的电子传输材料(ETM)的LUMO能级在-3.0eV附近,而金属阴极的功函数一般大于4.0eV,因此当电子直接从金属阴极注入到电子传输层时,存在较大的能隙阻碍电子的注入,使得器件驱动电压较高,同时使得到达发光层中的电子空穴不平衡,降低器件效率和缩短器件寿命。因此可以使用n型掺杂的方法提高电子传输材料的传输特性,降低电子传输材料的LUMO能级,进而促进电子从电极的注入。n型掺杂的机理是掺杂剂将电子转移到ETM的LUMO能级上,从而实现电荷转移,提高自由载流子浓度。电子传输材料的LUMO能级在-3.0eV左右,这就要求掺杂剂功函数必须在3.0eV以下,才能高效的将电子转移到ETM的LUMO能级上。但是功函数小于3.0eV的物质,其还原性十分强,很容易被空气中的氧气氧化,因此适用于OLED的n型掺杂剂种类较少。其中,最常用的是碱金属,碱金属的功函数均小于3.0eV,因此将碱金属与ETM共掺杂,可以实现高效的n型掺杂效果,然而碱金属特别活泼,在空气中易被氧化,钠、钾、铯等甚至在空气中自燃,因此难以长时间存储,而且操作较为不便。通过碱金属化合物在真空热分解原位产生活泼的碱金属的方法可以避免直接在空气中使用活泼的碱金属,增强其在空气中的稳定性,然而碱金属化合物在真空中分解时存在严重的放气现象,使蒸镀薄膜时的真空度较差,成膜性和气氛均不稳定,难以得到实际应用。惰性金属在空气中稳定,可以长期存储和使用,然而由于其功函数较大,与ETM间不能发生电荷转移,因此没有n型掺杂效果,不是一种很好的n型掺杂剂。
目前有公开显示将惰性金属薄层Ag蒸镀1nm到Bphen或者BCP上,在界面处Ag可以和Bphen或者BCP发生作用,提高电子的注入。虽然这样有一定的效果,然而Ag通过渗透进入Bphen【4,7-二苯基-1,10-菲啰啉】或者BCP【2,9-二甲基-4,9-二苯基-1,10-菲啰啉】的量有限,仅能在界面处形成复合,而且作用的机理并不明确。CN201110325422.2公开提出了用活泼金属M掺杂ETM从而实现n型掺杂效果,其中这类活泼金属自身功函数较低,直接充当了强还原性的n型掺杂剂,而且在空气中不稳定,难以长期存储和使用,不利于工业生产。
发明内容
为此,本发明提供了一种有机电致发光器件,采用在具有配位能力的电子传输材料中掺杂惰性金属,通过电子传输材料与惰性金属阳离子发生配位反应,促进惰性金属失去电子的过程,从而降低惰性金属的功函数,使惰性金属也能实现与活泼金属类似的n型掺杂效果,降低电子传输材料的LUMO能级,进而降低电子的注入势垒,从而显著降低器件驱动电压、提高器件效率。
为解决上述技术问题,本发明采用如下技术方案:
一种有机电致发光器件,包括基板,以及依次形成在所述基板上的发光器件,所述发光器件包 括第一电极层、发光层、电子传输层和第二电极层;所述电子传输层包括电子传输主体材料和掺杂在所述电子传输主体材料中的惰性金属;
所述电子传输主体材料为具有配位性能的电子传输材料。
所述惰性金属的掺杂比例为1vol%-99vol%,优选为5vol%-30vol%。
所述惰性金属为在空气中稳定且功函数高于4.0eV的金属,具体为钛(Ti)、钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、锆(Zr)、铌(Nb)、钼(Mo)、锝(Tc)、钌(Ru)、铑(Rh)、铅(Pd)、银(Ag)、镉(Cd)、钽(Ta)、钨(W)、铼(Re)、锇(Os)、铱(Ir)、金(Au)、铂(Pt)、汞(Hg)中的一种或其中几种的混合物。
所述惰性金属为配位能力较强的金属原子,如钴(Co)、镍(Ni)、铜(Cu)、钌(Ru)、银(Ag)、铱(Ir)、金(Au)或铂(Pt)。
所述电子传输主体材料具有含N或O的相邻杂环,可形成较好的配位结构,其分子式如式(1)至式(12)所示:
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-1
其中R1至R8相同或不同,分别选自烷基(CnHm)、共轭芳香基团,共轭杂环、甲氧基(OCH3)、氨基及烷基取代的氨基(NRxH2-x)、氰基(CN)、卤族基(X)、醛基和酮基(CHO、COR2)、酯基(COOR)和乙酰丙酮基(COCH2COR)。
所述共轭芳香基团为苯基(Ph)、萘基或蒽基;所述的共轭杂环为吡啶基(Py)或喹啉基
所述具有配位性能的电子传输材料为式(2-1)至式(9-1)所示的结构式:
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-2
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-3
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-4
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-5
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-6
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-7
所述的器件还包括设置在所述第一电极层和发光层之间的空穴注入层和/或空穴传输层,所述发光层和电子传输层之间的空穴阻挡层。
本发明的上述技术方案相比现有技术具有以下优点:
本发明的电子传输层基于配位作用能促使惰性金属实现n型掺杂效果,具体为利用惰性的金属M与具有配位性能的电子传输材料ETM(如Bphen)共掺杂,通过ETM可与Mn+发生配位作用促进惰性金属M失去电子,降低其功函数,使得惰性金属实现与活泼碱金属类似的n型掺杂效果,提高电子传输材料的传输特性,降低电子的注入势垒,增强电子的注入。将惰性金属与具有配位能力的ETM共掺杂,通过以上作用机理,使得惰性金属也能实现活泼金属类似的n型掺杂剂,是一种新的n型掺杂思路,可以避免使用活泼的碱金属,制备出廉价、稳定且高效的OLED器件。
申请人实验发现:将惰性金属M和ETM共掺杂(x%M:ETM)比使用薄层的Bphen或者BCP/Ag(1nm)通过渗透在界面处相互作用的效果好很多,而且掺杂M后,ETM的稳定性也得到了大大的提高。
本发明采用的材料是惰性金属,其在空气中稳定,存储和使用方便,可以反复利用,有利于工 业生产;不存在放气现象,蒸镀气氛相对稳定,可以进行批量生产;惰性金属掺杂电子传输材料后,提高电子传输材料的传输特性,降低电子传输材料的LUMO能级,可以和阴极更好的匹配,降低电子注入势垒,提高电子的注入效率;惰性金属较多,可以选择一些蒸镀温度较低的惰性金属,选择面比较广泛;电子传输材料是有机材料,热稳定性差,掺杂无机的惰性金属形成配合物后,显著改善其热稳定性。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据本发明的具体实施案例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明的有机电致发光器件的结构示意图;
图2为实施例1的器件1-6电流密度-电压曲线图;
图3为实施例2的器件7-11的电流密度-电压曲线图;
图4为实施例2的器件7-11的亮度-电压曲线图;
图5为实施例2的器件7-11的电流密度-亮度曲线图;
图6为实施例2的器件7-11的功率效率-亮度曲线图;
图7为实施例3的器件12-16的电流密度-电压曲线图;
图8为实施例3的器件12-16的亮度-电压曲线图;
图9为实施例3的器件12-16的电流密度-亮度曲线图;
图10为实施例3的器件12-16的功率效率-亮度曲线图;
图11为本发明的掺杂有多型金属的电子传输层质谱图。
01-基板,02-第一电极层,03-第二电极层,04-空穴注入层,05-空穴传输层,06-发光层,07-空穴阻挡层,08-电子传输层。
具体实施方式
本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。应当理解的是,当元件例如层、区域或基板被称作“形成在”或“设置在”另一元件“上”时,该元件可以直接设置在所述另一元件上,或者也可以存在中间元件。相反,当元件被称作“直接形成在”或“直接设置在”另一元件上时,不存在中间元件。
一种有机电致发光器件包括基板01,以及依次形成在所述基板01上的发光器件,所述发光器件包括第一电极层02(阳极)、空穴注入层04、空穴传输层05,发光层06、空穴阻挡层07、电子传输层08和第二电极层03(阴极);
所述电子传输层08包括电子传输主体材料和掺杂在所述电子传输主体材料中的惰性金属;所述电子传输主体材料为具有配位性能的电子传输材料。
所述惰性金属的掺杂比例为1vol%-99vol%,优选为5vol%-30vol%。
所述惰性金属为在空气中稳定且功函数高于4.0eV的金属,具体为钛(Ti)、钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、锆(Zr)、铌(Nb)、钼(Mo)、锝(Tc)、钌(Ru)、铑(Rh)、铅(Pd)、银(Ag)、镉(Cd)、钽(Ta)、钨(W)、铼(Re)、锇(Os)、铱(Ir)、金(Au)、铂(Pt)、汞(Hg)中的一种或其中几种的混合物。
优选地,所述惰性金属为钴钴(Co)、镍(Ni)、铜(Cu)、钌(Ru)、银(Ag)、铱(Ir)、金(Au)或铂(Pt)。
所述电子传输主体材料具有含N或O的相邻杂环,可形成较好的配位结构,其分子式如式(1) 至式(12)所示:
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-8
其中R1至R8相同或不同,可选自但不限于烷基(CnHm)、共轭芳香基团,共轭杂环、甲氧基(OCH3)、氨基及烷基取代的氨基(NRxH2-x)、氰基(CN)、卤族基(X)、醛基和酮基(CHO、COR2)、酯基(COOR)和乙酰丙酮基(COCH2COR)。
所述共轭芳香基团为苯基(Ph)、萘基或蒽基;所述的共轭杂环为吡啶基(Py)或喹啉基。
所述具有配位性能的电子传输材料为式(2-1)至式(9-1)所示的结构式:
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-9
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-10
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-11
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-12
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-13
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-14
本发明的有机电致发光器件的制备工艺同现有技术,其中电子传输层08中金属的蒸镀速率应较慢,为0.1埃/秒,在此速率下,电子传输层的具有配位性能的主体材料和掺杂材料惰性金属之间接触更加充分,惰性金属M在主体材料ETM中分散更加均一,有利于两者复合。
实施例1
单电子器件的结构:
ITO/BCP(10nm)/Bphen(90nm)/10%M-ETM(10nm)/Al;
第一电极层02(阳极ITO)/空穴传输层05(BCP)/空穴阻挡层07(Bphen)/电子传输层08(10%M-ETM)/第二电极层03(阴极Al)
本实施例中的电子传输层的主体材料为Bphen,掺杂的惰性金属为Ag,对比器件中使用的是活泼金属Cs(通过碳酸铯在真空中分解得到)。如图2所示,器件1为Al对应的曲线,器件2为Ag/Al对应的曲线,器件3为Cs/Al对应的曲线,器件4为CsBphen/Al对应的曲线,器件5为AgBphen/Al 对应的曲线,器件6为AgBcp/Al对应的曲线,器件1-6的阴极均为Al,其中:
器件1电子传输层08为Bphen(即不掺杂惰性金属),无电子注入层;
器件2的电子传输层08是Bphen,电子注入层为Ag(1nm);
器件3的电子传输层08是Bphen,电子注入层为Cs(3nm);
器件4中的电子传输层08(10%M-ETM)采用的Cs:Bphen为Cs和Bphen共掺杂,掺杂比例为10vol%,即100埃的电子传输主体材料中掺杂有10埃的惰性金属;
器件5中电子传输层08(10%M-ETM)采用的Ag:Bphen是Ag与Bphen共掺杂,掺杂比例为10vol%,即100埃的电子传输主体材料中掺杂有10埃的惰性金属;
器件6中电子传输层08(10%M-ETM)采用的Ag:Bcp是Ag与Bcp共掺杂,掺杂比例为10vol%,即100埃的电子传输主体材料中掺杂有10埃的惰性金属。
器件1,器件2,器件3,器件4,器件5和器件6电流密度-电压曲线图见图2,由图2可以看出惰性金属Ag和Bphen共掺杂作为电子传输层,可以实现高效的电子注入,和活泼金属Cs掺杂Bphen可以实现类似的效果。另外,由于空间位阻,Bphen的配位能力略优于Bcp,因此Ag和Bphen掺杂效果略优于Ag和Bcp的效果。其中Bphen如式(1-1)所示,Bcp如式(1-2)所示:
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-15
图11说明,通过Mardi-Tof测试掺杂薄膜中的分子组成,可以发现Bphen+H的本体峰,一个Ag与单分子Bphen形成的单配位结构,或者一个Ag与两个Bphen形成双配位结构,如下。
实施例2
[根据细则26改正23.05.2017] 
Figure WO-DOC-FIGURE-16
器件结构:
ITO/HAT-CN(10nm)/NPB(30nm)/Alq3(30nm)/Bphen(20nm)/x%Ag:Bphen 10nm/Ag
第一电极层02(阳极ITO)、空穴注入层04(HAT-CN)、空穴传输层05(NPB)、发光层06(Alq3)、空穴阻挡层07(Bphen),电子传输层08(x%Ag:Bphen)、第二电极层03(阴极Ag);
本实施例中的电子传输层的主体材料为Bphen,掺杂的惰性金属为Ag。如图3-图6所示,器件7为Ag对应的曲线,器件8为Mg:Ag对应的曲线,器件9为5%对应的曲线,器件10为10%对应的曲线,器件11为25%对应的曲线,器件7和器件8中Ag,Mg:Ag分别为金属阴极,其电子传输层材料为Bphen;器件9、器件10和器件11的金属阴极均为Ag;
其中:
器件9中电子传输层材料为Ag和Bphen共掺杂,掺杂比例为5vol%(即蒸镀厚度100埃Bphen时中同时蒸镀掺杂有厚度5埃Ag);
器件10中电子传输层材料为Ag和Bphen共掺杂,掺杂比例为10vol%(即蒸镀厚度100埃Bphen时同时蒸镀厚度10埃Ag);
器件11中电子传输层材料为Ag和Bphen共掺杂,掺杂比例为25vol%(即蒸镀厚度100埃Bphen时中同时蒸镀掺杂有厚度25埃Ag)。
器件7,器件8,器件9,器件10,器件11的电流密度-电压曲线图见图3,亮度-电压曲线图见图4,电流密度-亮度曲线图见图5,功率效率-亮度曲线图见图6。由图3至图6可以看出,使用惰性电极Ag时,由于电极与电子传输材料之间存在较大的注入势垒,因此电子难以注入,器件性能比活泼的Mg:Ag电极制备的器件低很多。通过将电子传输层中引入适当比例的Ag,即采用Ag:Bphen混合物,可以降低注入势垒,大大提高电子的注入效率,整体提升器件的性能,实现略优于活泼Mg:Ag/Ag电极制备的器件性能,可以制备出使用惰性电极的高性能器件。
实施例3
器件结构:
ITO/HATCN(10nm)/NPB(30nm)/Alq3(30nm)/Bphen(20nm)/x%Ag-Bphen 10nm/Mg:Ag/Ag
第一电极层02(阳极ITO)、空穴注入层04(HATCN)、空穴传输层05(NPB)、发光层06(Alq3)、空穴阻挡层07(Bphen)、电子传输层08(x%Ag-Bphen)、第二电极层03(阴极Mg:Ag/Ag);
本实施例中的电子传输层的主体材料为Bphen,掺杂的惰性金属为Ag。如图7-图10所示,器件12为Ag对应的曲线,器件13为Mg:Ag对应的曲线,器件14为5%对应的曲线,器件15为10%对应的曲线,器件16为20%对应的曲线,器件12和器件13中的Ag、Mg:Ag分别为金属阴极,其电子传输层材料为Bphen;器件14、器件15和器件16的金属阴极均为Ag;
其中:器件14中电子传输层材料为Ag和Bphen共掺杂,掺杂比例为5vol%(即蒸镀厚度100埃Bphen时中同时蒸镀掺杂有厚度5埃Ag);
器件15中电子传输层材料为Ag和Bphen共掺杂,掺杂比例为10vol%(即蒸镀厚度100埃Bphen时中同时蒸镀掺杂有厚度10埃Ag);
器件16中电子传输层材料为Ag和Bphen共掺杂,掺杂比例为20vol%(即蒸镀厚度100埃Bphen时中同时蒸镀掺杂有厚度20埃Ag)。
器件12,器件13,器件14,器件15,器件16的电流密度-电压曲线图见图7,亮度-电压曲线图见图8,电流密度-亮度曲线图见图9,功率效率-亮度曲线图见图10。由图7至图10可以看出,器件电极使用活泼的Mg:Ag电极制备时,通过将电子传输层中引入适当比例的Ag,即采用AgBphen混合物,仍可以进一步降低注入势垒,提高电子的注入效率,整体提升器件的性能。
Ag电极性能差,应此通常用Mg:Ag电极替代Ag电极可以大大提升器件性能,但是Mg:Ag电极是活泼电极,器件不太稳定。而器件12采用Ag做阴极,电子传输层08采用本发明的共掺杂材料,仍然可以实现Mg:Ag电极相似的效果。
实施例4
器件17至器件42的结构同器件12,其中电子传输层08的构成如下:
表1本发明的电子传输层的组成
器件 EMT M 掺比vol%
器件17 式(5-1) Ti 10
器件18 式(5-2) V 15
器件19 式(5-3) Fe 20
器件20 式(1-4) Cr 13
器件21 式(5-5) Nb 30
器件22 式(5-6) Co 23
器件23 式(5-7) Mn 14
器件24 式(5-8) Tc 25
器件25 式(5-9) Ni 16
器件26 式(5-10) Rh 28
器件27 式(5-11) Zn 27
器件28 式(5-12) Mo 21
器件29 式(5-13) Cu 29
器件30 式(5-14) Zr 24
器件31 式(5-15) Ag 22
器件32 式(5-16) Ru 12
器件33 式(2-1) Os 14
器件34 式(4-2) Pd 11
器件35 式(2-3) W 17
器件36 式(2-4) Cd 19
器件37 式(3-1) Re 24
器件38 式(3-2) Ta 25
器件39 式(4-8) Ir 27
器件40 式(5-2) Pt 28
器件41 式(4-3) Hg 13
器件42 式(3-1) Au 18
注:上表中EMT为电子传输主体材料;
M代表惰性金属;
掺比vol%是指惰性金属在电子传输主体材料中的掺杂比例,如15vol%是指惰性金属在电子传输主体材料中的掺杂比例为15vol%,即100埃的电子传输主体材料中掺杂有15埃的惰性金属。
实施例5
器件43至器件45的结构同器件12,其中电子传输层08的中的EMT分别采用式(6-1)、式(6-2)、式(6-3)所示结构的化合物,掺杂的金属M分别为钌Ru、铑Rh、铅Pd,掺杂比例分别为20vol%、30vol%和40vol%。
实施例6
器件46至器件48的结构同器件12,其中电子传输层08的中的EMT分别采用式(7-1)、式(7-2)、 式(7-3)所示结构的化合物,掺杂的金属M分别为银Ag、镉Cd、钽Ta,掺杂比例分别为22vol%、25vol%和28vol%。
实施例7
器件49至器件119的结构同器件12,其中电子传输层08的中的EMT分别采用式(8-1)至式(8-71)所示结构的化合物,器件49至器件60掺杂的金属M均为银Ag,掺杂比例均为22vol%;器件61至器件80掺杂的金属M均为镉Cd,掺杂比例均为25vol%;器件81至器件100掺杂的金属M均为钽Ta,掺杂比例均为28vol%;器件101至器件119掺杂的金属M均为铂Pt,掺杂比例均为30vol%。
显然,上述实施案例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种有机电致发光器件,包括基板(01),以及依次形成在所述基板上的发光器件,所述发光器件包括第一电极层(02)、发光层(06)、电子传输层(08)和第二电极层(03);其特征在于,
    所述电子传输层(08)包括电子传输主体材料和掺杂在所述电子传输主体材料中的惰性金属;
    所述电子传输主体材料为具有配位性能的电子传输材料。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,所述惰性金属的掺杂比例为1vol%-99vol%。
  3. 根据权利要求2所述的有机电致发光器件,其特征在于,所述惰性金属的掺杂比例为5vol%-30vol%。
  4. 根据权利要求1-3任一项所述的有机电致发光器件,其特征在于,所述惰性金属为在空气中稳定且功函数高于4.0eV的金属。
  5. 根据权利要求4所述的有机电致发光器件,其特征在于,所述惰性金属为钛(Ti)、钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、锆(Zr)、铌(Nb)、钼(Mo)、锝(Tc)、钌(Ru)、铑(Rh)、铅(Pd)、银(Ag)、镉(Cd)、钽(Ta)、钨(W)、铼(Re)、锇(Os)、铱(Ir)、金(Au)、铂(Pt)、汞(Hg)中的一种或其中几种的混合物。
  6. 根据权利要求5所述的有机电致发光器件,其特征在于,所述惰性金属为配位能力较强的金属原子。
  7. 根据权利要求6所述的有机电致发光器件,其特征在于,所述配位能力较强的金属原子为钴(Co)、镍(Ni)、铜(Cu)、钌(Ru)、银(Ag)、铱(Ir)、金(Au)或铂(Pt)。
  8. [根据细则26改正23.05.2017] 
    根据权利要求1所述的有机电致发光器件,其特征在于,所述电子传输主体材料具有含N或O的相邻杂环,可形成较好的配位结构,其分子式如式(1)至式(12)所示:
    Figure WO-DOC-FIGURE-080

    其中R1至R8相同或不同,选自烷基(CnHm)、共轭芳香基团,共轭杂环、甲氧基(OCH3)、氨基及烷基取代的氨基(NRxH2-x)、氰基(CN)、卤族基(X)、醛基和酮基(CHO、COR2)、酯基(COOR)和乙酰丙酮基(COCH2COR)。
  9. 根据权利要求8所述的有机电致发光器件,其特征在于,所述共轭芳香基团为苯基(Ph)、 萘基或蒽基;所述的共轭杂环为吡啶基(Py)或喹啉基。
  10. [根据细则26改正23.05.2017] 
    根据权利要求8所述的有机电致发光器件,其特征在于,所述具有配位性能的电子传输材料为式(2-1)至式(9-1)所示的结构式:
    Figure WO-DOC-FIGURE-101

    Figure WO-DOC-FIGURE-102

    Figure WO-DOC-FIGURE-103

    Figure WO-DOC-FIGURE-104

    Figure WO-DOC-FIGURE-105
  11. 根据权利要求1所述的有机电致发光器件,其特征在于,所述的器件还包括设置在所述第一电极层(02)和发光层(06)之间的空穴注入层(04)和/或空穴传输层(05),所述发光层(06)和电子传输层(08)之间的空穴阻挡层(07)。
PCT/CN2017/075951 2016-06-06 2017-03-08 一种有机电致发光器件 WO2017211100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610391515.8A CN107464885B (zh) 2016-06-06 2016-06-06 一种有机电致发光器件
CN201610391515.8 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017211100A1 true WO2017211100A1 (zh) 2017-12-14

Family

ID=60545044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075951 WO2017211100A1 (zh) 2016-06-06 2017-03-08 一种有机电致发光器件

Country Status (3)

Country Link
CN (1) CN107464885B (zh)
TW (1) TWI667781B (zh)
WO (1) WO2017211100A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180248137A1 (en) * 2017-02-27 2018-08-30 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
CN111969017A (zh) * 2020-08-21 2020-11-20 合肥维信诺科技有限公司 显示面板及其制备方法
WO2021045179A1 (ja) 2019-09-06 2021-03-11 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料
US11404656B2 (en) 2017-12-22 2022-08-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting apparatus, electronic device, and lighting device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185642A1 (en) 2017-04-07 2018-10-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN109994651B (zh) * 2017-12-29 2020-12-25 昆山国显光电有限公司 一种有机电致发光器件及其制备方法
CN108963098B (zh) * 2018-08-03 2020-04-28 京东方科技集团股份有限公司 一种qled显示面板及其制备方法、显示装置
KR102168781B1 (ko) * 2018-09-06 2020-10-22 영남대학교 산학협력단 페난스롤린 및 그 유도체의 제조 방법
CN110957426A (zh) * 2018-09-27 2020-04-03 清华大学 一种电子传输材料及其应用
CN109473558B (zh) * 2018-09-28 2020-02-07 清华大学 一种惰性金属的n-型掺杂剂及其在有机电致发光器件中的应用
CN109524571B (zh) * 2018-09-28 2021-05-14 清华大学 基于惰性金属实现电子传输材料n型掺杂的方法及其应用
CN111004270B (zh) * 2019-12-27 2023-10-20 厦门天马微电子有限公司 一种有机化合物、电子传输材料及其应用
CN111574505B (zh) * 2020-05-22 2021-08-03 西安瑞联新材料股份有限公司 一种以苯并[c]噌啉为受体的化合物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356663A (zh) * 2005-11-10 2009-01-28 诺瓦莱德公开股份有限公司 掺杂的有机半导体材料
CN101965653A (zh) * 2008-02-27 2011-02-02 奥斯兰姆奥普托半导体有限责任公司 用于制备掺杂的有机半导体层的方法
WO2015097232A1 (en) * 2013-12-23 2015-07-02 Novaled Gmbh N-doped semiconducting material comprising phosphine oxide matrix and metal dopant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934543A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104934541A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
US9397302B2 (en) * 2014-10-08 2016-07-19 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356663A (zh) * 2005-11-10 2009-01-28 诺瓦莱德公开股份有限公司 掺杂的有机半导体材料
CN101965653A (zh) * 2008-02-27 2011-02-02 奥斯兰姆奥普托半导体有限责任公司 用于制备掺杂的有机半导体层的方法
WO2015097232A1 (en) * 2013-12-23 2015-07-02 Novaled Gmbh N-doped semiconducting material comprising phosphine oxide matrix and metal dopant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180248137A1 (en) * 2017-02-27 2018-08-30 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
US10873039B2 (en) * 2017-02-27 2020-12-22 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
US11404656B2 (en) 2017-12-22 2022-08-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting apparatus, electronic device, and lighting device
WO2021045179A1 (ja) 2019-09-06 2021-03-11 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料
JPWO2021045179A1 (zh) * 2019-09-06 2021-03-11
KR20220035957A (ko) 2019-09-06 2022-03-22 닛폰 호소 교카이 유기 박막 및 유기 박막의 제조 방법, 유기 일렉트로 루미네선스 소자, 표시 장치, 조명 장치, 유기 박막 태양 전지, 박막 트랜지스터, 광전 변환 소자, 도료 조성물, 유기 일렉트로 루미네선스 소자용 재료
JP7421560B2 (ja) 2019-09-06 2024-01-24 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、光電変換素子、塗料組成物、有機エレクトロルミネッセンス素子用材料
CN111969017A (zh) * 2020-08-21 2020-11-20 合肥维信诺科技有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
CN107464885B (zh) 2019-01-18
TWI667781B (zh) 2019-08-01
TW201743441A (zh) 2017-12-16
CN107464885A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2017211100A1 (zh) 一种有机电致发光器件
KR100560778B1 (ko) 유기 전계 발광 디스플레이 장치
TWI380491B (zh)
CN100448058C (zh) 一种有机电致发光器件
KR20080106130A (ko) 유기 광전 소자 및 이에 사용되는 재료
WO2018129921A1 (zh) 一种蓝色有机电致发光器件及其制备方法
CN104167496B (zh) 倒置式顶发射器件及其制备方法
KR20060011066A (ko) 유기 전계 발광 소자
US11081646B2 (en) Coating composition, method for producing organic electroluminescent device using same, and organic electroluminescent device produced thereby
KR20040027287A (ko) 유기 일렉트로 루미네센스 소자 및 그 제조 방법
JP5094781B2 (ja) 有機el装置及びその製造方法
KR100769946B1 (ko) 저 전압에서 구동되는 유기 발광 소자
WO2023193775A1 (zh) 一种含有菲和邻菲罗啉的有机电子材料及其应用
KR100721428B1 (ko) 유기 발광 다이오드 및 이의 제조 방법
CN101222027B (zh) 一种有机发光器件及其制备方法
CN109473558B (zh) 一种惰性金属的n-型掺杂剂及其在有机电致发光器件中的应用
JP2005063910A (ja) 有機発光素子及びその製造方法
CN108269931B (zh) 一种有机电致发光器件及其制备方法
CN108269936B (zh) 一种电极及其制备方法和应用
JP3849937B2 (ja) 有機el素子およびその製造方法
Gong et al. Thermally stable inverted organic light-emitting diodes using Ag-doped 4, 7-diphenyl-1, 10-phenanthroline as an electron injection layer
KR20100133352A (ko) 유기 광전 소자
CN109661734B (zh) 有机电致发光器件及其制造方法
JP6664514B2 (ja) 有機電界発光素子およびその製造方法
CN109524571B (zh) 基于惰性金属实现电子传输材料n型掺杂的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809541

Country of ref document: EP

Kind code of ref document: A1