WO2023193775A1 - 一种含有菲和邻菲罗啉的有机电子材料及其应用 - Google Patents

一种含有菲和邻菲罗啉的有机电子材料及其应用 Download PDF

Info

Publication number
WO2023193775A1
WO2023193775A1 PCT/CN2023/086685 CN2023086685W WO2023193775A1 WO 2023193775 A1 WO2023193775 A1 WO 2023193775A1 CN 2023086685 W CN2023086685 W CN 2023086685W WO 2023193775 A1 WO2023193775 A1 WO 2023193775A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
substituted
organic electronic
layer
phenanthroline
Prior art date
Application number
PCT/CN2023/086685
Other languages
English (en)
French (fr)
Other versions
WO2023193775A8 (zh
Inventor
苏艳
周海涛
吴海发
黄泽甜
谢启燕
张亮
黄珠菊
Original Assignee
上海传勤新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海传勤新材料有限公司 filed Critical 上海传勤新材料有限公司
Publication of WO2023193775A1 publication Critical patent/WO2023193775A1/zh
Publication of WO2023193775A8 publication Critical patent/WO2023193775A8/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to the technical field of organic electroluminescence, and more specifically, to an organic electronic material containing phenanthrene and o-phenanthroline and its application.
  • OLEDs organic electroluminescent devices
  • OLEDs organic electroluminescent devices
  • LCDs organic electroluminescent devices
  • driving voltage can reduce energy consumption
  • the use of organic materials makes the device It is thinner, lighter and more environmentally friendly
  • the diversified selection of substrates provides the possibility for flexible and transparent displays, which are widely used in mobile phones, flat panel displays, TVs, lighting, vehicle displays and other fields.
  • General organic electroluminescent devices adopt a sandwich structure, that is, the organic layer is sandwiched between the anode and cathode on both sides.
  • the organic layer is divided into a hole transport layer, an electron transport layer, and a light-emitting layer according to the different photoelectric properties of various materials. Hole blocking layer and electron blocking layer, etc.
  • the main luminescence mechanism of the device is: driven by an external voltage, holes and electrons overcome energy barriers and are injected into the hole transport layer and electron transport layer from the anode and cathode respectively, and then recombine and release energy in the luminescent layer, and transfer the energy to organic luminescent substances.
  • the luminescent substance obtains energy and causes it to transition from the ground state to the excited state. When the excited molecules transition to the ground state again, the luminescence phenomenon occurs.
  • Electron transport materials are materials that transport electrons from the cathode to the light-emitting layer. They are an important part of organic electroluminescent devices. They help reduce the injection energy barrier of electrons and avoid Avoid contact between the cathode and the luminescent layer, causing luminescence quenching. Electron transport materials generally require better thermal stability and film-forming properties, higher electron mobility, larger electron affinity and higher excited state energy levels.
  • o-phenanthroline compounds As electron transport materials, they have been used in organic electroluminescent devices. However, the stability of Bphen and BCP, especially the low glass transition temperature, affects the application of o-phenanthroline compounds. As the requirements for OLEDs become higher and higher, there is also a need to develop electron transport materials with excellent thermal stability, film-forming properties and electron transport properties.
  • the present invention provides an organic electronic material containing phenanthrene and o-phenanthroline with high thermal stability, film-forming property and strong electron mobility and its application.
  • the present invention adopts the following technical solution to improve the thermal stability and film-forming properties of the material through substituted phenanthrene groups, and at the same time, introduces pyridine and benzonitrile groups to increase the electron mobility of the material.
  • Its specific structural formula is as follows As shown in formula I,
  • At least one of R 1 and R 2 is one of substituted or unsubstituted pyridyl, benzonitrile, fluorophenyl, and trifluorophenyl, and the other group is hydrogen, deuterium, cyano, C 1 - One of C 10 substituted or unsubstituted alkyl, C 6 -C 30 substituted or unsubstituted aryl, C 3 -C 30 substituted or unsubstituted heteroaryl;
  • L is a single bond, a substituted or unsubstituted aryl group, or one of heteroaryl groups;
  • R 3 is one of hydrogen, deuterium, C 1 -C 10 substituted or unsubstituted alkyl group, C 6 -C 30 substituted or unsubstituted aryl group, C 3 -C 30 substituted or unsubstituted heteroaryl group ;
  • n is an integer from 1 to 6.
  • L is preferably a single bond, phenyl, naphthyl or biphenyl.
  • R3 is preferably hydrogen, deuterium, methyl, ethyl, propyl, isopropyl, phenyl, tolyl, biphenyl or naphthyl.
  • the organic electronic material containing phenanthrene and o-phenanthroline includes but is not limited to any one of the following compounds 1-120.
  • organic electronic materials containing phenanthrene and o-phenanthroline can be used in organic electroluminescent devices, which include an anode, a cathode and an organic layer.
  • the organic layer includes at least one of a light-emitting layer, a hole injection layer, a hole transport layer, a hole blocking layer, an electron injection layer or an electron transport layer; at least one layer of the organic layer contains organic electrons of the above formula I Material.
  • the electron transport layer or electron injection layer in the organic layer contains the organic electronic material of Formula I above.
  • the hole blocking layer in the organic layer contains the above-mentioned organic electronic material.
  • the electron transport layer in addition to the compound represented by formula I, it can also be doped with organic metal complexes, such as lithium 8-hydroxyquinolate, in which the doping mass content of the metal complex is 20-70%.
  • the total thickness of the organic layer is 1-1000 nm; further preferably, the total thickness of the organic layer is 50-500 nm.
  • Each layer of the organic layer in the organic electroluminescent device can be formed by vacuum evaporation, molecular beam evaporation, solvent-soluble dip coating, spin coating, rod coating, or inkjet printing.
  • Preparation method the metal electrode can be prepared by evaporation method or sputtering method.
  • the organic electronic materials shown in Formula I can also be used to produce organic solar cells, organic thin film transistors, organic photodetectors, organic field effect transistors, organic integrated circuits or organic photoreceptors.
  • the invention provides an organic electron transmission material containing phenanthrene and o-phenanthroline. Since the phenanthrene containing substituents improves the thermal stability of the compound, the improvement of thermal stability can improve the film-forming property of the material and reduce the preparation time. The morphology of the semiconductor layer of the device deteriorates. At the same time, an o-phenanthroline group is introduced, and a pyridyl group and a benzonitrile group are introduced into the phenanthrene to improve the electron transmission performance of the material. When used as an electron transmission material in blue organic electroluminescent devices, it can improve the high luminous efficiency of the device and extend the life of the device. Service life, which is important for, for example, power consumption reduction and battery life extension of mobile display devices.
  • Figure 1 is the DSC chart of compound 1.
  • Figure 2 is the DSC chart of compound 11.
  • Figure 3 is the DSC chart of compound 61.
  • Figure 4 is the DSC chart of compound 72.
  • Figure 5 is the DSC chart of compound 91.
  • Figure 6 is a schematic diagram of the device structure.
  • Figure 7 is a graph showing the relationship between voltage and current density of devices prepared with compounds of the present invention.
  • Figure 8 is a graph showing the relationship between current density and current efficiency of devices prepared with compounds of the present invention.
  • Figure 9 is a graph showing the relationship between current density and power efficiency of devices prepared with compounds of the present invention.
  • the glass transition temperature (Tg) of the compound was tested using a differential scanning calorimeter Pyris Diamond (DSC 2920) under nitrogen protection at a heating and cooling rate of 10°C/min.
  • the glass transition temperature of the compound of the present invention reaches 118-161 degrees, which is significantly higher than that of BCP and Bphen, showing that the compound has good thermal stability.
  • FIG. 6 Preparation of organic electroluminescent devices, the structural schematic diagram is shown in Figure 6.
  • the specific device structure is as follows: glass/anode (ITO)/hole injection layer (HIL)/hole transport layer (HTL)/electron blocking layer (EBL)/luminescence Layer (EML, host material BH: blue luminescent material BD, 97: 3)/Electron transport layer (ETL, electron transport material: 8-hydroxyquinoline lithium, 50:50)/Electron injection layer (EIL)/Cathode (Mg:Ag, 9:1)
  • Compound 1 prepared in Example 1 was used to prepare OLED.
  • the transparent conductive ITO glass substrate 110 (with the anode 120 on it) (China Southern Glass Group Co., Ltd.) is ultrasonically treated in a commercial cleaning agent, rinsed in deionized water, and then washed with ethanol, acetone and deionized water in sequence. Bake in a clean environment until the moisture is completely removed, clean with ultraviolet photosynthetic ozone, and then treat with oxygen plasma for 30 seconds.
  • HIL hole injection layer 130 on the ITO at a evaporation rate of 0.1 nm/s.
  • Compound HT is evaporated on the hole injection layer to form a hole transport layer 140 with a thickness of 80 nm, and the evaporation rate is 0.1 nm/s.
  • EB is evaporated on the empty transport layer to form a 10 nm thick electron blocking layer 150 .
  • the evaporation rate is 0.1nm/s.
  • a 30 nm thick light-emitting layer 160 was evaporated on the hole blocking layer, in which BH was the host light-emitting material, and BD with a weight ratio of 3% was used as the doped guest material.
  • the evaporation rate was 0.1 nm/s.
  • a 35 nm thick mixture of 50% by weight Compound 1 and 50% by weight LiQ was evaporated on the light-emitting layer as the electron transport layer 170 .
  • the evaporation rate is 0.1nm/s.
  • LiQ was evaporated to a thickness of 1 nm as the electron injection layer 180 on the electron transport layer.
  • Example 9 The only difference from Example 9 is that Compound 1 of the electron transport material is replaced by other compounds of the present invention.
  • the specific device structure is as follows in Table 1.
  • Example 9 The only difference from Example 9 is that Compound 1 of the electron transport material was replaced with Comparative Compound BCP.
  • the specific device structure is as follows in Table 1.
  • the above-mentioned organic materials are all existing known materials and are purchased from the market.
  • the prepared device was measured with a Photo Research PR655 spectrometer for operating voltage, current efficiency, emission spectrum, and power efficiency, as well as the lifetime (T95) of the brightness attenuating to 95% of the original brightness at a current density of 20 mA/ cm2 .
  • Figure 7 is a relationship diagram between voltage and current density in Examples 9-14.
  • Figures 8 and 9 are relationship diagrams between current density and efficiency in Examples 9-14.
  • Table 2 shows the voltage and current density at a current density of 20mA/cm. Efficiency and lifespan are shown in Table 2.
  • the device prepared by the present invention using compounds based on phenanthrene and o-phenanthroline as electron transmission materials has significantly improved current efficiency and power efficiency, and the same current density
  • the voltage under the condition is reduced, and the service life is also significantly improved.
  • the compound of the present invention shows excellent performance, and the performance of the amorphous film improves the performance of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种含有菲和邻菲罗啉的有机电子材料及其应用,具体的结构式如下式Ⅰ所示,式Ⅰ中,R 1和R 2至少有一个为取代或者未取代的吡啶基,苄腈基,氟代苯基,三氟苯基中的一种,另外一个基团为氢,氘,氰基,C 1-C 10取代或者未取代的烷基,C 6-C 30取代或者未取代的芳基,C 3-C 30取代或者未取代的杂芳基中的一种;L为单键,取代或者未取代的芳基,杂芳基中的一种;R 3为氢,氘,C 1-C 10取代或者未取代的烷基,C 6-C 30取代或者未取代的芳基,C 3-C 30取代或者未取代的杂芳基中的一种;n为1至6的整数。

Description

一种含有菲和邻菲罗啉的有机电子材料及其应用 技术领域:
本发明涉及有机电致发光技术领域,更具体地说,是涉及一种含有菲和邻菲罗啉的有机电子材料及其应用。
背景技术:
有机电致发光器件(OLEDs)作为一种新型的显示技术,每个像素切换自如,且主动发光,使得显示响应时间短,色彩对比度高;驱动电压低可减少能耗;有机材料的使用使得器件更加轻薄,环保;而基板的多元化选择为柔性和透明显示提供可能,广泛应用在手机、平板显示器、电视、照明和车载显示等领域。
一般的有机电致发光器件采用夹层式三明治结构,即有机层夹在两侧阳极和阴极之间,有机层按照各种材料不同的光电特性分为空穴传输层、电子传输层、发光层、空穴阻挡层和电子阻挡层等。器件的发光机理主要为:在外界电压驱动下,空穴和电子克服能垒,分别由阳极和阴极注入到空穴传输层和电子传输层,然后在发光层中复合并释放能量,并把能量传递给有机发光物质。发光物质得到能量,并使其从基态跃迁到激发态,当受激发分子重新跃迁到基态,就产生了发光现象。
电子传输材料就是把阴极上的电子传输到发光层的材料,是有机电致发光器件的重要组成部分,有利于降低电子的注入能垒,还可避 免阴极与发光层接触,导致发光猝灭。电子传输材料一般要求较好的热稳定性和成膜性,较高的电子迁移率、较大的电子亲和能和较高的激发态能级。
由于大多有机电致发光材料传输空穴的速度要比传输电子的速度快。这就使得电子和空穴在发光层中的数量不平衡,导致器件发光时远离发光层,接近电极,这样就需要较高的驱动电压,也降低了器件的效率和器件的使用寿命。最近的有机电致发光器件尽管已经得到逐渐改良,但仍要求在发光效率,驱动电压,寿命等方面更为优异的材料,因此,需要开发具有良好热稳定性和性能优良的电子传输材料。
邻菲罗啉化合物作为电子传输材料已经应用在有机电致发光器件上,但是Bphen和BCP的稳定性特别是玻璃化温度比较低,影响了邻菲罗啉化合物的应用。随着OLED的要求越来越高,还需要开发具有优异的热稳定性,成膜性和电子传输性能的电子传输材料。
发明内容:
本发明正是针对上述问题,提供了一种具有高热稳定性和成膜性,以及具有强电子迁移率的含有菲和邻菲罗啉的有机电子材料及其应用。
为了实现上述目的,本发明采用如下技术方案,通过取代的菲基团提高材料的热稳定性和成膜性,同时,引入吡啶和苯腈基团增加材料的电子迁移率,其具体的结构式如下式Ⅰ所示,
式Ⅰ中,
R1和R2至少有一个为取代或者未取代的吡啶基,苄腈基,氟代苯基,三氟苯基中的一种,另外一个基团为氢,氘,氰基,C1-C10取代或者未取代的烷基,C6-C30取代或者未取代的芳基,C3-C30取代或者未取代的杂芳基中的一种;
L为单键,取代或者未取代的芳基,杂芳基中的一种;
R3为氢,氘,C1-C10取代或者未取代的烷基,C6-C30取代或者未取代的芳基,C3-C30取代或者未取代的杂芳基中的一种;
n为1至6的整数。
L优先为单键,苯基,萘基或联苯基。
R3优选为氢,氘,甲基,乙基,丙基,异丙基,苯基,甲苯基,联苯基或萘基。
更优选地,所述含有菲和邻菲罗啉的有机电子材料包括并不限于如下化合物1-120中的任意一种。









上述含有菲和邻菲罗啉的有机电子材料可应用于有机电致发光器件中,其包括阳极、阴极和有机层。
所述的有机层包含发光层、空穴注入层、空穴传输层、空穴阻挡层、电子注入层或电子传输层中的一层以上;有机层中至少有一层含有上述式I的有机电子材料。
优选地,所述的有机层中电子传输层或者电子注入层含有上述式I的有机电子材料。
优选地,所述的有机层中空穴阻挡层含有上述的有机电子材料。
电子传输层中,除了式Ⅰ所示化合物,还可以掺杂有机金属络合物,如8-羟基喹啉锂,其中金属络合物的掺杂质量含量为20-70%。
所述的有机层的总厚度为1-1000nm;进一步优选地,所述的有机层的总厚度为50-500nm。所述的有机电致发光器件中有机层的每一层,可以通过真空蒸镀法,分子束蒸镀法,溶于溶剂的浸涂法、旋涂法、棒涂法,或者喷墨打印的方式制备,对于金属电极可以使用蒸镀法或者溅射法进行制备。
式Ⅰ所示的有机电子材料还可被用于生产有机太阳能电池、有机薄膜晶体管、有机光检测器、有机场效应晶体管、有机集成电路或有机光感受器。
本发明的有益效果:
本发明提供了一种含有菲和邻菲罗啉得的有机电子传输材料,由于含有取代基的菲,提高了化合物热稳定性,热稳定性的提高可以提高材料的成膜性,并且降低制备的器件的半导体层的形态劣化。同时引入邻菲罗啉基团,且在菲引入吡啶基和苄腈基,提高材料的电子传输性能,作为电子传输材料应用在蓝色有机电致发光器件上,可以改善器件高发光效率,延长器件的使用寿命,这对于例如移动显示设备的功耗降低和电池寿命的延长很重要。
附图说明:
图1为化合物1的DSC图。
图2为化合物11的DSC图。
图3为化合物61的DSC图。
图4为化合物72的DSC图。
图5为化合物91的DSC图。
图6为器件结构式示意图。
图7为本发明化合物制备的器件的电压和电流密度关系图。
图8为本发明化合物制备的器件的电流密度和电流效率关系图。
图9为本发明化合物制备的器件的电流密度和功率效率关系图。
具体实施方式:
实施例1化合物1的合成
1、中间体1-1的合成
将2-氯-9-碘-10-苯基菲(10.0g,24.12mmol),4-氰基苯硼酸(5.3g,36.07mmol)碳酸钾(10.0g,72.35mmol)加入到三口烧瓶中,再加入甲苯(100mL),乙醇(50mL)和去离子水(50mL),氮气保护下加入Pd(PPh3)2Cl2(0.2g),回流反应12h,分液,有机相浓缩至约30mL,搅拌析晶,过滤,淋洗,烘干,得到7.4g灰色固体产物,产率79%。HRMS(ESI,m/z):[M+H]+calculated for C27H16ClN,389.0971,found 389.0975.
2、中间体1-2的合成
将中间体1-1(7.0g,17.95mmol),联硼酸频哪酯(5.47g,21.54mmol),醋酸钾(5.29g,53.90mmol)和无水甲苯(70mL)加入到三口烧瓶中,氮气保护下加入Pd(PPh3)2Cl2(0.14g),回流反应6h,趁热过滤,浓缩至近干,加入乙醇(30mL)搅拌,过滤,乙醇淋洗,烘干,得到7.8g产物,产率90%。HRMS(ESI,m/z):[M+H]+calculated for C33H29BNO2,482.2286,found 482.2284.
3、化合物1的合成
将2-(3-溴苯基)-1,10-菲啰啉(0.5g,1.49mmol),中间体1-2(0.75g,1.58mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应8h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.63g产品,产率69%。HRMS(ESI,m/z):[M+H]+calculated for C45H28N3,610.2278,found 610.2273.Anal.:calcd:C,88.64;H,4.46;N,6.89;found:C,88.58;H,4.49;N,6.88.
实施例2化合物的合成
将2-(4-溴苯基)-1,10-菲啰啉(0.5g,1.49mmol),中间体1-2(0.75g,1.58mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应8h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.58g产品,产率63%。HRMS(ESI,m/z):[M+H]+calculated for C45H28N3,610.2278,found 610.2279.Anal.:calcd:C,88.64;H,4.46;N,6.89;found: C,88.61;H,4.53;N,6.82.
实施例3化合物11的合成
将2-溴-1,10-菲啰啉(0.5g,1.93mmol),中间体1-2(0.98g,2.04mmol)和碳酸钾(0.53g,3.83mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应8h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.57g产品,产率55%。HRMS(ESI,m/z):[M+H]+calculated for C39H24N3,534.1965,found 534.1963.Anal.:calcd:C,87.78;H,4.34;N,7.87;found:C,87.73;H,4.41;N,7.81.
实施例4化合物41的合成
1、中间体41-1的合成
将2-氯-9-碘-10-苯基菲(10.0g,24.12mmol),3-氰基苯硼酸(5.3g,36.07mmol)碳酸钾(10.0g,72.35mmol)加入到三口烧瓶中,再加入甲苯(100mL),乙醇(50mL)和去离子水(50mL),氮气保护下加入Pd(PPh3)2Cl2(0.2g),回流反应10h,分液,有机相浓缩至约30mL,搅拌析晶,过滤,淋洗,烘干,得到8.1g灰色固体产物,产率86%。HRMS(ESI,m/z):[M+H]+calculated for C27H16ClN,389.0971,found 389.0977.
2、中间体41-2的合成
将中间体41-1(7.0g,17.95mmol),联硼酸频哪酯(5.47g,21.54mmol),醋酸钾(5.29g,53.90mmol)和无水甲苯(70mL)加入到三口烧瓶中,氮气保护下加入Pd(PPh3)2Cl2(0.14g),回流反应5h,趁热过滤,浓缩至近干,加入乙醇(30mL)搅拌,过滤,乙醇淋洗,烘干,得到7.9g产物,产率91%。HRMS(ESI,m/z):[M+H]+calculated for C33H29BNO2,482.2286,found 482.2287.
3、化合物41的合成
将2-溴9-苯基-1,10-菲啰啉(0.5g,1.49mmol),中间体41-2(0.75g,1.58mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应8h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.64g产品,产率70%。HRMS(ESI,m/z):[M+H]+calculated for C45H28N3,610.2278,found 610.2280.Anal.:calcd:C,88.64;H,4.46;N,6.89;found:C,88.66;H,4.39;N,6.90.
实施例5化合物61的合成
1、中间体61-1的合成
将2-氯-9-碘-10-苯基菲(10.0g,24.12mmol),3-吡啶硼酸酯(7.42g,36.18mmol),碳酸钾(10.0g,72.35mmol)加入到三口烧瓶中,再加入甲苯(100mL),乙醇(50mL)和去离子水(50mL),氮气保护下加入Pd(PPh3)2Cl2(0.2g),回流反应15h,分液,有机相浓 缩至约30mL,搅拌析晶,过滤,淋洗,烘干,得到7.3g灰色固体产物,产率83%。HRMS(ESI,m/z):[M+H]+calculated for C25H16ClN,365.0971,found 365.0973.
2、中间体61-2的合成
将中间体61-1(7.0g,19.13mmol),联硼酸频哪酯(5.83g,22.96mmol),醋酸钾(5.63g,57.37mmol)和无水甲苯(70mL)加入到三口烧瓶中,氮气保护下加入Pd(PPh3)2Cl2(0.14g),回流反应8h,趁热过滤,浓缩至近干,加入乙醇(30mL)搅拌,过滤,乙醇淋洗,烘干,得到8.1g产物,产率92%。HRMS(ESI,m/z):[M+H]+calculated for C31H29BNO2,458.2286,found 458.2284.
3、化合物61的合成
将2-(3-溴苯基)-1,10-菲啰啉(0.5g,1.49mmol),中间体61-2(0.72g,1.57mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应10h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.60g产品,产率68%。HRMS(ESI,m/z):[M+H]+calculated for C43H28N3,586.2278,found 583.2275.Anal.:calcd:C,88.18;H,4.65;N,7.17;found:C,88.26;H,4.59;N,7.12.
实施例6化合物72的合成
将2-溴9-苯基-1,10-菲啰啉(0.5g,1.49mmol),中间体61-2(0.72g,1.57mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应10h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.57g产品,产率65%。HRMS(ESI,m/z):[M+H]+calculated for C43H28N3,586.2278,found 583.2274.Anal.:calcd:C,88.18;H,4.65;N,7.17;found:C,88.12;H,4.69;N,7.15.
实施例7化合物91的合成
1、中间体91-1的合成
将2-氯-9-碘-10-苯基菲(10.0g,24.12mmol),4-吡啶硼酸酯 (7.42g,36.18mmol),碳酸钾(10.0g,72.35mmol)加入到三口烧瓶中,再加入甲苯(100mL),乙醇(50mL)和去离子水(50mL),氮气保护下加入Pd(PPh3)2Cl2(0.2g),回流反应20h,分液,有机相浓缩至约30mL,搅拌析晶,过滤,淋洗,烘干,得到7.1g灰色固体产物,产率80%。HRMS(ESI,m/z):[M]+calculated for C25H16ClN,365.0971,found 365.0968.
2、中间体91-2的合成
将中间体91-1(7.0g,19.13mmol),联硼酸频哪酯(5.83g,22.96mmol),醋酸钾(5.63g,57.37mmol)和无水甲苯(70mL)加入到三口烧瓶中,氮气保护下加入Pd(PPh3)2Cl2(0.14g),回流反应8h,趁热过滤,浓缩至近干,加入乙醇(30mL)搅拌,过滤,乙醇淋洗,烘干,得到7.9g产物,产率90%。HRMS(ESI,m/z):[M+H]+calculated for C31H29BNO2,458.2286,found 458.2281.
3、化合物91的合成
将2-(3-溴苯基)-1,10-菲啰啉(0.5g,1.49mmol),中间体91-2(0.72g,1.57mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应10h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.55g产品,产率63%。HRMS(ESI,m/z):[M+H]+calculated for C43H28N3,586.2278,found 583.2272.Anal.:calcd:C,88.18;H,4.65;N,7.17;found:C,88.14;H,4.69;N,7.13.
实施例8化合物102的合成
将2-溴9-苯基-1,10-菲啰啉(0.5g,1.49mmol),中间体91-2(0.72g,1.57mmol)和碳酸钾(0.41g,2.97mmol)加入到三口烧瓶中,再加入甲苯(5mL),乙醇(2.5mL)和去离子水(2.5mL),氮气保护下加入Pd(PPh3)2Cl2(0.01g),回流反应10h后,冷却分液,有机相浓缩干,柱色谱分离,DCM/CH3OH(10/1)洗脱,得到0.61g产品,产率70%。HRMS(ESI,m/z):[M+H]+calculated for C43H28N3,586.2278,found 583.2277.Anal.:calcd:C,88.18;H,4.65;N,7.17;found:C,88.15;H,4.71;N,7.10.
同时还进行了化合物的性能测试。
化合物的玻璃化转化温度(Tg)测试,用差示扫描量热仪Pyris Diamond(DSC 2920)在氮气保护下,以10℃/分钟的加热和冷却速度测试化合物的玻璃化转变温度。
表1材料的玻璃化温度

从表1和图1-5可以看出,本发明的化合物的玻璃化转变温度达到118-161度,比BCP和Bphen大幅提高,显示出化合物具有良好的热稳定性。
以下通过实施例对本发明化合物的效果进行详细说明。
有机电致发光器件的制备,结构示意图见图6,具体器件结构如下:玻璃/阳极(ITO)/空穴注入层(HIL)/空穴传输层(HTL)/电子阻挡层(EBL)/发光层(EML,主体材料BH:蓝色发光材料BD,97: 3)/电子传输层(ETL,电子传输材料:8-羟基喹啉锂,50:50)/电子注入层(EIL)/阴极(Mg:Ag,9:1)
实施例9
使用实施例1制备的化合物1制备OLED。
将透明导电ITO玻璃基板110(上面带有阳极120)(中国南玻集团股份有限公司)在商用清洗剂中超声处理,在去离子水中冲洗,再依次经过乙醇,丙酮和去离子水洗净,在洁净环境下烘烤至完全除去水分,用紫外光合臭氧清洗,再用氧等离子处理30秒。
把上述带有阳极的玻璃基片至于真空腔内,抽真空,在ITO上面蒸镀HIL(5nm)作为空穴注入层130,蒸镀速率为0.1nm/s。
在空穴注入层上面蒸镀化合物HT,形成80nm厚的空穴传输层140,蒸镀速率为0.1nm/s,
在空虚传输层上面蒸镀EB,形成10nm厚的电子阻挡层150。蒸镀速率为0.1nm/s。
在空穴阻挡层上蒸镀30nm厚的发光层160,其中,BH为主体发光材料,而以3%重量比的BD作为掺杂客体材料,蒸镀速率为0.1nm/s。
在发光层上蒸镀35nm厚的50%重量比化合物1和50%重量比LiQ作为电子传输层170。蒸镀速率为0.1nm/s。
在电子传输层上蒸镀1nm厚的LiQ作为电子注入层180。
在电子注入层蒸镀100nm厚掺杂比为9:1的镁银作为器件阴极190。
实施例10-16
与实施例9的区别仅在于,将电子传输材料的化合物1换成本发明的其它化合物,具体的器件结构如下表1。
比较例1
与实施例9的区别仅在于,将电子传输材料的化合物1换成比较化合物BCP。具体器件结构如下表1。
器件中所述结构式如下:

上述有机材料都是现有的已知材料,由市场采购获得。
表1器件结构
器件性能的测试:
所制备的器件用Photo Research PR655光谱仪测工作电压,电流效率,发射光谱,以及功率效率,以及在20mA/cm2电流密度下亮度衰减到原始亮度95%的寿命(T95)。图7为实施例9-14的电压和电流密度关系图,图8和图9为实施例9-14的电流密度和效率关系图,表2为在20mA/cm2的电流密度下的电压和效率及寿命,具体表2所示。
表2器件性能参数
从表2和图7-9可以看出,相比比较例1,本发明用基于菲和邻菲罗啉的化合物作为电子传输材料制备的器件,电流效率及功率效率有明显提高,相同电流密度下的电压降低,并且,寿命也明显提高。本发明的化合物显示出了优秀的性能,无定形薄膜的性能提升器件的性能。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (9)

  1. 一种含有菲和邻菲罗啉的有机电子材料,其特征在于,其具体的结构式如下式Ⅰ所示,
    式Ⅰ中,
    R1和R2至少有一个为取代或者未取代的吡啶基,苄腈基,氟代苯基,三氟苯基中的一种,另外一个基团为氢,氘,氰基,C1-C10取代或者未取代的烷基,C6-C30取代或者未取代的芳基,C3-C30取代或者未取代的杂芳基中的一种;
    L为单键,取代或者未取代的芳基,杂芳基中的一种;
    R3为氢,氘,C1-C10取代或者未取代的烷基,C6-C30取代或者未取代的芳基,C3-C30取代或者未取代的杂芳基中的一种;
    n为1至6的整数。
  2. 根据权利要求1所述的含有菲和邻菲罗啉的有机电子材料,其特征在于,L为单键,苯基,萘基或联苯基。
  3. 根据权利要求1所述的含有菲和邻菲罗啉的有机电子材料,其特征在于,R3为氢,氘,甲基,乙基,丙基,异丙基,苯基,甲苯基,联苯基或萘基。
  4. 一种权利要求1所述的含有菲和邻菲罗啉的有机电子材料的应用,其特征在于,其可应用于有机电致发光器件中,有机电致发光器件包括阳极、阴极和有机层。
  5. 根据权利要求4所述的含有菲和邻菲罗啉的有机电子材料的应用,其特征在于,所述的有机层包含发光层、空穴注入层、空穴传输层、空穴阻挡层、电子注入层、电子传输层中的一层以上;有机层中至少有一层含有上述式I的有机电子材料。
  6. 根据权利要求5所述的含有菲和邻菲罗啉的有机电子材料的应用,其特征在于,所述的电子传输层或者电子注入层含有上述式I的有机电子材料。
  7. 根据权利要求5所述的含有菲和邻菲罗啉的有机电子材料的应用,其特征在于,所述的空穴阻挡层含有上述式I的有机电子材料。
  8. 根据权利要求5所述的含有菲和邻菲罗啉的有机电子材料的应用,其特征在于,所述的有机层的每一层,可以通过真空蒸镀法,分子束蒸镀法,溶于溶剂的浸涂法、旋涂法、棒涂法,或者喷墨打印的方式制备,对于金属电极可以使用蒸镀法或者溅射法进行制备。
  9. 根据权利要求4所述的含有菲和邻菲罗啉的有机电子材料的应用,其特征在于,式Ⅰ所示的有机电子材料还可被用于生产有机太阳能电池、有机薄膜晶体管、有机光检测器、有机场效应晶体管、有机集成电路或有机光感受器。
PCT/CN2023/086685 2022-04-07 2023-04-06 一种含有菲和邻菲罗啉的有机电子材料及其应用 WO2023193775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210363765.6 2022-04-07
CN202210363765.6A CN114702489A (zh) 2022-04-07 2022-04-07 一种含有菲和邻菲罗啉的有机电子材料及其应用

Publications (2)

Publication Number Publication Date
WO2023193775A1 true WO2023193775A1 (zh) 2023-10-12
WO2023193775A8 WO2023193775A8 (zh) 2024-02-22

Family

ID=82173058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086685 WO2023193775A1 (zh) 2022-04-07 2023-04-06 一种含有菲和邻菲罗啉的有机电子材料及其应用

Country Status (2)

Country Link
CN (1) CN114702489A (zh)
WO (1) WO2023193775A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702489A (zh) * 2022-04-07 2022-07-05 上海传勤新材料有限公司 一种含有菲和邻菲罗啉的有机电子材料及其应用
CN115448899B (zh) * 2022-09-30 2024-07-19 深圳市华星光电半导体显示技术有限公司 蒽类化合物、混合物、组合物以及有机电子器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128424A (zh) * 2019-05-24 2019-08-16 上海天马有机发光显示技术有限公司 化合物、显示面板和显示装置
CN111187228A (zh) * 2020-02-04 2020-05-22 上海传勤新材料有限公司 一种基于菲和苯甲腈的有机电子材料及其应用
KR20200064423A (ko) * 2018-11-29 2020-06-08 주식회사 진웅산업 파이렌 화합물 및 이를 포함하는 유기발광소자
CN112514097A (zh) * 2018-07-18 2021-03-16 诺瓦尔德股份有限公司 化合物以及包含所述化合物的有机半导体层、有机电子器件、显示装置和照明装置
CN114702489A (zh) * 2022-04-07 2022-07-05 上海传勤新材料有限公司 一种含有菲和邻菲罗啉的有机电子材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112514097A (zh) * 2018-07-18 2021-03-16 诺瓦尔德股份有限公司 化合物以及包含所述化合物的有机半导体层、有机电子器件、显示装置和照明装置
KR20200064423A (ko) * 2018-11-29 2020-06-08 주식회사 진웅산업 파이렌 화합물 및 이를 포함하는 유기발광소자
CN110128424A (zh) * 2019-05-24 2019-08-16 上海天马有机发光显示技术有限公司 化合物、显示面板和显示装置
CN111187228A (zh) * 2020-02-04 2020-05-22 上海传勤新材料有限公司 一种基于菲和苯甲腈的有机电子材料及其应用
CN114702489A (zh) * 2022-04-07 2022-07-05 上海传勤新材料有限公司 一种含有菲和邻菲罗啉的有机电子材料及其应用

Also Published As

Publication number Publication date
CN114702489A (zh) 2022-07-05
WO2023193775A8 (zh) 2024-02-22

Similar Documents

Publication Publication Date Title
JP2023540114A (ja) 有機エレクトロルミネッセンスデバイスおよび表示装置
WO2023193775A1 (zh) 一种含有菲和邻菲罗啉的有机电子材料及其应用
CN109608452B (zh) 有机化合物、显示面板及显示装置
WO2020134138A1 (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
JP2011506564A (ja) ナフチル置換されたアントラセン誘導体および有機発光ダイオードにおけるその使用
US20220098213A1 (en) Organic compound, electroluminescent material, and use thereof
CN111689962A (zh) 一种苯并咪唑并吡啶为受体的化合物及其应用
CN110256495A (zh) 一种化合物、有机电致发光器件及显示装置
WO2023093094A1 (zh) 一种有机电致发光器件及显示装置
WO2020000920A1 (zh) 一种有机发光化合物及其制备方法和有机电致发光器件
CN109503576B (zh) 有机化合物、显示面板及显示装置
CN113937233B (zh) 一种有机电致发光器件及其应用
CN111454251A (zh) 一种吡嗪衍生物及其在oled器件中的应用
CN111574505B (zh) 一种以苯并[c]噌啉为受体的化合物及其应用
CN113735848B (zh) 一种电致发光化合物及其制备方法和应用
CN116283943B (zh) 一种有机化合物、电致发光材料及电致发光器件
CN111018863B (zh) 一种以吡咯[1,2-a]并喹喔啉为受体的化合物及其应用
CN113999215A (zh) 一种有机化合物及其应用
CN115611891B (zh) 一种喹啉取代菲啰啉化合物及其应用
CN111704580A (zh) 一种含苯并咪唑的化合物及其在有机电致发光器件中的应用
JP3925116B2 (ja) 有機電界発光素子
KR20200072679A (ko) 저전압 구동 고효율 유기발광소자
CN114634511B (zh) 一种有机化合物及其应用
CN115521292B (zh) 一种喹啉取代吡啶化合物及其应用
CN114044779B (zh) 一种含有苯并二氧六环并吡啶的有机电子传输材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784338

Country of ref document: EP

Kind code of ref document: A1