WO2017159092A1 - 車載装置 - Google Patents

車載装置 Download PDF

Info

Publication number
WO2017159092A1
WO2017159092A1 PCT/JP2017/003503 JP2017003503W WO2017159092A1 WO 2017159092 A1 WO2017159092 A1 WO 2017159092A1 JP 2017003503 W JP2017003503 W JP 2017003503W WO 2017159092 A1 WO2017159092 A1 WO 2017159092A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
state
determined
sensor
Prior art date
Application number
PCT/JP2017/003503
Other languages
English (en)
French (fr)
Inventor
洋輔 宮本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017001417.4T priority Critical patent/DE112017001417B4/de
Priority to US16/083,705 priority patent/US10857999B2/en
Priority to CN201780008231.9A priority patent/CN108604422A/zh
Publication of WO2017159092A1 publication Critical patent/WO2017159092A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance

Definitions

  • This disclosure relates to an in-vehicle device that determines the situation around the host vehicle.
  • Patent Document 1 a millimeter wave radar is used to indicate that another vehicle has entered one of two distance measuring sensors that are arranged in the front-rear direction of the host vehicle and detects an object on the side of the host vehicle.
  • a technique for notifying the presence of another vehicle when detected is disclosed.
  • Patent Document 1 when another vehicle is detected and notification is once performed, the vehicle is in a parallel running state after the other vehicle catches up with the own vehicle, or the vehicle is overtaking the own vehicle. A change in the running state of the other vehicle relative to the host vehicle such as whether or not the vehicle has been newly determined is determined, and no support is provided according to the change in the running state.
  • One of the objects of the present disclosure is to provide an in-vehicle device that can perform driving support in accordance with a change in traveling state of a moving body on the side of the host vehicle.
  • An in-vehicle device is an in-vehicle device used in a vehicle equipped with an obstacle sensor used to detect an obstacle, and the obstacle sensor is at least one side of the left and right sides of the vehicle.
  • the detection range that extends in the direction is a plurality of obstacle sensors that are lined up in the front-rear direction of the vehicle. Based on the transition of the obstacle sensors that detect obstacles among the plurality of obstacle sensors, obstacles to the vehicle A determination unit that sequentially determines the moving state of the object is provided.
  • the transition mode of the obstacle sensor in which the obstacle is detected is It depends on the movement state of obstacles against. Therefore, based on the transition of the obstacle sensor in which the obstacle is detected among the plurality of obstacle sensors, the determination unit sequentially determines the movement state of the obstacle present on the side of the own vehicle with respect to the own vehicle. Can be determined. If the moving state of the obstacle on the side of the vehicle can be sequentially determined, it becomes possible to determine the change in the traveling state of the moving body on the side of the own vehicle. It is also possible to provide driving assistance according to changes.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a driving support system.
  • FIG. 2 is a diagram for explaining an example of the installation position and detection range of the side sensor in the first embodiment.
  • FIG. 3 is a diagram for explaining an example of the state transition of the movement state.
  • FIG. 4 is a diagram for explaining an example of the state transition of the movement state.
  • FIG. 5 is a flowchart illustrating an example of a flow of movement state determination related processing in the driving support device.
  • FIG. 6 is a diagram for explaining an example of use of the moving state of the moving object determined by the determining unit for driving support.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a driving support system.
  • FIG. 2 is a diagram for explaining an example of the installation position and detection range of the side sensor in the first embodiment.
  • FIG. 3 is a diagram for explaining an example of the state transition of the movement state.
  • FIG. 4 is a diagram for explaining an example of the state transition of
  • FIG. 7 is a diagram for explaining an example of use of the moving state of the moving object determined by the determining unit for driving support.
  • FIG. 8 is a diagram for explaining an example of use of the moving state of the moving object determined by the determining unit for driving support.
  • FIG. 9 is a diagram for explaining an example of use of the moving state of the moving object determined by the determining unit for driving support.
  • FIG. 10 is a diagram for explaining an example of use of the moving state of the moving object determined by the determining unit for driving support.
  • FIG. 11 is a diagram for explaining an example of use for driving support of the moving state of the moving object determined by the determining unit.
  • FIG. 12 is a diagram for explaining an example of use for driving support of the moving state of the moving object determined by the determining unit.
  • FIG. 13 is a diagram for explaining an example of the installation position and detection range of the side sensor in the second embodiment.
  • a driving support system 100 shown in FIG. 1 is mounted on a vehicle, and includes a driving support device 1, a left front side sensor 2a, a left rear side sensor 2b, a right front side sensor 2c, a right rear side sensor 2d, and a wheel speed sensor 3.
  • the steering angle sensor 4, the HMI system 5, and the vehicle control ECU 6 are included.
  • a vehicle equipped with the driving support system 100 is referred to as a host vehicle.
  • the left front side sensor 2a is mounted on the left side surface of the front part of the host vehicle (see HV in FIG. 2), and detects an obstacle present on the left side of the front part of the host vehicle.
  • the left rear side sensor 2b is mounted on the left side of the rear part of the host vehicle and detects an obstacle existing on the left side of the rear part of the host vehicle.
  • the right front side sensor 2c is mounted on the right side surface of the front portion of the host vehicle and detects an obstacle present on the right side of the front portion of the host vehicle.
  • the right rear side sensor 2d is mounted on the right side surface of the rear portion of the host vehicle and detects an obstacle present on the right side of the rear portion of the host vehicle.
  • the left front side sensor 2a, left rear side sensor 2b, right front side sensor 2c, and right rear side sensor 2d correspond to obstacle sensors.
  • side sensors 2a, the left rear side sensor 2b, the right front side sensor 2c, and the right rear side sensor 2d are described without being distinguished, they are referred to as side sensors 2.
  • the side sensor 2 detects the distance to the obstacle by transmitting the exploration wave and receiving the reflected wave of the exploration wave reflected by the obstacle.
  • the side sensor 2 may be configured so that the directivity center line is arranged, for example, parallel to the direction of the axle of the host vehicle.
  • the side sensor 2 may be configured to start transmission of an exploration wave when the shift position of the host vehicle is a travel position other than the parking position and the neutral position.
  • it is good also as a structure which starts transmission of an exploration wave when the ignition power supply of the own vehicle is turned on.
  • the detection range of the left front side sensor 2a (see SAa in FIG. 2) and the detection range of the left rear side sensor 2b (see SAb in FIG. 2) Line up in the front-rear direction and on the left side of the vehicle.
  • the detection range of the right front side sensor 2c (see SAc in FIG. 2) and the detection range of the right rear side sensor 2d (see SAd in FIG. 2) are on the right side of the vehicle along the front-rear direction of the vehicle. Line up back and forth.
  • the wheel speed sensor 3 sequentially outputs a pulse signal corresponding to the rotation speed of each rolling wheel.
  • the rudder angle sensor 4 is a sensor that detects the steering angle of the steering of the host vehicle. The steering angle when the host vehicle travels in a straight traveling state is set to the neutral position (0 degree), and the rotation angle from the neutral position is steered. Output sequentially as corners.
  • the HMI system 5 includes a combination meter, a display device such as a CID (Center Information Display), a HUD (Head-Up Display), an audio output device such as an audio speaker, an operation device, and a control device such as an HCU (Human Machine Interface Control Unit). I have.
  • a display device such as a CID (Center Information Display), a HUD (Head-Up Display), an audio output device such as an audio speaker, an operation device, and a control device such as an HCU (Human Machine Interface Control Unit). I have.
  • the combination meter is placed in front of the driver's seat of the vehicle.
  • the CID is disposed above the center cluster in the passenger compartment of the host vehicle.
  • the combination meter and the CID display various images for information presentation on the display screen based on the image data acquired from the HCU.
  • the HUD projects image light based on the image data acquired from the HCU onto a projection area defined in the windshield of the own vehicle. The light of the image reflected on the vehicle interior side by the windshield is perceived by the driver sitting in the driver's seat. The driver can visually recognize the virtual image of the image projected by the HUD by superimposing it on the outside scene in front of the vehicle.
  • the audio speaker is placed in the lining of the door of the vehicle.
  • the audio speaker presents information to the occupant by the reproduced voice.
  • the operation device is a switch group operated by the driver of the own vehicle.
  • the operation device is used for performing various settings. For example, as an operation device, there is a steering switch or the like provided in a spoke spoke portion of the own vehicle.
  • the HCU includes a memory such as a CPU, a ROM and a RAM, an I / O, and a bus connecting them, and executes various processes by executing a control program stored in the memory. For example, information is presented from a display device and / or an audio output device. Note that some or all of the functions executed by the HCU may be configured in hardware by one or a plurality of ICs.
  • the vehicle control ECU 6 is an electronic control device that performs acceleration / deceleration control and / or steering control of the host vehicle.
  • the vehicle control ECU 6 includes a steering ECU that performs steering control, a power unit control ECU that performs acceleration / deceleration control, a brake ECU, and the like.
  • the vehicle control ECU 6 acquires detection signals output from sensors such as an accelerator position sensor, a brake pedal force sensor, a wheel speed sensor 3, a rudder angle sensor 4, and an acceleration sensor mounted on the host vehicle.
  • a control signal is output to each traveling control device such as an actuator and an EPS (Electric Power Steering) motor.
  • EPS Electronic Power Steering
  • the driving support device 1 includes a CPU, a memory such as a ROM and a RAM, an I / O, and a bus for connecting them, and executes various processes by executing a control program stored in the memory.
  • the driving support device 1 executes various processes based on various information input from the side sensor 2, the wheel speed sensor 3, the rudder angle sensor 4, and the like. Note that some or all of the functions executed by the driving support device 1 may be configured in hardware by one or a plurality of ICs.
  • This driving support device 1 corresponds to an in-vehicle device.
  • the driving support device 1 determines the presence / absence of an obstacle moving body on the side of the vehicle and the moving state of the moving body based on the detection result of the side sensor 2. Further, the driving support device 1 performs driving support such as driving support and / or substitution by the driver based on the detection result of the surrounding monitoring sensor that detects obstacles and / or road markings around the host vehicle. .
  • the HMI system 5 is made to present information for notifying the driver of the direction in which the obstacle exists, or the HMI system 5 is warned when moving in the direction in which the obstacle exists. Support.
  • the vehicle control ECU 6 executes an automatic driving function that automatically controls acceleration, braking, and / or steering of the host vehicle.
  • the vehicle travels so as to maintain the target inter-vehicle distance from the preceding vehicle by adjusting the driving force and braking force based on the detection result of the preceding vehicle acquired from the surrounding monitoring sensor.
  • ACC Adaptive Cruise Control
  • a steering force is generated in a direction that prevents the approach to the traveling lane line, thereby maintaining the lane while traveling and
  • the host vehicle based on the detection result of the traveling lane line in the traveling direction obtained from the surrounding monitoring sensor and the detection result of the moving body on the side, the host vehicle automatically joins to the adjacent lane (in other words, the lane change)
  • LCA Lane Change Assist
  • the periphery monitoring sensor includes the side sensor 2 as a sensor for monitoring the periphery of the host vehicle.
  • a surrounding monitoring sensor a surrounding monitoring camera that captures a predetermined range around the vehicle, a millimeter wave radar that transmits a survey wave to the predetermined range around the vehicle, sonar, LIDAR (LightIDDetection and Ranging / Laser Imaging Detect ion and Ranging ) And other sensors.
  • the side sensor 2 may be any one of a peripheral monitoring camera, a millimeter wave radar, a sonar, and a LIDAR, but in the present embodiment, a case where the side sensor 2 is a sonar will be described as an example.
  • the driving assistance device 1 includes a left front position specifying unit 11a, a left rear position specifying unit 11b, a right front position specifying unit 11c, a right rear position specifying unit 11d, a vehicle position change specifying unit 12, and position management.
  • Unit 13 classification processing unit 14, moving body determination unit 15, state management unit 16, determination unit 17, and support control unit 18.
  • the left front position specifying unit 11a detects the position of the obstacle on the left side of the host vehicle from the detection result obtained sequentially from the left front side sensor 2a ( Hereinafter, the first left obstacle position) is identified sequentially. More specifically, among the obstacles, the position of the reflection point that reflects the exploration wave of the left front side sensor 2a is sequentially identified.
  • the principle of triangulation is used.
  • the position of the reflection point is specified.
  • the distance from the left front side sensor 2a to the reflection point may be calculated based on the time from when the exploration wave is transmitted until the reflection wave is received.
  • the position of the left front side sensor 2a may be calculated based on the installation position of the left front side sensor 2a relative to the vehicle position and the vehicle position.
  • the host vehicle position may be represented by a position in the XY coordinate system with the rear wheel axle center position at a certain time as a reference point and the reference point as the origin.
  • the XY coordinate system may be such that the X axis and the Y axis are in the horizontal plane.
  • the reference point of the coordinate system is not limited to the center of the rear wheel axle, and may be an arbitrary point.
  • the left rear position specifying unit 11b determines the position of the obstacle existing on the left side of the own vehicle with respect to the own vehicle (hereinafter, the second left obstacle position) with respect to the left rear side sensor 2b. Identify sequentially.
  • the right front position specifying unit 11c is the same as the left front position specifying unit 11a in that the position of the obstacle present on the right side of the host vehicle relative to the host vehicle with respect to the right front side sensor 2c (hereinafter, the right first obstacle position). Are identified sequentially.
  • the right rear position specifying unit 11d determines the position of the obstacle on the right side of the own vehicle with respect to the own vehicle (hereinafter, the right second obstacle position) with respect to the right rear side sensor 2d. Identify sequentially.
  • the left front position specifying unit 11a, the left rear position specifying unit 11b, the right front position specifying unit 11c, and the right rear position specifying unit 11d correspond to the position specifying unit.
  • the vehicle position change specifying unit 12 determines the change in the vehicle position from the travel distance of the host vehicle obtained from the pulse signal of the wheel speed sensor 3 and the change in the steering angle of the host vehicle sequentially detected by the steering angle sensor 4. Identify.
  • the vehicle position change specifying unit 12 is used to specify an obstacle position in the left front position specifying unit 11a, the left rear position specifying unit 11b, the right front position specifying unit 11c, and the right rear position specifying unit 11d.
  • the position in the XY coordinate system described above may be sequentially updated in accordance with the change in the specified vehicle position.
  • the position management unit 13 stores the obstacle positions specified for each of the plurality of side sensors 2 in, for example, the volatile memory of the driving support device 1, and stores the obstacles according to the displacement of the position of the own vehicle accompanying traveling. Update the object position.
  • the obstacle position in the XY coordinate system described above is sequentially updated in accordance with the change in the vehicle position specified by the vehicle position change specifying unit 12.
  • the position management unit 13 performs processing using the obstacle positions stored for each of the plurality of side sensors 2.
  • the classification processing unit 14 Based on the position difference in the vehicle width direction of the first left obstacle position sequentially specified by the left front position specifying unit 11a, the classification processing unit 14 performs the first left obstacle in units of obstacles having different positions in the vehicle width direction.
  • the position is divided sequentially.
  • the left first obstacle positions whose position difference in the vehicle width direction is equal to or greater than a predetermined value are separated into different obstacles, while the left first obstacle positions whose position difference in the vehicle width direction is less than a predetermined value Are divided into the same obstacles.
  • the fact that the obstacle position is divided into different obstacles indicates that the object detected by the side sensor 2 has been switched to another obstacle.
  • the predetermined position here may be a position difference in the vehicle width direction that is difficult to consider as the same obstacle, and is a value that can be arbitrarily set.
  • the classification processing unit 14 is also an obstacle unit in which the position in the vehicle width direction is different in the left rear position specifying unit 11b, the right front position specifying unit 11c, and the right rear position specifying unit 11d as in the left front position specifying unit 11a. To divide the left second obstacle position, the right first obstacle position, and the right second obstacle position. Further, the division processing unit 14 also determines that the position difference in the vehicle width direction is less than a predetermined value for the left first obstacle position and the left second obstacle position, and the right first obstacle position and the right second obstacle position. What is necessary is just to set it as the structure which divides things into the same obstacle, respectively.
  • the left first obstacle position, the left second obstacle position, the right first obstacle position, and the right second obstacle position classified by the classification processing unit 14 are classified into, for example, the volatile memory of the driving support device 1. What is necessary is just to memorize
  • the moving body determination unit 15 moves the obstacle detected by the side sensor 2 based on the difference between the deviation of the obstacle position specified for each of the plurality of side sensors 2 and the deviation of the own vehicle position accompanying traveling. Determine whether the body.
  • the case where the host vehicle moves forward and the obstacle on the right side of the host vehicle is detected will be described as an example.
  • the moving body determination unit 15 moves the obstacle when both the right first obstacle position and the right second obstacle position have already been identified for the obstacle currently detected detected by the classification processing unit 14. Judge whether the body. As an example, the right first obstacle position specified when the obstacle is first detected by the right front side sensor 2c, and the second right obstacle specified when the obstacle is first detected by the right rear side sensor 2d. It is determined whether the deviation from the object position coincides with the deviation corresponding to the change in the own vehicle position specified by the vehicle position change specifying unit 12.
  • the term “match” as used herein is not limited to a configuration in which a match is determined when the match is complete, but may be determined as a match with an allowable range of an error level. When it is determined that they match, the currently detected obstacle is determined as a stationary object. On the other hand, if it is determined that they do not match, the obstacle currently being detected is determined as a moving object.
  • the state management unit 16 detects the obstacle detected as the moving object by the moving object determination unit 15, the detection state at the side sensor 2, the specified obstacle position, and the movement state of the obstacle determined by the determination unit 17. Are stored sequentially. About the information of the transition of the detection state in the side sensor 2, what is necessary is just to set it as the structure obtained from the division process part 14. FIG. When only the right first obstacle position is specified for the moving object being detected by the side sensor 2, the detection state is detected only by the right front side sensor 2c. On the other hand, when only the right second obstacle position is specified, the detection state is detected only by the right rear side sensor 2d. When both the right first obstacle position and the right second obstacle position are specified, the detection state is detected by both the right front side sensor 2c and the right rear side sensor 2d.
  • the discriminating unit 17 is discriminated by the information stored in the state management unit 16 regarding the transition of the side sensor 2 where the obstacle determined to be a moving object is detected, the identified obstacle position, and the discriminating unit 17.
  • the moving state of the moving body relative to the own vehicle is sequentially determined from the history of the moving state of the obstacle. Examples of the moving state include a catch-up state in which the moving body has caught up with the own vehicle, a parallel running state in which the moving body runs parallel to the own vehicle, a passing state in which the moving body overtakes the own vehicle, There are passing states that pass in the opposite direction to the car.
  • the support control unit 18 instructs the HMI system 5 and / or the vehicle control ECU 6 based on the detection result of the periphery monitoring sensor that detects obstacles and / or road markings around the host vehicle, for example, as described above. Provide driving assistance like that. Further, the support control unit 18 causes the vehicle to support driving based on the moving state of the moving body that is sequentially determined by the determination unit 17.
  • [Catch-up state] The default is a state where no moving object is detected by any of the right front side sensor 2c and the right rear side sensor 2d.
  • the determination unit 17 determines that it is in a catch-up determination waiting state. Then, when the state in which the moving body is detected again by the right rear side sensor 2d continues, the determination unit 17 determines that it is a catch-up state. On the other hand, when a moving body is not detected by the right rear side sensor 2d, it is determined that there is no catch-up state.
  • the determination unit 17 may determine that the vehicle is in the catch-up state when the moving object is detected by the right rear side sensor 2d without passing through the catch-up determination waiting state.
  • determination part 17 performs the discrimination
  • the parallel running state is a state in which the moving body runs in parallel with the own vehicle
  • the overtaking state is a state in which the moving body passes the own vehicle
  • the passing state is a state in which the moving body passes in the opposite direction to the own vehicle. It is a state to go.
  • the determination of the parallel running state, the overtaking state, and the passing state will be described with reference to FIG.
  • the default is unidentified state.
  • a moving body hereinafter referred to as a first moving body
  • the determining unit 17 determines the moving state of the first moving body as the parallel running state.
  • a different moving body (hereinafter referred to as a second moving body) is detected by the right front side sensor 2c at a position farther in the vehicle width direction from the own vehicle than the first moving body detected by the right rear side sensor 2d. ) Is detected, the determination unit 17 determines the moving state of the second moving body as a passing state.
  • the individual distinction may be configured according to the obstacle classification in the classification processing unit 14.
  • the moving body that is determined to be the catch-up state is used as a comparison target, so that the passing state of the moving body that is likely to be an oncoming vehicle in the oncoming lane can be more easily obtained. It can be determined.
  • the right front side sensor 2c detects a moving body (hereinafter referred to as a third moving body) different from the first moving body detected by the right rear side sensor 2d, and the right rear side
  • the determination unit 17 determines the moving state of the third moving body as the overtaking state.
  • the moving body in the unidentified state, the moving body is detected by the right front side sensor 2c and the moving body is continuously detected, and the moving body is detected by the right rear side sensor 2d.
  • the determination unit 17 determines that the moving state of the moving body is the overtaking state.
  • the determination unit 17 determines the moving state of the first moving body as the overtaking state. Since it is difficult to accurately determine the moving state of the moving body from the overtaking state simply by the fact that the moving body is no longer detected by the right rear side sensor 2d, the first embodiment is based on the condition that the parallel running state has passed. By identifying the overtaking state, the accuracy of overtaking state determination is improved.
  • the determination unit 17 determines the movement state as unidentified state. Return to. Here, the determination unit 17 may determine the movement state of the first moving body as the catch-up fixed state.
  • the determination unit 17 In the overtaking state, when the state in which the first moving body is detected by the right front side sensor 2c ends, the determination unit 17 returns the movement state to the undetermined state.
  • the state in which the first moving body is detected by the right front side sensor 2c is not limited to a state in which no obstacle is detected by the right front side sensor 2c, but an obstacle other than the first moving body is detected by the right front side sensor 2c. It also includes the state of switching to the state of detecting an object.
  • the determination unit 17 performs the parallel movement of the first moving body. Return to the state. This change in the movement state occurs when the first moving body tries to overtake the vehicle and then revisits and returns to parallel running.
  • the moving state of the second moving body continues to be determined as the passing state. Then, when neither the right front side sensor 2c nor the right rear side sensor 2d has detected the first moving body and the second moving body, the moving state may be returned to the unidentified state.
  • Movement state determination-related processing an example of processing related to determination of the movement state in the driving support device 1 (hereinafter referred to as movement state determination-related processing) will be described using the flowchart of FIG. 5 may be configured to start when the side sensor 2 is activated, for example.
  • step S1 when an obstacle is detected by at least one of the right front side sensor 2c and the right rear side sensor 2d (YES in S1), the process proceeds to step S2. On the other hand, if no obstacle is detected (NO in S1), the process proceeds to step S9.
  • step S2 when the right front side sensor 2c detects an obstacle, the right front position specifying unit 11c sequentially specifies the right first obstacle position.
  • the right rear position specifying unit 11d sequentially specifies the right second obstacle position.
  • the identified obstacle position is classified by the classification processing unit 14 for each obstacle based on the position difference in the vehicle width direction of the obstacle position.
  • step S3 both the right first obstacle position and the right second obstacle position have already been identified for the obstacle currently detected that has been classified by the classification processing unit 14, and the obstacle determination unit 15 If it can be determined whether or not the object is a moving object (YES in S3), the process proceeds to step S4. On the other hand, if either the right first obstacle position or the right second obstacle position has not been specified and it cannot be determined whether or not this obstacle is a moving object (NO in S3), the process proceeds to step S9. .
  • step S4 the moving body determination unit 15 determines whether or not the currently detected obstacle is a moving body.
  • step S5 when it is determined that the object is a moving body in S4 (YES in S5), the process proceeds to step S6.
  • step S9 when it is determined that the object is a stationary object in S4 (NO in S5), the process proceeds to step S9.
  • step S6 the determination unit 17 determines whether or not the obstacle determined to be a moving body is in a catch-up state.
  • step S7 when it is determined in S6 that the moving body is in a catch-up state (YES in S7), the process proceeds to step S8. On the other hand, when it is determined in S6 that the moving body is not in the catch-up state (YES in S7), the process proceeds to step S9.
  • step S8 the determination unit 17 determines whether the moving body is in the parallel running state, the overtaking state, or the passing state.
  • the moving state of the moving body determined in S8 is used for driving support in the support control unit 18. The use of the moving state of the moving body for driving support will be described in detail later.
  • step S9 if it is the end timing of the movement state determination related process (YES in step S9), the movement state determination related process is ended. On the other hand, if it is not the end timing of the movement state determination related process (NO in step S9), the process returns to S1 and the process is repeated.
  • An example of the end timing of the movement state determination related process is when the ignition power of the own vehicle is turned off.
  • the present invention is not necessarily limited thereto. What is necessary is just to set it as the structure which replaces the side sensor 2 before and behind the own vehicle, and implements the content mentioned above when the own vehicle reverses. Whether the host vehicle moves forward or backward may be determined from the signal of the shift position sensor. When the host vehicle moves backward, in the unidentified state, a different moving body is detected by the right front side sensor 2c at a position closer to the vehicle width direction from the own vehicle than the moving body detected by the right rear side sensor 2d.
  • FIGS. HV in FIGS. 6 to 11 indicates the own vehicle, and OV indicates the other vehicle. 6 to 11 exemplify a case where another vehicle OV travels on the right side of the host vehicle HV.
  • the determination result of the empty space is used for route generation at the time of driving support such as generation of a recommended route at the time of manual parking, generation of a parking route at the time of automatic parking, and generation of a travel route at the time of automatic driving.
  • FIG. 6 shows an example in which the other vehicle OV overtakes the right side of the own vehicle HV.
  • the support control unit 18 determines that there is no free space on the right side. Even when the movement state of the other vehicle OV determined by the determination unit 17 changes from the parallel running state to the overtaking state, the support control unit 18 determines that there is no free space on the right side. The support control unit 18 does not generate a route at the time of driving support in the area determined to have no free space.
  • the support control unit 18 moves to the right side when the other vehicle OV is not detected. Judge that there is free space.
  • the support control unit 18 can generate a route at the time of driving support in an area determined to have free space.
  • FIG. 7 shows an example in which another vehicle OV tries to overtake the right side of the own vehicle HV, but stops overtaking and switches to parallel running. Also in the example shown in FIG. 7, as in the example shown in FIG. 6, when the movement state of the other vehicle OV determined by the determination unit 17 is a catch-up state, a parallel running state, or a passing state, the support control unit 18 is on the right side. Judge that there is no free space. Furthermore, also when the movement state of the other vehicle OV determined by the determination unit 17 changes from the overtaking state to the parallel running state, the support control unit 18 determines that there is no free space on the right side. As described above, the support control unit 18 does not generate a route at the time of driving support in the area determined as having no free space.
  • FIG. 8 and FIG. 9 will be described for use in determining whether a warning is necessary.
  • the determination result of the necessity of warning is used for driving support such as avoiding contact with an obstacle.
  • FIG. 8 the case where the other vehicle OV overtakes the right side of the own vehicle HV is taken as an example.
  • the support control unit 18 determines that there is a warning target on the right side.
  • the support control unit 18 determines that there is a warning target on the right side.
  • the support control unit 18 instructs the HMI system 5 to give a warning from the display device and / or the audio output device to the driver of the vehicle. Let it be done.
  • the support control unit 18 moves to the right side when the other vehicle OV is not detected. Judge that there is no available warning.
  • the assistance control unit 18 does not perform the above-described warning when the host vehicle tries to move to an area determined not to be a warning target.
  • FIG. 9 shows an example in which another vehicle OV tries to overtake the right side of the own vehicle HV, but stops overtaking and switches to parallel running. Also in the example shown in FIG. 9, as in the example shown in FIG. 8, when the movement state of the other vehicle OV determined by the determination unit 17 is a catch-up state, a parallel running state, or a passing state, the support control unit 18 is on the right side. Judge that there is a warning target. Furthermore, also when the movement state of the other vehicle OV determined by the determination unit 17 changes from the overtaking state to the parallel running state, the support control unit 18 determines that there is a warning target on the right side. As described above, the support control unit 18 causes the above-described warning to be performed when the host vehicle attempts to move to an area where it is determined that there is a warning target.
  • FIG. 10 shows an example in which the other vehicle OV accelerates and overtakes the own vehicle HV after the own vehicle HV catches up with the other vehicle OV and enters a parallel running state.
  • the support control unit 18 determines that there is a warning target on the right side. Even when the movement state of the other vehicle OV determined by the determination unit 17 shifts to the parallel running state, the support control unit 18 determines that there is a warning target on the right side.
  • the support control unit 18 instructs the HMI system 5 to give a warning from the display device and / or the audio output device to the driver of the vehicle. Let it be done.
  • the support control unit 18 moves to the right side when the other vehicle OV is not detected. Judge that there is no available warning.
  • the assistance control unit 18 does not perform the above-described warning when the host vehicle tries to move to an area determined not to be a warning target.
  • region judged to have a warning object was shown here, it does not necessarily restrict to this.
  • the host vehicle when the host vehicle is about to move to a region that is determined to have a warning target, it automatically controls braking and / or steering to provide driving assistance that restricts movement to the region determined to have a warning target It is good.
  • FIG. 11 shows an example in which the other vehicle OV overtakes the right side of the own vehicle HV.
  • the support control unit 18 determines that merging is not possible. If the support control unit 18 determines that the merging is not possible, the support control unit 18 does not notify the merging timing to the adjacent lane and does not start the automatic merging. In other words, merging is not allowed.
  • the support control unit 18 determines that the merging is possible. When it is determined that the merge is possible, the support control unit 18 notifies the merge timing to the adjacent lane, or turns on the blinker lamp of the own vehicle to start the automatic merge. That is, merging is permitted.
  • FIG. 12 shows an example in which the other vehicle OV tries to overtake the right side of the own vehicle HV but stops overtaking and descends to the rear of the own vehicle. Also in the example shown in FIG. 12, as in the example shown in FIG. 11, when the movement state of the other vehicle OV determined by the determination unit 17 is a catch-up state or a parallel running state, the support control unit 18 determines that merging is not possible. . On the other hand, when the movement state of the other vehicle OV determined by the determination unit 17 changes from the overtaking state to the parallel running state and the unidentified state, the support control unit 18 determines that the merging is possible. As described above, when it is determined that merging is possible, the support control unit 18 notifies the merging timing to the adjacent lane, or turns on the blinker lamp of the own vehicle to start automatic merging. .
  • the right front side sensor 2c no longer detects a moving object after determining the overtaking state, it notifies the merging timing to the adjacent lane, or turns on the turn signal lamp of its own vehicle to automatically merge. It may be configured to start.
  • notification of the merging timing to the adjacent lane is performed or the turn signal lamp of the own vehicle is turned on to automatically It is good also as a structure which starts the merge in.
  • the transition mode of the side sensor 2 in which an obstacle is detected is It depends on the movement state of obstacles against. For example, from which side sensor 2 the obstacle is detected in order depends on which direction the obstacle is approaching from the front or back of the vehicle. Also, the side sensor 2 from which the obstacle is not detected in order differs depending on the direction in which the obstacle moves in front of or behind the host vehicle. In addition, whether or not an obstacle is continuously detected by the obstacle sensor differs depending on whether the obstacle runs parallel to or away from the vehicle.
  • the determination unit 17 based on the transition of the side sensor 2 in which an obstacle is detected from among the plurality of side sensors 2, the determination unit 17 has the obstacle's own vehicle on the side of the vehicle. Since the movement state with respect to the vehicle is sequentially determined, it is possible to determine the change in the traveling state of the moving body on the side of the vehicle. Further, as described above, driving assistance can be performed in accordance with a change in the traveling state of the moving body on the side of the host vehicle.
  • the moving state is determined when the obstacle detected by the side sensor 2 is determined to be a moving body, it is possible to save the trouble of determining the moving state of the stationary object. Can do.
  • the side sensor 2 In the first embodiment, as the side sensor 2, the configuration using the two side sensors 2 arranged in the front-rear direction of the own vehicle is shown as the side sensor 2, but the detection range is widened in at least one side of the own vehicle.
  • the side sensor 2 may be configured to use three or more side sensors 2 each having a detection range that extends in at least one side of the host vehicle in the front-rear direction of the host vehicle (hereinafter referred to as a second embodiment).
  • the left front side sensor 2a, the left center side sensor 2e, the left rear side sensor 2b, the right front side sensor 2c, the right center side sensor 2f, and the right rear side sensor 2d are taken as an example. To explain.
  • the left center side sensor 2e is mounted on the left side of the central part of the own vehicle (see HV in FIG. 12) and detects an obstacle present on the left side of the central part of the own vehicle.
  • the right center side sensor 2f is mounted on the right side surface of the center portion of the host vehicle and detects an obstacle present on the right side of the center portion of the host vehicle.
  • the left center side sensor 2e and the right center side sensor 2f also correspond to obstacle sensors.
  • the detection range of the left front side sensor 2a (see SAa in FIG. 13), the detection range of the left center side sensor 2e (see SAe in FIG. 13), and the detection range of the left rear side sensor 2b (See SAb in FIG. 13) is lined up and down on the left side of the vehicle along the longitudinal direction of the vehicle.
  • the driving support device 1 sets the position of the obstacle detected by the left center side sensor 2e and the position of the obstacle detected by the right center side sensor 2f as in the case of the other side sensors 2. Identify. Then, in the same manner as in the first embodiment, the mobile body determination unit 15 determines the side based on the difference between the obstacle position deviation specified for each of the plurality of side sensors 2 and the own vehicle position deviation accompanying traveling. It is determined whether or not the obstacle detected by the sensor 2 is a moving object. For example, in the second embodiment, in order to be able to quickly start moving body determination, the position and / or detection range in the front-rear direction of the vehicle is shifted and traveled between obstacle positions for the side sensors 2 that are close to each other. It is good also as a structure which performs a mobile body determination based on the difference with the deviation
  • the discriminating unit 17 uses the information about the transition of the side sensor 2 in which the obstacle determined to be a moving object, which is subdivided compared to the first embodiment, is used.
  • the moving state is determined in more detail than in the first embodiment.
  • the overtaking state is determined in two stages according to the number of side sensors 2 that are in a state where no moving body is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

車載装置を提供する。車載装置は、障害物を検出するのに用いる複数の障害物センサ(2a,2b,2c,2d)を搭載した車両で用いられる車載装置であり、複数の障害物センサは、車両の左右側方のうち少なくとも一方の側方に広がる検出範囲が、車両の前後方向にそれぞれ並ぶものである。車載装置は、複数の障害物センサのうちの障害物が検出される障害物センサの変遷をもとに、自車に対する障害物の移動状態を逐次判別する判別部(17)を備える。

Description

車載装置 関連出願の相互参照
 本出願は、2016年3月18日に出願された日本特許出願番号2016-55970号に基づくもので、その開示をここに参照により援用する。
 本開示は、自車の周辺状況を判別する車載装置に関するものである。
 従来、レーダ等の障害物センサを用いて自車への障害物の接近を検知し、運転支援を行う技術が知られている。例えば、特許文献1には、自車の前後方向に配置された、自車側方の物体を検出する2つの距離測定センサのうち、に他車が進入したことを、ミリ波レーダを用いて検知した場合に、他車の存在を報知する技術が開示されている。
JP-5449574B
 しかしながら、従来、特許文献1に開示のような技術では、他車を検知して報知を一旦行った場合に、自車に他車が追いついた後に並走状態となったか、自車を追い抜く状態となったかといった自車に対する他車の走行状態の変化を新たに判別し、走行状態の変化に応じた支援を行うことがなかった。
 本開示の目的の一つは、自車側方の移動体の走行状態変化に応じた運転支援を行うことを可能にする車載装置を提供することにある。
 本開示の一側面の車載装置は、障害物を検出するのに用いる障害物センサを搭載した車両で用いられる車載装置であって、障害物センサは、車両の左右側方のうち少なくとも一方の側方に広がる検出範囲が、車両の前後方向にそれぞれ並ぶ複数の障害物センサであり、複数の障害物センサのうちの障害物が検出される障害物センサの変遷をもとに、自車に対する障害物の移動状態を逐次判別する判別部を備える。
 車両の左右側方のうち少なくとも一方の側方に広がる検出範囲が車両の前後方向にそれぞれ並ぶ複数の障害物センサのうちの、障害物が検出される障害物センサの変遷の態様は、自車に対する障害物の移動状態によって異なる。よって、このような複数の障害物センサのうちの障害物が検出される障害物センサの変遷をもとに、判別部は、自車側方に存在する障害物の自車に対する移動状態を逐次判別することができる。自車側方の障害物の移動状態を逐次判別することができると、自車側方の移動体の走行状態の変化を判別することが可能になり、自車側方の移動体の走行状態変化に応じて運転支援を行うことも可能になる。
 本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記の詳細な説明から、より明確になる。図面において、
図1は、運転支援システムの概略的な構成の一例を示す図である。 図2は、実施形態1におけるサイドセンサの設置位置と検出範囲との一例を説明するための図である。 図3は、移動状態の状態遷移の一例を説明するための図である。 図4は、移動状態の状態遷移の一例を説明するための図である。 図5は、運転支援装置での移動状態判別関連処理の流れの一例を示すフローチャートである。 図6は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図7は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図8は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図9は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図10は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図11は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図12は、判別部で判別した移動体の移動状態の運転支援への利用例について説明を行うための図である。 図13は、実施形態2におけるサイドセンサの設置位置と検出範囲との一例を説明するための図である。
 図面を参照しながら、複数の実施形態及び変形例を説明する。なお、説明の便宜上、複数の実施形態及び変形例の間において、それまでの説明に用いた図に示した部分と同一の機能を有する部分については、同一の符号を付し、その説明を省略する場合がある。同一の符号を付した部分については、他の実施形態及び/又は変形例における説明を参照することができる。
 また、以下に示す実施形態及び変形例は、左側通行が法制化されている地域に対応した実施形態及び変形例であり、右側通行が法制化されている地域では、以下の実施形態と左右が逆になる。
 (実施形態1)
 <運転支援システム100の概略構成>
 以下、実施形態1について図面を用いて説明する。図1に示す運転支援システム100は、車両に搭載されるものであり、運転支援装置1、左フロントサイドセンサ2a、左リアサイドセンサ2b、右フロントサイドセンサ2c、右リアサイドセンサ2d、車輪速センサ3、舵角センサ4、HMIシステム5、及び車両制御ECU6を含んでいる。運転支援システム100を搭載している車両を以降では自車と呼ぶ。
 ここで、図2を用いて、左フロントサイドセンサ2a、左リアサイドセンサ2b、右フロントサイドセンサ2c、右リアサイドセンサ2dについて説明を行う。左フロントサイドセンサ2aは、自車(図2のHV参照)の前部の左側面に搭載され、自車の前部の左側方に存在する障害物を検出する。左リアサイドセンサ2bは、自車の後部の左側面に搭載され、自車の後部の左側方に存在する障害物を検出する。右フロントサイドセンサ2cは、自車の前部の右側面に搭載され、自車の前部の右側方に存在する障害物を検出する。右リアサイドセンサ2dは、自車の後部の右側面に搭載され、自車の後部の右側方に存在する障害物を検出する。この左フロントサイドセンサ2a、左リアサイドセンサ2b、右フロントサイドセンサ2c、右リアサイドセンサ2dが障害物センサに相当する。以降では、左フロントサイドセンサ2a、左リアサイドセンサ2b、右フロントサイドセンサ2c、右リアサイドセンサ2dを区別せずに説明を行う場合には、サイドセンサ2と呼ぶ。
 サイドセンサ2は、探査波を送信し、障害物で反射されるその探査波の反射波を受信することで障害物までの距離を検出する。サイドセンサ2は、指向性の中心線が自車の車軸方向と例えば平行になるように配置される構成とすればよい。サイドセンサ2は、一例として、自車のシフトポジションが駐車位置及び中立位置以外の走行位置となった場合に探査波の送信を開始する構成とすればよい。他にも、自車のイグニッション電源がオンになった場合に探査波の送信を開始する構成としてもよい。
 本実施形態の例では、図2に示すように、左フロントサイドセンサ2aの検出範囲(図2のSAa参照)と左リアサイドセンサ2bの検出範囲(図2のSAb参照)とは、自車の前後方向に沿って、自車の左側方に前後に並ぶ。一方、右フロントサイドセンサ2cの検出範囲(図2のSAc参照)と右リアサイドセンサ2dの検出範囲(図2のSAd参照)とは、自車の前後方向に沿って、自車の右側方に前後に並ぶ。
 車輪速センサ3は、各転動輪の回転速度に応じたパルス信号を逐次出力する。舵角センサ4は、自車のステアリングの操舵角を検出するセンサであり、自車が直進状態で走行するときの操舵角を中立位置(0度)とし、その中立位置からの回転角度を操舵角として逐次出力する。
 HMIシステム5は、コンビネーションメータ、CID(Center Information Display)、HUD(Head-Up Display)等の表示装置、オーディオスピーカといった音声出力装置、操作デバイス、HCU(Human Machine Interface Control Unit)といった制御装置等を備えている。
 コンビネーションメータは、自車の運転席前方に配置される。CIDは、自車の車室内にてセンタクラスタの上方に配置される。コンビネーションメータ及びCIDは、HCUから取得した画像データに基づいて、情報提示のための種々の画像をディスプレイの表示画面に表示する。HUDは、HCUから取得した画像データに基づく画像の光を、自車のウインドシールドに規定された投影領域に投影する。ウインドシールドによって車室内側に反射された画像の光は、運転席に着座するドライバによって知覚される。ドライバは、HUDによって投影された画像の虚像を、自車の前方の外界風景と重ねて視認可能となる。
 また、オーディオスピーカは、自車のドアの内張り内に配置される。オーディオスピーカは、再生する音声によって乗員への情報提示を行う。操作デバイスは、自車のドライバが操作するスイッチ群である。操作デバイスは、各種の設定を行うために用いられる。例えば、操作デバイスとしては、自車のステアリングのスポーク部に設けられたステアリングスイッチ等がある。
 HCUは、CPU、ROM及びRAM等のメモリ、I/O、これらを接続するバスを備え、メモリに記憶された制御プログラムを実行することで各種の処理を実行する。例えば、表示装置及び/又は音声出力装置から情報提示を行わせる。なお、HCUが実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。
 車両制御ECU6は、自車の加減速制御及び/又は操舵制御を行う電子制御装置である。車両制御ECU6としては、操舵制御を行う操舵ECU、加減速制御を行うパワーユニット制御ECU及びブレーキECU等がある。車両制御ECU6は、自車に搭載されたアクセルポジションセンサ、ブレーキ踏力センサ、車輪速センサ3、舵角センサ4、加速度センサ等の各センサから出力される検出信号を取得し、電子制御スロットル、ブレーキアクチュエータ、EPS(Electric Power Steering)モータ等の各走行制御デバイスへ制御信号を出力する。
 運転支援装置1は、CPU、ROM及びRAM等のメモリ、I/O、これらを接続するバスを備え、メモリに記憶された制御プログラムを実行することで各種の処理を実行する。運転支援装置1は、サイドセンサ2、車輪速センサ3、舵角センサ4等から入力された各種情報に基づき、各種処理を実行する。なお、運転支援装置1が実行する機能の一部又は全部を、一つ或いは複数のIC等によりハードウェア的に構成してもよい。この運転支援装置1が車載装置に相当する。
 運転支援装置1は、サイドセンサ2での検出結果をもとに、自車側方の障害物の移動体の有無、移動体の移動状態を判別する。また、運転支援装置1は、自車の周辺の障害物及び/又は路面標示を検出する周辺監視センサでの検出結果をもとに、ドライバによる運転操作の支援及び/又は代行といった運転支援を行う。
 運転操作の支援の一例としては、障害物の存在する方向をドライバに報知する情報提示をHMIシステム5に行わせたり、障害物の存在する方向への移動時にHMIシステム5に警告を行わせたりする支援が挙げられる。
 運転操作の代行の一例としては、車両制御ECU6に自車の加速、制動、及び/又は操舵を自動で制御させる自動運転機能を実行させる支援が挙げられる。自動運転機能の一例としては、周辺監視センサから取得する先行車の検出結果をもとに駆動力及び制動力を調整することで、先行車との目標車間距離を維持するように自車の走行速度を制御するACC(Adaptive Cruise Control)機能がある。また、周辺監視センサから取得する進行方向の走行区間線の検出結果をもとに、走行区画線への接近を阻む方向への操舵力を発生させることで、走行中の車線を維持して自車を走行させるLKA(Lane Keeping Assist)機能がある。他にも、周辺監視センサから取得する進行方向の走行区画線の検出結果、及び側方の移動体の検出結果をもとに、隣接車線へと自車を自動で合流(言い換えると車線変更)させるLCA(Lane Change Assist)機能がある。なお、ここで述べたのは、あくまで一例であり、自動運転機能として他の機能を備えている構成としてもよい。
 周辺監視センサには、自車の周辺を監視するセンサとして、サイドセンサ2を含むものとする。周辺監視センサとしては、自車周囲の所定範囲を撮像する周辺監視カメラ、自車周囲の所定範囲に探査波を送信するミリ波レーダ、ソナー、LIDAR(Light Detection and Ranging/Laser Imaging Detect ion and Ranging)等のセンサがある。サイドセンサ2は、周辺監視カメラ、ミリ波レーダ、ソナー、LIDARのいずれであってもよいが、本実施形態では、ソナーである場合を例に挙げて説明を行う。
 <運転支援装置1の詳細構成>
 図1に示すように、運転支援装置1は、左フロント位置特定部11a、左リア位置特定部11b、右フロント位置特定部11c、右リア位置特定部11d、車両位置変化特定部12、位置管理部13、区分処理部14、移動体判定部15、状態管理部16、判別部17、及び支援制御部18を備える。
 左フロント位置特定部11aは、左フロントサイドセンサ2aで障害物を検出した場合に、左フロントサイドセンサ2aから逐次得られる検出結果から、自車左側方に存在する障害物の自車に対する位置(以下、左第1障害物位置)を逐次特定する。より詳しくは、障害物のうちの、左フロントサイドセンサ2aの探査波を反射した反射点の自車に対する位置を逐次特定する。
 一例として、JP2014-78086Aに開示されているのと同様に、左フロントサイドセンサ2aから反射点までの距離の履歴と、左フロントサイドセンサ2aの位置の履歴とを用いて、三角測量の原理により、反射点の位置を特定する。左フロントサイドセンサ2aから反射点までの距離は、探査波を送信してから反射波を受信するまでの時間をもとに算出すればよい。左フロントサイドセンサ2aの位置は、自車位置に対する左フロントサイドセンサ2aの設置位置と、自車位置とをもとに算出する構成とすればよい。自車位置は、ある時点での後輪車軸中心位置を基準点とし、この基準点を原点としたXY座標系での位置で表す構成とすればよい。このXY座標系は、X軸とY軸とを水平面内にとっているものとすればよい。なお、座標系の基準点は後輪車軸中心に限らず、任意の点としてもよい。
 左リア位置特定部11bは、左フロント位置特定部11aと同様にして、左リアサイドセンサ2bについて、自車左側方に存在する障害物の自車に対する位置(以下、左第2障害物位置)を逐次特定する。右フロント位置特定部11cは、左フロント位置特定部11aと同様にして、右フロントサイドセンサ2cについて、自車右側方に存在する障害物の自車に対する位置(以下、右第1障害物位置)を逐次特定する。右リア位置特定部11dは、左フロント位置特定部11aと同様にして、右リアサイドセンサ2dについて、自車右側方に存在する障害物の自車に対する位置(以下、右第2障害物位置)を逐次特定する。左フロント位置特定部11a、左リア位置特定部11b、右フロント位置特定部11c、右リア位置特定部11dが位置特定部に相当する。
 車両位置変化特定部12は、車輪速センサ3のパルス信号から求められる自車の走行距離と、舵角センサ4で逐次検出される自車の操舵角の変化とから、自車位置の変化を特定する。左フロント位置特定部11a、左リア位置特定部11b、右フロント位置特定部11c、及び右リア位置特定部11dで障害物位置を特定するのに用いる自車位置は、車両位置変化特定部12で特定される自車位置の変化に合わせ、前述のXY座標系での位置を逐次更新する構成とすればよい。
 位置管理部13は、複数のサイドセンサ2の個々について特定した障害物位置を、例えば運転支援装置1の揮発性メモリに記憶し、走行に伴う自車の位置のずれに応じて、記憶した障害物位置を更新する。具体例としては、車両位置変化特定部12で特定した自車位置の変化に合わせ、前述のXY座標系での障害物位置を逐次更新する。後述する区分処理部14では、位置管理部13で複数のサイドセンサ2の個々について記憶しておいた障害物位置を用いて処理を行う。
 区分処理部14は、左フロント位置特定部11aで逐次特定した左第1障害物位置の車幅方向の位置差分をもとに、車幅方向の位置が異なる障害物単位で左第1障害物位置を逐次区分する。一例として、車幅方向の位置差分が所定値以上の左第1障害物位置同士をそれぞれ別の障害物に区分する一方、車幅方向の位置差分が所定値未満の左第1障害物位置同士をそれぞれ同一の障害物に区分する。障害物位置がそれぞれ別の障害物に区分されるということは、サイドセンサ2で検出される対象が別の障害物に切り替わったことを示す。ここで言うところの所定位置とは、同一の障害物と考えにくい程度の車幅方向の位置差分であればよく、任意に設定可能な値である。
 区分処理部14は、左リア位置特定部11b、右フロント位置特定部11c、及び右リア位置特定部11dについても、左フロント位置特定部11aと同様に、車幅方向の位置が異なる障害物単位で左第2障害物位置、右第1障害物位置、右第2障害物位置を区分する。また、区分処理部14は、左第1障害物位置と左第2障害物位置、右第1障害物位置と右第2障害物位置とについても、車幅方向の位置差分が所定値未満のもの同士をそれぞれ同一の障害物に区分する構成とすればよい。
 区分処理部14で区分した左第1障害物位置、左第2障害物位置、右第1障害物位置、右第2障害物位置は、例えば、運転支援装置1の揮発性メモリに、区分した障害物ごとに対応付けて記憶すればよい。この場合、障害物位置を特定した時刻を示すタイムスタンプも対応付けて記憶すればよい。
 移動体判定部15は、複数のサイドセンサ2の個々について特定する障害物位置のずれと走行に伴う自車位置のずれとの差をもとに、サイドセンサ2で検出された障害物が移動体か否かを判定する。以降では、自車が前進する場合であって、且つ、自車の右側方の障害物を検出する場合を例に挙げて説明を行う。
 移動体判定部15は、区分処理部14に区分された現在検出中の障害物について、右第1障害物位置及び右第2障害物位置のいずれも特定済みの場合に、この障害物が移動体か否か判定する。一例として、右フロントサイドセンサ2cでこの障害物を最初に検出した際に特定した右第1障害物位置と、右リアサイドセンサ2dでこの障害物を最初に検出した際に特定した右第2障害物位置とのずれと、車両位置変化特定部12で特定した、この間の自車位置の変化に相当するずれと一致するか否かを判定する。ここで言うところの一致とは、完全に一致する場合に一致と判定する構成に限らず、誤差程度の許容範囲をもって一致と判定する構成としてもよい。そして、一致すると判定した場合には、現在検出中の障害物を静止物と判定する。一方、一致しないと判定した場合には、現在検出中の障害物を移動体と判定する。
 状態管理部16は、移動体判定部15で移動体と判定された障害物についての、サイドセンサ2での検出状態、特定された障害物位置、判別部17で判別された障害物の移動状態を逐次記憶する。サイドセンサ2での検出状態の遷移の情報については、区分処理部14から得る構成とすればよい。サイドセンサ2で検出中の移動体について、右第1障害物位置しか特定されていない場合には、右フロントサイドセンサ2cでしか検出されていない検出状態となる。一方、右第2障害物位置しか特定されていない場合には、右リアサイドセンサ2dでしか検出されていない検出状態となる。右第1障害物位置と右第2障害物位置との両方が特定されている場合には、右フロントサイドセンサ2cと右リアサイドセンサ2dとの両方で検出されている検出状態となる。
 判別部17は、状態管理部16に記憶されている、移動体と判定された障害物が検出されるサイドセンサ2の変遷についての情報、特定された障害物位置、及び判別部17で判別された障害物の移動状態の履歴から、自車に対する移動体の移動状態を逐次判別する。移動状態の一例としては、移動体が自車に追いついた状態である追いつき状態、移動体が自車と並走する並走状態、移動体が自車を追い抜いて行く追い抜き状態、移動体が自車と反対方向に通過していくすれ違い状態等がある。なお、特定された障害物位置、及び判別部17で判別された障害物の移動状態の履歴については、判別する移動状態の必要に応じて用いる構成とすればよい。判別部17での移動状態の判別の詳細については後述する。
 支援制御部18は、自車の周辺の障害物及び/又は路面標示を検出する周辺監視センサでの検出結果をもとに、HMIシステム5及び/又は車両制御ECU6に指示を行って、例えば前述したような運転支援を行う。また、支援制御部18は、判別部17で逐次判別する移動体の移動状態をもとに、自車の運転支援を行わせる。
 <移動状態の判別について>
 ここで、図3及び図4を用いて、判別部17での移動状態の判別の一例について説明を行う。まず、図3を用いて、追いつき状態の判別について説明を行う。
 [追いつき状態]
 デフォルトは、右フロントサイドセンサ2c及び右リアサイドセンサ2dのいずれでも移動体が検出されていない追いつきなし状態である。右リアサイドセンサ2dで移動体が検出された状態となると、判別部17は、追いつき確定待ち状態と判別する。そして、右リアサイドセンサ2dで移動体が再度検出される状態が続くと、判別部17は、追いつき状態と判別する。一方、右リアサイドセンサ2dで移動体が検出されない状態となった場合、追いつきなし状態と判別する。また、追いつき状態と判別した後に、右フロントサイドセンサ2cと右リアサイドセンサ2dとのいずれでも移動体が検出されない状態となると、追いつきなし状態と判別する。なお、追いつき確定待ち状態を経ずに、右リアサイドセンサ2dで移動体が検出された状態となった場合に、判別部17が追いつき状態と判別する構成としてもよい。
 [並走状態、追い抜き状態、すれ違い状態]
 また、判別部17は、追いつき状態と判別した場合に、並走状態、追い抜き状態、及びすれ違い状態といった移動状態の判別を行うことが好ましい。並走状態は、移動体が自車と並走する状態であり、追い抜き状態は、移動体が自車を追い抜いて行く状態であり、すれ違い状態は、移動体が自車と反対方向に通過していく状態である。ここで、図4を用いて、並走状態、追い抜き状態、及びすれ違い状態の判別について説明を行う。
 デフォルトは未判別状態である。追いつき状態が判別された後の未判別状態では、右リアサイドセンサ2dで移動体(以下、第1移動体)が検出されている。この未判別状態において、右フロントサイドセンサ2cでも第1移動体が検出された状態となると、判別部17は、第1移動体の移動状態を並走状態と判別する。
 一方、未判別状態において、右リアサイドセンサ2dで検出している第1移動体よりも自車から車幅方向に離れた位置に、右フロントサイドセンサ2cで異なる移動体(以下、第2移動体)が検出された状態となると、判別部17は、第2移動体の移動状態をすれ違い状態と判別する。個々の区別は、区分処理部14での障害物の区分に従う構成とすればよい。
 なお、比較の対象となる移動体がない場合、右フロントサイドセンサ2cで検出される移動体の移動状態が、すれ違い状態であるか追い抜き状態であるか判別することは困難である。これに対して、実施形態1の構成によれば、追いつき状態と判別した移動体を比較の対象とすることで、対向車線の対向車である可能性の高い移動体のすれ違い状態をより容易に判別可能としている。
 また、未判別状態において、右リアサイドセンサ2dで検出している第1移動体と異なる移動体(以下、第3移動体)を右フロントサイドセンサ2cで検出している状態であって、右リアサイドセンサ2dで第3移動体が検出されない状態である場合には、判別部17は、第3移動体の移動状態を追い抜き状態と判別する。
 他にも、未判別状態において、右フロントサイドセンサ2cで移動体を検出した場合であって、且つ、この移動体を検出し続ける状態となった場合であって、右リアサイドセンサ2dで移動体が検出されない状態である場合には、判別部17は、この移動体の移動状態を追い抜き状態と判別する。
 続いて、並走状態において、右リアサイドセンサ2dで第1移動体が検出されない状態となると、判別部17は、第1移動体の移動状態を追い抜き状態と判別する。単に右リアサイドセンサ2dで移動体が検出されなくなったことだけでは、移動体の移動状態を追い抜き状態と精度よく判別することが困難であるので、実施形態1では、並走状態を経たことを条件に追い抜き状態を判別することで、追い抜き状態の判別精度を向上させている。
 一方、並走状態において、右リアサイドセンサ2dで第1移動体は検出されるが、右フロントサイドセンサ2cで第1移動体が検出されない状態となると、判別部17は、移動状態を未判別状態に戻す。ここでは、判別部17が第1移動体の移動状態を追いつき確定状態と判別してもよい。
 また、追い抜き状態において、右フロントサイドセンサ2cで第1移動体が検出される状態が終わると、判別部17は、移動状態を未判別状態に戻す。右フロントサイドセンサ2cで第1移動体が検出される状態が終わるとは、右フロントサイドセンサ2cで障害物が検出されなくなる状態に限らず、右フロントサイドセンサ2cで第1移動体以外の障害物を検出する状態へ切り替わった状態も含む。一方、追い抜き状態において、右フロントサイドセンサ2cのみで検出していた第1移動体が、右リアサイドセンサ2dでも検出される状態になると、判別部17は、第1移動体の移動状態を並走状態に戻す。この移動状態の変化は、第1移動体が自車を追い抜こうとした後、思い直して並走に戻る場合に生じる。
 また、すれ違い状態において、右フロントサイドセンサ2c及び右リアサイドセンサ2dのいずれかでも第2移動体を検出している状態であれば、第2移動体の移動状態をすれ違い状態と判別し続ける。そして、右フロントサイドセンサ2c及び右リアサイドセンサ2dのいずれでも第1移動体及び第2移動体を検出していない状態になった場合に、移動状態を未判別状態に戻せばよい。
 <移動状態判別関連処理>
 続いて、図5のフローチャートを用いて、運転支援装置1での移動状態の判別に関連する処理(以下、移動状態判別関連処理)の一例について説明を行う。図5のフローチャートは、例えばサイドセンサ2を起動した場合に開始される構成とすればよい。
 まず、ステップS1では、右フロントサイドセンサ2c及び右リアサイドセンサ2dの少なくともいずれかで障害物を検出した場合(S1でYES)には、ステップS2に移る。一方、障害物を検出していない場合(S1でNO)には、ステップS9に移る。
 ステップS2では、右フロントサイドセンサ2cで障害物を検出した場合には、右フロント位置特定部11cが右第1障害物位置を逐次特定する。右リアサイドセンサ2dで障害物を検出した場合には、右リア位置特定部11dが右第2障害物位置を逐次特定する。特定された障害物位置は、区分処理部14が障害物位置の車幅方向の位置差分をもとに、個々の障害物ごとに区分する。
 ステップS3では、区分処理部14に区分された現在検出中の障害物について、右第1障害物位置及び右第2障害物位置のいずれも特定済みであって、移動体判定部15でこの障害物が移動体か否か判定可能な場合(S3でYES)には、ステップS4に移る。一方、右第1障害物位置及び右第2障害物位置のいずれかが特定済みでなく、この障害物が移動体か否か判定不可能な場合(S3でNO)には、ステップS9に移る。
 ステップS4では、移動体判定部15が、現在検出中の障害物が移動体か否か判定を行う。ステップS5では、S4で移動体と判定した場合(S5でYES)には、ステップS6に移る。一方、S4で静止物と判定した場合(S5でNO)には、ステップS9に移る。
 ステップS6では、判別部17が、移動体と判定された障害物が追いつき状態か否かを判別する。ステップS7では、S6で移動体を追いつき状態と判別した場合(S7でYES)には、ステップS8に移る。一方、S6で移動体を追いつき状態でないと判別した場合(S7でYES)には、ステップS9に移る。
 ステップS8では、判別部17が、移動体が並走状態、追い抜き状態、すれ違い状態のいずれの移動状態であるかを判別する。S8で判別した移動体の移動状態は、支援制御部18での運転支援に利用される。移動体の移動状態の運転支援への利用については後に詳述する。
 ステップS9では、移動状態判別関連処理の終了タイミングであった場合(ステップS9でYES)には、移動状態判別関連処理を終了する。一方、移動状態判別関連処理の終了タイミングでなかった場合(ステップS9でNO)には、S1に戻って処理を繰り返す。移動状態判別関連処理の終了タイミングとしては、例えば自車のイグニッション電源がオフになったときなどがある。
 ここまでは、自車が前進する場合であって、且つ、自車の右側方の障害物を検出する場合を例に挙げて説明を行ったが、必ずしもこれに限らない。自車が後退する場合には、前述した内容を自車の前後のサイドセンサ2を入れ替えて実施する構成とすればよい。自車が前進するか後退するかは、シフトポジションセンサの信号から特定すればよい。なお、自車が後退する場合には、未判別状態において、右リアサイドセンサ2dで検出している移動体よりも自車から車幅方向において近い位置に、右フロントサイドセンサ2cで異なる移動体が検出された状態となった場合に、判別部17が、この異なる移動体の移動状態をすれ違い状態と判別する構成とすればよい。また、自車の左側方の障害物を検出する場合には、前述した内容を自車の左右のサイドセンサ2を入れ替えて実施する構成とすればよい。
 <移動体の移動状態の運転支援への利用例>
 続いて、図6~図11を用いて、判別部17で判別した移動体の移動状態の運転支援への利用例について説明を行う。図6~図11のHVが自車を示しており、OVが他車を示している。図6~図11では、自車HVの右側を他車OVが走行する場合を例に挙げている。
 [空き空間の判断]
 まず、図6及び図7を用いて、空き空間の判断への利用についての説明を行う。空き空間の判断結果は、手動での駐車時の推奨経路の生成、自動駐車時の駐車経路の生成、自動運転時の走行経路の生成といった、運転支援時における経路生成に用いられる。
 図6では、自車HVの右側を他車OVが追い抜いていく場合を例に挙げる。図6に示す例では、判別部17で判別する他車OVの移動状態が追いつき状態の場合には、支援制御部18は右側に空き空間なしと判断する。判別部17で判別する他車OVの移動状態が並走状態、追い抜き状態と移った場合にも、支援制御部18は右側に空き空間なしと判断する。支援制御部18は、空き空間なしと判断した領域には、運転支援時における経路を生成しないようにする。
 一方、判別部17で判別する他車OVの移動状態が並走状態、追い抜き状態と移った後に、他車OVを検出しない未検出の状態となった場合には、支援制御部18は右側に空き空間ありと判断する。支援制御部18は、空き空間ありと判断した領域には、運転支援時における経路を生成可能とする。
 図7では、自車HVの右側を他車OVが追い抜いていこうとしたが追い抜くのをやめて並走に切り替える場合を例に挙げる。図7に示す例でも、図6に示す例と同様に、判別部17で判別する他車OVの移動状態が追いつき状態、並走状態、追い抜き状態の場合には、支援制御部18は右側に空き空間なしと判断する。さらに、判別部17で判別する他車OVの移動状態が追い抜き状態から並走状態と移った場合にも、支援制御部18は右側に空き空間なしと判断する。支援制御部18は、前述したように、空き空間なしと判断した領域には、運転支援時における経路を生成しないようにする。
 これにより、他車OVの追い抜き状態を判別した場合であっても、実際に追い抜いていったか、並走状態に戻ったかを新たに判別し、他車OVの走行状態の変化に応じた運転支援時の経路生成を行うことを可能にしている。
 [警告要否の判断]
 続いて、図8及び図9を用いて、警告要否の判断への利用についての説明を行う。警告要否の判断結果は、障害物との接触回避といった運転支援に用いられる。図8では、自車HVの右側を他車OVが追い抜いていく場合を例に挙げる。図8に示す例では、判別部17で判別する他車OVの移動状態が追いつき状態の場合には、支援制御部18は右側に警告対象ありと判断する。判別部17で判別する他車OVの移動状態が並走状態、追い抜き状態と移った場合にも、支援制御部18は右側に警告対象ありと判断する。支援制御部18は、警告対象ありと判断した領域に自車が移動しようとした場合は、HMIシステム5に指示を行って表示装置及び/又は音声出力装置から自車のドライバに向けて警告を行わせる。
 一方、判別部17で判別する他車OVの移動状態が並走状態、追い抜き状態と移った後に、他車OVを検出しない未検出の状態となった場合には、支援制御部18は右側に空き警告対象なしと判断する。支援制御部18は、警告対象なしと判断した領域に自車が移動しようとした場合には、前述した警告を行わせない。
 図9では、自車HVの右側を他車OVが追い抜いていこうとしたが追い抜くのをやめて並走に切り替える場合を例に挙げる。図9に示す例でも、図8に示す例と同様に、判別部17で判別する他車OVの移動状態が追いつき状態、並走状態、追い抜き状態の場合には、支援制御部18は右側に警告対象ありと判断する。さらに、判別部17で判別する他車OVの移動状態が追い抜き状態から並走状態と移った場合にも、支援制御部18は右側に警告対象ありと判断する。支援制御部18は、前述したように、警告対象ありと判断した領域に自車が移動しようとした場合には、前述した警告を行わせる。
 図10では、自車HVが他車OVに追いついて並走状態となった後、他車OVが加速して自車HVを追い抜いていく場合を例に挙げる。図10に示す例では、判別部17で判別する他車OVの移動状態が追い抜き状態の場合には、支援制御部18は右側に警告対象ありと判断する。判別部17で判別する他車OVの移動状態が並走状態に移った場合にも、支援制御部18は右側に警告対象ありと判断する。支援制御部18は、警告対象ありと判断した領域に自車が移動しようとした場合は、HMIシステム5に指示を行って表示装置及び/又は音声出力装置から自車のドライバに向けて警告を行わせる。
 一方、判別部17で判別する他車OVの移動状態が並走状態、追い抜き状態と移った後に、他車OVを検出しない未検出の状態となった場合には、支援制御部18は右側に空き警告対象なしと判断する。支援制御部18は、警告対象なしと判断した領域に自車が移動しようとした場合には、前述した警告を行わせない。
 これにより、他車OVの追い抜き状態を判別した場合であっても、実際に追い抜いていったか、並走状態に戻ったかを新たに判別し、他車OVの走行状態の変化に応じた衝突回避の警告を行うことを可能にしている。
 なお、ここでは、警告対象ありと判断した領域に自車が移動しようとした場合に警告を行わせる構成を示したが、必ずしもこれに限らない。例えば、警告対象ありと判断した領域に自車が移動しようとした場合に、自動で制動及び/又は操舵を制御して、警告対象ありと判断した領域への移動を制限する運転支援を行う構成としてもよい。
 [合流可否の判断]
 続いて、図11及び図12を用いて、隣接車線への合流可否の判断への利用についての説明を行う。合流可否の判断結果は、手動での隣接車線への合流タイミングの通知、自車を自動で合流させるLCA機能における隣接車線への合流開始の判断に用いられる。
 図11では、自車HVの右側を他車OVが追い抜いていく場合を例に挙げる。図11に示す例では、判別部17で判別する他車OVの移動状態が追いつき状態、並走状態の場合には、支援制御部18は合流不可と判断する。支援制御部18は、合流不可と判断している場合には、隣接車線への合流タイミングの通知を行ったり、自動での合流を開始させたりしないようにする。つまり、合流を許可しない。
 一方、判別部17で判別する他車OVの移動状態が並走状態から追い抜き状態と移った場合には、支援制御部18は合流可と判断する。支援制御部18は、合流可と判断した場合には、隣接車線への合流タイミングの通知を行ったり、自車のウィンカランプを点灯させて自動での合流を開始させたりする。つまり、合流を許可する。
 図12では、自車HVの右側を他車OVが追い抜いていこうとしたが追い抜くのをやめて自車後方に下がっていく場合を例に挙げる。図12に示す例でも、図11に示す例と同様に、判別部17で判別する他車OVの移動状態が追いつき状態、並走状態の場合には、支援制御部18は合流不可と判断する。一方、判別部17で判別する他車OVの移動状態が追い抜き状態から並走状態、未判別状態と移った場合には、支援制御部18は合流可と判断する。支援制御部18は、前述したように、合流可と判断した場合には、隣接車線への合流タイミングの通知を行ったり、自車のウィンカランプを点灯させて自動での合流を開始させたりする。
 これにより、瞬間的な他車OVの移動状態だけでは他車OVの動向がわからずに隣接車線への合流可否の判断が困難な場合であっても、並走状態を経た移動状態を新たに判別し、他車OVの走行状態の変化に応じた隣接車線への合流の支援を行うことを可能にしている。
 なお、追い抜き状態を判別した後に右フロントサイドセンサ2cで移動体を検出しなくなった場合に、隣接車線への合流タイミングの通知を行ったり、自車のウィンカランプを点灯させて自動での合流を開始させたりする構成としてもよい。また、並走状態から未判別状態と移った後に右リアサイドセンサ2dで移動体を検出しなくなった場合に、隣接車線への合流タイミングの通知を行ったり、自車のウィンカランプを点灯させて自動での合流を開始させたりする構成としてもよい。
 <実施形態1のまとめ>
 車両の左右側方のうち少なくとも一方の側方に広がる検出範囲が車両の前後方向にそれぞれ並ぶ複数のサイドセンサ2のうちの、障害物が検出されるサイドセンサ2の変遷の態様は、自車に対する障害物の移動状態によって異なる。例えば、自車の前後のいずれの方向から障害物が接近してくるかによって、どのサイドセンサ2から順に障害物が検出されるかが異なる。また、自車の前後のいずれの方向に障害物が離れていくかによって、どのサイドセンサ2から順に障害物が検出されなくなるかが異なる。他にも、自車に障害物が並走するか離れていくかによって、障害物センサで障害物が検出され続けるか否かが異なる。
 実施形態1の構成によれば、複数のサイドセンサ2のうちの障害物が検出されるサイドセンサ2の変遷をもとに、判別部17が、自車側方に存在する障害物の自車に対する移動状態を逐次判別するので、自車側方の移動体の走行状態の変化を判別することができる。また、前述したように、自車側方の移動体の走行状態変化に応じて運転支援を行うこともできる。
 また、実施形態1の構成によれば、サイドセンサ2で検出した障害物が移動体と判定した場合に移動状態の判別を行うので、静止物についての移動状態を判別してしまう手間を省くことができる。
 (実施形態2)
 実施形態1では、サイドセンサ2として、自車の少なくとも一方の側方に広がる検出範囲が自車の前後方向にそれぞれ並ぶ2つのサイドセンサ2を用いる構成を示したが、必ずしもこれに限らない。例えば、サイドセンサ2として、自車の少なくとも一方の側方に広がる検出範囲が自車の前後方向にそれぞれ並ぶ3つ以上のサイドセンサ2を用いる構成(以下、実施形態2)としてもよい。
 以下では、図13を用いて、実施形態2におけるサイドセンサ2の設置位置と検出範囲との一例について説明を行う。図13の例では、左フロントサイドセンサ2a、左センタサイドセンサ2e、左リアサイドセンサ2b、右フロントサイドセンサ2c、右センタサイドセンサ2f、右リアサイドセンサ2dを自車に搭載する場合を例に挙げて説明を行う。
 左センタサイドセンサ2eは、自車(図12のHV参照)の中央部の左側面に搭載され、自車の中央部の左側方に存在する障害物を検出する。右センタサイドセンサ2fは、自車の中央部の右側面に搭載され、自車の中央部の右側方に存在する障害物を検出する。この左センタサイドセンサ2e、右センタサイドセンサ2fも障害物センサに相当する。
 また、図13に示すように、左フロントサイドセンサ2aの検出範囲(図13のSAa参照)と、左センタサイドセンサ2eの検出範囲(図13のSAe参照)と、左リアサイドセンサ2bの検出範囲(図13のSAb参照)とは、自車の前後方向に沿って、自車の左側方に前後に並ぶ。一方、右フロントサイドセンサ2cの検出範囲(図13のSAc参照)と、右センタサイドセンサ2fの検出範囲(図13のSAf参照)と、右リアサイドセンサ2dの検出範囲(図13のSAd参照)とは、自車の前後方向に沿って、自車の右側方に前後に並ぶ。
 実施形態2では、運転支援装置1が、左センタサイドセンサ2eで検出した障害物の位置、及び右センタサイドセンサ2fで検出した障害物の位置を、他のサイドセンサ2の場合と同様にして特定する。そして、移動体判定部15が、実施形態1と同様にして、複数のサイドセンサ2の個々について特定する障害物位置のずれと走行に伴う自車位置のずれとの差をもとに、サイドセンサ2で検出された障害物が移動体か否かを判定する。例えば、実施形態2では、移動体判定を迅速に開始できるように、自車の前後方向での設置位置及び/又は検出範囲がお互いに近いサイドセンサ2についての障害物位置同士のずれと走行に伴う自車位置のずれとの差をもとに、移動体判定を行う構成としてもよい。
 また、実施形態2では、判別部17が、実施形態1よりも細分化された、移動体と判定された障害物が検出されるサイドセンサ2の変遷についての情報を用いることで、移動体の移動状態を実施形態1よりも詳細に判別する。一例として、移動体を検出しない状態となったサイドセンサ2の数によって追い抜き状態を2段階に分けて判別する。このように、実施形態2の構成によれば、移動体の移動状態を実施形態1よりも詳細に判別することが可能になる。
 (変形例1)
 前述の実施形態では、並走状態を経たことを条件に追い抜き状態を判別する構成を示したが、必ずしもこれに限らない。例えば、並走状態を経たことを条件とせずに、追い抜き状態を判別する構成としてもよい。
 (変形例2)
 前述の実施形態では、追いつき状態を判別したことを条件に追い抜き状態、すれ違い状態、並走状態を判別する構成を示したが、必ずしもこれに限らない。例えば、追いつき状態を判別したことを条件とせずに、追い抜き状態、すれ違い状態、並走状態を判別する構成としてもよい。
 (変形例3)
 前述の実施形態では、サイドセンサ2で検出した障害物が移動体と判定した場合に移動状態の判別を行う構成を示したが、必ずしもこれに限らない。例えば、サイドセンサ2で検出した障害物が移動体か否かを判定せずにその障害物の移動状態の判別を行う構成としてもよい。
 (変形例4)
 前述の実施形態では、サイドセンサ2を自車側面に取り付ける構成を示したが、必ずしもこれに限らない。自車の車幅方向の同じ側に並ぶサイドセンサ2の検出範囲が、略同じ向きで自車前後方向に配列されるのであれば、取り付け位置は自車側面に限らない。
 (変形例5)
 前述の実施形態では、自車の位置の変化を自車の操舵角及び走行距離から特定する構成を示したが、必ずしもこれに限らない。例えば、自車のヨーレート等を用いて、自車の位置の変化を特定する構成としてもよい。
 (変形例6)
 前述の実施形態では、運転支援装置1に備えられる支援制御部18が運転支援を行う構成を示したが、必ずしもこれに限らない。例えば、支援制御部18の機能を運転支援装置1以外の電子制御装置が担う構成としてもよい。
 なお、実施形態、上述した実施形態及び変形例に限定されるものではなく、種々の変更が可能である。例えば、異なる実施形態及び変形例にそれぞれ開示された技術的要素を適宜組み合わせて実施形態としてもよい。

 

Claims (10)

  1.  障害物を検出するのに用いる障害物センサ(2,2a,2b,2c,2d,2e,2f)を搭載した車両で用いられる車載装置であって、
     前記障害物センサは、前記車両の左右側方のうち少なくとも一方の側方に広がる検出範囲が、前記車両の前後方向にそれぞれ並ぶ複数の障害物センサであり、
     複数の前記障害物センサのうちの前記障害物が検出される前記障害物センサの変遷をもとに、自車に対する前記障害物の移動状態を逐次判別する判別部(17)を備える車載装置。
  2.  請求項1において、
     複数の前記障害物センサの個々について、その障害物センサを用いて検出される前記障害物の自車に対する位置をそれぞれ特定する位置特定部(11a,11b,11c,11d)と、
     複数の前記障害物センサの個々について前記位置特定部で特定する前記障害物の位置のずれと走行に伴う自車の位置のずれとの差をもとに、前記障害物センサで検出された前記障害物が移動体か否かを判定する移動体判定部(15)とを備え、
     前記判別部は、前記移動体判定部で移動体であると判定された前記障害物が検出される前記障害物センサの変遷をもとに、自車に対する前記障害物の移動状態を逐次判別する車載装置。
  3.  請求項2において、
     複数の前記障害物センサの個々について前記位置特定部で特定した前記障害物の位置を記憶し、走行に伴う自車の位置のずれに応じて、記憶した前記障害物の位置を更新する位置管理部(13)を備え、
     前記移動体判定部は、前記位置管理部で逐次更新される前記障害物の位置を用いて、前記障害物センサで検出された前記障害物が移動体か否かを判定する車載装置。
  4.  請求項1~3のいずれか1項において、
     前記判別部は、前記障害物が自車と反対方向に通過していくすれ違い状態、前記障害物が自車を追い抜いていく追い抜き状態、前記障害物が自車に追いついた追いつき状態、及び前記障害物が自車と並走する並走状態の少なくともいずれかの前記移動状態を判別する車載装置。
  5.  請求項4において、
     前記判別部で逐次判別する移動状態をもとに、前記車両の運転支援を行わせる支援制御部(18)を備える車載装置。
  6.  請求項5において、
     前記判別部は、前記並走状態の判別を行うものであり、
     前記支援制御部は、前記判別部で並走状態と判別した場合には、前記並走状態と判別した前記障害物を検出している自車側方への移動を制限するように前記運転支援を行わせる車載装置。
  7.  請求項5又は6において、
     前記判別部は、前記並走状態と前記追い抜き状態との判別を行うものであり、
     前記支援制御部は、自車の隣接車線への合流を自動で行う運転支援を行わせるものであり、前記判別部で前記並走状態と判別した場合には、前記並走状態と判別した前記障害物を検出している前記隣接車線への合流を自動で行う運転支援を行わせない一方、前記判別部で前記並走状態と判別した後に前記追い抜き状態と判別した場合には、前記追い抜き状態と判別した前記障害物を検出している前記隣接車線への合流を自動で行うことを許可する車載装置。
  8.  請求項5~7のいずれか1項において、
     前記判別部は、前記並走状態と前記追いつき状態との判別を行うものであり、
     前記支援制御部は、自車の隣接車線への合流を自動で行う運転支援を行わせるものであり、前記判別部で前記並走状態と判別した場合には、前記並走状態と判別した前記障害物を検出している前記隣接車線への合流を自動で行う運転支援を行わせない一方、前記判別部で前記並走状態と判別した後に前記追いつき状態と判別した場合には、前記追いつき状態と判別した前記障害物を検出している前記隣接車線への合流を自動で行うことを許可する車載装置。
  9.  請求項1~8のいずれか1項において、
     前記障害物センサ(2,2a,2b,2c,2d)は、前記車両の少なくとも一方の側方に広がる検出範囲が前記車両の前後方向にそれぞれ並ぶ2つの障害物センサである車載装置。
  10.  請求項1~8のいずれか1項において、
     前記障害物センサ(2,2a,2b,2c,2d,2e,2f)は、前記車両の少なくとも一方の側方に広がる検出範囲が前記車両の前後方向にそれぞれ並ぶ3つ以上の障害物センサである車載装置。

     
PCT/JP2017/003503 2016-03-18 2017-02-01 車載装置 WO2017159092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017001417.4T DE112017001417B4 (de) 2016-03-18 2017-02-01 Fahrzeugvorrichtung
US16/083,705 US10857999B2 (en) 2016-03-18 2017-02-01 Vehicle device
CN201780008231.9A CN108604422A (zh) 2016-03-18 2017-02-01 车载装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055970A JP6500820B2 (ja) 2016-03-18 2016-03-18 車載装置
JP2016-055970 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159092A1 true WO2017159092A1 (ja) 2017-09-21

Family

ID=59850817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003503 WO2017159092A1 (ja) 2016-03-18 2017-02-01 車載装置

Country Status (5)

Country Link
US (1) US10857999B2 (ja)
JP (1) JP6500820B2 (ja)
CN (1) CN108604422A (ja)
DE (1) DE112017001417B4 (ja)
WO (1) WO2017159092A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108189754A (zh) * 2017-12-23 2018-06-22 西安科技大学 一种多点式主动探测的汽车防撞方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071155B1 (ko) * 2015-09-18 2020-01-29 닛산 지도우샤 가부시키가이샤 차량용 표시 장치 및 차량용 표시 방법
CN109690650B (zh) * 2016-09-09 2020-10-02 日产自动车株式会社 车辆的行驶控制方法及行驶控制装置
JP6971187B2 (ja) * 2018-03-28 2021-11-24 京セラ株式会社 画像処理装置、撮像装置、および移動体
US11113971B2 (en) * 2018-06-12 2021-09-07 Baidu Usa Llc V2X communication-based vehicle lane system for autonomous vehicles
DE102020204078A1 (de) * 2019-11-27 2021-05-27 Robert Bosch Gesellschaft mit beschränkter Haftung Fahrerassistenzsystem für Kraftfahrzeuge
US11718296B2 (en) * 2019-12-09 2023-08-08 Bendix Commercial Vehicle Systems Llc Using shared traffic information to support adaptive cruise control (ACC) between platooning vehicles
JP7481070B2 (ja) * 2020-03-31 2024-05-10 パナソニックオートモーティブシステムズ株式会社 車両制御装置、車両用合流支援装置及び車両
BE1028777B1 (nl) * 2021-03-25 2022-06-01 Ivex Systeem en methode voor het detecteren van inconsistenties in de outputs van perceptiesystemen van autonome voertuigen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331023A (ja) * 2003-05-12 2004-11-25 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
WO2011128940A1 (ja) * 2010-04-15 2011-10-20 三菱電機株式会社 走行支援装置
JP2011221673A (ja) * 2010-04-06 2011-11-04 Seiko Precision Inc 警報制御装置、警報制御プログラム、及び警報システム
JP2013020458A (ja) * 2011-07-12 2013-01-31 Daihatsu Motor Co Ltd 車載用物体判別装置
JP2014048205A (ja) * 2012-08-31 2014-03-17 Toyota Motor Corp 運転支援システムおよび運転支援方法
JP2014076689A (ja) * 2012-10-09 2014-05-01 Toyota Motor Corp 車両制御装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339075A (en) * 1992-11-24 1994-08-16 Terrill Abst Vehicular collision avoidance apparatus
US5670935A (en) * 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
JPH08185599A (ja) * 1994-12-28 1996-07-16 Nissan Motor Co Ltd 車両用後側方監視装置
US6891563B2 (en) * 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US6618672B2 (en) * 1998-10-21 2003-09-09 Yazaki Corporation Vehicle-applied rear-and-side monitoring system
EP1103004A1 (de) * 1999-05-26 2001-05-30 Robert Bosch Gmbh Objektdetektionssystem
US7366595B1 (en) * 1999-06-25 2008-04-29 Seiko Epson Corporation Vehicle drive assist system
JP4615139B2 (ja) * 2001-03-30 2011-01-19 本田技研工業株式会社 車両の周辺監視装置
US6914521B2 (en) * 2002-04-12 2005-07-05 Lear Corporation Visual display for vehicle
US6680689B1 (en) * 2003-03-28 2004-01-20 Visteon Global Technologies, Inc. Method for determining object classification from side-looking sensor data
JP3985748B2 (ja) * 2003-07-08 2007-10-03 日産自動車株式会社 車載用障害物検出装置
EP1711845B1 (en) * 2004-02-02 2013-06-19 Livy Srvcs. Limited Liability Company Vehicle collision detector
US7289019B1 (en) * 2004-05-13 2007-10-30 Jon Kertes Vehicle avoidance collision system
DE102006043149A1 (de) 2006-09-14 2008-03-27 Bayerische Motoren Werke Ag Integrierter Quer- und Längsführungsassistent zur Unterstützung des Fahrers beim Fahrspurwechsel
DE102006047634A1 (de) * 2006-10-09 2008-04-10 Robert Bosch Gmbh Verfahren zum Erfassen eines Umfelds eines Fahrzeugs
JP2009262898A (ja) * 2008-04-30 2009-11-12 Toyota Central R&D Labs Inc 移動体の障害物検出装置、及びプログラム
DE102010001258A1 (de) 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Fahrerassistenzverfahren
DE102011102557A1 (de) * 2011-05-26 2012-11-29 Valeo Schalter Und Sensoren Gmbh Fahrerassistenzeinrichtung mit einer Mehrzahl von Ultraschallsensoren sowie Fahrzeug mit einer derartigen Fahrerassistenzeinrichtung und Verfahren zum Betreiben einer Fahrerassistenzeinrichtung
DE102012206790A1 (de) 2012-04-25 2013-10-31 Robert Bosch Gmbh Verfahren für ein Assistenzsystem eines Fahrzeugs
JP5965276B2 (ja) * 2012-10-09 2016-08-03 株式会社日本自動車部品総合研究所 物体検知装置
US9863928B1 (en) * 2013-03-20 2018-01-09 United Parcel Service Of America, Inc. Road condition detection system
EP3185035B1 (en) * 2013-04-10 2022-04-06 Toyota Jidosha Kabushiki Kaisha Vehicle driving assistance apparatus
JP2014241115A (ja) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 周辺物体検知装置
JP6379384B2 (ja) 2014-09-09 2018-08-29 コニカミノルタ株式会社 後処理装置及び画像形成システム
JP6462328B2 (ja) * 2014-11-18 2019-01-30 日立オートモティブシステムズ株式会社 走行制御システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331023A (ja) * 2003-05-12 2004-11-25 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
JP2011221673A (ja) * 2010-04-06 2011-11-04 Seiko Precision Inc 警報制御装置、警報制御プログラム、及び警報システム
WO2011128940A1 (ja) * 2010-04-15 2011-10-20 三菱電機株式会社 走行支援装置
JP2013020458A (ja) * 2011-07-12 2013-01-31 Daihatsu Motor Co Ltd 車載用物体判別装置
JP2014048205A (ja) * 2012-08-31 2014-03-17 Toyota Motor Corp 運転支援システムおよび運転支援方法
JP2014076689A (ja) * 2012-10-09 2014-05-01 Toyota Motor Corp 車両制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108189754A (zh) * 2017-12-23 2018-06-22 西安科技大学 一种多点式主动探测的汽车防撞方法

Also Published As

Publication number Publication date
JP2017173903A (ja) 2017-09-28
CN108604422A (zh) 2018-09-28
US10857999B2 (en) 2020-12-08
DE112017001417B4 (de) 2023-03-02
US20190071077A1 (en) 2019-03-07
DE112017001417T5 (de) 2018-12-06
JP6500820B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
WO2017159092A1 (ja) 車載装置
US11458957B2 (en) Vehicle surrounding display apparatus
US10843706B2 (en) Vehicle control apparatus
US9751562B2 (en) Park exit assist system
EP3124995B1 (en) Parking assistance device
JP6294905B2 (ja) 表示装置
JP6447468B2 (ja) 運転支援装置
CN106062852B (zh) 车辆控制装置
JP6520177B2 (ja) 運転制御装置、運転制御方法
US20190084572A1 (en) Driving support apparatus
JP6304272B2 (ja) 車両用注意喚起装置
WO2018220912A1 (ja) 周辺監視装置
US10055994B2 (en) Parking assistance device
US10377416B2 (en) Driving assistance device
WO2018194016A1 (ja) 車両運転支援装置
JP2016084094A (ja) 駐車支援装置
WO2018173582A1 (ja) 運転支援装置
JP7141470B2 (ja) 駐車支援装置及び駐車支援方法
JP2017100681A (ja) 走行制御装置
JP2017114195A (ja) 車両制御装置
US11299163B2 (en) Control system of vehicle, control method of the same, and non-transitory computer-readable storage medium
JP2019011055A (ja) 運転支援装置
TWI755869B (zh) 具備fcw控制裝置之傾斜車輛
JPWO2019038918A1 (ja) 走行制御装置、および車両
JP6227514B2 (ja) 駐車支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766100

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766100

Country of ref document: EP

Kind code of ref document: A1