WO2017102689A1 - Composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines - Google Patents

Composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines Download PDF

Info

Publication number
WO2017102689A1
WO2017102689A1 PCT/EP2016/080737 EP2016080737W WO2017102689A1 WO 2017102689 A1 WO2017102689 A1 WO 2017102689A1 EP 2016080737 W EP2016080737 W EP 2016080737W WO 2017102689 A1 WO2017102689 A1 WO 2017102689A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
phosphine ligand
composition according
groups
composition
Prior art date
Application number
PCT/EP2016/080737
Other languages
English (en)
Inventor
Pierre-Alain Breuil
Olivia CHAUMET-MARTIN
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to BR112018012279-3A priority Critical patent/BR112018012279B1/pt
Priority to US16/062,725 priority patent/US10646860B2/en
Priority to CA3007314A priority patent/CA3007314C/fr
Priority to PL425935A priority patent/PL239961B1/pl
Priority to KR1020187020748A priority patent/KR102621942B1/ko
Priority to RU2018126310A priority patent/RU2744575C2/ru
Priority to CN201680074034.2A priority patent/CN108430627B/zh
Priority to JP2018530900A priority patent/JP6876702B2/ja
Publication of WO2017102689A1 publication Critical patent/WO2017102689A1/fr
Priority to SA518391752A priority patent/SA518391752B1/ar

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0204Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/02Metathesis reactions at an unsaturated carbon-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/10Alkenes with five carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • C10G2300/1092C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins

Definitions

  • the present invention relates to a novel nickel-based composition and its use as a catalyst in chemical transformation reactions, and in particular in a process for oligomerizing an olefinic feedstock.
  • the invention also relates to a process for oligomerizing an olefin feedstock comprising bringing said feedstock into contact with the nickel-based composition according to the invention, and in particular a process for dimerizing ethylene, in particular butene-1 implementing said nickel-based composition according to the invention.
  • US Pat. No. 5,237,188 B describes a process for the oligomerization of ethylene using a catalytic composition comprising a nickel compound of zero degree of oxidation, a phophine ligand in variable proportions relative to the nickel compound. .
  • This patent describes the use also of a fluorinated organic acid for carrying out the oligomerization process. This patent does not describe, in addition to the phosphine, the presence of a Lewis base in the catalytic composition.
  • No. 4,242,531 B describes a process for the dimerization of olefins and uses a catalytic system based on chlorinated nickel compounds of oxidation state +2 and a halogenated alkylaluminum type activator.
  • Patent FR 1 547 921 describes a catalytic composition based on nickel halide and phosphine which requires a prior reduction of the composition in order to prepare the active catalyst. This patent does not describe besides the phosphine, the presence of a Lewis base in the catalytic composition.
  • the butene yields are of the order of 63% C4 including 3% butenes-1.
  • Patent FR 1, 588,162 describes a process for the dimerization of olefins between C2 and C4 implementing a catalytic system comprising a nickel compound and a phosphine and in particular alkyl halides with yields of butenes of the order of 80%.
  • This patent does not describe besides the phosphine, the presence of a Lewis base in the catalytic system. This patent is for the production of butenes-2.
  • the applicant in his research has developed a novel catalyst composition
  • the catalytic composition may comprise at least one activating agent. It has surprisingly been found that such compositions exhibit interesting catalytic properties. In particular, these compositions have a good catalytic yield / selectivity couple in the oligomerization of olefins, more specifically in the selective dimerization of ethylene to butene-1.
  • An object of the invention is to provide a novel nickel-based composition.
  • Another object of the invention is to provide a novel catalyst system comprising said composition for chemical transformation reactions, in particular for the oligomerization of olefins, in particular the dimerization of ethylene to butene-1.
  • the catalytic composition according to the invention comprises:
  • R 2 and R 3 identical or different to each other, linked or not to each other, are chosen
  • the catalytic composition comprises at least one phosphine ligand of formula PR 1 R 2 R 3 in which the groups R 1 , R 2 and R 3 are identical to each other.
  • the aromatic groups R 1 , R 2 and R 3 of the phosphine ligand PR 1 R 2 R 3 are preferably chosen from the group formed by the phenyl, o-tolyl, m-tolyl and p-tolyl groups, mesityl, 3,5 dimethylphenyl, 4-n-butylphenyl, 4-methoxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-isopropoxyphenyl, 4-methoxy-3,5-dimethylphenyl, 3,5-di-tert-butyl-4 methoxyphenyl, 4-chlorophenyl, 3,5-di (trifluoromethyl) phenyl, benzyl, naphthyl, bis-naphthyl, pyridyl, bisphenyl, furanyl, thiophenyl.
  • the hydrocarbyl groups R 1 , R 2 and R 3 of the phosphine ligand PR 1 R 2 R 3 advantageously comprise 1 to 20 carbon atoms, preferably 2 to 15 carbon atoms, preferably 3 to 10 carbon atoms.
  • the hydrocarbyl groups R 1 , R 2 and R 3 of the phosphine ligand PR 1 R 2 R 3 are chosen from the group formed by the groups methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, cyclopentyl, cyclohexyl, benzyl, adamantyl, preferably in the group consisting of isopropyl, n-butyl, cyclopentyl and cyclohexyl groups
  • the nickel precursor according to the invention has a +11 degree of oxidation. It is preferably chosen from nickel (II) chloride; nickel (II) chloride (dimethoxyethane); nickel bromide (II); nickel (II) bromide (dimethoxyethane); nickel fluoride (II); nickel iodide (II); nickel sulphate (ll); nickel carbonate (II); nickel dimethylglycol (II); nickel hydroxide (II); nickel (II) hydroxyacetate; nickel oxalate (II); nickel (II) carboxylates selected from the group consisting of nickel (II) 2-ethylhexanoate, nickel (II) acetate, nickel (II) trifluoroacetate, nickel (II) triflate, nickel (II) acetylacetonate, nickel (II) hexafluoroacetylacetonate, nickel (II) phenates;
  • the nickel precursor is chosen from nickel (II) sulphate; nickel carbonate (II); nickel dimethylglycol (II); nickel (II) hydroxide, nickel (II) hydroxyacetate; nickel oxalate (II); nickel (II) carboxylates selected from the group consisting of nickel (II) 2-ethylhexanoate, nickel (II) acetate, nickel (II) trifluoroacetate, nickel (II) triflate, nickel (II) acetylacetonate, nickel (II) hexafluoroacetylacetonate, nickel (II) phenates; allyl nickel (II) hexafluorophosphate; methallyl nickel (II) hexafluorophosphate; biscyclopentadienyl nickel (II); nickel bisallyl (II) and bismethallyl nickel (II); in their hydrated form or not, taken alone or in mixture.
  • the catalytic composition according to the invention comprises a Lewis base.
  • Lewis base means any chemical entity containing no phosphorus of which one constituent has a doublet or more free or non-binding electrons.
  • the Lewis bases according to the invention correspond in particular to any ligand comprising an oxygen or nitrogen atom having a doublet of free or non-binding electrons, or a ⁇ double bond capable of forming, with nickel, a coordination of the type ⁇ 2 .
  • the Lewis base is an oxygenated or nitrogenous Lewis base.
  • the Lewis base according to the invention is preferably chosen from diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 1,4-dioxane, isoxazole, pyridine, pyrazine, and the like. pyrimidine.
  • the Lewis base is selected from tetrahydrofuran, 1,4-dioxane and pyridine.
  • composition according to the invention may also comprise an activating agent chosen from the group formed by the chlorinated and brominated hydrocarbylaluminium compounds, taken alone or as a mixture.
  • said activating agent is chosen from the group formed by methylaluminum dichloride (MeAlCl 2 ), ethylaluminum dichloride (EtAlCl 2 ), ethylaluminium sesquichloride (Et 3 Al 2 Cl 3 ), diethylaluminum (Et 2 AlCl), diisobutylaluminum chloride (/ Bu 2 AlCl), isobutylaluminum dichloride (BuAICI 2 ), alone or as a mixture.
  • MeAlCl 2 methylaluminum dichloride
  • EtAlCl 2 ethylaluminum dichloride
  • Et 3 Al 2 Cl 3 ethylaluminium sesquichloride
  • Bu 2 AlCl diisobutylaluminum chloride
  • BuAICI 2 isobutylaluminum dichloride
  • the molar ratio of the phosphine ligand to the nickel precursor is less than or equal to 5 and preferably between 2 and 5, preferably equal to 2, 3, 4 or 5.
  • the molar ratio of the Lewis base group and phosphine ligand on the nickel precursor greater than or equal to 5 and preferably between 5 and 30, preferably between 5 and 25, preferably between 5 and 20, preferably between 5 and 15.
  • the molar ratio of the Lewis base group and phosphine ligand to the nickel precursor greater than or equal to 6 and preferably between 6 and 30, preferably between 6 and 25, of preferably between 6 and 20, preferably between 6 and 15.
  • the molar ratio of the activating agent to the phosphine ligand is greater than or equal to 1, preferably greater than or equal to 1, 5, preferably greater than or equal to 2, when the activating agent is present in the composition.
  • the molar ratio of the activating agent to the nickel precursor is preferably greater than or equal to 5, more preferably greater than or equal to 6, and preferably less than or equal to 30, preferably less than or equal to or equal to 25, more preferably less than or equal to 20.
  • compositions according to the invention may also optionally comprise a solvent.
  • a solvent chosen from organic solvents and in particular from alcohols, chlorinated solvents and saturated, unsaturated, aromatic or non-aromatic hydrocarbons, cyclic or otherwise.
  • the solvent is chosen from hexane, cyclohexane, methylcyclohexane, heptane, butane or isobutane or any other hydrocarbon fraction having boiling points above 70 ° C., preferably between 70 ° C.
  • the monoolefins or diolefins preferably having 4 to 20 carbon atoms, cycloocta-1,5-diene, benzene, toluene, ortho-xylene, mesitylene, ethylbenzene, dichloromethane, chlorobenzene, methanol, ethanol, pure or in admixture, and ionic liquids.
  • the solvent is an ionic liquid, it is advantageously chosen from the ionic liquids described in US Pat. Nos. 6,951,831 B2 and FR 2,895,406 B1.
  • compositions according to the invention can be used as a catalyst in a chemical transformation reaction, such as the reaction of hydrogenation, hydroformylation, cross-coupling or oligomerization of olefins.
  • these compositions are used in a process for oligomerizing an olefin feed advantageously having 2 to 10 carbon atoms.
  • the oligomerization process is a process for dimerizing ethylene, in particular butene-1.
  • the oligomerization process according to the invention operates advantageously in the presence of a solvent.
  • the solvent of the oligomerization process may be chosen from organic solvents and preferably from chlorinated solvents and saturated or unsaturated hydrocarbons, aromatic or otherwise, cyclic or otherwise.
  • said solvent is chosen from hexane, cyclohexane, methylcyclohexane, heptane, butane or isobutane, monoolefins or diolefins preferably comprising 4 to 20 carbon atoms, benzene, toluene, toluene or toluene.
  • reaction solvent is an ionic liquid
  • it is advantageously chosen from the ionic liquids described in US Pat. Nos. 6,951,831 B2 and FR 2,895,406 B1.
  • Oligomerization is defined as the conversion of a monomer unit into a compound or mixture of compounds of the general formula C p H 2p with 4 ⁇ p ⁇ 80, preferably with 4 ⁇ p ⁇ 50, most preferably with 4 ⁇ p ⁇ 26 and more preferably with 4 ⁇ p ⁇ 14.
  • the olefins used in the oligomerization process are olefins having 2 to 10 carbon atoms.
  • said olefins are chosen from ethylene, propylene, n-butenes and n-pentenes, alone or as a mixture, pure or diluted.
  • said olefins are diluted, said olefins are diluted with one or more alkane (s) or any other petroleum fraction, such as they are found in "cuts" from petroleum refining or petrochemical processes, such as catalytic cracking or steam cracking.
  • alkane s
  • any other petroleum fraction such as they are found in "cuts" from petroleum refining or petrochemical processes, such as catalytic cracking or steam cracking.
  • the olefin used in the oligomerization process is ethylene.
  • Said olefins can come from non-fossil resources such as biomass.
  • the olefins used in the oligomerization process according to the invention can be produced from alcohols, and in particular by dehydration of alcohols.
  • the concentration of nickel in the catalytic solution is advantageously between 1 .10 8 and 1 mol / L, and preferably between 1 .10 and 1 .10 6 "2 mol / L.
  • the oligomerization process advantageously operates at a total pressure of between atmospheric pressure and 20 MPa, preferably between 0.1 and 8 MPa, and at a temperature between -40 and 250 ° C., preferably between -20 ° C. and 150 ° C.
  • the heat generated by the reaction can be removed by any means known to those skilled in the art.
  • the oligomerization process can be carried out in a closed system, in a semi-open system or continuously, with one or more reaction stages. Vigorous agitation is advantageously used to ensure good contact between the reagent (s) and the catalytic system.
  • the oligomerization process can be carried out batchwise.
  • a selected volu of the solution comprising the composition according to the invention is introduced into reactor preferably provided with the usual devices for stirring, heating and cooling.
  • the oligomerization process can also be carried out continuously.
  • the solution comprising the composition according to the invention is injected into a reactor in which the olefin reacts, preferably with a temperature control.
  • the catalytic composition is destroyed by any usual means known to those skilled in the art, then the reaction products and the solvent are separated, for example by distillation.
  • the olefin that has not been transformed can be recycled to the reactor.
  • the products of the present process can find application as, for example, automotive fuel components, fillers in a hydroformylation process for the synthesis of aldehydes and alcohols, as components for the chemical, pharmaceutical or perfume industry and or as fillers in a metathesis process for the synthesis of propylene and / or as a feedstock for a process for the production of butadiene via an oxidative dehydrogenation or via a metal catalysis step, for example.
  • the reactor is previously dried under vacuum and placed under an ethylene atmosphere. 93 ml of cyclohexane are introduced into the reactor under an ethylene atmosphere. 6 mL of a solution containing the nickel precursor Ni (2-ethylhexanoate) 2 denoted Ni (2-EH) 2 (10 or 20 ⁇ ) and tricyclohexylphosphine PCy 3 (2 or 5 molar equivalents relative to nickel) and pyridine or tetrahydrofuran (5, 8 or 10 molar equivalents relative to nickel) are then introduced into the reactor. Between 1 and 2 g of ethylene are then solubilized in the reactor, stirring is started and the temperature programmed at 40 ° C.
  • the temperature is programmed at 50 ° C (test temperature). 1 ml of a solution of ethylaluminum dichloride (15 molar equivalents relative to nickel) are then introduced. The reactor is put to the test pressure (2 MPa). The consumption of ethylene is monitored until the introduction of 200 g of ethylene or 60 minutes of reaction. The ethylene feed is then cut off. The gas phase is quantified and Qualified by gas phase chromatography (GC), the liquid phase is weighed, neutralized and qualified by GC.
  • GC gas phase chromatography
  • the catalytic compositions according to the invention make it possible to obtain a butene (C4) cut in a yield of at least 90.0% and a butene-1 (1 -C 4) selectivity of at least 59%. , 7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

L'invention concerne une composition catalytique comprenant : au moins un précurseur de nickel de degré d'oxydation (+II), au moins un ligand phosphine de formule PR1R2R3dans lequel les groupements R1, R2 et R3, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements hydrocarbyles, et au moins une base de Lewis, ladite composition présentant un rapport molaire du ligand phosphine sur le précurseur de nickel inférieur ou égal à 5 et un rapport molaire de l'ensemble base de Lewis et ligand phosphine sur le précurseur de nickel supérieur ou égal à 5.

Description

COMPOSITION CATALYTIQUE À BASE DE NICKEL ET DE LIGAND DE
TYPE PHOSPHINE ET D'UNE BASE DE LEWIS ET SON UTILISATION DANS UN
PROCEDE D'OLIGOMERISATION DES OLEFINES
La présente invention concerne une nouvelle composition à base de nickel et son utilisation comme catalyseur dans des réactions de transformations chimiques, et en particulier dans un procédé d'oligomérisation d'une charge oléfinique.
L'invention concerne également un procédé d'oligomérisation d'une charge d'oléfines comprenant la mise en contact de ladite charge avec la composition à base de nickel selon l'invention, et en particulier un procédé de dimérisation de l'éthylène en particulier en butène- 1 mettant en œuvre ladite composition à base de nickel selon l'invention.
Art antérieur
La transformation de l'éthylène grâce à un catalyseur homogène au nickel est étudiée depuis 1950. Cette recherche a conduit au développement et à la commercialisation de différents procédés. La mise au point de systèmes catalytiques capables de dimériser l'éthylène en butènes passe par le choix du métal et des ligands adaptés. Parmi les systèmes existant, plusieurs systèmes catalytiques à base de nickel utilisant des ligands de type phosphine ont été développés.
Ainsi le brevet US 5,237,1 18 B décrit un procédé d'oligomérisation de l'éthylène mettant en oeuvre une composition catalytique comprenant un composé de nickel de degré d'oxidation zéro, un ligand phophine dans des proportions variables par rapport au composé du nickel. Ce brevet décrit l'utilisation par ailleurs d'un acide organique fluoré pour la mise en oeuvre du procédé d'oligomérisation. Ce brevet ne décrit pas, outre la phosphine, la présence d'une base de Lewis dans la composition catalytique. Le brevet US 4,242,531 B décrit un procédé de dimérisation des olefines et met en oeuvre un système catalytique à base de composés de nickel chlorés de degré d'oxydation +2 et d'un activateur de type alkylaluminium halogéné. Ce brevet vise la production de butènes-2 et ne décrit pas outre la phosphine, la présence d'une base de Lewis dans le système catalytique. Le brevet FR 1 ,547,921 décrit une composition catalytique à base d'halogénure de nickel et de phosphine qui nécessite une réduction préalable de la composition en vue de préparer le catalyseur actif. Ce brevet ne décrit pas outre la phosphine, la présence d'une base de Lewis dans la composition catalytique. Les rendements en butènes sont de l'ordre de 63% C4 dont 3% de butènes- 1 .
Le brevet FR 1 , 588,162 décrit un procédé de dimérisation d'oléfines entre C2 et C4 mettant en œuvre un système catalytique comprenant un composé du nickel et une phosphine et en particulier des halogénures d'alkyles avec des rendements en butènes de l'ordre de 80%. Ce brevet ne décrit pas outre la phosphine, la présence d'une base de Lewis dans le système catalytique. Ce brevet vise la production de butènes-2.
Il existe donc toujours un besoin de développer de nouvelles compositions catalytiques plus performantes en termes de rendement et de sélectivité pour l'oligomerisation des oléfines, notamment pour dimérisation de l'éthylène, en particulier en butène-1 .
La demanderesse dans ses recherches a mis au point une nouvelle composition catalytique comprenant un précurseur de nickel de degré d'oxydation (+II), au moins un ligand phosphine, une base de Lewis, tel que le rapport molaire du ligand phosphine sur le précurseur de nickel soit inférieur ou égal à 5 et le rapport molaire de l'ensemble base de Lewis et ligand phosphine sur le précurseur de nickel soit supérieur ou égal à 5. La composition catalytique peut comprendre au moins un agent activateur. Il a été constaté de manière surprenante que de telles compositions présentent des propriétés catalytiques intéressantes. En particulier, ces compositions présentent un bon couple rendement/sélectivité catalytique dans l'oligomérisation des oléfines, plus précisément dans la dimérisation sélective de l'éthylène en butène-1 .
Un objectif de l'invention est de fournir une nouvelle composition à base de nickel. Un autre objectif de l'invention est de proposer un nouveau système catalytique comprenant ladite composition pour des réactions de transformations chimiques, en particulier pour l'oligomérisation des oléfines, notamment la dimérisation de l'éthylène en butène-1 . Description détaillée de l'invention
Composition selon l'invention
La composition catalytique selon l'invention comprend :
- au moins un précurseur de nickel de degré d'oxydation (+11),
- au moins un ligand phosphine de formule PR1 R2R3 dans lequel les groupements R1 ,
R2 et R3, identiques ou différents entre eux, liés ou non entre eux, sont choisis
- parmi les groupements aromatiques substitués ou non et contenant ou non des hétéroéléments,
- et/ou parmi les groupements hydrocarbyles cycliques ou non, substitués ou non et contenant ou non des hétéroéléments,
- et au moins une base de Lewis,
ladite composition présentant un rapport molaire du ligand phosphine sur le précurseur de nickel inférieur ou égal à 5 et un rapport molaire de l'ensemble base de Lewis et ligand phosphine sur le précurseur de nickel supérieur ou égal à 5. Avantageusement selon l'invention, la composition catalytique comprend au moins un ligand phosphine de formule PR1 R2R3 dans lequel les groupements R1 , R2 et R3 sont identiques entre eux.
Les groupements aromatiques R1 , R2 et R3 du ligand phosphine PR1 R2R3 sont de préférence choisis dans le groupe formé par les groupements phényle, o-tolyle, m-tolyle, p-tolyle, mésityle, 3,5-diméthylphényle, 4-n-butylphényle, 4-méthoxyphényle, 2-méthoxyphényle, 3- méthoxyphényle, 4-méthoxyphényle, 2-isopropoxyphényle, 4-méthoxy-3,5-diméthylphényle, 3,5-di-tert-butyl-4-méthoxyphényle, 4-chlorophényle, 3,5-di(trifluorométhyl)phényle, benzyle, naphtyle, bisnaphtyle, pyridyle, bisphényle, furanyle, thiophényle.
Les groupements hydrocarbyles R1 , R2 et R3 du ligand phosphine PR1 R2R3 comprennent avantageusement 1 à 20 atomes de carbone, de préférence 2 à 15 atomes de carbone, de manière préférée entre 3 et 10 atomes de carbone. De préférence, les groupements hydrocarbyles R1 , R2 et R3 du ligand phosphine PR1 R2R3 sont choisis dans le groupe formé par les groupements méthyle, éthyle, propyle, isopropyle, n-butyle, te/t-butyle, cyclopentyle, cyclohexyle, benzyle, adamantyle, de préférence dans le groupe formé par les groupements isopropyle, n-butyle, cyclopentyle et cyclohexyle
Selon l'invention, le précurseur de nickel selon l'invention est de degré d'oxydation +11. Il est de préférence choisi parmi le chlorure de nickel(ll); le chlorure de nickel(ll)(diméthoxyéthane); le bromure de nickel(ll); le bromure de nickel(ll)(diméthoxyéthane); le fluorure de nickel(ll); l'iodure de nickel(ll); le sulfate de nickel(ll); le carbonate de nickel(ll); le dimethylgiyoxime de nickel(ll); l'hydroxyde de nickel(ll); l'hydroxyacétate de nickel(ll); l'oxalate de nickel(ll); les carboxylates de nickel(ll) choisis dans le groupe formé par le 2-éthylhexanoate de nickel(ll), l'acétate de nickel(ll), le trifluoroacétate de nickel(ll), le triflate de nickel(ll), l'acétylacétonate de nickel(ll), l'hexafluoroacétylacétonate de nickel(ll), les phénates de nickel(ll); le chlorure de allylnickel(ll); le bromure de allylnickel(ll); le dimère du chlorure de methallylnickel(ll); l'hexafluorophosphate de allylnickel(ll); l'hexafluorophosphate de methallylnickel(ll); le biscyclopentadienyle de nickel(ll); le bisallyl de nickel(ll) et le bisméthallyl nickel(ll); sous leur forme hydratée ou non, pris seul ou en mélange.
De préférence, le précurseur de nickel est choisi parmi le sulfate de nickel(ll); le carbonate de nickel(ll); le dimethylgiyoxime de nickel(ll); l'hydroxyde de nickel(ll), l'hydroxyacétate de nickel(ll); l'oxalate de nickel(ll); les carboxylates de nickel(ll) choisis dans le groupe formé par le 2-éthylhexanoate de nickel(ll), l'acétate de nickel(ll), le trifluoroacétate de nickel(ll), le triflate de nickel(ll), l'acétylacétonate de nickel(ll), l'hexafluoroacétylacétonate de nickel(ll), les phénates de nickel(ll); l'hexafluorophosphate de allylnickel(ll); l'hexafluorophosphate de methallylnickel(ll); le biscyclopentadienyle de nickel(ll); le bisallyl de nickel(ll) et le bisméthallyl nickel(ll); sous leur forme hydratée ou non, pris seul ou en mélange.
La composition catalytique selon l'invention comprend une base de Lewis. Au sens de la présente invention, on entend par « base de Lewis », toute entité chimique ne contenant pas de phosphore dont un constituant possède un doublet ou plus d'électrons libres ou non liants. Les bases de Lewis selon l'invention correspondent en particulier à tout ligand comprenant un atome d'oxygène ou d'azote possédant un doublet d'électrons libres ou non liants, ou une double liaison π capable de former avec le nickel une coordination de type η2. Selon l'invention la base de Lewis est une base de Lewis oxygénée ou azotée.
La base de Lewis selon l'invention est de préférence choisie parmi le diéthyléther, le méthyle tert-butyléther, le tétrahydrofurane, le 1 ,4-dioxane, l'isoxazole, la pyridine, la pyrazine, et la pyrimidine. De préférence, la base de Lewis est choisie parmi le tétrahydrofurane, le 1 ,4- dioxane et la pyridine.
La composition selon l'invention peut également comprendre un agent activateur choisi dans le groupe formé par les composés chlorés et bromés d'hydrocarbylaluminium pris seuls ou en mélange.
De manière avantageuse, ledit agent activateur est choisi dans le groupe formé par le dichlorure de méthylaluminium (MeAICI2), le dichlorure d'éthylaluminium (EtAICI2), le sesquichlorure d'éthylaluminium (Et3AI2CI3), le chlorure de diéthylaluminium (Et2AICI), le chlorure de diisobutylaluminium (/Bu2AICI), le dichlorure d'isobutylaluminium (/BuAICI2), pris seuls ou en mélange.
Selon l'invention, le rapport molaire du ligand phosphine sur le précurseur de nickel est inférieur ou égal à 5 et de préférence compris entre 2 et 5, de préférence égal à 2, 3, 4 ou 5.
Selon l'invention, le rapport molaire de l'ensemble base de Lewis et ligand phosphine sur le précurseur de nickel supérieur ou égal à 5 et de préférence compris entre 5 et 30, de préférence entre 5 et 25, de préférence entre 5 et 20, de préférence entre 5 et 15. De préférence le rapport molaire de l'ensemble base de Lewis et ligand phosphine sur le précurseur de nickel supérieur ou égal à 6 et de préférence compris entre 6 et 30, de préférence entre 6 et 25, de préférence entre 6 et 20, de préférence entre 6 et 15.
Avantageusement, le rapport molaire de l'agent activateur sur le ligand phosphine est supérieur ou égal à 1 , de préférence supérieur ou égal à 1 ,5, de préférence supérieur ou égal à 2, lorsque l'agent activateur est présent dans la composition.
Selon l'invention, le rapport molaire de l'agent activateur sur le précurseur de nickel est de préférence est supérieur ou égal à 5, de manière plus préférée supérieur ou égal à 6, et de préférence inférieur ou égal à 30, de préférence inférieur ou égal à 25, de manière plus préférée inférieur ou égal à 20.
Les rapports molaires cités dans la présente invention notamment par rapport au précurseur de nickel sont entendus et exprimés par rapport au nombre de moles de nickel apportées dans la composition catalytique. Les compositions selon l'invention peuvent également éventuellement comprendre un solvant. On peut utiliser un solvant choisi parmi les solvants organiques et en particulier parmi les alcools, les solvants chlorés et les hydrocarbures saturés, insaturés, aromatiques ou non, cycliques ou non. De préférence, le solvant est choisi parmi l'hexane, le cyclohexane, le méthylecyclohexane, l'heptane, le butane ou l'isobutane ou toute autre coupe hydrocarbure ayant des points d'ébullition supérieurs à 70°C, de préférence compris entre 70°C et 200°C et de préférence compris entre 90°C et 180°C, les monooléfines ou dioléfines comportant de préférence 4 à 20 atomes de carbone, le cycloocta-1 ,5-diène, le benzène, le toluène, l'ortho-xylène, le mésitylène, l'éthylbenzène, le dichlorométhane, le chlorobenzène, le méthanol, l'éthanol, purs ou en mélange, et les liquides ioniques. Dans le cas où le solvant est un liquide ionique, il est avantageusement choisi parmi les liquides ioniques décrits dans les brevets US 6, 951 ,831 B2 et FR 2895406 B1 .
Utilisation de la composition selon l'invention
Les compositions selon l'invention peuvent être utilisées comme catalyseur dans une réaction de transformation chimique, telle que la réaction d'hydrogénation, d'hydroformylation, de couplage croisé ou d'oligomérisation des oléfines. En particulier, ces compositions sont utilisées dans un procédé d'oligomerisation d'une charge d'oléfines ayant avantageusement 2 à 10 atomes de carbone.
De préférence, le procédé d'oligomerisation est un procédé de dimérisation de l'éthylène, en particulier en butène-1 .
Le procédé d'oligomérisation selon l'invention opère avantageusement en présence d'un solvant.
Le solvant du procédé d'oligomérisation peut être choisi parmi les solvants organiques et de préférence parmi les solvants chlorés et les hydrocarbures saturés, insaturés, aromatiques ou non, cycliques ou non. En particulier, ledit solvant est choisi parmi l'hexane, le cyclohexane, le méthylecyclohexane, l'heptane, le butane ou l'isobutane, les monooléfines ou dioléfines comportant de préférence 4 à 20 atomes de carbone, le benzène, le toluène, l'ortho-xylène, le mésitylène, l'éthylbenzène, le dichlorométhane, le chlorobenzène, purs ou en mélange, et les liquides ioniques. Dans le cas où ledit solvant de réaction est un liquide ionique, il est avantageusement choisi parmi les liquides ioniques décrits dans les brevets US 6, 951 ,831 B2 et FR 2895406 B1 . L'oligomérisation est définie comme la transformation d'une unité monomère en un composé ou mélange de composés de formule générale CpH2p avec 4 < p < 80, de préférence avec 4 < p < 50, de manière préférée avec 4 < p < 26 et de manière plus préférée avec 4 < p < 14. Les oléfines utilisées dans le procédé d'oligomérisation sont des oléfines comportant de 2 à 10 atomes de carbone. De préférence, lesdites oléfines sont choisies parmi l'éthylène, le propylène, les n-butènes et les n-pentènes, seules ou en mélange, pures ou diluées.
Dans le cas où lesdites oléfines sont diluées, lesdites oléfines sont diluées par un ou plusieurs alcane(s) ou toute autre coupe pétrolière, tels qu'on les trouve dans des « coupes » issues des procédés de raffinage du pétrole ou de la pétrochimie, comme le craquage catalytique ou le craquage à la vapeur.
De manière préférée, l'oléfine utilisée dans le procédé d'oligomérisation est l'éthylène.
Lesdites oléfines peuvent venir de ressources non fossiles telles que la biomasse. Par exemple, les oléfines utilisées dans le procédé d'oligomérisation selon l'invention peuvent être produites à partir d'alcools, et en particulier par déshydratation des alcools.
La concentration du nickel dans la solution catalytique est avantageusement comprise entre 1 .10 8 et 1 mol/L, et de préférence entre 1 .10 6 et 1 .10"2 mol/L.
Le procédé d'oligomérisation opère avantageusement à une pression totale comprise entre la pression atmosphérique et 20 MPa, de préférence entre 0,1 et 8 MPa, et à une température comprise entre -40 et 250°C, de préférence entre -20°C et 150°C.
La chaleur engendrée par la réaction peut être éliminée par tous les moyens connus de l'homme du métier.
Le procédé d'oligomérisation peut être conduit en système fermé, en système semi-ouvert ou en continu, avec un ou plusieurs étages de réaction. Une vigoureuse agitation est avantageusement mise en œuvre pour assurer un bon contact entre le ou les réactifs et le système catalytique.
Le procédé d'oligomérisation peut être mis en œuvre en discontinu. Dans ce cas, un volu choisi de la solution comprenant la composition selon l'invention est introduit dans réacteur de préférence muni des dispositifs habituels d'agitation, de chauffage et de refroidissement.
Le procédé d'oligomerisation peut également être mis en œuvre en continu. Dans ce cas, la solution comprenant la composition selon l'invention est injectée dans un réacteur dans lequel réagit l'oléfine, de préférence avec un contrôle de la température.
La composition catalytique est détruite par tout moyen habituel connu par l'homme du métier, puis les produits de la réaction ainsi que le solvant sont séparés, par exemple par distillation. L'oléfine qui n'a pas été transformée peut être recyclée dans le réacteur.
Les produits du présent procédé peuvent trouver une application par exemple comme composants de carburants pour automobiles, comme charges dans un procédé d'hydroformylation pour la synthèse d'aldéhydes et d'alcools, comme composants pour l'industrie chimique, pharmaceutique ou la parfumerie et/ou comme charges dans un procédé de métathèse pour la synthèse de propylène et/ou comme charge d'un procédé assurant la production de butadiène via une déshydrogénation oxydante ou via une étape de catalyse métallique par exemple.
Les exemples suivants illustrent l'invention sans en limiter la portée.
EXEMPLES :
Mise en œuyre du test catalytique :
Le réacteur est préalablement séché sous vide et mis sous atmosphère d'éthylène. 93 mL de cyclohexane sont introduits dans le réacteur sous atmosphère d'éthylène. 6 mL d'une solution contenant le précurseur de nickel Ni(2-éthylhexanoate)2 noté Ni(2-EH)2 (10 ou 20 μηιοΙ) et la tricyclohexylephosphine PCy3 (2 ou 5 équivalents molaires par rapport au nickel) et de la pyridine ou du tétrahydrofurane (5, 8 ou 10 équivalents molaires par rapport au nickel) sont ensuite introduits dans le réacteur. Entre 1 et 2 g d'éthylène sont alors solubilisés dans le réacteur, l'agitation est lancée et la température programmée à 40°C. Après dégazage du réacteur, la température est programmée à 50°C (température de test). 1 mL d'une solution de dichlorure d'éthylaluminium (15 équivalents molaires par rapport au nickel) sont ensuite introduits. Le réacteur est mis à la pression de test (2 MPa). La consommation d'éthylène est suivie jusqu'à l'introduction de 200 g d'éthylène ou 60 minutes de réaction. L'alimentation en éthylène est alors coupée. La phase gaz est quantifiée et qualifiée par chromatographie en phase gaz (GC), la phase liquide est pesée, neutralisée et qualifiée par GC.
Test catalytiques
Exemples 1 -3 : Exemples comparatifs.
Figure imgf000010_0001
Pyridine
2 - 60 - - - - - (10)
THF
3 - 60 - - - - - (10) nNi(2 EH)2 = 10 μηιοΙ, 15 éq. EtAICI2, 2 MPa, 50°C, cyclohexane (100 mL). * Rendement C4 correspondant pourcentage poids de la coupe C4 formé dans les produits. Pourcentage de 1 -C4 dans la coupe C4.
Exemples 4-7 : Exemples selon l'invention.
Base de (Ligand +
Ligand Activité
Entrée Lewis, Base de Temps (min) % C4* % C6 % C8+ %1 -C4** (éq) (103 g/(g.h))
(éq.) Lewis)/Nickel
PCy3 Pyridine
4 30 297 90,2 8,9 0,9 62,6 (2) (8) 10
PCy3 Pyridine
5 18 510 90,0 8,9 1 ,1 59,7 (5) (5) 10
PCy3 Pyridine
6 60 44 95,1 4,7 0,2 94,2 (5) (10) 15
PCy3 THF
7 29 295 92,8 6,7 0,5 89,6 (5) (5) 10 nNi(2 EH)2 = 20 μηιοΙ, 15 éq. EtAICI2, 2 MPa, 50°C, cyclohexane (100 mL). * Rendement en C4 correspondant pourcentage poids de la coupe C4 formé dans les produits. ** Pourcentage de 1 -C4 dans la coupe C4.
On constate que les compositions catalytiques selon l'invention permettent l'obtention d'une coupe butènes (C4) dans un rendement d'au moins 90,0 % et une sélectivité en butène-1 (1 -C4) d'au moins 59,7%.

Claims

REVENDICATIONS
Composition catalytique comprenant :
- au moins un précurseur de nickel de degré d'oxydation (+II),
- au moins un ligand phosphine de formule PR1 R2R3 dans lequel les groupements R1 , R2 et R3, identiques ou différents entre eux, liés ou non entre eux, sont choisis
- parmi les groupements aromatiques substitués ou non et contenant ou non des hétéroéléments,
- et/ou parmi les groupements hydrocarbyles cycliques ou non, substitués ou non et contenant ou non des hétéroéléments,
- et au moins une base de Lewis,
ladite composition présentant un rapport molaire du ligand phosphine sur le précurseur de nickel inférieur ou égal à 5 et un rapport molaire de l'ensemble base de Lewis et ligand phosphine sur le précurseur de nickel supérieur ou égal à 5.
Composition selon la revendication 1 dans laquelle rapport molaire du ligand phosphine sur le précurseur de nickel est compris entre 2 et 5.
Composition selon la revendication 1 ou 2 dans laquelle le précurseur de nickel est choisi parmi le chlorure de nickel(ll); le chlorure de nickel(ll)(diméthoxyéthane); le bromure de nickel(ll); le bromure de nickel(ll)(diméthoxyéthane); le fluorure de nickel(ll); l'iodure de nickel(ll); le sulfate de nickel(ll); le carbonate de nickel(ll); le dimethylglyoxime de nickel(ll); l'hydroxyde de nickel(ll); l'hydroxyacétate de nickel(ll); l'oxalate de nickel(ll); les carboxylates de nickel(ll) choisis dans le groupe formé par le 2-éthylhexanoate de nickel(ll), l'acétate de nickel(ll), le trifluoroacétate de nickel(ll), le triflate de nickel(ll), l'acétylacétonate de nickel(ll), l'hexafluoroacétylacétonate de nickel(ll), les phénates de nickel(ll); le chlorure de allylnickel(ll); le bromure de allylnickel(ll); le dimère du chlorure de methallylnickel(ll); l'hexafluorophosphate de allylnickel(ll); l'hexafluorophosphate de methallylnickel(ll); le biscyclopentadienyle de nickel(ll); le bisallyl de nickel(ll) et le bisméthallyl nickel(ll); sous leur forme hydratée ou non, pris seul ou en mélange. Composition selon la revendication 1 ou 2 dans laquelle le précurseur de nickel est choisi parmi le sulfate de nickel(ll); le carbonate de nickel(ll); le dimethylglyoxime de nickel(ll); l'hydroxyde de nickel(ll), l'hydroxyacétate de nickel(ll); l'oxalate de nickel(ll); les carboxylates de nickel(ll) choisis dans le groupe formé par le 2-éthylhexanoate de nickel(ll), l'acétate de nickel(ll), le trifluoroacétate de nickel(ll), le triflate de nickel(ll), l'acétylacétonate de nickel(ll), l'hexafluoroacétylacétonate de nickel(ll), les phénates de nickel(ll); l'hexafluorophosphate de allylnickel(ll); l'hexafluorophosphate de methallylnickel(ll); le biscyclopentadienyle de nickel(ll); le bisallyl de nickel(ll) et le bisméthallyl nickel(ll); sous leur forme hydratée ou non, pris seul ou en mélange.
Composition selon l'une des revendications précédentes dans laquelle les groupements R1 , R2 et R3 dudit ligand phosphine sont identiques.
Composition selon l'une des revendications précédentes dans laquelle les groupements aromatiques R1 , R2 et R3 du ligand phosphine PR1 R2R3 sont choisis dans le groupe formé par les groupements phényle, o-tolyle, m-tolyle, p-tolyle, mésityle, 3,5- diméthylphényle, 4-n-butylephényle, 4-méthoxyphényle, 2-méthoxyphényle, 3- méthoxyphényle, 4-méthoxyphényle, 2-isopropoxyphényle, 4-méthoxy-3,5- diméthylphényle, 3,5-di-tert-butyl-4-méthoxyphényle, 4-chlorophényle, 3,5- di(trifluorométhyl)phényle, benzyle, naphthyle, bisnaphtyle, pyridyle, bisphényle, furanyle, thiophényle.
Composition selon l'une des revendications précédentes dans laquelle les groupements hydrocarbyles R1 , R2 et R3 du ligand phosphine PR1 R2R3 comprennent 1 à 20 atomes de carbone.
Composition selon la revendication 7 dans laquelle les groupements hydrocarbyles R1 , R2 et R3 du ligand phosphine PR1 R2R3 sont choisis dans le groupe formé par les groupements méthyle, éthyle, propyle, isopropyle, n-butyle, tert-butyle, cyclopentyle, cyclohexyle, benzyle, adamantyle.
Composition selon l'une des revendications précédentes dans laquelle la base de Lewis est choisie parmi le diéthyléther, le méthyle tert-butyléther, le tétrahydrofurane, le 1 ,4- dioxane, l'isoxazole, la pyridine, la pyrazine, et la pyrimidine.
10. Composition selon l'une des revendications précédentes comprenant en outre un agent activateur choisi dans le groupe formé par les composés chlorés et bromés d'hydrocarbylaluminium, pris seuls ou en mélange.
1 1 . Composition selon la revendication 10 dans laquelle l'agent activateur est choisi dans le groupe formé par le dichlorure de méthylaluminium (MeAICI2), le dichlorure d'éthylaluminium (EtAICI2), le sesquichlorure d'éthylaluminium (Et3AI2CI3), le chlorure de diéthylaluminium (Et2AICI), le chlorure de diisobutylaluminium (/Bu2AICI), le dichlorure d'isobutylaluminium (/BuAICI2), pris seuls ou en mélange.
12. Composition selon la revendication 10 ou 1 1 dans lequel le rapport molaire de l'agent activateur sur le ligand phosphine est supérieur ou égal à 1 .
13. Procédé d'oligomérisation d'une charge d'oléfines comprenant la mise en contact de ladite charge avec une composition selon l'une des revendications 1 à 12.
14. Procédé selon la revendication 13 dans lequel la charge comprend des oléfines ayant un nombre d'atomes de carbone compris entre 2 et 10.
15. Procédé selon la revendication 13 ou 14 conduit en système fermé, en système semi- ouvert, en continu ou en discontinu.
16. Procédé selon l'une des revendications 13 à 15 dans lequel ledit procédé est un procédé de dimérisation de l'éthylène.
17. Utilisation des produits du procédé selon l'une des revendications 13 à 16 comme composants de carburants pour automobiles, comme charges dans un procédé d'hydroformylation pour la synthèse d'aldéhydes et d'alcools, comme composants pour l'industrie chimique, pétrochimique, pharmaceutique ou la parfumerie et/ou comme charges dans un procédé de métathèse pour la synthèse de propylène et/ou comme charge d'un procédé assurant la production de butadiène via une déshydrogénation oxydante ou via une étape de catalyse métallique.
PCT/EP2016/080737 2015-12-18 2016-12-13 Composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines WO2017102689A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112018012279-3A BR112018012279B1 (pt) 2015-12-18 2016-12-13 Composição catalítica à base de níquel e de ligando do tipo fosfina e de uma base de lewis e sua utilização em um processo de oligomerização das olefinas
US16/062,725 US10646860B2 (en) 2015-12-18 2016-12-13 Catalytic composition comprising nickel, a phosphine-type ligand and a Lewis base, and use thereof in an olefin oligomerisation method
CA3007314A CA3007314C (fr) 2015-12-18 2016-12-13 Composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines
PL425935A PL239961B1 (pl) 2015-12-18 2016-12-13 Kompozycja katalityczna zawierająca nikiel, ligand typu fosfinowego oraz zasadę Lewisa oraz jej zastosowanie w sposobie oligomeryzacji olefin
KR1020187020748A KR102621942B1 (ko) 2015-12-18 2016-12-13 니켈, 포스핀-유형 리간드 및 루이스 염기를 포함하는 촉매 조성물, 및 올레핀 올리고머화 방법에서의 그 용도
RU2018126310A RU2744575C2 (ru) 2015-12-18 2016-12-13 Новая каталитическая композиция на основе никеля и лиганда фосфинового типа и основания льюиса и его применение в способе олигомеризации олефинов
CN201680074034.2A CN108430627B (zh) 2015-12-18 2016-12-13 包含镍、膦型配体和路易斯碱的催化组合物和其在烯烃低聚方法中的用途
JP2018530900A JP6876702B2 (ja) 2015-12-18 2016-12-13 ニッケル、ホスフィン型配位子およびルイス塩基を含む触媒組成物とオレフィンオリゴマー化法におけるその使用
SA518391752A SA518391752B1 (ar) 2015-12-18 2018-06-07 تركيب حفزي يشمل نيكل، ربيطة من نوع فوسفين وقاعدة لويس، واستخدامه في طريقة إجراء أوليجومرية لأولفين

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562756 2015-12-18
FR1562756A FR3045414B1 (fr) 2015-12-18 2015-12-18 Nouvelle composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines

Publications (1)

Publication Number Publication Date
WO2017102689A1 true WO2017102689A1 (fr) 2017-06-22

Family

ID=55300685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/080737 WO2017102689A1 (fr) 2015-12-18 2016-12-13 Composition catalytique a base de nickel et de ligand de type phosphine et d'une base de lewis et son utilisation dans un procede d'oligomerisation des olefines

Country Status (12)

Country Link
US (1) US10646860B2 (fr)
JP (1) JP6876702B2 (fr)
KR (1) KR102621942B1 (fr)
CN (1) CN108430627B (fr)
BR (1) BR112018012279B1 (fr)
CA (1) CA3007314C (fr)
FR (1) FR3045414B1 (fr)
PL (1) PL239961B1 (fr)
RU (1) RU2744575C2 (fr)
SA (1) SA518391752B1 (fr)
TW (1) TWI756197B (fr)
WO (1) WO2017102689A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039430B1 (fr) * 2015-07-29 2019-07-05 IFP Energies Nouvelles Nouvelle composition catalytique a base de nickel et de ligand de type phosphine et son utilisation dans un procede d'oligomerisation des olefines
FR3068621B1 (fr) 2017-07-10 2020-06-26 IFP Energies Nouvelles Procede d’oligomerisation mettant en oeuvre un vortex
FR3068620B1 (fr) 2017-07-10 2020-06-26 IFP Energies Nouvelles Procede d’oligomerisation mettant en oeuvre un dispositf reactionnel comprenant un moyen de dispersion
FR3083235B1 (fr) 2018-06-29 2021-12-03 Ifp Energies Now Procede d'oligomerisation en cascade de reacteurs gaz liquide agites avec injection etagee d'ethylene
FR3086288A1 (fr) 2018-09-21 2020-03-27 IFP Energies Nouvelles Procede d'oligomerisation d'ethylene dans un reacteur gaz/liquide compartimente
FR3086551A1 (fr) * 2018-09-28 2020-04-03 IFP Energies Nouvelles Composition catalytique a base de nickel (ii)
FR3096587B1 (fr) 2019-05-28 2021-06-11 Ifp Energies Now Reacteur d’oligomerisation compartimente
FR3099476B1 (fr) 2019-07-31 2021-07-30 Ifp Energies Now Procede d’oligomerisation mettant en œuvre un recycle du ciel gazeux
FR3102685B1 (fr) 2019-11-06 2021-10-29 Ifp Energies Now Procédé d’oligomérisation d’oléfines dans un réacteur d’oligomérisation
FR3105019B1 (fr) 2019-12-18 2022-07-22 Ifp Energies Now Reacteur gaz/liquide d’oligomerisation a zones successives de diametre variable
FR3105018B1 (fr) 2019-12-18 2021-12-10 Ifp Energies Now Reacteur gaz/liquide d’oligomerisation comprenant des internes transversaux
FR3108264B1 (fr) 2020-03-19 2022-04-08 Ifp Energies Now Installation d’oligomérisation d’éthylène pour produire des alpha-oléfines
FR3112342A1 (fr) 2020-07-09 2022-01-14 IFP Energies Nouvelles Procede d’oligomerisation mettant en œuvre un echangeur gaz/liquide
FR3112775B1 (fr) 2020-07-24 2022-07-01 Ifp Energies Now Procédé d’oligomérisation mettant en oeuvre un recycle du ciel gazeux
FR3117890B1 (fr) 2020-12-23 2024-01-12 Ifp Energies Now Reacteur gaz/liquide d’oligomerisation comprenant un double distributeur gaz/liquide
FR3117891A1 (fr) 2020-12-23 2022-06-24 IFP Energies Nouvelles Reacteur gaz/liquide d’oligomerisation comprenant une conduite centrale
FR3121439B1 (fr) 2021-03-30 2023-03-24 Ifp Energies Now Procede d'oligomerisation comprenant une etape de recyclage d'un solvant prealablement refroidi
FR3123354B1 (fr) 2021-05-28 2023-05-26 Ifp Energies Now Procede d'oligomerisation dans un reacteur a zones de diametres variables comprenant une etape de recyclage d'un solvant prealablement refroidi

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166114A (en) * 1992-01-14 1992-11-24 Phillips Petroleum Company Ethylene dimerization and catalyst therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187434A (ja) * 1986-02-12 1987-08-15 Asahi Chem Ind Co Ltd ジフエニルカルボン酸エステルの製造法
JPH0678263B2 (ja) * 1986-07-01 1994-10-05 旭化成工業株式会社 4―(パラフルオロベンゾイル)フェノール類の製造方法
FR2650760B1 (fr) * 1989-08-08 1991-10-31 Inst Francais Du Petrole Nouvelle composition catalytique et sa mise en oeuvre pour l'oligomerisation des monoolefines
JPH0429957A (ja) * 1990-05-25 1992-01-31 Ihara Chem Ind Co Ltd ビアリール誘導体の製造方法
EP0646413B1 (fr) * 1993-09-22 2000-03-01 Institut Français du Pétrole Nouvelle composition contenant du nickel pour la catalyse et procédé de dimérisation et d'oligomérisation des oléfines
CN1077577C (zh) * 1997-10-31 2002-01-09 中国石油化工总公司 乙烯二聚催化剂及由其与乙烯聚合催化剂组成的催化剂体系
US7354880B2 (en) * 1998-07-10 2008-04-08 Univation Technologies, Llc Catalyst composition and methods for its preparation and use in a polymerization process
US6825148B2 (en) * 2001-04-10 2004-11-30 Shell Oil Company Nickel-containing ethylene oligomerization catalyst and use thereof
US7232869B2 (en) * 2005-05-17 2007-06-19 Novolen Technology Holdings, C.V. Catalyst composition for olefin polymerization
ES2371218T3 (es) * 2009-04-09 2011-12-28 Saudi Basic Industries Corporation Composición de catalizador y procedimiento para la oligomerización de etileno.
FR2979836B1 (fr) * 2011-09-08 2014-08-08 IFP Energies Nouvelles Nouvelle composition catalytique a base de nickel et procede d'oligomerisation des olefines utilisant ladite composition
FR3020286B1 (fr) * 2014-04-28 2017-12-08 Ifp Energies Now Nouveaux complexes a base de nickel et leur utilisation dans un procede de transformations des olefines
FR3020285B1 (fr) * 2014-04-28 2017-12-08 Ifp Energies Now Nouvelle composition catalytique a base de nickel et son utilisation dans un procede d'oligomerisation des olefines
FR3020287B1 (fr) * 2014-04-28 2017-12-08 Ifp Energies Now Nouveaux complexes cycliques a base de nickel et leur utilisation dans un procede de transformation des olefines
FR3039431B1 (fr) * 2015-07-29 2019-05-31 IFP Energies Nouvelles Nouvelle composition catalytique a base de nickel et d'un ligand de type phosphine complexe au nickel et son utilisation dans un procede d'oligomerisation des olefines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166114A (en) * 1992-01-14 1992-11-24 Phillips Petroleum Company Ethylene dimerization and catalyst therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. CEDER ET AL: "Catalytic dimerization of ethylene to 1-butene by square-planar nickel complexes", JOURNAL OF MOLECULAR CATALYSIS, vol. 68, no. 1, 1 August 1991 (1991-08-01), NL, pages 23 - 31, XP055299089, ISSN: 0304-5102, DOI: 10.1016/0304-5102(91)80058-B *

Also Published As

Publication number Publication date
CN108430627B (zh) 2022-05-24
CA3007314A1 (fr) 2017-06-22
BR112018012279A2 (pt) 2018-11-27
PL239961B1 (pl) 2022-01-31
TWI756197B (zh) 2022-03-01
RU2018126310A3 (fr) 2020-03-25
CN108430627A (zh) 2018-08-21
FR3045414B1 (fr) 2019-12-27
PL425935A1 (pl) 2019-07-29
TW201735998A (zh) 2017-10-16
KR20180096724A (ko) 2018-08-29
SA518391752B1 (ar) 2021-11-02
KR102621942B1 (ko) 2024-01-05
BR112018012279B1 (pt) 2020-12-15
RU2744575C2 (ru) 2021-03-11
FR3045414A1 (fr) 2017-06-23
US20190001317A1 (en) 2019-01-03
CA3007314C (fr) 2023-09-19
JP2019500209A (ja) 2019-01-10
RU2018126310A (ru) 2020-01-20
US10646860B2 (en) 2020-05-12
JP6876702B2 (ja) 2021-05-26

Similar Documents

Publication Publication Date Title
CA3007314C (fr) Composition catalytique a base de nickel et de ligand de type phosphine et d&#39;une base de lewis et son utilisation dans un procede d&#39;oligomerisation des olefines
EP2567752B1 (fr) Nouvelle composition catalytique à base de nickel et procédé d&#39;oligomérisation des oléfines utilisant ladite composition
EP2572782B1 (fr) Procédé de séparation du butène-2 d&#39;une coupe C4 contenant du butène-2 et du butène-1 par oligomérisation sélective du butène-1
EP3368217A1 (fr) Composition catalytique a base de nickel en presence d&#39;un activateur specifique et son utilisation dans un procede d&#39;oligomerisation des olefines
EP2939742A1 (fr) Nouvelle composition catalytique à base de nickel et son utilisation dans un procédé d&#39;oligomérisation des oléfines
FR3039430B1 (fr) Nouvelle composition catalytique a base de nickel et de ligand de type phosphine et son utilisation dans un procede d&#39;oligomerisation des olefines
EP2939744A1 (fr) Nouveaux complexes cycliques à base de nickel et leur utilisation dans un procédé de transformation des olefines
WO2017016688A1 (fr) Nouvelle composition catalytique à base de nickel et d&#39;un ligand de type phosphine complexé au nickel et son utilisation dans un procédé d&#39;oligomérisation des oléfines
EP2572783B1 (fr) Procédé de séparation du pentène-2 d&#39;une ocupe C5 contenant du pentène-2 et du pentène-1 par oligomérisation sélective du pentène-1
EP3013841B1 (fr) Nouveau complexe à base de nickel et son utilisation dans un procede d&#39;oligomerisation des olefines
WO2019105844A1 (fr) Nouvelle composition catalytique a base de nickel, d&#39;un phosphonium et son utilisation pour l&#39;oligomerisation des olefines
WO2017207280A1 (fr) Composition catalytique a base de chrome et d&#39;un ligand a base de phosphine et son utilisation dans un procede de procuction d&#39;octenes
WO2019105843A1 (fr) Nouvelle composition catalytique a base de nickel, d&#39;un compose phosphoree et d&#39;un acide sulfonique et son utilisation pour l&#39;oligomerisation des olefines
FR3087773A1 (fr) Nouveau compose a base d’aluminium
FR3082759A1 (fr) Composition catalytique a base de nickel et d&#39;un reducteur organique
FR3051793A1 (fr) Complexes a base de nickel, et de ligands de type oxyde de phosphine secondaire et son utilisation dans un procede d&#39;oligomerisation des olefines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007314

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018530900

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: P.425935

Country of ref document: PL

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012279

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187020748

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018126310

Country of ref document: RU

Ref document number: 1020187020748

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 112018012279

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180615

122 Ep: pct application non-entry in european phase

Ref document number: 16819303

Country of ref document: EP

Kind code of ref document: A1