WO2017091997A1 - 散热***及具有散热***的飞行器 - Google Patents

散热***及具有散热***的飞行器 Download PDF

Info

Publication number
WO2017091997A1
WO2017091997A1 PCT/CN2015/096253 CN2015096253W WO2017091997A1 WO 2017091997 A1 WO2017091997 A1 WO 2017091997A1 CN 2015096253 W CN2015096253 W CN 2015096253W WO 2017091997 A1 WO2017091997 A1 WO 2017091997A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fan
fins
dissipation system
heat dissipation
Prior art date
Application number
PCT/CN2015/096253
Other languages
English (en)
French (fr)
Inventor
张磊
冯建刚
唐尹
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201580069093.6A priority Critical patent/CN107211556B/zh
Priority to CN201910098293.4A priority patent/CN109673139B/zh
Priority to PCT/CN2015/096253 priority patent/WO2017091997A1/zh
Publication of WO2017091997A1 publication Critical patent/WO2017091997A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat dissipation technology, and more particularly to a heat dissipation system and an aircraft having the same.
  • the integration degree of chips is getting higher and higher, the chip size is getting smaller and smaller, and the heat flux density of the chip is also getting higher and higher.
  • the narrow space structure inside the product is not conducive to the heat dissipation of the chip.
  • Temperature is a key factor affecting the reliability of the chip. As the temperature increases, the failure rate of the chip increases as a geometric multiple. Therefore, how to quickly and efficiently dissipate heat from the chip is an important factor in determining the reliability of the product.
  • This solution uses a fan and a heat sink to reduce the heat flux density of the chip by using a heat sink, and then uses a fan to blow the heat sink of the heat sink.
  • the forced convection heat transfer dissipates the heat from the heat sink to reduce the temperature of the chip.
  • Aircraft especially unmanned aerial vehicles, have some chips inside the fuselage, and the design of these chip cooling solutions is also affected by the narrow space inside the fuselage.
  • the invention relates to a heat dissipation system comprising: a substrate, a plurality of heat sinks and a fan.
  • the substrate has a first surface and a second surface opposite the first surface.
  • the plurality of fins are disposed on the first surface of the substrate.
  • the fan has a tuyere disposed on one side of the first surface of the substrate. The tuyere of the fan is inclined with respect to the first surface of the substrate, and the tuyere of the fan faces the plurality of fins and is inclined toward the extending direction of the plurality of fins.
  • the invention also relates to a heat dissipation system comprising: a heat sink and a fan.
  • the heat sink includes a plurality of airflow channels, each airflow channel having an airflow inlet.
  • the fan has a tuyere disposed on one side of the heat sink. The tuyere of the fan is disposed obliquely with respect to the heat dissipating device, and the tuyere of the fan faces the airflow inlet of the plurality of airflow passages and is inclined toward the extending direction of the airflow passage.
  • the invention also relates to an aircraft comprising: a fuselage and a heat dissipation system.
  • the body includes: a housing, an accommodating space, and a heat generating component.
  • the accommodating space is surrounded by the housing.
  • the heat generating component is housed in the accommodating space.
  • the heat dissipation system is for dissipating heat generated by the heat generating component.
  • the heat dissipation system is disposed in the accommodating space, and the heat dissipation system includes: a heat conducting plate, a plurality of heat sinks, and a fan.
  • the heat conducting plate is attached to the heat generating component.
  • the plurality of fins are located on one side of the heat conducting plate for dissipating heat absorbed by the heat conducting plate from the heat generating component.
  • the fan has a tuyere disposed at one end of the plurality of fins. The tuyere of the fan faces the plurality of fins and is inclined toward the extending direction of
  • the invention also relates to an aircraft comprising: a fuselage and a heat dissipation system.
  • the body includes: a housing, an accommodating space, and a heat generating component.
  • the accommodating space is surrounded by the housing.
  • the heat generating component is housed in the accommodating space.
  • the heat dissipation system is configured to dissipate heat generated by the heat generating component.
  • the heat dissipation system is disposed in the accommodating space, and the heat dissipation system includes: a heat dissipation device and a fan.
  • the heat sink includes a plurality of airflow passages, each of the airflow passages having an airflow inlet.
  • the fan has a tuyere disposed on one side of the heat sink.
  • the tuyere of the fan is disposed obliquely with respect to the heat dissipating device, and the tuyere of the fan faces the airflow inlet of the plurality of airflow passages and is inclined toward the extending direction of the airflow passage.
  • the present invention adopts a wind tilt setting, which reduces the occupation size of the heat dissipation system in height.
  • the tuyere of the fan faces the fin/airflow passage and is inclined toward the extending direction of the fin/airflow passage, so that the forced airflow provided by the fan is blown toward the fin/airflow passage, and the forced airflow direction is
  • the fins/airflow channels extend in the same direction, so that the forced airflow provided by the fan passes through the fin/airflow channel, and the wind resistance is small, forming an effective heat dissipation channel.
  • each of the fins is curved along its extending direction.
  • the plurality of fins are located at a middle position of the first surface of the substrate.
  • each of the heat dissipating fins includes a first heat dissipating portion, a second heat dissipating portion, and a third heat dissipating portion in a row along the extending direction thereof, and the second heat dissipating portion and the third heat dissipating portion extend in a different direction from the The direction in which the first heat radiating portion extends.
  • the tuyere of the fan is close to the first heat dissipating portion and away from the third heat dissipating portion.
  • the second heat dissipating portion has a curved shape and connects the first heat dissipating portion and the third heat dissipating portion.
  • the height of the second heat dissipating portion is greater than the height of the first heat dissipating portion and greater than the height of the third heat dissipating portion.
  • first heat dissipation portions of the plurality of heat sinks are parallel to each other.
  • the third heat dissipating portion of the plurality of fins is radially along the extending direction thereof.
  • the heat dissipation system further includes a plurality of other heat sinks on both sides of the plurality of heat sinks, and the other heat sinks extend in a different direction from the extending direction of the heat sink.
  • the heat dissipation system further includes:
  • a heat conducting plate for absorbing heat generated by the heat generating component, comprising a contact surface for bonding with the heat generating component and a bonding surface for bonding with the second surface of the substrate;
  • the heat conducting plate is provided with a plurality of receiving grooves for accommodating the heat generating component on one side of the contact surface thereof.
  • a plurality of notches are disposed on a periphery of the heat conducting plate.
  • each of the air flow passages has a curved shape.
  • the plurality of air flow passages are radially away from one end of the fan.
  • the airflow inlets of the plurality of airflow channels are parallel to each other.
  • the plurality of air flow channels are located between the plurality of heat sinks.
  • the plurality of fins further have other airflow passages, and the airflow passages extend in a direction different from the extending direction of the other airflow passages.
  • the fan is an axial fan.
  • the housing has an air inlet and an air outlet, the air outlet is an air outlet of the fan, the fan further has an air inlet, and the air inlet corresponds to the air inlet, the exhaust The port corresponds to the end of the heat sink away from the fan.
  • the aircraft further includes: another heating element and another heat sink.
  • the other heat sink includes a base that is attached to the other heat generating component and a plurality of heat sink fins extending from the base.
  • the material of the housing is a heat conductive material, and the heat dissipation fin contacts the housing.
  • the housing is provided with a plurality of perforations.
  • FIG. 1 is a schematic plan view of a heat dissipation system according to an embodiment of the present invention.
  • FIG. 2 is a perspective exploded view of the heat sink of the heat dissipation system shown in FIG. 1.
  • Figure 3 is a combined plan view of the heat sink shown in Figure 2.
  • FIG. 4 is a cross-sectional view of the heat sink shown in FIG. 3 taken along line IV-IV.
  • FIG. 5 is another schematic plan view of the heat dissipation system shown in FIG. 1.
  • FIG. 6 is another schematic plan view of the heat dissipation system shown in FIG. 1.
  • FIG. 7 is a partial cross-sectional view of an aircraft having a heat dissipation system according to an embodiment of the present invention.
  • Figure 8 is an enlarged schematic view of a portion VIII of Figure 7.
  • Figure 9 is an enlarged schematic view of a portion IX of Figure 7.
  • cooling system 1 fan 10 shell 11 Air duct 111 Inlet 113 Air outlet 115 Mount 13 rib 131 Heat sink 20 Thermal plate twenty one Contact surfaces 211 Joint surface 213 Trench 215 Notch 217 Locating slot 219 Heat pipe twenty three First heat transfer section 231 Second heat transfer section 233 Third heat transfer section 235 heat sink 25 Substrate 251 First surface 2511 Second surface 2512 Fitting groove 2513 First side 2514 Second side 2515 Third side 2516 Fourth side 2517 Notch 2518 heat sink 253 First heat sink 2531 Second heat sink 2532 Third heat sink 2533 First heat sink 25331 Second heat sink 25332 Third heat sink 25333 Fourth heat sink 2534 First air channel 2535 Second air channel 2536 Third air channel 2537 Air inlet 25371 Air outlet 25372 Fourth air passage 2538 Fixed part 255 Fixed hole 2551 Aircraft 4 body 41 case 411 Air inlet 4111 exhaust vent 4113 perforation 4115 Housing space 413 Arm 42 Rotor 43 Heating element 44 Fixtures 45 Heating element 46 Heat sink 47 Pedestal 471 Heat sink fin 473
  • a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
  • a component When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the terms “vertical,” “horizontal,” “left,” “right,” and the like, as used herein, are for illustrative purposes only.
  • an embodiment of the present invention provides a heat dissipation system 1 for dissipating heat from an electronic component.
  • the heat dissipation system 1 includes a fan 10 and a heat sink 20 that cooperates with the fan 10.
  • the fan 10 is disposed obliquely with respect to the heat sink 20.
  • the fan 10 can be an axial fan or a radial fan.
  • the fan 10 is an axial flow fan.
  • the fan 10 includes a housing 11, a mounting bracket 13, and an impeller (not shown).
  • the outer casing 11 hollowly forms a wind cylinder 111, and opposite ends of the air cylinder 111 open to form an air inlet 113 and an air outlet 115.
  • the mounting bracket 13 is disposed in the air cylinder 111 and fixed to the outer casing 11 by a plurality of ribs 131.
  • the impeller is housed in the air cylinder 111 and rotatably mounted to the mounting bracket 13.
  • the heat sink 20 includes a heat conducting plate 21 , a heat pipe 23 coupled to the heat conducting plate 21 , and a heat sink 25 thermally coupled to the heat conducting plate 21 and the heat pipe 23 .
  • the heat conducting plate 21 includes a contact surface 211 and a bonding surface 213.
  • the contact surface 211 is for contacting a heat generating component.
  • the bonding surface 213 is for bonding the heat sink 25.
  • a groove 215 for accommodating the heat pipe 23 is disposed on a side of the joint surface 213 of the heat transfer plate 21 .
  • the groove 215 extends from the joint surface 213 toward the contact surface 211 to have a certain depth.
  • the shape of the groove 215 may be correspondingly set according to the shape of the heat pipe 23, and may be a linear type or a curved type. When it is a curved type, it may be an S shape, a C shape, a U shape, an M shape, an N shape, or the like. In this embodiment, the trench 215 has a U shape.
  • the shape of the heat conducting plate 21 can be set according to actual needs.
  • the heat conducting plate 21 is polygonal.
  • the periphery of the heat conducting plate 21 is provided with a plurality of notches 217 to avoid interference of the mounting position of the peripheral elements to the heat conducting plate 21 when mounted on the heat generating component.
  • the receiving surface 211 of the heat conducting plate 21 is further provided with a plurality of receiving grooves 219 for accommodating the heat generating elements.
  • the plurality of receiving grooves 219 extend from the contact surface 211 toward the joining surface 213 to have a certain depth.
  • the depths of the plurality of accommodating grooves 219 may be set to be the same or different depending on the height of the heat generating elements.
  • the material of the heat conducting plate 21 is a metal with good thermal conductivity, such as copper, aluminum, etc., and may also be a heat conductive graphite material or a heat conductive carbon nano material.
  • the heat conducting plate 21 may also be filled with a phase change medium such as water, ethanol, diethyl ether or the like.
  • the heat pipe 23 is a metal pipe body filled with a phase change medium, and the phase change medium may be water, ethanol, diethyl ether or the like.
  • the heat pipe 23 may be a circular tube shape, a semicircular tube shape, a flat shape or the like. In the present embodiment, the heat pipe 23 is flat and has opposite two parallel flat surfaces for bonding with the heat conducting plate 21 and the heat sink 25.
  • the heat pipe 23 includes a first heat transfer section 231, a second heat transfer section 233, and a third heat transfer section 235.
  • the second heat transfer section 233 extends outward from one end of the first heat transfer section 231.
  • the third heat transfer section 235 extends outward from the other end of the first heat transfer section 231. In other words, the second heat transfer section 233 and the third heat transfer section 235 extend in a different direction from the end of the first heat transfer section 231.
  • the heat pipe 23 has a U shape corresponding to the shape of the groove 215.
  • the first heat transfer section 231, the second heat transfer section 233, and the third heat transfer section collectively constitute a U-shaped structure of the heat pipe 23.
  • the first heat transfer section 231 is linear.
  • the second heat transfer section 233 is linear.
  • the junction of the first heat transfer section 231 and the second heat transfer section 233 is curved in a curved shape.
  • the third heat transfer section 235 is linear.
  • the junction of the first heat transfer section 231 and the third heat transfer section 235 is curved in a curved shape.
  • the second heat transfer section 233 is parallel to the third heat transfer section 235.
  • the second heat transfer section 233 and the third heat transfer section 235 are substantially perpendicular to the first heat transfer section 231.
  • the length of the third heat transfer section 235 is less than the length of the second heat transfer section 233.
  • the thickness of the heat pipe 23 is greater than, equal to, or less than the depth of the trench 215. In this embodiment, the thickness of the heat pipe 23 is greater than or equal to the depth of the trench 215.
  • the heat sink 25 includes a substrate 251 and a plurality of fins 253 disposed on the substrate 251. A plurality of air flow channels are formed between the plurality of fins 253.
  • the substrate 251 is a metal plate body having good thermal conductivity, and may also be a thermally conductive graphite plate body or a thermally conductive carbon nanoplate body.
  • the substrate 251 further extends outwardly from the plurality of fixing portions 255.
  • the substrate 251 includes a first surface 2511 and a second surface 2512 opposite the first surface 2511.
  • the substrate 251 may be provided with a fitting groove 2513 (refer to FIG. 4 ) corresponding to the groove 215 of the heat conducting plate 21 on one side of the second surface 2512 thereof for accommodating the heat pipe 23 .
  • the shape of the substrate 251 may be square, trapezoidal, circular or other polygonal shape.
  • the substrate 251 is substantially square, and includes a first side 2514, a second side 2515, a third side 2516 opposite to the first side, and a second side opposite to the second side.
  • the second side 2515 is substantially parallel to the fourth side 2517.
  • a plurality of notches 2518 are disposed at the third side 2516 to prevent the peripheral component from interfering with the mounting position of the substrate 251 when the heat sink 20 is mounted on the heat generating component.
  • the first side 2514, the second side 2515, the third side 2516, and the fourth side 2517 are connected to the first surface 2511 and the second surface 2512.
  • each of the fixing portions 255 is provided with a fixing hole 2551.
  • the plurality of fins 253 are disposed on the first surface 2511 of the substrate 251.
  • the plurality of fins 253 include heat sinks of different shapes or orientations.
  • the plurality of heat sinks 253 include a plurality of first heat sinks 2531 , a plurality of second heat sinks 2532 , a plurality of third heat sinks 2533 , and a plurality of fourth heat sinks 2534 .
  • the plurality of first fins 2531 are disposed at one end of the substrate 251 adjacent to the second side 2515.
  • the plurality of first fins 2531 are disposed in parallel with each other.
  • a first air flow passage 2535 is formed between adjacent first fins 2531.
  • Each of the first fins 2531 is substantially parallel to the second side 2515.
  • Each of the first fins 2531 extends from near the first side 2514 toward the third side 2516.
  • Each of the first fins 2531 is linear along its extending direction.
  • the first heat sink 2531 is defined to extend in a first direction from the first side edge 2514.
  • the first air flow channel 2535 has a linear shape extending from the first side edge 2514 in the direction of the second side edge 2515 to near the third side edge 2516 and substantially parallel to the first side Two sides 2515. In this embodiment, the first air flow channel 2535 extends in a first direction from near the first side edge 2514.
  • the plurality of second fins 2532 are disposed on a side of the substrate 251 adjacent to the third side 2516.
  • the plurality of second heat sinks 2532 are located between the first heat sink 2531 and the third heat sink 2533.
  • the plurality of second fins 2532 are spaced apart from each other.
  • a second air flow passage 2536 is formed between the adjacent second fins 2532.
  • Each of the second fins 2532 extends at an oblique angle from the second side 2515 toward the third side 2516 and opposite to the second side 2515 and the third side 2516.
  • Each of the second fins 2532 is disposed obliquely with respect to the first fins 2531.
  • the second heat sink 2532 forms an angle with the first heat sink 2531.
  • the second heat sink 2532 is defined to extend in a second direction from the second side 2515.
  • the plurality of second fins 2532 are slightly radial in a direction away from the first fins 2531.
  • the lengths of the plurality of second fins 2532 may be different.
  • the length of the plurality of second fins 2532 gradually increases along the direction of the third side 2516 toward the first side 2514, that is, the length of the plurality of second fins 2532
  • the edge of the substrate 251 gradually increases toward the center.
  • the second air flow channel 2536 has a linear shape from the second side 2515 toward the third side 2516 and opposite to the second side 2515 and the third side 2516. Extends at an oblique angle. That is, the second air flow passage 2536 extends substantially in a diagonal direction of the substrate 251 from near the second side edge 2515. In this embodiment, the second air flow passage 2536 extends in a second direction from the second side edge 2515. The second direction is different from the first direction. The second direction has an angle with the first direction.
  • the plurality of third heat sinks 2533 are disposed at a central position of the substrate 251.
  • the plurality of third fins 2533 are located between the second fins 2532 and the fourth fins 2534.
  • Each of the third fins 2533 extends from one end of the first side 2514 adjacent to the second side 2515 to the fourth side 2517. That is, the third fin 2533 extends from the first side 2514 toward the end of the second side 2515 substantially in the diagonal direction of the substrate 251.
  • the plurality of third fins 2533 are spaced apart from each other, and a third airflow passage 2537 is formed between the adjacent third fins 2533, and the third airflow passage 2537 is adjacent to the second side from the first side 2514.
  • One end of 2515 extends to the fourth side 2517.
  • Each of the third fins 2533 has a curved shape along its extending direction.
  • Each of the third heat sinks 2533 includes a first heat dissipation portion 25331 along the extending direction thereof, a second heat dissipation portion 25332 extending outward from one end of the first heat dissipation portion 25331, and a second heat dissipation portion 25332 outward.
  • the extended third heat dissipation portion 25333 is a first heat dissipation portion 25331 along the extending direction thereof, a second heat dissipation portion 25332 extending outward from one end of the first heat dissipation portion 25331, and a second heat dissipation portion 25332 outward.
  • the first heat dissipation portion 25331 is linear along its extending direction.
  • the first heat dissipation portion 25331 of the plurality of third heat dissipation fins 2533 is adjacent to the first side edge 2514.
  • the first heat dissipation portions 25331 of the plurality of third heat dissipation fins 2533 are parallel to each other.
  • the first heat dissipation portion 25331 of the plurality of third heat dissipation fins 2533 is parallel to the first heat dissipation fins 2531 and the second side edges 2515.
  • the first heat dissipation portion 25331 extends from the first side edge 2514 in a first direction.
  • the first heat dissipation portion 25331 of the plurality of third heat dissipation fins 2533 is perpendicular to the first side edge 2514.
  • the height of each of the third fins 2533 gradually increases in the extending direction thereof.
  • the third air flow passage 2537 forms an air flow inlet 25371 at the first heat dissipation portion 25331.
  • the second heat radiating portion 25332 is curved in a direction in which the second heat radiating portion 25332 extends.
  • the second heat dissipation portion 25332 connects the first heat dissipation portion 25331 and the third heat dissipation portion 25333.
  • the second heat dissipation portion 25332 of the plurality of third heat dissipation fins 2533 is located substantially in the middle of the substrate 251.
  • the second heat dissipating portions 25332 of the plurality of third fins 2533 are parallel to each other or slightly radial along the extending direction thereof.
  • the extending direction of the second heat dissipating portion 25332 is different from the first direction, that is, different from the extending direction of the first heat dissipating portion 25331.
  • the height of each of the second heat dissipation portions 25332 is greater than the height of the first heat dissipation portion 25331 and the third heat dissipation portion 25333.
  • the third heat dissipation portion 25333 is linear along its extending direction.
  • the third heat dissipation portion 25333 of the plurality of third heat dissipation fins 2533 extends toward the fourth side edge 2517.
  • the extending direction of the third heat radiating portion 25333 is substantially the diagonal direction of the substrate 251.
  • the extending direction of the third heat radiating portion 25333 is different from the first direction, that is, different from the extending direction of the first heat radiating portion 25331.
  • the third heat dissipation portion 25333 of the plurality of third heat dissipation fins 2533 is radially along the extending direction thereof.
  • the angle between the third heat dissipation portion 25333 of the plurality of third heat dissipation fins 2533 and the first heat dissipation fin 2531 or the second side edge 2515 is 50-70 degrees.
  • the third air flow passage 2537 forms an air flow outlet 25372 at the third heat dissipation portion 25333.
  • the third air flow passage 2537 has a curved shape and extends from one end of the first side edge 2514 adjacent to the second side edge 2515 to the fourth side edge 2517. That is, the third air flow passage 2537 has a curved shape, and an end from the first side edge 2514 near the second side edge 2515 extends substantially in a diagonal direction of the substrate 251.
  • the third airflow channel 2537 is defined to extend from the first side edge 2514 adjacent to the second side edge 2515 in a third direction.
  • the third direction is curved, which is different from the first direction and the second direction.
  • the plurality of fourth fins 2534 are located at a corner of the substrate 251 near the first side 2514 and the fourth side 2517.
  • the plurality of fourth fins 2534 are located on one side of the third fins 2533.
  • the plurality of fourth fins 2534 are spaced apart from each other, and a fourth airflow channel 2538 is formed between the adjacent fourth fins 2534.
  • the plurality of fourth fins 2534 are parallel to each other.
  • the plurality of fourth fins 2534 are parallel to the first side 2514.
  • the lengths of the plurality of fourth fins 2534 are different.
  • the fourth air flow passage 2538 has a linear shape that extends in a direction parallel to the first side edge 2514.
  • the fourth air flow channel 2538 is defined to extend in the fourth direction.
  • the fourth direction is different from the first direction, the second direction, and the third direction.
  • the fourth direction is substantially perpendicular to the first direction.
  • the heat pipe 23 is received in the groove 215 of the heat conducting plate 21 , and the second surface 2512 of the substrate 251 of the heat sink 25 is attached to the heat conducting plate.
  • the heat pipe 23 is further received in the bonding groove 2513 of the substrate 251 and sandwiched between the heat conducting plate 21 and the substrate 251.
  • a solder paste is applied between the trench 215, the bonding groove 2513, and between the heat conducting plate 21 and the substrate 251 for reducing the heat conducting plate 21 and the heat pipe 23 And the thermal resistance between the substrates 251.
  • the fan 10 when the fan 10 and the heat sink 20 are assembled, the fan 10 is obliquely placed on one side of the heat sink 20 .
  • the air outlet 115 of the fan 10 is disposed obliquely with respect to the first surface 2511 of the substrate 251.
  • the air outlet 115 of the fan 10 faces the heat sink 253 and has a certain distance from the heat sink 253.
  • the air inlet 113 of the fan 10 faces away from the heat sink 253.
  • the fan 10 corresponds to the first side 2514 of the substrate 251 of the heat sink 25 near the second side 2515, and the air outlet 115 faces the first of the third heat sink 2533.
  • the heat radiating portion 25331 is an airflow inlet 25371 that faces the third airflow passage 2537 and is inclined toward the extending direction of the third heat sink 2533 and the third air flow passage 2537.
  • the air outlet 115 of the fan 10 forms an angle of 12 degrees with the second side 2515 and the fourth side 2517 of the substrate 251 of the heat sink 25 , that is, the air outlet of the fan 10 .
  • 115 faces the substrate 251 and is inclined toward the extending direction of the first heat radiating portion 25331 of the third heat sink 2533.
  • the air outlet 115 of the fan 10 is at an angle of 3 degrees with the first side 2514 of the substrate 251 of the heat sink 25 , that is, the air outlet 115 of the fan 10 faces the substrate 251 . And inclined to the extending direction of the second heat radiating portion 25332 and the third heat radiating portion 25333 of the third heat sink 2533.
  • the air outlet 115 of the fan 10 is inclined toward the third heat sink 2533 and toward the extending direction of the third heat sink 2533, that is, the air outlet 115 of the fan 10 is directed toward the air flow of the third air flow passage 2537.
  • the inlet 25371 is inclined toward the extending direction of the third air flow passage 2537.
  • the heat conducting plate 21 of the heat sink 20 of the heat dissipation system 1 absorbs heat from the heat generating component.
  • the heat pipe 23 of the heat sink 20 absorbs heat from the heat conducting plate 21 to further distribute heat evenly to the heat conducting plate 21.
  • the heat conducting plate 21 and the heat pipe 23 transfer heat to the substrate 251 of the heat sink 25 of the heat sink 20 and the heat sink 253.
  • the fan 10 of the heat dissipation system 1 blows a forced airflow to the heat sink 253 via its air outlet 115.
  • the third air flow channel 2537 between the heat sinks 2533 has a small portion of the first air flow channel 2535 between the first heat sink 2531, the second air channel 2536 and the fourth heat sink 2534 between the second heat sinks 2532.
  • a fourth air flow passage 2538 is in between.
  • the forced airflow entering the third air flow passage 2537 flows in the extending direction of the third heat sink 2533 and carries away the heat on the third heat sink 2533.
  • the airflow entering the first airflow channel 2535, the second airflow channel 2536, and the fourth airflow channel 2538 carries heat away from the first heat sink 2531, the second heat sink 2532, and the fourth heat sink 2534.
  • the fan 10 is disposed obliquely with respect to the substrate 251 such that the fan 10 and the heat sink 20 occupy a small space.
  • the air outlet 115 of the fan 10 is inclined toward the airflow inlet 25371 of the third airflow passage 2537 and toward the extending direction of the third heat sink 2533 and the third airflow passage 2537 therebetween, so that the forced airflow provided by the fan 10 is blown.
  • the forced airflow direction is consistent with the extending direction of the third heat sink 2533 and the third air flow passage 2537, so that the forced airflow provided by the fan 10 passes through the third heat sink 2533. It can take away most of the heat generated by the heating element, and the wind resistance is reduced to form an effective heat dissipation channel.
  • the second heat dissipation portion 25332 of the third heat sink 2533 is curved along the extending direction thereof, so that the heat exchange between the forced airflow provided by the fan 10 and the third heat sink 2533 is more sufficient.
  • the height of the second heat dissipation portion 25332 is greater than the heights of the first heat dissipation portion 25331 and the third heat dissipation portion 25333, so that the heat exchange between the forced airflow provided by the fan 10 and the third heat sink 2533 is further sufficient. .
  • the first heat sink 2531 is located at one side of the third heat sink 2533 to prevent the forced airflow provided by the fan 10 from being blown outside the heat sink 25, so that the utilization rate of the forced airflow provided by the fan 10 is utilized. Can be improved.
  • the second heat sink 2532 and the fourth heat sink 2534 extend in different directions, so that a portion of the forced airflow provided by the fan 10 is directed to different places of the heat sink 25, so that heat dissipation is more effective.
  • the heat dissipating device 20 adopts a heat pipe 23, so that the heat absorbed by the heat conducting plate 21 is more evenly distributed to avoid local overheating.
  • the air inlet 113 of the fan 10 can face the heat sink 20 such that heat absorbed by the heat sink 20 from the heat generating component is sucked by the fan 10 through the air inlet 113.
  • the air outlet 115 of the fan 10 faces away from the heat sink 20.
  • an embodiment of the present invention provides an aircraft 4.
  • the aircraft 4 includes the heat dissipation system 1.
  • the aircraft 4 includes a body 41, a plurality of arms 42 extending outward from the body 41, a plurality of rotors 43 mounted to the plurality of arms 42 and heating elements located in the body 41 44 (see Figure 8).
  • the heat generating component 44 can include one or more heat generating electronic components.
  • the body 41 includes a housing 411 and an accommodation space 413 surrounded by the housing 411.
  • the heating element 44 is placed in the accommodating space 413.
  • the heating element 44 is mounted to a mounting plate.
  • the accommodating space 413 is located between the mounting plate and the housing 411. In this embodiment, the accommodating space 413 is located at the bottom of the body 41.
  • An air inlet 4111 and an exhaust port 4113 are provided on opposite sides of the housing 411. An angle is formed between the air inlet 4111 and the exhaust port 4113 so as not to cause a circulation of heat flow.
  • the heating element 44 is concentratedly distributed between the intake port 4111 and the exhaust port 4113.
  • a plurality of through holes 4115 may be further disposed in the housing 411 corresponding to the position of the accommodating space 413.
  • the heat conducting plate 21 of the heat sink 20 of the heat dissipation system 1 is attached to the heat generating component 44.
  • the heat conducting plate 21 and the heat generating component 44 may be further bonded together by a heat conductive medium.
  • the air inlet 113 of the fan 10 of the heat dissipation system 1 corresponds to the air inlet 4111 of the casing 411.
  • An end of the heat sink 20 away from the fan 10 is adjacent to an exhaust port 4113 of the housing 411.
  • the fan 10 can be fixed to the housing 411 by a fixing device 45.
  • the aircraft 4 may further include another heating element 46 placed in the accommodating space 413.
  • the heat generating component 46 can include one or more heat generating electronic components.
  • the aircraft 4 includes another heat sink 47 coupled to the heat generating component 46.
  • the heat generating component 46 is located on one side of the heat generating component 44 and the heat dissipation system 1.
  • the heat generating component 46 is adjacent to the exhaust port 4113 of the housing 411.
  • the heat sink 47 includes a base 471 and a plurality of heat dissipation fins 473 extending from the base 471.
  • the base 471 is attached to the heat generating component 46.
  • the base 471 and the heat generating component 44 may be further bonded together by a heat conductive medium.
  • the susceptor 471 may also be provided with a plurality of receiving slots for accommodating a plurality of electronic components of the heating element 46.
  • the heat dissipation fins 473 face the housing 411 of the body 41. In this embodiment, the heat dissipation fins 473 are in contact with the housing 411, and the housing 411 is made of a metal material or other heat conductive material, such as a thermally conductive carbon nano material.
  • the heating element 44 operates to generate heat.
  • the heat conducting plate 21 of the heat sink 20 of the heat dissipation system 1 absorbs heat generated by the heat generating component.
  • the heat pipe 23 of the heat sink 20 absorbs heat from the heat conducting plate 21 to further distribute heat evenly to the heat conducting plate 21.
  • the heat conducting plate 21 and the heat pipe 23 transfer heat to the substrate 251 of the heat sink 25 of the heat sink 20 and the heat sink 253.
  • the fan 10 of the heat dissipation system 1 inhales through the air inlet 4111 of the casing 411 of the body 41 and its air inlet 113, and blows a forced airflow to the heat sink 253 via the air outlet 115 thereof.
  • the third air flow channel 2537 between the heat sinks 2533 has a small portion of the first air flow channel 2535 between the first heat sink 2531, the second air channel 2536 and the fourth heat sink 2534 between the second heat sinks 2532.
  • a fourth air flow passage 2538 is in between. The forced airflow entering the third air flow passage 2537 flows in the extending direction of the third heat sink 2533 and carries away the heat on the third heat sink 2533.
  • the airflow entering the first airflow channel 2535, the second airflow channel 2536, and the fourth airflow channel 2538 carries heat away from the first heat sink 2531, the second heat sink 2532, and the fourth heat sink 2534.
  • the hot air passing through the fins 253 is discharged outside the body 41 through the exhaust port 4113 of the casing 411.
  • the heat generating component 46 operates to generate heat
  • the susceptor 471 of the heat sink 47 absorbs heat from the heat generating component 46 and transfers heat to the heat sink fin 473.
  • the heat dissipation fins 473 radiate heat outward and transmit a part of the heat to the casing 411 to be emitted from the casing 411 to the outside of the fuselage 41.
  • the fan 10 is disposed obliquely with respect to the substrate 251 such that the fan 10 and the heat sink 20 are reduced in size in height, and the space inside the body 41 is accommodated or saved.
  • the air outlet 115 of the fan 10 is inclined toward the airflow inlet 25371 of the third airflow passage 2537 and toward the extending direction of the third heat sink 2533 and the third airflow passage 2537 therebetween, so that the forced airflow provided by the fan 10 is blown.
  • the forced airflow direction is consistent with the extending direction of the third heat sink 2533 and the third air flow passage 2537, so that the forced airflow provided by the fan 10 passes through the third heat sink 2533. It can take away most of the heat generated by the heating elements, and the wind resistance is small, forming an effective heat dissipation channel.
  • the air inlet 4111 of the casing 41 of the fuselage 41 corresponds to the air inlet 113 of the fan 10
  • the exhaust port 4113 corresponds to the end of the heat sink 25 away from the fan 10, so that the heat dissipation system 1
  • the formed heat dissipation channel is smoother and more efficient.
  • the heat generating component 46 of the aircraft 4 contacts the casing 411 of the fuselage 41 by the heat dissipating device 47 to perform natural heat dissipation, and on the other hand, the heat dissipating area of the heat dissipating device 47 is enlarged, so that the heat dissipating device 47 can be small. Size, on the other hand, saves energy.
  • the air inlet 113 of the fan 10 can face the heat sink 20 such that heat absorbed by the heat sink 20 from the heat generating component 44 is sucked by the fan 10 via the air inlet 113.
  • the air outlet 115 of the fan 10 faces away from the heat sink 20, and the air inlet 4111 of the housing 411 corresponds to the air outlet 115, and the hot air sucked by the fan 10 is exhausted from the airframe. Outside of 41, the exhaust port 4113 is a cold air intake.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热***及具有所述散热***的飞行器。散热***(1),包括基板(251)、多个散热片(253)及风扇(10);所述基板(251)具有第一表面(2511)及与所述第一表面(2511)相对的第二表面(2512),所述多个散热片(253)设于所述基板的第一表面(2511);所述风扇(10)具有风口,所述风扇(10)设置于所述基板(251)的第一表面(2511)的一侧,所述风扇(10)的风口相对于所述基板(251)的第一表面(2511)倾斜,所述风扇(10)的风口朝向所述多个散热片(253)且向所述多个散热片(253)的延伸方向倾斜。降低了散热***在高度上的占用尺寸,风扇提供的强制气流流动方向与所述散热片/气流通道的延伸方向一致,从而使风扇提供的强制气流在经过所述散热片/气流通道时,风阻较小,形成有效的散热通道。

Description

散热***及具有散热***的飞行器 技术领域
本发明涉及一散热技术,尤其涉及一种散热***及具有所述散热***的飞行器。
背景技术
随着电子技术的发展,芯片的集成化程度越来越高,芯片尺寸越来越小,芯片的热流密度也随之越来越高。当这些芯片应用到小型化的产品当中,产品内部狭小的空间结构,不利于芯片的散热。温度是影响芯片信赖性的关键因素,随着温度的升高,芯片的失效率会成几何倍数的关系增加。因此,如何快速有效地给芯片进行散热,是决定产品信赖性的重要因素。
目前,类似高热流密度的电子产品,大部分进行了主动散热的方案设计,这种方案使用风扇加散热器的方式,利用散热器降低芯片的热流密度,然后利用风扇吹散热器的散热片这样的强制对流换热将散热器上的热量散出去,从而达到降低芯片温度的目的。
然而,产品内部的狭小空间若采用风扇加散热器的方式,通常面临风扇布局困难,风道不顺畅,难以形成有效散热通道这样的技术问题。
飞行器特别是无人飞行器,其机身内部设置一些芯片,这些芯片散热方案的设计也受到机身内部空间狭小的影响。
发明内容
有鉴于此,有必要提供一种具有有效散热通道的散热***及具有所述散热***的飞行器。
本发明涉及一种散热***,包括:基板、多个散热片及风扇。所述基板具有第一表面及与所述第一表面相对的第二表面。所述多个散热片设于所述基板的第一表面。所述风扇具有风口,设置于所述基板的第一表面的一侧。 所述风扇的风口相对于所述基板的第一表面倾斜,所述风扇的风口朝向所述多个散热片且向所述多个散热片的延伸方向倾斜。
本发明还涉及一种散热***,包括:散热装置及风扇。所述散热装置包括多个气流通道,每一气流通道具有一气流入口。所述风扇具有风口,其设置于所述散热装置的一侧。所述风扇的风口相对于所述散热装置倾斜设置,所述风扇的风口朝向所述多个气流通道的气流入口并向所述气流通道的延伸方向倾斜。
本发明还涉及一种飞行器,包括:机身及散热***。所述机身包括:壳体、容置空间及发热元件。所述容置空间被所述壳体围绕。所述发热元件收容于所述容置空间。所述散热***用于散发所述发热元件产生的热量。所述散热***设置于所述容置空间内,所述散热***包括:导热板、多个散热片及风扇。所述导热板贴合于所述发热元件。所述多个散热片位于所述导热板一侧,用于散发所述导热板从所述发热元件吸收的热量。所述风扇具有风口,设置于所述多个散热片的一端。所述风扇的风口朝向所述多个散热片且向所述多个散热片的延伸方向倾斜。
本发明还涉及一种飞行器,包括:机身及散热***。所述机身包括:壳体、容置空间及发热元件。所述容置空间被所述壳体围绕。所述发热元件收容于所述容置空间内。所述散热***,用于散发所述发热元件产生的热量。所述散热***设置于所述容置空间内,所述散热***包括:散热装置及风扇。所述散热装置包括多个气流通道,每一所述气流通道具有气流入口。所述风扇具有风口,其设置于所述散热装置的一侧。所述风扇的风口相对于所述散热装置倾斜设置,所述风扇的风口朝向所述多个气流通道的气流入口并向所述气流通道的延伸方向倾斜。
与现有技术相比,本发明采用风倾斜设置,降低了散热***在高度上的占用尺寸。所述风扇的风口朝向所述散热片/气流通道且向所述散热片/气流通道的延伸方向倾斜,使得风扇提供的强制气流吹向所述散热片/气流通道,且使强制气流流动方向与所述散热片/气流通道的延伸方向一致,从而使风扇提供的强制气流在经过所述散热片/气流通道时,风阻较小,形成有效的散热通道。
进一步地,每一所述散热片沿着其延伸方向呈弯曲形。
进一步地,所述多个散热片位于所述基板第一表面的中部位置。
进一步地,每一所述散热片沿其延伸方向依次包括第一散热部、第二散热部及第三散热部,所述第二散热部及所述第三散热部的延伸方向不同于所述第一散热部的延伸方向。
进一步地,所述风扇的风口靠近所述第一散热部,而远离所述第三散热部。
进一步地,所述第二散热部呈弯曲形而连接所述第一散热部和所述第三散热部。
进一步地,所述第二散热部的高度大于所述第一散热部的高度,且大于所述第三散热部的高度。
进一步地,所述多个散热片的第一散热部相互平行。
进一步地,所述多个散热片的第三散热部沿其延伸方向呈放射状。
进一步地,所述散热***还包括位于所述多个散热片两侧的多个其他散热片,所述其他散热片的延伸方向不同于所述散热片的延伸方向。
进一步地,所述散热***还包括:
导热板,用于吸收发热元件产生的热量,包括用于与发热元件贴合的接触面及与所述基板第二表面结合的结合面;
热管,位于所述基板和所述导热板之间。
进一步地,所述导热板在其接触面的一侧设置多个用于收容发热元件的容置槽。
进一步地,所述导热板的周缘设置多个凹口。
进一步地,每一所述气流通道呈弯曲形。
进一步地,所述多个气流通道远离所述风扇的一端呈放射状。
进一步地,所述多个气流通道的气流入口相互平行。
进一步地,所述多个气流通道位于所述多个散热片之间。
进一步地,所述多个散热片间还具有其他气流通道,所述气流通道的延伸方向不同于所述其他气流通道的延伸方向。
进一步地,所述风扇为轴流式风扇。
进一步地,所述壳体具有进气口及排气口,所述风口为所述风扇的出风口,所述风扇还具有进风口,所述进气口对应所述进风口,所述排气口对应所述散热片远离所述风扇的一端。
进一步地,所述飞行器还包括:另一发热元件及另一散热装置。所述另一散热装置包括贴合所述另一发热元件的基座及从所述基座延伸出的多个散热鳍片。
进一步地,所述壳体的材料为导热材料,所述散热鳍片接触所述壳体。
进一步地,所述壳体设有多个穿孔。
附图说明
图1是本发明实施方式提供的一种散热***的一平面示意图。
图2是图1所示的散热***的散热装置的立体分解示意图。
图3是图2所示的散热装置的组合平面图。
图4是图3所示的散热装置的沿IV-IV线的剖面示意图。
图5是图1所示的散热***的另一平面示意图。
图6是图1所示的散热***的又一平面示意图。
图7是本发明实施方式提供的具有散热***的飞行器的局部剖视示意图。
图8是图7中VIII部分的放大图示意图。
图9是图7中IX部分的放大图示意图。
主要元件符号说明
散热*** 1
风扇 10
外壳 11
风筒 111
进风口 113
出风口 115
安装架 13
肋条 131
散热装置 20
导热板 21
接触面 211
结合面 213
沟槽 215
凹口 217
容置槽 219
热管 23
第一传热段 231
第二传热段 233
第三传热段 235
散热器 25
基板 251
第一表面 2511
第二表面 2512
贴合槽 2513
第一侧边 2514
第二侧边 2515
第三侧边 2516
第四侧边 2517
凹口 2518
散热片 253
第一散热片 2531
第二散热片 2532
第三散热片 2533
第一散热部 25331
第二散热部 25332
第三散热部 25333
第四散热片 2534
第一气流通道 2535
第二气流通道 2536
第三气流通道 2537
气流入口 25371
气流出口 25372
第四气流通道 2538
固定部 255
固定孔 2551
飞行器 4
机身 41
壳体 411
进气口 4111
排气口 4113
穿孔 4115
容置空间 413
机臂 42
旋翼 43
发热元件 44
固定装置 45
发热元件 46
散热装置 47
基座 471
散热鳍片 473
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,本发明实施方式提供一种散热***1,所述散热***1用于对电子元器件进行散热。所述散热***1包括风扇10及与所述风扇10配合的散热装置20。所述风扇10相对所述散热装置20倾斜设置。
所述风扇10可为轴流式风扇或径流式风扇。本实施例中,所述风扇10为轴流式风扇。所述风扇10包括外壳11、安装架13及叶轮(图未示)。所述外壳11中空形成风筒111,所述风筒111的相对两端开口形成进风口113及出风口115。所述安装架13设置于所述风筒111内并通过多个肋条131固定与所述外壳11上。所述叶轮收容于所述风筒111内并可转动地安装至所述安装架13。
请参阅图2和图3,所述散热装置20包括导热板21、与所述导热板21结合的热管23及与所述导热板21和所述热管23导热性连接的散热器25。
所述导热板21包括接触面211及结合面213。所述接触面211用于接触发热元件。所述结合面213用于结合所述散热器25。所述导热板21的结合面213一侧设有***述热管23的沟槽215。所述沟槽215从所述结合面213朝向所述接触面211方向延伸而具有一定深度。所述沟槽215的形状可根据所述热管23的形状对应设置,可以为直线型、弯曲型,当为弯曲型时,可为S形、C形、U形、M形、N形等。本实施例中,所述沟槽215呈U形。
所述导热板21的形状可根据实际需要设置。本实施例中,所述导热板21为多边形。所述导热板21的周缘设有多个凹口217,以避免安装于发热元件时周边元件的对导热板21的安装位置形成干涉。所述导热板21的接触面211一侧还设有多个收容发热元件的容置槽219。所述多个容置槽219从所述接触面211朝向所述结合面213方向延伸而具有一定深度。所述多个容置槽219的深度根据发热元件的高低可设置为相同或不同。
所述导热板21的材料为导热性能良好的金属,如铜、铝等,也可为导热石墨材料或导热碳纳米材料。所述导热板21内部也可填充相变化介质,如水、乙醇、***等。
所述热管23为内部填充有相变化介质的金属管体,所述相变化介质可为水、乙醇、***等。
所述热管23可为圆管形、半圆管形、扁平形等。本实施中,所述热管23为扁平形,其具有相对的二平行平坦表面,用于与所述导热板21和所述散热器25贴合。所述热管23包括第一传热段231、第二传热段233及第三传热段235。所述第二传热段233从所述第一传热段231的一端向外延伸。所述第三传热段235从所述第一传热段231的另一端向外延伸。换言之,所述第二传热段233及所述第三传热段235的延伸方向与所述第一传热段231的端部朝向不同。
本实施例中,所述热管23对应上述沟槽215的形状呈U形。所述第一传热段231、所述第二传热段233及所述第三传热段共同构成所述热管23的U形结构。所述第一传热段231为直线形。所述第二传热段233为直线形。所述第一传热段231和第二传热段233的连接处呈曲面圆滑连接。所述第三传热段235为直线形。所述第一传热段231和所述第三传热段235的连接处呈曲面圆滑连接。所述第二传热段233平行于所述第三传热段235。所述第二传热段233和所述第三传热段235大致垂直于所述第一传热段231。一实施方式中,所述第三传热段235的长度小于所述第二传热段233的长度。
所述热管23的厚度大于、等于或小于所述沟槽215的深度。本实施例中,所述热管23的厚度大于或等于所述沟槽215的深度。
所述散热器25包括基板251及设置于所述基板251上的多个散热片253。所述多个散热片253间形成多个气流通道。
所述基板251为导热性能良好的金属板体,也可为导热石墨板体或导热碳纳米板体。所述基板251进一步向外延伸多个固定部255。所述基板251包括第一表面2511及与所述第一表面2511相对的第二表面2512。所述基板251可在其第二表面2512的一侧对应所述导热板21的沟槽215设贴合槽2513(请参阅图4),用于***述热管23。
所述基板251的形状可为方形、梯形、圆形或其他多边形。本实施例中,所述基板251大致呈方形,其包括第一侧边2514、第二侧边2515、与所述第一侧边相对的第三侧边2516及与所述第二侧边相对的第四侧边2517。本实施例中,所述第二侧边2515大致平行于所述第四侧边2517。所述第三侧边2516处设置多个凹口2518,以避免所述散热装置20安装于发热元件时周边元件对所述基板251的安装位置形成干涉。所述第一侧边2514、第二侧边2515、第三侧边2516及第四侧边2517均连接所述第一表面2511及第二表面2512。
本实施例中,每一所述固定部255设于有固定孔2551。
所述多个散热片253设置在所述基板251第一表面2511上。所述多个散热片253包括的不同形状或放置方向的散热片。本实施例中,所述多个散热片253包括多个第一散热片2531、多个第二散热片2532,多个第三散热片2533及多个第四散热片2534。
所述多个第一散热片2531设置于所述基板251靠近所述第二侧边2515的一端。所述多个第一散热片2531相互平行间隔设置。相邻第一散热片2531间形成第一气流通道2535。每一第一散热片2531大致平行于所述第二侧边2515。每一第一散热片2531从靠近所述第一侧边2514处延伸向靠近所述第三侧边2516处。每一第一散热片2531沿其延伸方向呈直线型。本实施例中,定义第一散热片2531从靠近所述第一侧边2514处沿第一方向延伸。
所述第一气流通道2535呈直线形,其从靠近所述第一侧边2514处沿所述第二侧边2515方向延伸至靠近所述第三侧边2516处、且大致平行于所述第二侧边2515。本实施例中,所述第一气流通道2535从靠近第一侧边2514处沿第一方向延伸。
所述多个第二散热片2532设置于所述基板251靠近所述第三侧边2516的一侧。本实施例中,所述多个第二散热片2532位于所述第一散热片2531和所述第三散热片2533之间。所述多个第二散热片2532相互间隔设置。相邻第二散热片2532间形成第二气流通道2536。每一第二散热片2532沿从所述第二侧边2515朝向所述第三侧边2516的方向、并相对所述第二侧边2515及所述第三侧边2516呈倾斜角度延伸。每一第二散热片2532相对于所述第一散热片2531呈倾斜设置。所述第二散热片2532与所述第一散热片2531间成一夹角。本实施例中,定义所述第二散热片2532从靠近所述第二侧边2515处沿第二方向延伸。所述多个第二散热片2532沿远离所述第一散热片2531的方向略呈放射状。所述多个第二散热片2532的长度可不相同。本实施例中,所述多个第二散热片2532的长度沿所述第三侧边2516朝向第一侧边2514的方向逐渐增加,即,所述多个第二散热片2532的长度从所述基板251的边缘向中心方向逐渐增加。
所述第二气流通道2536呈直线形,其从靠近所述第二侧边2515处朝向所述第三侧边2516的方向、并相对所述第二侧边2515及所述第三侧边2516呈倾斜角度延伸。即,所述第二气流通道2536从靠近所述第二侧边2515处大致沿所述基板251的对角方向延伸。本实施例中,所述第二气流通道2536从靠近所述第二侧边2515处沿第二方向延伸。所述第二方向与所述第一方向不同。所述第二方向与所述第一方向之间具有一夹角。
所述多个第三散热片2533设置于所述基板251的中部位置。所述多个第三散热片2533位于所述第二散热片2532和所述第四散热片2534之间。每一第三散热片2533从所述第一侧边2514靠近所述第二侧边2515的一端延伸向所述第四侧边2517。即,所述第三散热片2533从所述第一侧边2514靠近所述第二侧边2515的一端大致沿所述基板251的对角方向延伸。所述多个第三散热片2533相互间隔设置,相邻第三散热片2533间形成第三气流通道2537,所述第三气流通道2537从所述第一侧边2514靠近所述第二侧边2515的一端延伸到所述第四侧边2517处。每一第三散热片2533沿其延伸方向呈弯曲形状。每一第三散热片2533沿其延伸方向依次包括一第一散热部25331、从所述第一散热部25331一端向外延伸的第二散热部25332及一从所述第二散热部25332向外延伸的第三散热部25333。
所述第一散热部25331沿其延伸方向呈直线形。所述多个第三散热片2533的第一散热部25331靠近所述第一侧边2514。本实施例中,所述多个第三散热片2533的第一散热部25331相互平行。本实施例中,所述多个第三散热片2533的第一散热部25331平行于所述第一散热片2531和所述第二侧边2515。所述第一散热部25331从所述第一侧边2514处沿第一方向延伸。本实施例中,所述多个第三散热片2533的第一散热部25331垂直于所述第一侧边2514。每一第三散热片2533的高度沿其延伸方向逐渐增加。所述第三气流通道2537在所述第一散热部25331处形成气流入口25371。
所述第二散热部25332沿其延伸方向呈弯曲形。所述第二散热部25332连接所述第一散热部25331和所述第三散热部25333。所述多个第三散热片2533的第二散热部25332大致位于所述基板251的中部。所述多个第三散热片2533的第二散热部25332相互平行或沿其延伸方向略呈放射状。所述第二散热部25332的延伸方向与第一方向不同,即,不同于第一散热部25331的延伸方向。每一第二散热部25332的高度大于所述第一散热部25331及所述第三散热部25333的高度。
所述第三散热部25333沿其延伸方向呈直线形。所述多个第三散热片2533的第三散热部25333延伸向所述第四侧边2517。所述第三散热部25333的延伸方向大致为所述基板251的对角线方向。所述第三散热部25333的延伸方向不同于所述第一方向,即,不同于第一散热部25331的延伸方向。本实施例中,所述多个第三散热片2533的第三散热部25333沿其延伸方向呈放射状。一实施方式中,所述多个第三散热片2533的第三散热部25333与所述第一散热片2531或第二侧边2515的夹角为50-70度。所述第三气流通道2537在所述第三散热部25333处形成气流出口25372。
所述第三气流通道2537呈弯曲形,并从所述第一侧边2514靠近所述第二侧边2515的一端延伸至所述第四侧边2517。即,所述第三气流通道2537呈弯曲形,并从所述第一侧边2514靠近所述第二侧边2515的一端大致沿所述基板251的对角方向延伸。本实施例中,定义所述第三气流通道2537从所述第一侧边2514靠近所述第二侧边2515的一端沿第三方向延伸。所述第三方向呈弯曲形,其与所述第一方向、第二方向不同。
所述多个第四散热片2534位于所述基板251靠近所述第一侧边2514和所述第四侧边2517的角落处。所述多个第四散热片2534位于所述第三散热片2533的一侧。所述多个第四散热片2534相互间隔设置,相邻第四散热片2534间形成第四气流通道2538。本实施例中,所述多个第四散热片2534相互平行。本实施中,所述多个第四散热片2534平行于所述第一侧边2514。一实施方式中,所述多个第四散热片2534的长度不相同。
所述第四气流通道2538呈直线形,其沿平行于所述第一侧边2514的方向延伸。本实施例中,定义所述第四气流通道2538沿第四方向延伸。所述第四方向与所述第一方向、第二方向及第三方向不同。所述第四方向大致垂直于所述第一方向。
请同时参阅图4,组装所述散热装置20时,所述热管23收容于所述导热板21的沟槽215内,所述散热器25的基板251的第二表面2512贴合所述导热板21的结合面213。所述热管23进一步收容于所述基板251的贴合槽2513内,并夹置于所述导热板21和所述基板251之间。一实施方式中,所述沟槽215、所述贴合槽2513内及所述导热板21和所述基板251之间涂布锡膏,用于减小所述导热板21、所述热管23及所述基板251之间的热阻。
请参阅图1、图5和图6,组装所述风扇10和所述散热装置20时,所述风扇10倾斜地置于所述散热装置20的一侧。所述风扇10的出风口115相对于所述基板251的第一表面2511倾斜设置。所述风扇10的出风口115朝向所述散热片253,且与所述散热片253具有一定距离,所述风扇10的进风口113背离所述散热片253。本实施例中,所述风扇10对应于所述散热器25的基板251的第一侧边2514靠近所述第二侧边2515处,其出风口115朝向所述第三散热片2533的第一散热部25331,即朝向所述第三气流通道2537的气流入口25371,并向所述第三散热片2533、第三气流通道2537的延伸方向倾斜。
请参阅图5,所述风扇10的出风口115与所述散热器25的基板251的第二侧边2515、第四侧边2517成12度的夹角,即,所述风扇10的出风口115朝向所述基板251且向所述第三散热片2533的第一散热部25331的延伸方向倾斜。
请参阅图6,所述风扇10的出风口115与所述散热器25的基板251的第一侧边2514成3度的夹角,即,所述风扇10的出风口115朝向所述基板251且向所述第三散热片2533的第二散热部25332和第三散热部25333的延伸方向倾斜。
如此,所述风扇10的出风口115朝向所述第三散热片2533且向所述第三散热片2533的延伸方向倾斜,即,风扇10的出风口115朝向所述第三气流通道2537的气流入口25371且向所述第三气流通道2537的延伸方向倾斜。
使用时,所述散热***1的散热装置20的导热板21从发热元件吸收热量。所述散热装置20的热管23从所述导热板21吸收热量进一步将热量均匀分布于所述导热板21。所述导热板21及所述热管23将热量传递至所述散热装置20的散热器25的基板251及散热片253。所述散热***1的风扇10经由其出风口115将强制气流吹向所述散热片253。由于所述风扇10的出风口115朝向所述散热片253的第三散热片2533且向所述第三散热片2533的延伸方向倾斜,所述风扇10提供的强制气流大部分进入所述第三散热片2533之间的第三气流通道2537,少部分进入所述第一散热片2531之间的第一气流通道2535、第二散热片2532之间的第二气流通道2536及第四散热片2534之间的第四气流通道2538。进入所述第三气流通道2537的强制气流沿着所述第三散热片2533延伸方向流动并带走所述第三散热片2533上的热量。同样,进入所述第一气流通道2535、第二气流通道2536及第四气流通道2538的气流带走所述第一散热片2531、第二散热片2532及第四散热片2534上的热量。
相对于现有技术,所述风扇10相对于所述基板251倾斜设置,使得所述风扇10与所述散热装置20占用空间小。所述风扇10的出风口115朝向所述第三气流通道2537的气流入口25371且向所述第三散热片2533及其间的第三气流通道2537的延伸方向倾斜,使得风扇10提供的强制气流吹向第三散热片2533,且使强制气流方向与所述第三散热片2533及第三气流通道2537的延伸方向一致,从而使风扇10提供的强制气流在经过所述第三散热片2533时,能带走发热元件产生的大部分热量,且风阻降低,形成有效的散热通道。
另外,所述第三散热片2533的第二散热部25332沿其延伸方向呈弯曲形,使得所述风扇10提供的强制气流与第三散热片2533的热交换更为充分。所述第二散热部25332的高度大于所述第一散热部25331及所述第三散热部25333的高度,使所述风扇10提供的强制气流与第三散热片2533的热交换更进一步地充分。
另外,所述第一散热片2531位于所述第三散热片2533的一侧,避免所述风扇10提供的强制气流吹向所述散热器25之外,使得风扇10提供的强制气流的利用率得以提高。
另外,所述第二散热片2532及所述第四散热片2534沿不同方向延伸,使得所述风扇10提供的部分强制气流导向所述散热器25的不同地方,使得散热更为有效。
另外,所述散热装置20采用热管23,使得导热板21吸收的热量更为均匀的分布,避免局部过热现象。
可以理解地,所述风扇10的进风口113可朝向所述散热装置20,使得所述散热装置20从发热元件吸收的热量经由所述进风口113被所述风扇10抽吸出去,此时,所述风扇10的出风口115背离所述散热装置20。
请参阅图7,本发明一实施方式提供一种飞行器4。所述飞行器4包括所述散热***1。所述飞行器4包括机身41、从所述机身41向外延伸的多个机臂42、安装至所述多个机臂42的多个旋翼43及位于所述机身41内的发热元件44(请参阅图8)。所述发热元件44可包含一个或多个发热电子元器件。
所述机身41包括壳体411及由所述壳体411围绕的容置空间413。所述发热元件44置于所述容置空间413内。一实施方式中,所述发热元件44安装于安装板。所述容置空间413位于所述安装板与所述壳体411之间。本实施例中,所述容置空间413位于所述机身41的底部。
所述壳体411的相对两侧设有进气口4111和排气口4113。所述进气口4111和所述排气口4113之间形成一个角度,不会造成热流的循环。所述发热元件44集中分布在所述进气口4111和排气口4113之间。所述壳体411对应所述容置空间413位置可进一步地设置多个穿孔4115。
请同时参阅图8,所述散热***1的散热装置20的导热板21贴合至所述发热元件44。所述导热板21和所述发热元件44之间还可进一步通过导热介质贴合。所述散热***1的风扇10的进风口113对应所述壳体411的进气口4111。所述散热装置20远离所述风扇10的一端靠近所述壳体411的排气口4113。所述风扇10可通过固定装置45固定于所述壳体411上。
请参阅图7和图9,所述飞行器4还可包括另一放置在所述容置空间413内的发热元件46。所述发热元件46可包含一个或多个发热电子元器件。所述飞行器4包括另一结合至所述发热元件46的散热装置47。所述发热元件46位于所述发热元件44及所述散热***1的一侧。所述发热元件46靠近所述壳体411的排气口4113。
请同时参阅图9,所述散热装置47包括基座471及从所述基座471延伸的多个散热鳍片473。所述基座471贴合至所述发热元件46。所述基座471和所述发热元件44之间还可进一步通过导热介质贴合。所述基座471也可设多个收容槽,用于***述发热元件46的多个电子元器件。所述散热鳍片473朝向机身41的壳体411。本实施例中,所述散热鳍片473接触所述壳体411,所述壳体411为金属材料或其他导热材料,如导热碳纳米材料。
使用时,所述发热元件44工作而产生热量。所述散热***1的散热装置20的导热板21吸收发热元件产生的热量。所述散热装置20的热管23从导热板21吸收热量进一步将热量均匀分布于所述导热板21。所述导热板21及所述热管23将热量传递至所述散热装置20的散热器25的基板251及散热片253。所述散热***1的风扇10经由所述机身41的壳体411的进气口4111及其进风口113吸气,经由其出风口115将强制气流吹向所述散热片253。由于所述风扇10的出风口115朝向所述散热片253的第三散热片2533且向所述第三散热片2533的延伸方向倾斜,所述风扇10提供的强制气流大部分进入所述第三散热片2533之间的第三气流通道2537,少部分进入所述第一散热片2531之间的第一气流通道2535、第二散热片2532之间的第二气流通道2536及第四散热片2534之间的第四气流通道2538。进入所述第三气流通道2537的强制气流沿着所述第三散热片2533延伸方向流动并带走所述第三散热片2533上的热量。同样,进入所述第一气流通道2535、第二气流通道2536及第四气流通道2538的气流带走所述第一散热片2531、第二散热片2532及第四散热片2534上的热量。经过所述散热片253的热气流经过所述壳体411的排气口4113排出所述机身41外。
同样地,所述发热元件46工作而产生热量,所述散热装置47的基座471从发热元件46吸收热量并将热量传递至所述散热鳍片473。所述散热鳍片473将热量向外散发,并将一部分热量传递至所述壳体411而由所述壳体411散发至所述机身41外。
相对于现有技术,所述风扇10相对于所述基板251倾斜设置使得所述风扇10与所述散热装置20降低了在高度上的占用尺寸,适应或节省了所述机身41内空间。所述风扇10的出风口115朝向所述第三气流通道2537的气流入口25371且向所述第三散热片2533及其间的第三气流通道2537的延伸方向倾斜,使得风扇10提供的强制气流吹向第三散热片2533,且使强制气流方向与所述第三散热片2533及第三气流通道2537的延伸方向一致,从而使风扇10提供的强制气流在经过所述第三散热片2533时,能带走发热元件产生的大部分热量,且风阻较小,形成有效的散热通道。
进一步地,所述机身41壳体411的进气口4111对应所述风扇10的进风口113,排气口4113对应所述散热器25远离所述风扇10的一端,使得所述散热***1形成的散热通道更为顺畅有效。
进一步地,所述飞行器4的发热元件46采用散热装置47接触所述机身41的壳体411,进行自然散热,一方面扩大了散热装置47的散热面积,使得所述散热装置47可采用小尺寸,另一方面节省了能源。
可以理解地,所述风扇10的进风口113可朝向所述散热装置20,使得所述散热装置20从所述发热元件44吸收的热量经由所述进风口113被所述风扇10抽吸,此时,所述风扇10的出风口115背离所述散热装置20,所述壳体411的进气口4111则对应所述出风口115,将所述风扇10抽吸的热空气排出所述机身41外,而所述排气口4113则为冷空气进气口。
另外,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其它各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。

Claims (51)

  1. 一种散热***,包括:
    基板,具有第一表面及与所述第一表面相对的第二表面;及
    多个散热片,设于所述基板的第一表面;及
    风扇,具有风口,所述风扇设置于所述基板的第一表面的一侧;
    其特征在于:所述风扇的风口相对于所述基板的第一表面倾斜,所述风扇的风口朝向所述多个散热片且向所述多个散热片的延伸方向倾斜。
  2. 如权利要求1所述的散热***,其特征在于:每一所述散热片沿着其延伸方向呈弯曲形。
  3. 如权利要求2所述的散热***,其特征在于:所述散热片位于所述基板第一表面的中间位置。
  4. 如权利要求2所述的散热***,其特征在于:每一所述散热片沿其延伸方向依次包括第一散热部、第二散热部及第三散热部,所述第二散热部及所述第三散热部的延伸方向不同于所述第一散热部的延伸方向。
  5. 如权利要求4所述的散热***,其特征在于:所述风扇的风口靠近所述第一散热部,而远离所述第三散热部。
  6. 如权利要求5所述的散热***,其特征在于:所述第二散热部呈弯曲形而连接所述第一散热部和所述第三散热部。
  7. 如权利要求6所述的散热***,其特征在于:所述第二散热部的高度大于所述第一散热部的高度,且大于所述第三散热部的高度。
  8. 如权利要求6所述的散热***,其特征在于:所述多个散热片的第一散热部相互平行。
  9. 如权利要求6所述的散热***,其特征在于:所述多个散热片的第三散热部沿其延伸方向呈放射状。
  10. 如权利要求1所述的散热***,其特征在于:还包括位于所述多个散热片两侧的多个其他散热片,所述其他散热片的延伸方向不同于所述散热片的延伸方向。
  11. 如权利要求1所述的散热***,其特征在于:还包括:
    导热板,用于吸收发热元件产生的热量,包括用于与发热元件贴合的接触面及与所述基板第二表面结合的结合面;
    热管,位于所述基板和所述导热板之间。
  12. 如权利要求11所述的散热***,其特征在于:所述导热板在其接触面的一侧设置多个用于收容发热元件的容置槽。
  13. 如权利要求11所述的散热***,其特征在于:所述导热板的周缘设置多个凹口。
  14. 一种散热***,包括:
    散热装置,包括多个气流通道,每一气流通道具有气流入口;及
    风扇,具有风口,其设置于所述散热装置的一侧;
    其特征在于:所述风扇的风口相对于所述散热装置倾斜设置,所述风扇的风口朝向所述气流通道的气流入口并向所述气流通道的延伸方向倾斜。
  15. 如权利要求14所述的散热***,其特征在于:每一所述气流通道呈弯曲形。
  16. 如权利要求15所述的散热***,其特征在于:所述多个气流通道远离所述风扇的一端呈放射状。
  17. 如权利要求15所述的散热***,其特征在于:所述多个气流通道的气流入口相互平行。
  18. 如权利要求15所述的散热***,其特征在于:所述散热装置包括多个散热片,所述多个气流通道位于所述多个散热片之间。
  19. 如权利要求18所述的散热***,其特征在于:所述多个散热片间还具有其他气流通道,所述气流通道的延伸方向不同于所述其他气流通道的延伸方向。
  20. 如权利要求18所述的散热***,其特征在于:所述散热装置还包括:
    导热板,用于吸收发热元件产生的热量;
    热管,结合至所述导热板;
    所述散热片位于所述导热板一侧。
  21. 如权利要求20所述的散热***,其特征在于:所述导热板在其接触面的一侧设置多个用于收容发热元件的容置槽。
  22. 如权利要求20所述的散热***,其特征在于:所述导热板的周缘设置多个凹口。
  23. 如权利要求15所述的散热***,其特征在于:所述风扇为轴流式风扇。
  24. 一种飞行器,包括:
    机身,包括:
    壳体;
    容置空间,被所述壳体围绕;及
    发热元件,收容于所述容置空间;及
    散热***,用于散发所述发热元件产生的热量;
    其特征在于:所述散热***设置于所述容置空间内,所述散热***包括:
    导热板,贴合于所述发热元件;
    多个散热片,位于所述导热板一侧,用于散发所述导热板从所述发热元件吸收的热量;及
    风扇,具有风口,设置于所述多个散热片的一端;
    所述风扇的风口朝向所述多个散热片且向所述多个散热片的延伸方向倾斜。
  25. 如权利要求24所述的飞行器,其特征在于:所述壳体具有进气口及排气口,所述风口为所述风扇的出风口,所述风扇还具有进风口,所述进气口对应所述进风口,所述排气口对应所述散热片远离所述风扇的一端。
  26. 如权利要求25所述的飞行器,其特征在于:每一所述散热片沿其延伸方向呈弯曲形。
  27. 如权利要求26所述的飞行器,其特征在于:每一所述散热片沿其延伸方向依次包括第一散热部、第二散热部及第三散热部,所述第二散热部及所述第三散热部的延伸方向不同于所述第一散热部的延伸方向。
  28. 如权利要求27所述的飞行器,其特征在于:所述风扇的出风口靠近所述第一散热部,而远离所述第三散热部。
  29. 如权利要求28所述的飞行器,其特征在于:所述第二散热部呈弯曲形而连接所述第一散热部和所述第三散热部。
  30. 如权利要求28所述的飞行器,其特征在于:所述第二散热部的高度大于所述第一散热部的高度,也大于所述第三散热部的高度。
  31. 如权利要求28所述的飞行器,其特征在于:所述多个散热片的第一散热部相互平行。
  32. 如权利要求28所述的飞行器,其特征在于:所述多个散热片的第三散热部沿其延伸方向呈放射状。
  33. 如权利要求24所述的飞行器,其特征在于:还包括位于所述多个散热片两侧的多个其他散热片,所述其他散热片的延伸方向不同于所述散热片的延伸方向。
  34. 如权利要求24所述的飞行器,其特征在于:所述导热板设有多个容置槽,所述发热元件包括与多个电子元器件,所述多个电子元件器收容于所述容置槽内。
  35. 如权利要求24所述的飞行器,其特征在于:所述散热***还包括热管,所述热管结合至所述导热板。
  36. 如权利要求24所述的飞行器,其特征在于:所述导热板的周缘设置多个凹口,用于避免发热元件的周围元件对所述导热板的干涉。
  37. 如权利要求24所述的飞行器,其特征在于:还包括:
    另一发热元件;
    散热装置,包括贴合所述另一发热元件的基座及从所述基座延伸出的多个散热鳍片。
  38. 如权利要求37所述的飞行器,其特征在于:所述壳体的材料为导热材料,所述散热鳍片接触所述壳体。
  39. 如权利要求37所述的飞行器,其特征在于:所述壳体设有多个穿孔。
  40. 一种飞行器,包括:
    机身,包括:
    壳体;
    容置空间,被所述壳体围绕;及
    发热元件,收容于所述容置空间内;及
    散热***,用于散发所述发热元件产生的热量;
    其特征在于:所述散热***设置于所述容置空间内,所述散热***包括:
    散热装置,包括多个气流通道,每一气流通道具有气流入口;及
    风扇,具有风口,其设置于所述散热装置的一侧;
    所述风扇的风口相对于所述散热装置倾斜设置,所述风扇的风口朝向所述多个气流通道的气流入口并向所述气流通道的延伸方向倾斜。
  41. 如权利要求40所述的飞行器,其特征在于:所述壳体具有进气口及排气口,所述风口为所述风扇的出风口,所述风扇还具有进风口,所述进气口对应所述进风口,所述排气口对应所述散热片远离所述风扇的一端。
  42. 如权利要求41所述的飞行器,其特征在于:每一所述气流通道呈弯曲形。
  43. 如权利要求42所述的飞行器,其特征在于:所述多个气流通道远离所述风扇的一端呈放射状。
  44. 如权利要求42所述的飞行器,其特征在于:所述多个气流通道的气流入口相互平行。
  45. 如权利要求42所述的飞行器,其特征在于:所述散热装置包括多个散热片,所述多个气流通道位于所述多个散热片之间。
  46. 如权利要求45所述的飞行器,其特征在于:所述多个散热片之间还具有其他气流通道,所述气流通道的延伸方向不同于所述其他气流通道的延伸方向。
  47. 如权利要求40所述的飞行器,其特征在于:所述散热装置设有多个容置槽,所述发热元件包括多个电子元器件,所述多个电子元件器收容于所述容置槽内。
  48. 如权利要求40所述的飞行器,其特征在于:所述散热装置还包括热管。
  49. 如权利要求40所述的飞行器,其特征在于:还包括:
    另一发热元件;及
    另一散热装置,包括一贴合所述另一发热元件的基座及从所述基座延伸出的多个散热鳍片。
  50. 如权利要求49所述的飞行器,其特征在于:所述壳体的材料为导热材料,所述散热鳍片接触所述壳体。
  51. 如权利要求40所述的飞行器,其特征在于:所述壳体设有多个穿孔。
PCT/CN2015/096253 2015-12-03 2015-12-03 散热***及具有散热***的飞行器 WO2017091997A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580069093.6A CN107211556B (zh) 2015-12-03 2015-12-03 散热***及具有散热***的飞行器
CN201910098293.4A CN109673139B (zh) 2015-12-03 2015-12-03 散热***及具有散热***的飞行器
PCT/CN2015/096253 WO2017091997A1 (zh) 2015-12-03 2015-12-03 散热***及具有散热***的飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/096253 WO2017091997A1 (zh) 2015-12-03 2015-12-03 散热***及具有散热***的飞行器

Publications (1)

Publication Number Publication Date
WO2017091997A1 true WO2017091997A1 (zh) 2017-06-08

Family

ID=58796034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096253 WO2017091997A1 (zh) 2015-12-03 2015-12-03 散热***及具有散热***的飞行器

Country Status (2)

Country Link
CN (2) CN107211556B (zh)
WO (1) WO2017091997A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811475A (zh) * 2018-09-07 2018-11-13 埃视森智能科技(上海)有限公司 光栅式3d视觉定位***的散热导风装置
CN109219328A (zh) * 2018-11-22 2019-01-15 斯贝克电子(嘉善)有限公司 一种音箱的散热***
CN112533428A (zh) * 2020-12-24 2021-03-19 张雪 一种智能型网络通讯设备
CN113031273A (zh) * 2021-03-16 2021-06-25 歌尔股份有限公司 一种头戴显示设备及其散热机构
CN115268603A (zh) * 2022-07-22 2022-11-01 深圳市安卓微科技有限公司 一种迷你电脑主机
CN117320422A (zh) * 2023-11-28 2023-12-29 合众新能源汽车股份有限公司 一种智能座舱域控制器及车辆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086619A (zh) * 2019-03-04 2020-05-01 苏州臻迪智能科技有限公司 散热装置及飞行器
KR20200116815A (ko) * 2019-04-02 2020-10-13 엘지이노텍 주식회사 컨버터
CN110107822B (zh) * 2019-05-20 2021-01-05 东莞市闻誉实业有限公司 散热器件及照明设备
CN113382608B (zh) * 2021-06-09 2022-11-08 北京机电工程研究所 一种飞行器设备舱散热***及其散热方法
CN115840312A (zh) * 2022-12-26 2023-03-24 合肥鑫晟光电科技有限公司 背板、背光模组和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201166759Y (zh) * 2008-01-23 2008-12-17 奇信电子股份有限公司 具有散热模块的平面显示装置
JP2010173598A (ja) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp 航空機用ポッド収納型電子装置
GB2471186A (en) * 2009-06-19 2010-12-22 Gen Electric Avionics chassis
US20150068704A1 (en) * 2007-05-11 2015-03-12 The Boeing Company Cooling system for aerospace vehicle components
CN104582434A (zh) * 2014-12-23 2015-04-29 深圳市九洲电器有限公司 一种机顶盒散热结构及机顶盒
CN104843190A (zh) * 2015-04-18 2015-08-19 中国计量学院 用于飞行器的半导体智能降温装置与降温控制方法
CN204587314U (zh) * 2015-01-27 2015-08-26 优利科技有限公司 一种飞行器
CN204642144U (zh) * 2015-04-30 2015-09-16 深圳市大疆创新科技有限公司 无人机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604550Y (zh) * 2003-03-17 2004-02-25 微星科技股份有限公司 散热装置
US7212404B2 (en) * 2005-04-19 2007-05-01 Inventec Corporation Integrated heat sink device
CN201094173Y (zh) * 2007-09-14 2008-07-30 曜嘉科技股份有限公司 散热装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068704A1 (en) * 2007-05-11 2015-03-12 The Boeing Company Cooling system for aerospace vehicle components
CN201166759Y (zh) * 2008-01-23 2008-12-17 奇信电子股份有限公司 具有散热模块的平面显示装置
JP2010173598A (ja) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp 航空機用ポッド収納型電子装置
GB2471186A (en) * 2009-06-19 2010-12-22 Gen Electric Avionics chassis
CN104582434A (zh) * 2014-12-23 2015-04-29 深圳市九洲电器有限公司 一种机顶盒散热结构及机顶盒
CN204587314U (zh) * 2015-01-27 2015-08-26 优利科技有限公司 一种飞行器
CN104843190A (zh) * 2015-04-18 2015-08-19 中国计量学院 用于飞行器的半导体智能降温装置与降温控制方法
CN204642144U (zh) * 2015-04-30 2015-09-16 深圳市大疆创新科技有限公司 无人机

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811475A (zh) * 2018-09-07 2018-11-13 埃视森智能科技(上海)有限公司 光栅式3d视觉定位***的散热导风装置
CN108811475B (zh) * 2018-09-07 2024-04-16 埃视森智能科技(上海)有限公司 光栅式3d视觉定位***的散热导风装置
CN109219328A (zh) * 2018-11-22 2019-01-15 斯贝克电子(嘉善)有限公司 一种音箱的散热***
CN109219328B (zh) * 2018-11-22 2023-12-08 斯贝克电子(嘉善)有限公司 一种音箱的散热***
CN112533428A (zh) * 2020-12-24 2021-03-19 张雪 一种智能型网络通讯设备
CN112533428B (zh) * 2020-12-24 2022-01-18 广州信溢创科技股份有限公司 一种智能型网络通讯设备
CN113031273A (zh) * 2021-03-16 2021-06-25 歌尔股份有限公司 一种头戴显示设备及其散热机构
CN113031273B (zh) * 2021-03-16 2023-01-20 歌尔股份有限公司 一种头戴显示设备及其散热机构
CN115268603A (zh) * 2022-07-22 2022-11-01 深圳市安卓微科技有限公司 一种迷你电脑主机
CN117320422A (zh) * 2023-11-28 2023-12-29 合众新能源汽车股份有限公司 一种智能座舱域控制器及车辆

Also Published As

Publication number Publication date
CN109673139A (zh) 2019-04-23
CN107211556A (zh) 2017-09-26
CN107211556B (zh) 2019-03-12
CN109673139B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2017091997A1 (zh) 散热***及具有散热***的飞行器
US6795315B1 (en) Cooling system
WO2021227846A1 (zh) 适于电子设备液冷散热的液冷板及散热单元
WO2020118629A1 (zh) 电子设备
JPH09509014A (ja) 熱放散装置を有するハウジング
WO2000077601A1 (en) The heat-radiator of a portable computer's cpu
WO2023035861A1 (zh) 服务器
WO2022193669A1 (zh) 一种头戴显示设备及其散热机构
WO2018157476A1 (zh) 一种三维功率放大器的散热***
KR100939992B1 (ko) 전기전자기기의 냉각장치 및 이를 장착한 전기전자기기
TW200406663A (en) Computer main body cooling system
CN213152665U (zh) 一种散热装置及电子设备
JP2000082888A (ja) 放熱装置を備える電子機器
WO2020057311A1 (zh) 光网络设备
JP2001257494A (ja) 電子機器
CN214800416U (zh) 一种头戴显示设备及其散热机构
CN214954835U (zh) 一种散热结构及工控机
JP2003188327A (ja) 熱放散モジュール
CN207529926U (zh) 一种半导体散热***
CN112739156A (zh) 散热模块、散热器及功率设备
JP3074274U (ja) 一体式放熱装置
CN211531647U (zh) 一种具有散热功能的信号采集的管理机
CN221178280U (zh) 一种电视机顶盒用散热片
CN219780268U (zh) 具有散热功能的摄像机
CN220020085U (zh) 一种散热结构及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909514

Country of ref document: EP

Kind code of ref document: A1