WO2016184355A1 - 以煤炭为原料制备石墨烯的方法 - Google Patents

以煤炭为原料制备石墨烯的方法 Download PDF

Info

Publication number
WO2016184355A1
WO2016184355A1 PCT/CN2016/081961 CN2016081961W WO2016184355A1 WO 2016184355 A1 WO2016184355 A1 WO 2016184355A1 CN 2016081961 W CN2016081961 W CN 2016081961W WO 2016184355 A1 WO2016184355 A1 WO 2016184355A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
graphene
carbonization
porous graphene
activation
Prior art date
Application number
PCT/CN2016/081961
Other languages
English (en)
French (fr)
Inventor
张雨虹
Original Assignee
张雨虹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张雨虹 filed Critical 张雨虹
Priority to JP2017559116A priority Critical patent/JP6682557B2/ja
Priority to CN201680026357.4A priority patent/CN107848805B/zh
Priority to US15/575,297 priority patent/US10703634B2/en
Priority to EP16795842.0A priority patent/EP3299337B1/en
Priority to KR1020177034497A priority patent/KR20170141779A/ko
Publication of WO2016184355A1 publication Critical patent/WO2016184355A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/845Purification or separation of fullerenes or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the invention relates to a method for preparing graphene, in particular to a method for synthesizing porous graphite in one step by using coal as a carbon source.
  • Graphene a two-dimensional single-layer carbon nanostructured material formed by bottom-up assembly of sp 2 carbon atoms, is excellent in nanoelectronics due to its excellent electrical, thermal, mechanical and chemical stability. Devices, sensors, nanocomposites, electrochemical energy storage and other fields have been widely used.
  • Porous graphene materials due to the high conductivity of graphene sheet structure and abundant pore structure, have important application value in the field of electrochemical energy storage, especially in the field of supercapacitors based on the double-layer adsorption principle.
  • the preparation method of porous graphene mainly includes a chemical activation method, a template synthesis method, and a carbothermal reduction method based on graphene and metal oxide.
  • the chemical activation method uses graphite or graphite oxide as a raw material to form a porous graphene material by activation etching of an activator such as KOH, H 3 PO 4 or ZnCl 2 after microwave or chemical stripping.
  • the porous graphene template synthesis method is based on MgO, ZnS, SiO 2 , Al 2 O 3 , etc., and forms a porous graphene material by carbon source deposition and subsequent template removal process.
  • MgO sheet, sphere, column
  • small molecule hydrocarbons CH 4 , C 2 H 4
  • Catalytic degradation and subsequent removal of the MgO template yielded porous graphene materials with different morphology pores [Nat. Commun, 5, 3410 (2014)].
  • different forms of MgO (sheet, sphere, column) are used as the base template, and small molecule hydrocarbons (CH 4 , C 2 H 4 ) are used as the gas phase carbon source, and the carbon source is on the MgO template.
  • Catalytic degradation and subsequent removal of the MgO template yielded porous graphene materials with different morphology pores [Nat. Commun, 5, 3410 (2014)].
  • the main process for preparing porous graphene based on carbothermal reaction is to use graphite oxide as graphene raw material, and oxygen-containing metal salts such as Na 2 MoO 4 , Na 2 WO 4 , Na 3 VO 4 , NaAlO 2 , Na 2 SnO 3 , K. 2 TiO 3 is an etchant, and a porous graphene material having a pore structure of 1-50 nm is obtained by a high temperature (650 ° C) carbothermal reduction reaction and subsequent pickling to remove metal oxides [Nat. Commun, 5, 4716 (2014) ].
  • the preparation methods of the porous graphene materials listed above all have high raw material cost, and the preparation process is time consuming, cumbersome, and difficult to mass-produce.
  • the preparation methods of the above-mentioned porous graphene materials all have high raw material cost, and the preparation process is time consuming, cumbersome, and difficult to mass-produce.
  • porous graphene materials contains a large number of natural graphite layered structures with aromatic hydrocarbons and polyaromatic hydrocarbons as basic units, and has been regarded as one of the important raw materials for large-scale and low-cost preparation of porous carbon materials.
  • the production of porous carbon materials from coal as raw materials is mainly based on the use of bituminous coal and anthracite coal with higher degree of coalification as raw materials, and carbon-based activated carbon materials are obtained by carbonization and activation (physical activation or chemical activation).
  • coal characteristics, activator type and activation conditions are the key influencing factors affecting the pore structure of porous carbon.
  • the existing carbon in the coal-based activated carbon material prepared by using coal as a raw material is mainly in the form of amorphous structure, and the porous carbon prepared by physical or chemical activation method has less pores (specific surface area ⁇ 1500 m 2 /g).
  • the high content of heteroatoms limits its application in the efficient adsorption and electrochemical storage of gas molecules. Lignite has a large reserve in China, and it is cheaper than other coal types.
  • lignite has significant advantages as a raw material for the preparation of porous carbon materials: (1) high volatile matter content of lignite is beneficial to the formation of more developed pore structure during pyrolysis in high temperature; (2) low degree of coalification of lignite, internal The aromatic structure contains a large number of oxygen-containing groups, which makes it highly reactive, and it is easier to adjust the carbon structure evolution and pore formation process in the preparation of porous carbon materials.
  • lignite is mainly used to prepare low-quality (low porosity, high non-carbon impurity content, structural instability) active coke for water treatment and removal of coal-fired flue gas. A small number of studies have reported through the use of potassium-containing activators through chemistry.
  • the activation process produces lignite-based activated carbon. Although a higher specific surface area activated carbon can be obtained, the obtained porous carbon material is still amorphous and has a high hetero atom content due to the structural characteristics of the raw coal and the activation conditions.
  • the invention provides a method for preparing a porous graphene material which is low-cost and can be industrially produced on a large scale.
  • a porous graphene material is prepared by a one-step chemical activation method using lignite having a special degree of coalification and structural characteristics as a raw material, using a graphene-like sheet structure initially formed therein and an appropriate amount of catalytic metal content.
  • the method for preparing graphene material involved in the invention is simple in process, low in cost, and easy to be mass-produced and mass-produced; the porous graphene prepared by the method has the advantages of developed pore structure, controllable specific surface area, high purity of carbon structure, and the like, and is electrochemical storage.
  • Energy electric double layer capacitor electrode material, lithium ion capacitor cathode material
  • gas adsorption field CO 2 adsorption, CH 4 adsorption
  • the invention has the advantages of high raw material cost, complicated preparation process and specific surface area for solving the existing porous graphene preparation technology.
  • the low-level problem is to provide a method for preparing porous graphene materials with high specific surface area and pore structure control by using a simple one-step chemical activation method with high reserves of lignite in the quasi-eastern region of Xinjiang, China. Specifically, the following steps are included:
  • Refinement step refining coal or coal particles to obtain refined coal powder
  • the activation step immersing the coal powder obtained in the refining step in the activation solution and stirring at normal temperature for 10 to 36 hours to obtain a mixture of the coal powder and the activation solution, and drying the mixture to obtain a coal powder and an activation solution. Melting the mixture;
  • Carbonization step the molten mixture obtained in the activation step is naturally cooled under carbonization of an inert gas or a mixed atmosphere of hydrogen and an inert atmosphere to obtain a carbonized product;
  • Washing and drying step the carbonized product is pickled and washed with water, and dried to obtain porous graphene.
  • the activation solution is a solution of an alkali metal hydroxide, an alkaline earth metal hydroxide or a mixture thereof; and the activating step also includes using ammonia as an activator.
  • the mass ratio of the pulverized coal to the activation solution is from 1:0.1 to 1:10.
  • the volume fraction of H 2 in the mixed atmosphere of the hydrogen gas and the inert atmosphere is 0 to 100%.
  • the carbonization temperature in the carbonization step is from 500 ° C to 1200 ° C, and the carbonization residence time is from 0 to 10 h;
  • the heating rate in the carbonization step is 0.1 to 15 ° C / min;
  • the concentration of the activation solution is 0 to 10 mol / L;
  • the pickling uses dilute hydrochloric acid or nitric acid, and the concentration of the acid washing liquid is 0.5 mol / L ⁇ 2 mol / L;
  • the drying temperature is 60 to 200 ° C;
  • the inert atmosphere is nitrogen or argon
  • the industrial analysis of the coal powder requires that the fixed carbon content is 40-70%, the volatile content is 20-50%, the moisture content is 0-30%, and the ash content is 0-10%; Elemental analysis requires a carbon content of 50-80%, a hydrogen content of 0-10%, and an oxygen content of 0-30%; wherein the ash in the coal must contain CaO, MgO, K 2 O, Na 2 O
  • One or more combinations of the other components may include one or a combination of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , MnO 2 , P 2 O 5 .
  • the invention also discloses a graphene material prepared by the above method.
  • the present invention uses a large-volume, low-cost lignite as a carbon source to obtain a high specific surface area microporous graphene material based on a strong alkali chemical activation method, and the obtained graphene has a large number of single-layer graphene sheet structure, and the surface is densely distributed.
  • a large specific surface area up to 3345m 2 /g
  • the pore structure and specific surface area of graphene can be controlled by carbonization to introduce the type of atmosphere, the ratio of pulverized coal to activator and the adjustment of carbonization temperature. to realise;
  • the porous graphene carbon structure obtained by the method of the present invention has high purity and low content of hetero atom groups ( ⁇ 3-wt%).
  • the high-purity carbon structure enhances the chemical stability of the porous graphene, so that it can significantly improve the cycle life when used as an electrochemical energy storage electrode material or adsorbent material;
  • the conventional coal-based activated carbon preparation process usually requires pre-carbonization treatment to obtain a carbonized material having a preliminary pore framework, and then the carbonized material is mixed with an activator and subjected to a high-temperature activation process to obtain an activated carbon material.
  • the carbon source used in the invention is a young lignite with low metamorphism and strong carbon skeleton plasticity, and the high specific surface area graphene material can be obtained by one-step chemical activation method without using a pre-carbonization process, which greatly simplifies the preparation process and reduces the preparation cost. ;
  • the coal-based raw material used in the present invention is lignite, which is characterized by high internal ash content (mainly alkali metal or alkaline earth metal compound) and high moisture content compared to other coal types.
  • internal ash content mainly alkali metal or alkaline earth metal compound
  • moisture content compared to other coal types.
  • the present invention provides a technical scheme for introducing H 2 in the activation process, and the introduction of the activation process H 2 can enhance the reduction decomposition and accelerate of the carbon-based structure on the surface of the lignite. Precipitation of volatile components and activation of pore-forming; on the other hand, the introduction of H 2 into the carrier gas facilitates further reduction and removal of oxygen-containing groups on the surface of the lignite, thereby improving the purity of the carbon structure in the product;
  • the invention has low-cost lignite as a carbon source, has simple preparation process, is suitable for large-scale industrial production, and has the fields of gas adsorption, electrochemical energy storage and the like. Direct application value.
  • Example 1(a) is a Raman spectrum diagram of the microporous graphene obtained in Example 1;
  • Example 1(b) is a transmission electron microscope image of the microporous graphene obtained in Example 1;
  • 2(b) is a pore size distribution curve of the microporous graphene obtained in Examples 1, 2, and 3;
  • Example 3 is a thermogravimetric curve of the porous graphene obtained in Example 1 under an air atmosphere
  • Example 4(a) is an X-ray photoelectron spectroscopy (XPS) chart of the porous graphene obtained in Example 1;
  • Example 4(b) is an X-ray photoelectron spectroscopy (XPS) diagram of the porous graphene obtained in Example 1.
  • XPS X-ray photoelectron spectroscopy
  • Figure 5 is an X-ray diffraction pattern (XRD) of the porous graphene obtained in Example 1;
  • Figure 6 (a) is a cyclic volt-ampere characteristic curve of the porous graphene obtained in Example 1 in a 6 M KOH electrolyte system;
  • 6(b) is a charge and discharge characteristic curve of the porous graphene obtained in Example 1 in a 6 M KOH electrolyte system;
  • 6(c) is a current density-volume ratio capacitance curve of the porous graphene obtained in Example 1 in a 6 M KOH electrolyte system;
  • 6(d) is a 5 A/g cycle stability curve of the porous graphene obtained in Example 1 in a 6 M KOH electrolyte system;
  • Figure 7 (a) is a cyclic volt-ampere characteristic curve of the porous graphene obtained in Example 1 in a 1 M H 2 SO 4 electrolyte system;
  • Example 7(b) is a charge and discharge characteristic curve of the porous graphene obtained in Example 1 in a 1 M H 2 SO 4 electrolyte system;
  • Example 7(c) is a current density-volume ratio capacitance curve of the porous graphene obtained in Example 1 in a 1 M H 2 SO 4 electrolyte system;
  • Example 7(d) is a 5 A/g cycle stability curve of the porous graphene obtained in Example 1 in a 1 M H 2 SO 4 electrolyte system;
  • Example 8(a) is a cyclic volt-ampere characteristic curve of the porous graphene obtained in Example 1 in a commercial electrolyte of 1 mol/L ET 4 NBF 4 /PC;
  • Example 8(b) is a charge and discharge characteristic curve of the porous graphene obtained in Example 1 in a commercial electrolyte of 1 mol/L ET 4 NBF 4 /PC;
  • Example 8(c) is a power density-capacity density curve of the porous graphene obtained in Example 1 in a commercial electrolyte of 1 mol/L ET 4 NBF 4 /PC;
  • Example 8(d) is a 2A/g cycle stability curve of the porous graphene obtained in Example 1 in a commercial electrolyte of 1 mol/L ET 4 NBF 4 /PC;
  • Example 9(a) is a cyclic volt-ampere characteristic curve of the porous graphene obtained in Example 1 as a positive electrode material for a lithium ion supercapacitor;
  • Example 9(b) is a 2 A/g cycle stability curve of the porous graphene obtained in Example 1 as a positive electrode material for a lithium ion supercapacitor;
  • Fig. 10 is a methane adsorption isotherm of the porous graphene obtained in Example 1.
  • Figure 11 is a cyclic volt-ampere characteristic curve of a lithium ion battery composed of the nitrogen-doped porous graphene obtained in Example 14 at a sweep speed of 0.2 mV s-1.
  • Figure 12 is a graph showing the constant current charge and discharge curves of a lithium ion battery composed of the nitrogen-doped porous graphene obtained in Example 14 at a current density of 0.2 A g-1.
  • Fig. 13 is a graph showing the rate performance of a lithium ion battery composed of the nitrogen-doped porous graphene obtained in Example 14.
  • the Zhundongyuan coal containing the components in Table 1 and Table 2 below is selected.
  • the carbonized product obtained in the step (2) is washed 2 to 3 times with 2 mol//L of dilute hydrochloric acid, washed 2 to 3 times with deionized water, and finally dried at 80 ° C to obtain a target product microporous graphene. .
  • the pulverized coal and the KOH mixture are dried at 60 ° C to obtain a molten mixture of pulverized coal and KOH; the molten mixture is placed in a tube furnace for temperature-raising carbonization: from room temperature to 800 ° C, and the controlled heating rate is 5 ° C / min, After constant activation at 800 ° C for 4 h, the carbonization product is naturally cooled; the obtained carbonized product is washed 2 to 3 times with 2 mol / / L of dilute hydrochloric acid, then washed 2 to 3 times with deionized water, and finally dried at 100 ° C, The target product porous graphene was obtained.
  • porous graphene obtained in the present example were characterized, and the porous graphene prepared by the method of Example 2 was obtained as an organic system supercapacitor electrode material having a specific capacitance of 140 F/g at a current density of 0.5 A/g.
  • the pulverized coal and the KOH mixture are dried at 80 ° C to obtain a molten mixture of pulverized coal and KOH; the molten mixture is placed in a tube furnace for temperature-raising carbonization: from room temperature to 700 ° C, and the controlled heating rate is 8 ° C / min, After being heated at a constant temperature of 700 ° C for 4 h, the carbonization product is naturally cooled; the obtained carbonized product is washed 2 to 3 times with 2 mol//L dilute nitric acid, then washed 2 to 3 times with deionized water, and finally dried at 80 ° C.
  • the target product porous graphene was obtained.
  • porous graphene obtained in the present example were characterized, and the porous graphene prepared by the method of Example 3 was obtained as an organic system supercapacitor electrode material having a specific capacitance of 100 F/g at a current density of 0.5 A/g.
  • the porous graphene obtained in the present example was characterized by the microporous graphene structure and performance test method described in Example 1.
  • the porous graphene obtained in Example 4 had a specific surface area of 2,219 m 2 /g and a pore volume of 1.86 m 3 /g.
  • the porous graphene prepared by the method of Example 4 was used as an organic system supercapacitor electrode material having a specific capacitance of 130 F/g at a current density of 0.5 A/g.
  • the lignite coal powder with a particle size of 100-200 mesh after 3 g ball milling was added to 17.8 mL of a 6 mol/L KOH solution (the mass ratio of coal powder to KOH was 1:2), and stirred at room temperature for 8 hours.
  • the pulverized coal and KOH mixture is dried at 150 ° C to obtain a molten mixture of pulverized coal and KOH; the molten mixture is placed in a tube furnace for temperature-raising carbonization: from room temperature to 900 ° C, the controlled heating rate is 2 ° C / min, After constant temperature activation at 900 ° C for 4 h, the carbonization product is naturally cooled; the obtained carbonized product is washed 2 to 3 times with 2 mol/L of dilute hydrochloric acid, then washed 2 to 3 times with deionized water, and finally dried at 80 ° C to obtain
  • the target product is porous graphene.
  • the porous graphene obtained in the present example was characterized by the microporous graphene structure and performance test method described in Example 1.
  • the porous graphene obtained in Example 5 had a specific surface area of 2009 m 2 /g and a pore volume of 1.47 m 3 /g.
  • the porous graphene prepared by the method of Example 5 was used as a supercapacitor electrode material having a specific capacitance of 100 F/g at a current density of 0.5 A/g.
  • the lignite coal powder with a particle size of 80-200 mesh after sieving by 3 g ball mill was added to 8.9 mL of a 6 mol/L KOH solution (the mass ratio of pulverized coal to KOH was 1:1), and stirred at room temperature for 20 hours.
  • the pulverized coal and KOH mixture is dried at 150 ° C to obtain a molten mixture of pulverized coal and KOH; the molten mixture is placed in a tube furnace for temperature-raising carbonization: from room temperature to 900 ° C, the controlled heating rate is 5 ° C / min, After constant temperature activation at 900 ° C for 4 h, the carbonization product is naturally cooled; the obtained carbonized product is washed 2 to 3 times with 0.5 mol/L of dilute hydrochloric acid, then washed 2 to 3 times with deionized water, and finally dried at 80 ° C.
  • the target product porous graphene was obtained.
  • the porous graphene obtained in the present example was characterized by the microporous graphene structure and performance test method described in Example 1.
  • the porous graphene obtained in Example 6 had a specific surface area of 1,885 m 2 /g and a pore volume of 1.43 m 3 /g.
  • the porous graphene prepared by the method of Example 6 as a supercapacitor electrode material had a specific capacitance of 90 F/g at a current density of 0.5 A/g.
  • the obtained carbonized product is washed 2 ⁇ 3 times with 2mol//L diluted hydrochloric acid, then washed 2 ⁇ 3 times with deionized water, and finally dried at 80 °C.
  • the target product is porous graphene.
  • the microporous graphene obtained in this example had a specific surface area of 2081 m 2 /g and a pore volume of 1.57 cm 3 /g.
  • the obtained carbonized product is washed 2 to 3 times with 2 mol/L of nitric acid, then washed 2 to 3 times with deionized water, and finally dried at 100 ° C to obtain the target.
  • the microporous graphene obtained in this example had a specific surface area of 1061 m 2 /g and a pore volume of 0.67 cm 3 /g.
  • the obtained carbonized product is washed 2 to 3 times with 0.5 mol/L hydrochloric acid, then washed 2 to 3 times with deionized water, and finally dried at 80 ° C to obtain
  • the target product is porous graphene.
  • the microporous graphene obtained in this example had a specific surface area of 756 m 2 /g and a pore volume of 0.24 cm 3 /g.
  • the particle size is 60-100 mesh lignite coal powder, added to 12mL concentration of 6mol / L NaOH solution and 8.6mL concentration of 6mol / L KOH solution mixture (pulverized coal and NaOH + KOH quality The ratio is 1:2), and after stirring at room temperature for 20 hours, the pulverized coal and the mixed solution are dried at 150 ° C to obtain a molten mixture of pulverized coal and strong alkali; the molten mixture is placed in a tube furnace for temperature-raising carbonization: from room temperature The temperature is raised to 900 ° C, the heating rate is controlled to 8 ° C / min, and the carbonization product is naturally cooled after being activated at a constant temperature of 900 ° C for 5 h; the obtained carbonized product is washed 2 to 3 times with 2 mol / / L hydrochloric acid, and then deionized water is used.
  • the mixture was washed 2 to 3 times, and finally dried at 60 ° C to obtain a target product porous graphene.
  • the microporous graphene obtained in this example had a specific surface area of 1021 m 2 /g and a pore volume of 0.48 cm 3 /g.
  • H 2 in the carrier gas during the carbonization process is expected to increase the amount of potassium produced in the activation process to enhance the pore-forming effect.
  • the reaction of H 2 with the surface hetero atom can improve the purity of the porous graphene.
  • H is introduced into the carbonization atmosphere. 2 Preparation of porous graphene. Weigh lignite coal powder with a particle size of 100-200 mesh after 3 g ball mill sieving, add to 35.7 mL of 6 mol/L KOH solution (pulverized coal to KOH mass ratio of 1:4), and stir at room temperature for 24 hours.
  • the pulverized coal and the KOH mixture are dried at 200 ° C to obtain a molten mixture of pulverized coal and KOH; the molten mixture is placed in a tube furnace for temperature-raising carbonization: from room temperature to 800 ° C, and the controlled heating rate is 5 ° C / min, After constant activation at 800 ° C for 6 h, the carbonization product is naturally cooled, and the carbonization process atmosphere is a mixed gas of 5% H 2 and a volume fraction of 90% argon; the obtained carbonized product is washed with 2 mol / / L diluted hydrochloric acid 2 ⁇ After 3 times, it was washed 2 to 3 times with deionized water, and finally dried at 100 ° C to obtain a target product porous graphene.
  • the microporous graphene obtained in this example had a specific surface area of 2003 m 2 /g and a pore volume of 0.97 cm 3 /g.
  • the microporous graphene obtained in this example had a specific surface area of 1941 m 2 /g and a pore volume of 1.01 cm 3 /g.
  • the introduction of NH 3 in the carrier gas is expected to prepare nitrogen-doped porous graphene. Weigh 3g ball milled and then have a particle size of 80-200 mesh lignite coal powder, and add 12mL concentration of 6mol/L NaOH solution and 8.6mL concentration.
  • Porous graphene The microporous graphene obtained in this example had a specific surface area of 1051 m 2 /g and a pore volume of 0.45 cm 3 /g.
  • the carbonization process atmosphere is a mixed gas of 10% NH 3 and 90% argon gas; the obtained carbonized product is used.
  • 2 mol / / L hydrochloric acid was washed 2 to 3 times, and then washed 2 to 3 times with deionized water, and finally dried at 80 ° C to obtain a target product porous graphene.
  • the microporous graphene obtained in this example had a specific surface area of 1081 m 2 /g and a pore volume of 0.64 cm 3 /g.
  • the microporous graphene obtained in this example had a specific surface area of 1061 m 2 /g and a pore volume of 0.49 cm 3 /g.
  • the graphitization degree, microstructure and pore structure parameters of the microporous graphene materials obtained in the examples were analyzed by Raman spectroscopy, transmission electron microscopy, N 2 adsorption, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Detailed characterization. The detailed analysis is as follows:
  • the obvious 2D peak in the Raman spectrum indicates that the microporous graphene synthesized in this embodiment contains a large number of single-layer or multi-layer graphene structural units; further, it can be seen from the TEM image that the microporous graphene is mainly composed of a large number of single A layer of tissue-like graphene sheet structure is formed, and these randomly arranged graphene sheet structures are densely covered with micropores having a pore diameter of about 2 nm.
  • the specific surface area of the microporous graphene obtained by the present invention is 3345 m 2 /g.
  • the pore volume is 1.7 cm 3 /g, and the pore size distribution is narrow, mainly between 1 and 2 nm.
  • Example 3 is a thermogravimetric curve of the porous graphene obtained in Example 1 under an air atmosphere, and it can be seen that the weight loss peak is concentrated between 500 and 600 ° C, compared with the conventional activated carbon loss temperature of the hetero atom content. Higher and higher carbon structure purity.
  • FIG. 4(a) and 4(b) are X-ray photoelectron spectroscopy (XPS) analysis results of the porous graphene obtained in Example 1, and it can be seen that the obtained porous graphene has a high carbon content and a relatively weak oxygen signal, FIG. 4
  • the peak of C1s in (b) indicates that SP 2 is dominant and the proportion of oxygen-containing functional groups is low.
  • Further XPS elemental analysis results show that the carbon content of porous graphene obtained in Example 1 is as high as 98.25%, which fully proves the method obtained by the method of the present invention.
  • the high carbon structure purity of porous graphene will have high cycle stability in electrochemical reactions.
  • Figure 5 is an X-ray diffraction pattern (XRD) of the porous graphene obtained in Example 1.
  • XRD X-ray diffraction pattern
  • the porous graphene obtained in the examples was used as an aqueous supercapacitor material, and the following test was used to test the performance: microporous graphene material, carbon black, and PTFE emulsion were added to absolute ethanol at a ratio of 8:1:1 for grinding to form a self-supporting
  • the film and the two films having the same cutting quality (1 to 2 mg effect) were twisted into a sheet-like pole piece having an area of about 1 cm 2 in a mortar, and pressed on a nickel foam current collector as an electrode sheet for capacitance performance test.
  • the electrode sheets were dried at 120 ° C for 12 hours under vacuum.
  • the 6M KOH and 1M H 2 SO 4 electrolytes, the saturated calomel electrode and the Ag/AgCl electrode were used as reference, and the Pt sheet was used as the counter electrode.
  • the cyclic volt-ampere characteristic curve and the constant capacitance constant current charge-discharge curve of the three-electrode system were tested.
  • the calculation method of the specific capacity C of the porous graphene material is as follows: Wherein I is the discharge current density; ⁇ t is the primary discharge time; m is the active material porous graphene mass contained in the positive electrode tab; ⁇ V is the discharge voltage interval after subtracting the voltage drop IR drop .
  • FIG. 6 is the supercapacitor performance result of the porous graphene obtained in Example 1 in a 6 M KOH electrolyte system. It can be found that the porous graphene obtained by the invention has high specific capacitance, rate performance and cycle stability in the 6M KOH system: the cyclic volt-ampere characteristic curve in Fig. 6(a) shows that it is better at a high sweep speed of 500 mV/s. The rectangular capacitance behavior; the specific capacitance can reach 350F/g at 1A/g current density, and the specific capacitance is still nearly 200F/g at the extremely high current density of 100A/g; 5A/g cycle stability in Figure 6(d) The curve shows that the capacity is almost no attenuation after 10,000 cycles.
  • FIG. 7 is a supercapacitor performance result of the porous graphene obtained in Example 1 in a 1 M H 2 SO 4 electrolyte system. It can be found that the porous graphene obtained by the present invention has high specific capacitance, rate performance and cycle stability in a 1 M H 2 SO 4 system: the cyclic voltammetric characteristic curve in Fig. 7(a) indicates that it remains at a high sweep speed of 500 mV/s.
  • the microporous graphene obtained in the examples was used as an organic double layer electric capacitor electrode material, and the following test was used to test the performance: the microporous graphene material, the carbon black, and the PTFE emulsion were added to the ratio of 8:1:1.
  • the water-ethanol was ground to form a self-supporting film, and the two films with the same cutting quality (1 to 2 mg effect) were kneaded into a sheet-like pole piece having an area of about 1 cm 2 in a mortar, and pressed on a carbon-plated aluminum-plated platinum current collector.
  • Electrode sheet for capacitive performance testing The electrode sheets were dried at 120 ° C for 12 hours under vacuum.
  • the 3501 ion porous membrane is assembled into a button battery for the membrane, and its organic system supercapacitor constant current charge and discharge performance is tested.
  • the specific capacity C of the microporous graphene material is calculated as follows: Where I is the discharge current density; ⁇ t is the primary discharge time; m is the active material mass of one pole piece; ⁇ V is the discharge voltage interval after subtracting the voltage drop IR drop .
  • FIG. 8 is a supercapacitor performance result of the porous graphene obtained in Example 1 in a commercial electrolyte of 1 mol/L ET 4 NBF 4 /PC.
  • Fig. 8(a) shows that the porous graphene obtained in the present invention can achieve a voltage window of 4V and no significant polarization in a 1 mol/L ET 4 NBF 4 /PC system; the charge and discharge current density is 0.5 A at a 3.5 V operating voltage.
  • the specific capacity of the porous graphene obtained in Example 1 can reach 176F/g, and 96% capacity after charge and discharge in 10000 cycles at 2A/g current density, the energy density of the supercapacitor obtained can be up to 97.2. Wh/kg is much higher than the commercial activated carbon-based supercapacitors currently on the market.
  • the porous graphene obtained in the examples was a lithium ion supercapacitor positive electrode material, and the lithium ion plate was used as a negative electrode to constitute a half cell, and the performance of the lithium ion supercapacitor was tested. Specifically, the following test procedure is adopted: microporous graphene material, carbon black, and PTFE emulsion (mass fraction 60%) are added to anhydrous ethanol at a ratio of 8:1:1 for grinding to form a self-supporting film, and the cutting quality is about 1 mg.
  • the film was formed into a sheet-like pole piece having an area of about 1 cm 2 in a mortar, and pressed on a carbon-plated aluminum-platinum current collector as an electrode sheet for the performance test of the positive electrode material.
  • the electrode sheets were dried at 120 ° C for 12 hours under vacuum.
  • the 1U LiPF 6 (1:1 EC-DMC solvent) was used as the electrolyte, the Whatman glass fiber membrane was used as the separator, and the lithium metal sheet was used as the negative electrode.
  • the cyclic voltammetry characteristic curve and the constant capacitance constant current charge and discharge were tested. curve.
  • the calculation method of the specific capacity C of the porous graphene material is as follows: Wherein I is the discharge current density; ⁇ t is the primary discharge time; m is the active material porous graphene mass contained in the positive electrode tab; ⁇ V is the discharge voltage interval after subtracting the voltage drop IR drop .
  • Example 9 is the electrochemical performance data of the porous graphene obtained in Example 1 as a positive electrode material of a lithium ion supercapacitor, comprising a constant current charge and discharge at different current densities at an operating voltage of 2.8 to 4.2 V (vs Li/Li + ). Curve and long cycle performance curve at 2A/g.
  • the charge-discharge performance curve and rate performance show that the specific capacity of the porous graphene prepared in Example 1 can reach 182F/g when the current density is 0.5A/g, and it still retains 95 after 5000 cycles of charge and discharge at 2A/g current density. More than % capacity.
  • the porous graphene obtained in the examples was used as an adsorbent, and the adsorption isotherm of methane was tested by a weight adsorption method to obtain the storage performance of the porous graphene methane.
  • Figure 10 shows the porous graphene methane adsorption isotherm obtained in Example 1. It can be seen that the porous graphene prepared by the method of the present invention has excellent methane storage performance: a weight storage ratio of more than 20% can be obtained under a pressure of about 90 bar.
  • the nitrogen-doped porous graphene obtained in Example 14 is a lithium ion battery anode material, and the performance test method is as follows: lithium sheet is used as a counter electrode, porous graphene is a working electrode active material, and CR2032 button battery is assembled to test it as a lithium ion battery. Anode material properties.
  • the working electrode is prepared by dissolving boron-doped porous carbon spheres, carbon black, and PVDF in a mass ratio of 7:1.5:1.5 in NMP and grinding into a uniform slurry, after which the slurry is coated on the copper foil and The working electrode pole piece was obtained by vacuum drying at 80 ° C for 12 h.
  • the dried pole piece is cut into a circular sheet shape and the active material density is 0.5-1 mgcm -2 , and the fresh lithium piece is assembled into a button battery in the glove box, and the electrolyte is 1M LiPF 6 (the solvent is ethylene carbonate and Diethyl carbonate 1:1), Whatman glass fiber membrane is a membrane.
  • the cyclic volt-ampere characteristic curve and the constant capacitance constant current charge and discharge curve of the test battery in the range of 0.01 to 3.0 V vs. Li/Li + were measured.
  • Example 11 is a cyclic voltammetric characteristic curve of a lithium ion battery composed of nitrogen-doped porous graphene obtained in Example 14 at a sweep speed of 0.2 mV s -1 , which embodies the characteristics of a typical carbon material, and has a large capacity of the first ring. It remains stable after two cycles because of the formation of the SEI layer.
  • Example 12 is a constant current charge-discharge curve of a lithium ion battery composed of nitrogen-doped porous graphene obtained in Example 14 at a current density of 0.2 A g -1 , corresponding to the cyclic voltammetry curve of FIG.
  • the capacity is up to 1814mAh g -1 , and the capacity is stable at 690mAh g -1 after 50 cycles, which is about 2 times that of commercial graphite materials.
  • Example 13 is a rate performance curve of the nitrogen-doped porous graphene obtained in Example 14. It can be seen that the nitrogen-doped porous graphene obtained in Example 14 exhibits excellent rate performance at a low current density of 0.1 A g. -1 has a discharge capacity of 830 mAhg -1 and a discharge capacity of 293 mAh g -1 at a high current density of 5 Ag -1 .
  • Table 1 shows the pore structure parameters and X-ray photoelectron spectroscopy (XPS) elemental analysis results of the porous graphene N 2 obtained in Examples 1 to 17, and it can be seen that the parameters of the porous graphite synthesis process such as temperature, carbonization time, stirring time, The heating rate, raw material ratio and carbonization atmosphere lamp can significantly change the pore structure and surface chemistry of the obtained porous graphene.
  • XPS X-ray photoelectron spectroscopy
  • the preparation method can obtain the microporous graphene material of the present invention by immersing the pulverized coal and the activation solution in a dry-high temperature activation-acid washing and water washing and drying steps.
  • high-temperature activation process small molecular hydrocarbons inside lignite and most amorphous structures are pyrolyzed and remodeled; in this process, the metal of Mg, Ca, etc., which is catalytically graphitized inside the lignite structure, is inherently catalyzed by lignite.
  • the graphite-like microcrystalline or lamellar structure is transformed toward a single-layer or multi-layer graphene structure; at the same time, the activator forms a rich microporous structure by etching the graphene sheet structure under high temperature conditions.
  • the graphene material having a large amount of microporous distribution according to the present invention can be obtained by washing the residual activator. Obviously, factors affecting the pyrolysis, remodeling and pore forming process of the lignite structure during the high temperature activation process. Both of them will affect the morphology, pore structure and carbon structure purity of the target product porous graphene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种以煤为原料制备石墨烯的方法,特别是一种利用准东褐煤制备微孔石墨烯的方法,包括以下步骤:将煤块或煤粒进行细化处理,得到细化煤粉;使用活化溶液浸渍煤粉,后经干燥处理,得到熔融混合物;将熔融混合物在惰性气氛及高温下碳化,得到碳化产物;酸洗、水洗后再干燥碳化产物,得到最高比表面积可达3345 m 2/g的煤基多孔石墨烯。该方法解决了目前制备高比表面积微孔石墨烯方法存在的原料成本高、工艺复杂、产量低的问题;所得产品在气体吸附分离、电化学储能及催化等领域有望实现优异的应用价值。

Description

以煤炭为原料制备石墨烯的方法 技术领域
本发明涉及一种石墨烯的制备方法,特别涉及一种以煤为碳源一步合成多孔石墨稀的方法。
背景技术
石墨烯(GraPhene),即由sp2碳原子自下而上组装形成的二维单层碳纳米结构材料,由于其优异的导电、导热、机械性能以及化学稳定性,使其在高性能纳电子器件、传感器、纳米复合材料、电化学储能等领域获得广泛应用。
多孔石墨烯材料,由于同时具有高导电性的石墨烯片层结构以及丰富的孔隙结构,在电化学储能方向,特别是基于双电层吸附原理的超级电容器领域具有重要应用价值。目前多孔石墨烯制备方法主要包括化学活化法、模板合成法以及基于石墨烯与金属氧化物间的碳热还原法。其中化学活化法是以石墨或氧化石墨为原料,在微波或化学剥离之后通过KOH、H3PO4、ZnCl2等活化剂的活化刻蚀作用,形成多孔石墨烯材料。[Science,vol.332,1537,(2011)]提供了一种KOH活化微波剥离后的氧化石墨烯制备微孔石墨烯的方法,最高比表面积可达3100m2/g,表现出优异的有机电容性能。多孔石墨烯模板合成法是以MgO、ZnS、SiO2、Al2O3等为基底,通过碳源沉积及后续模板去除过程形成多孔石墨烯材料。代表性的是以不同形态的MgO(片状、球状、柱状)为基底模板,以小分子碳氢化合物(CH4、C2H4)等为气相碳源,通过碳源在MgO模板上的催化降解以及后续MgO模板的去除获得具有不同形态孔隙的多孔石墨烯材料[Nat.Commun,5,3410(2014)]。代表性的是以不同形态的MgO(片状、球状、柱状)为基底模板,以小分子碳氢化合物(CH4、C2H4)等为气相碳源,通过碳源在MgO模板上的催化降解以及后续MgO模板的去除获得具有不同形态孔隙的多孔石墨烯材料[Nat.Commun,5,3410(2014)]。基于碳热反应制备多孔石墨烯的主要过程为以氧化石墨为石墨烯原料,以含氧金属盐如Na2MoO4,Na2WO4,Na3VO4,NaAlO2,Na2SnO3,K2TiO3为刻蚀剂,通过高温(650℃)碳热还原反应及后续酸洗去除金属氧化物后获得具有1-50nm孔隙结构的多孔石墨烯材料[Nat.Commun,5,4716(2014)]。然而,上述列举的多孔石墨烯材料的制备方法均存在原料成本高,制备工艺耗时、繁琐且难以规模化批量生产。然而,上述列举的多孔石墨烯材料的制备方法均存在原料成本高,制备工艺耗 时、繁琐且难以规模化批量生产。
因此,研发低成本、可规模化生产的多孔石墨烯材料制备方法具有重要意义,其中低成本、大储量石墨烯原料的寻找至关重要。煤炭的内部结构包含大量以芳香烃、聚芳香烃为基本单元的天然类石墨层状结构,一直以来被视为多孔碳材料规模化、低成本制备的重要原料之一。目前以煤炭为原料生产多孔碳材料主要是以煤化程度较高的烟煤、无烟煤为原料,通过碳化及活化(物理活化或化学活化)处理制备获得煤基活性碳材料。其中,煤种特性、活化剂种类及活化条件是影响多孔碳孔隙结构的关键影响因素。然而,目前以煤为原料制备得到的煤基活性碳材料内碳的存在形式主要为无定型结构,且通过物理或化学活化法制备得到的多孔碳孔隙较少(比表面积<1500m2/g)、杂原子含量高,从而限制了其在气体分子高效吸附及电化学储能方面的应用。褐煤在我国具有较大的储量,相比于其他煤种,价格便宜,特别是今年在中国新疆准格尔东部发现储量丰富的低阶煤炭资源(准东褐煤),预测资源储量达3900亿吨。一方面,褐煤由于较低的煤化程度、较高的碱金属及水分含量,在燃煤发电领域大规模应用具有较大技术瓶颈。然而另一方面,褐煤作为多孔碳材料制备的原料却具有显著优势:(1)褐煤挥发分含量高,有利于在高温热解过程形成更发达孔隙结构;(2)褐煤的煤化程度低,内部芳香结构内包含大量含氧基团,使其具有高反应活性,更容易在制备多孔碳材料中调节碳结构演变及孔隙生成过程。目前褐煤主要用来制备用于水处理及脱除燃煤烟气的低品质(孔隙率低、非碳杂质含量高、结构不稳定)活性焦,少量研究报道通过采用含钾活化剂,通过化学活化过程制备褐煤基活性碳,虽然能够得到较高比表面积活性碳,但由于采用的原料煤结构特性及活化条件的限制,所得多孔碳材料仍为无定型且杂原子含量高。
本发明提供了一种低成本、可大规模工业生产的多孔石墨烯材料制备方法。具体地说,以具有特殊煤化程度及结构特性的褐煤为原料,利用其内部初步形成的类石墨烯片层结构以及适量的催化金属含量,通过一步化学活化法,制备得到多孔石墨烯材料,本发明涉及的石墨烯材料制备方法工艺简单、成本低廉、易于大规模、批量化生产;以该方法制备的多孔石墨烯具有孔隙结构发达、比表面积可控、碳结构纯度高等优点,在电化学储能(双电层电容电极材料、锂离子电容正极材料)和气体吸附领域(CO2吸附、CH4吸附)具有巨大应用优势。
发明内容
本发明为解决现有多孔石墨烯制备技术存在的原料成本高、制备工艺繁杂、比表面积 低等问题,提供一种以我国新疆准东地区高储量的褐煤为碳源,利用简单的一步化学活化法制备高比表面积、孔结构可控的多孔石墨烯材料的方法。具体包括以下步骤:
细化步骤:将煤块或煤粒进行细化,得到细化煤粉;
活化步骤:将细化步骤得到的煤粉浸渍在活化溶液中并在常温下搅拌10-36小时后获得煤粉与活化溶液的混合液,将所述混合液干燥,得到煤粉与活化溶液的熔融混合物;
碳化步骤:将活化步骤得到的熔融混合物在惰性气体或氢气与惰性气氛混合气氛下碳化后自然降温,得到碳化产物;
清洗干燥步骤:将所述碳化产物酸洗及水洗,进行干燥,即得到多孔石墨烯。
优选的,所述活化溶液为碱金属氢氧化物,碱土金属的氢氧化物或其混合物的溶液;活化步骤也包括用氨气做为活化剂。
优选的,所述煤粉与所述活化溶液质量比为1∶0.1~1∶10。
优选的,所述氢气与惰性气氛混合气氛中H2所占体积分数为0~100%。
优选的,碳化步骤中的碳化温度为500℃~1200℃,碳化停留时间为0-10h;
优选的,碳化步骤中的升温速率为0.1~15℃/min;
优选的,所述活化溶液的浓度为0~10mol/L;
优选的,所述酸洗采用稀盐酸或硝酸,且酸洗液的浓度为0.5mol/L~2mol/L;
优选的,所述干燥温度为60~200℃;
优选的,所述惰性气氛为氮气或氩气;
优选的,所述煤粉要求煤种的工业分析要求固定碳含量为40~70%,挥发份含量为20~50%,水分含量为0~30%,灰分含量为0~10%;煤种的元素分析要求碳元素含量为50~80%,氢元素含量为0~10%,氧元素含量为0~30%;其中,煤中灰分必须包含CaO、MgO、K2O、Na2O中的一种或几种组合,其他组分可包含SiO2、Al2O3、Fe2O3、TiO2、MnO2、P2O5中的一种或几种组合。
另一方面,本发明还公开一种由上述方法制备的石墨烯材料。
本发明的有益效果是:
(1)本发明以大储量、低成本褐煤为碳源,基于强碱化学活化法得到高比表面积微孔石墨烯材料,得到的石墨烯具有大量单层的石墨烯片层结构,表面致密分布着<2nm的微孔,具有很大的比表面积(最高达到3345m2/g),石墨烯的孔结构和比表面积的控制可通过碳化引入气氛种类、煤粉与活化剂比例以及碳化温度的调节来实现;
(2)本发明方法所获得的多孔石墨烯碳结构纯度高、杂原子基团含量低(<3-wt%)。 高纯度的碳结构增强多孔石墨烯的化学稳定性,使其在作为电化学储能电极材料或吸附材料时可显著提高循环寿命;
(3)传统的煤基活性碳制备过程通常需要预碳化处理以得到具有初步孔隙构架的碳化料,再将碳化料与活化剂混合并经过高温活化过程得到活性碳材料。本发明采用的碳源为变质程度低、碳骨架可塑性强的年轻褐煤,无需预碳化过程,仅通过一步化学活化法即可得到高比表面积石墨烯材料,大大简化了制备工艺、降低了制备成本;
(4)本发明采用的煤基原料为褐煤,相比于其他煤种,其特征是内部灰分(主要为碱金属或碱土金属化合物)含量高,水分含量高。在一步活化形成多孔石墨烯过程中,内部的Mg、Ca等金属发挥了催化石墨化作用,水分则在一定程度上起到了活化造孔作用;
(5)相比于单纯惰性气氛条件下多孔碳活化方法,本发明提供了在活化过程引入H2的技术方案,活化过程H2的引入一方面可增强褐煤表面碳基结构的还原分解,加速挥发组分的析出以及活化造孔作用;另一方面在载气中引入H2有利于进一步褐煤表面的含氧基团的还原脱除,提高产物中碳结构的纯度;
(6)相比于现有的石墨烯及多孔石墨烯制备方法,本发明以低成本褐煤为碳源,制备过程简单,适用于大规模工业生产,在气体吸附、电化学储能等领域有直接的应用价值。
图表说明
图1(a)为实施例1所得微孔石墨烯的Raman光谱图;
图1(b)为实施例1所得微孔石墨烯的透射电镜图像;
图2(a)为实施例1、2、3所得微孔石墨烯的吸附等温线;
图2(b)为实施例1、2、3所得的微孔石墨烯的孔径分布曲线;
图3为实施例1所得多孔石墨烯在空气气氛下的热重曲线;
图4(a)为实施例1所得多孔石墨烯的X射线光电子能谱(XPS)图;
图4(b)为实施例1所得多孔石墨烯的X射线光电子能谱(XPS)图
图5为实施例1所得多孔石墨烯的X射线衍射图谱(XRD);
图6(a)为实施例1所得多孔石墨烯在6M KOH电解液体系中的循环伏安特性曲线;
图6(b)为实施例1所得多孔石墨烯在6M KOH电解液体系中的充放电特征曲线;
图6(c)为实施例1所得多孔石墨烯在6M KOH电解液体系中的电流密度-体积比电容曲线;
图6(d)为实施例1所得多孔石墨烯在6M KOH电解液体系中的5A/g循环稳定性曲线;
图7(a)为实施例1所得多孔石墨烯在1M H2SO4电解液体系中的循环伏安特性曲线;
图7(b)为实施例1所得多孔石墨烯在1M H2SO4电解液体系中的充放电特征曲线;
图7(c)为实施例1所得多孔石墨烯在1M H2SO4电解液体系中的电流密度-体积比电容曲线;
图7(d)为实施例1所得多孔石墨烯在1M H2SO4电解液体系中的5A/g循环稳定性曲线;
图8(a)为实施例1所得多孔石墨烯在商用电解液1mol/L ET4NBF4/PC中的循环伏安特性曲线;
图8(b)为实施例1所得多孔石墨烯在商用电解液1mol/L ET4NBF4/PC中的充放电特征曲线;
图8(c)为实施例1所得多孔石墨烯在商用电解液1mol/L ET4NBF4/PC中的功率密度-能力密度曲线;
图8(d)为实施例1所得多孔石墨烯在商用电解液1mol/L ET4NBF4/PC中的2A/g循环稳定性曲线;
图9(a)为实施例1所得多孔石墨烯作为锂离子超级电容器正极材料时的循环伏安特性曲线;
图9(b)为实施例1所得多孔石墨烯作为锂离子超级电容器正极材料时的2A/g循环稳定性曲线;
图10为实施例1所得多孔石墨烯的甲烷吸附等温线。
图11为实施例14得到的氮掺杂多孔石墨烯组成的锂离子电池在0.2mV s-1扫速下的循环伏安特性曲线。
图12为实施例14得到的氮掺杂多孔石墨烯组成的锂离子电池在0.2A g-1电流密度下的恒电流充放电曲线。
图13为实施例14得到的氮掺杂多孔石墨烯组成的锂离子电池的倍率性能曲线。
具体实施方式
下面通过具体实施例进一步阐述本发明的优点,但本发明的保护范围不仅仅局限于下述实施例。
本发明实施例中选用含有如下表1、表2中成份的准东原煤
表1煤源的工业分析和元素分析
Table 1Proximate and ultimate analysis of Zhundong coal and acid washing coal
Figure PCTCN2016081961-appb-000001
注:*氧含量通过差值测得。
表2煤源中灰成分分析
Table2Ash analysis of Zhundong coal
Figure PCTCN2016081961-appb-000002
实施例1:
本实施方式微孔石墨烯制备方法按下列步骤实现:
(1)称取3g球磨筛分后粒径为80-100目的褐煤煤粉,加入到35.7mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶4),并在常温下搅拌24小时后将煤粉与KOH混合液在120℃下干燥得到煤粉与KOH熔融混合物;
(2)将步骤(1)得到的煤粉与KOH熔融混合物置于管式炉中进行升温碳化:从室温升至900℃,控制升温速率为5℃/min,在900℃温度下恒温碳化3h后自然降温得到碳化产物;
(3)将步骤(2)所得的碳化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物微孔石墨烯。
实施例2:
称取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到35.7mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶4),并在常温下搅拌10小时后将煤粉与KOH混合液在60℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至800℃,控制升温速率为5℃/min,在800℃温度下恒温活化4h后自然降温得到炭化产物;所得的炭化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在100℃下干燥,得到目标产物多孔石墨烯。对本实施例获得的多孔石墨烯进行结构及性能表征,得到用实施例2的方法制备的多孔石墨烯作为有机体系超级电容器电极材料在电流密度为0.5A/g下比电容为140F/g。
实施例3:
称取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到35.7mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶4),并在常温下搅拌15小时后将煤粉与KOH混合液在80℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至700℃,控制升温速率为8℃/min,在700℃温度下恒温活化4h后自然降温得到炭化产物;所得的炭化产物用2mol//L稀硝酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。对本实施例获得的多孔石墨烯进行结构及性能表征,得到用实施例3的方法制备的多孔石墨烯作为有机体系超级电容器电极材料在电流密度为0.5A/g下比电容为100F/g。
实施例4:
称取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到26.8mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶3),并在常温下搅拌36小时后将煤粉与KOH混合液在200℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为2℃/min,在900℃温度下恒温活化4h后自然降温得到炭化产物;所得的炭化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。
采用实施例1中所述的微孔石墨烯结构及性能测试方法对本实施例获得的多孔石墨烯进行表征。实施例4得到的多孔石墨烯比表面积达2219m2/g,孔容为1.86m3/g。用实施例4的方法制备的多孔石墨烯作为有机体系超级电容器电极材料在电流密度为0.5A/g下比电容为130F/g。
实施例5:
取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到17.8mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶2),并在常温下搅拌8小时后将煤粉与KOH混合液在150℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为2℃/min,在900℃温度下恒温活化4h后自然降温得到炭化产物;所得的炭化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。
采用实施例1中所述的微孔石墨烯结构及性能测试方法对本实施例获得的多孔石墨烯 进行表征。实施例5得到的多孔石墨烯比表面积达2009m2/g,孔容为1.47m3/g。用实施例5的方法制备的多孔石墨烯作为超级电容器电极材料,在电流密度为0.5A/g下比电容为100F/g。
实施例6:
取3g球磨筛分后粒径为80-200目的褐煤煤粉,加入到8.9mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶1),并在常温下搅拌20小时后将煤粉与KOH混合液在150℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为5℃/min,在900℃温度下恒温活化4h后自然降温得到炭化产物;所得的炭化产物用0.5mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。
采用实施例1中所述的微孔石墨烯结构及性能测试方法对本实施例获得的多孔石墨烯进行表征。实施例6得到的多孔石墨烯比表面积达1885m2/g,孔容为1.43m3/g。用实施例6的方法制备的多孔石墨烯作为超级电容器电极材料在电流密度为0.5A/g下比电容为90F/g。
实施例7:
称取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到71.4mL浓度为3mol/L KOH溶液中(煤粉与KOH质量比为1∶4),并在常温下搅拌10小时后将煤粉与KOH混合液在200℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至600℃,控制升温速率为1℃/min,在600℃温度下恒温碳化6h后自然降温得到炭化产物;所得的炭化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在100℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为2071m2/g,孔容为1.47cm3/g。
实施例8:
称取3g球磨筛分后粒径为80-100目的褐煤煤粉,加入到50mL浓度为6mol/L NaOH溶液中(煤粉与NaOH质量比为1∶4),并在常温下搅拌15小时后将煤粉与NaOH混合液在120℃下干燥得到煤粉与NaOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至1000℃,控制升温速率为5℃/min,在1000℃温度下恒温活化4h后自然降温得 到炭化产物;所得的炭化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为2081m2/g,孔容为1.57cm3/g。
实施例9:
称取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到25mL浓度为6mol/L NaOH溶液中(煤粉与NaOH质量比为1∶2),并在常温下搅拌24小时后将煤粉与NaOH混合液在120℃下干燥得到煤粉与NaOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至600℃,控制升温速率为10℃/min,在600℃温度下恒温碳化6h后自然降温得到炭化产物;所得的炭化产物用2mol//L硝酸洗涤2~3次,再用去离子水洗涤2~3次,最后在100℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为1061m2/g,孔容为0.67cm3/g。
实施例10:
称取3g球磨筛分后粒径为80-100目的褐煤煤粉,加入到12mL浓度为6mol/L NaOH溶液中(煤粉与NaOH质量比为1∶1),并在常温下搅拌24小时后将煤粉与NaOH混合液在200℃下干燥得到煤粉与NaOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至1100℃,控制升温速率为8℃/min,在1100℃温度下恒温碳化2h后自然降温得到炭化产物;所得的炭化产物用0.5mol//L盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为756m2/g,孔容为0.24cm3/g。
实施例11:
称取3g球磨筛分后粒径为60-100目的褐煤煤粉,加入到12mL浓度为6mol/L NaOH溶液和8.6mL浓度为6mol/L KOH溶液的混合液中(煤粉与NaOH+KOH质量比为1∶2),并在常温下搅拌20小时后将煤粉与混合液在150℃下干燥得到煤粉与强碱熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为8℃/min,在900℃温度下恒温活化5h后自然降温得到碳化产物;所得的碳化产物用2mol//L盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在60℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为1021m2/g,孔容为0.48cm3/g。
实施例12:
碳化过程载气中H2的引入有望提高活化过程钾单质产生量从而增强造孔作用,此外H2与表面杂原子的反应可提高多孔石墨烯纯度,本实施方式/实施例在炭化气氛中引入H2制备多孔石墨烯。称取3g球磨筛分后粒径为100-200目的褐煤煤粉,加入到35.7mL浓度为6mol/L KOH溶液中(煤粉与KOH质量比为1∶4),并在常温下搅拌24小时后将煤粉与KOH混合液在200℃下干燥得到煤粉与KOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至800℃,控制升温速率为5℃/min,在800℃温度下恒温活化6h后自然降温得到炭化产物,碳化过程气氛为5%的H2和体积分数为90%氩气的混合气体;所得的炭化产物用2mol//L稀盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在100℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为2003m2/g,孔容为0.97cm3/g。
实施例13:
称取3g球磨筛分后粒径为80-200目的褐煤煤粉,加入到50mL浓度为6mol/L NaOH溶液中(煤粉与NaOH质量比为1∶4),并在常温下搅拌24小时后将煤粉与NaOH混合液在100℃下干燥得到煤粉与NaOH熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为8℃/min,在900℃温度下恒温活化4h后自然降温得到炭化产物,碳化过程气氛为50%的H2和体积分数为50%氩气的混合气体;所得的炭化产物用2mol//L硝酸洗涤2~3次,再用去离子水洗涤2~3次,最后在100℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为1941m2/g,孔容为1.01cm3/g。
实施例14:
炭化过程载气中NH3的引入有望制备氮掺杂多孔石墨烯,称取3g球磨筛分后粒径为80-200目的褐煤煤粉,加入到12mL浓度为6mol/L NaOH溶液和8.6mL浓度为6mol/L KOH溶液的混合液中(煤粉与NaOH+KOH质量比为1∶2),并在常温下搅拌15小时后将煤粉与混合液在120℃下干燥得到熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为8℃/min,在900℃温度下恒温活化4h后自然降温得到炭化产物,碳化过程气氛为50%的NH3和体积分数为50%氩气的混合气体;所得的炭化产物用2mol//L盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在100℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为1051m2/g,孔容为0.45cm3/g。
实施例15:
称取3g球磨筛分后粒径为80-200目的褐煤煤粉,加入到24mL浓度为6mol/L NaOH溶液和17.2mL浓度为6mol/L KOH溶液的混合液中(煤粉与NaOH+KOH质量比为1∶4),并在常温下搅拌20小时后将煤粉与混合液在200℃下干燥得到熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至1200℃,控制升温速率为8℃/min,在1200℃温度下恒温活化4h后自然降温得到炭化产物,碳化过程气氛为10%的NH3和体积分数为90%氩气的混合气体;所得的炭化产物用2mol//L盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在80℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为1081m2/g,孔容为0.64cm3/g。
实施例16:
称取3g球磨筛分后粒径为60-100目的褐煤煤粉,加入到60mL浓度为6mol/L NaOH溶液和43mL浓度为6mol/L KOH溶液的混合液中(煤粉与NaOH+KOH质量比为1∶10),并在常温下搅拌20小时后将煤粉与混合液在150℃下干燥得到煤粉与强碱熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至900℃,控制升温速率为0.1℃/min,在900℃温度下恒温活化1h后自然降温得到碳化产物;所得的碳化产物用2mol//L盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在50℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为1061m2/g,孔容为0.49cm3/g。
实施例17:
称取3g球磨筛分后粒径为80-200目的褐煤煤粉,加入600μL浓度为6mol/L NaOH溶液和430μL浓度为6mol/L KOH溶液的混合液(煤粉与NaOH+KOH质量比为1∶0.1),并在常温下搅拌20小时后将煤粉与混合液在150℃下干燥得到煤粉与强碱熔融混合物;熔融混合物置于管式炉中进行升温炭化:从室温升至1000℃,控制升温速率为15℃/min,在1000℃温度下恒温活化10h后自然降温得到碳化产物;所得的碳化产物用2mol//L盐酸洗涤2~3次,再用去离子水洗涤2~3次,最后在200℃下干燥,得到目标产物多孔石墨烯。本实施例得到的微孔石墨烯比表面积为92m2/g,孔容为0.05cm3/g。
实施例效果
采用拉曼光谱、透射电镜、N2吸附、X射线光电子能谱(XPS)、X射线衍射(XRD) 等手段对实施例所得微孔石墨烯材料石墨化度、微观形貌以及孔隙结构参数进行详细表征。详细分析如下:
如图1(a)及(b)分别为实施例1得到的微孔石墨烯Raman光谱数据及透射电镜图像。拉曼光谱图中的明显的2D峰表明本实施例合成的微孔石墨烯内部包含了大量单层或多层石墨烯结构单元;进一步由TEM图像能够看出微孔石墨烯主要由大量的单层薄纱状石墨烯片层结构组成,这些随机排列的石墨烯片层结构内密布着孔径约为2nm的微孔。
如图2(a)、(b)中实施例1、2、3所得微孔石墨烯的吸附等温线及孔径分布曲线,能够得到本发明得到的微孔石墨烯比表面积为3345m2/g,孔容为1.7cm3/g,孔径分布狭窄,主要在1~2nm之间。
如图3为实施例1所得多孔石墨烯在空气气氛下的热重曲线,能够看出其失重峰集中在500~600℃之间,相比于杂原子含量较多的传统活性碳烧失温度更高,且碳结构纯度更高。
如图4(a)、(b)为实施例1所得多孔石墨烯的X射线光电子能谱(XPS)分析结果,能够看出所得多孔石墨烯碳含量较高,氧信号相对很弱,图4(b)中C1s分峰结果表明SP2为主导,含氧官能团所占比例较低,进一步XPS元素分析结果表明实施例1所得多孔石墨烯碳含量高达98.25%,充分证明了本发明方法得到的多孔石墨烯的高碳结构纯度,将在电化学反应中具有高循环稳定性。
如图5为实施例1所得多孔石墨烯的X射线衍射图谱(XRD),小角度的高强度衍射证明了高度发的孔隙结构,明显的(002)峰证明了石墨烯结构的存在。
以实施例所得多孔石墨烯为水系超级电容器材料,采用下述试验测试性能:将微孔石墨烯材料、炭黑、和PTFE乳液以8∶1∶1比例加到无水乙醇中研磨形成自支撑薄膜,裁剪质量完全相同(1~2mg作用)的两片薄膜在研钵中擀成面积约为1cm2的片状极片,压在镍泡沫集流体上作为电容性能测试的电极片。电极片在120℃、真空环境下烘干12h备用。以6M KOH和1M H2SO4电解液、饱和甘汞电极和Ag/AgCl电极为参比,Pt片为对电极,测试三电极体系下循环伏安特性曲线及恒电容恒电流充放电曲线。其中,多孔石墨烯材料比容量C计算方法如下:
Figure PCTCN2016081961-appb-000003
式中I为放电电流密度;Δt为一次放电时间;m为正极极片所含的活性材料多孔石墨烯质量;ΔV为扣除电压降IRdrop后的放电电压区间。
其中,图6为实施例1所得多孔石墨烯在6M KOH电解液体系中的超级电容性能结果。 能够发现本发明所得多孔石墨烯在6M KOH体系中具有高比电容、倍率性能及循环稳定性:图6(a)中循环伏安特性曲线表明在高扫速500mV/s下仍保持了较好的矩形电容行为;1A/g电流密度下比电容可达350F/g,在极高的100A/g电流密度下比电容仍有近200F/g;图6(d)中5A/g循环稳定性曲线表明10000次循环后容量几乎无衰减。
其中,图7为实施例1所得多孔石墨烯在1M H2SO4电解液体系中的超级电容性能结果。能够发现本发明所得多孔石墨烯在1M H2SO4体系中具有高比电容、倍率性能及循环稳定性:图7(a)中循环伏安特性曲线表明在高扫速500mV/s下仍保持了较好的矩形电容行为;0.5A/g电流密度下比电容可达350F/g,在极高的100A/g电流密度下比电容仍有近200F/g;图7(d)中5A/g循环稳定性曲线表明10000次循环后容量几乎无衰减。
以实施例所得的微孔石墨烯为有机体系双电层超级电容电极材料,采用下述试验测试性能:将微孔石墨烯材料、炭黑、和PTFE乳液以8∶1∶1比例加到无水乙醇中研磨形成自支撑薄膜,裁剪质量完全相同(1~2mg作用)的两片薄膜在研钵中擀成面积约为1cm2的片状极片,压在镀碳铝铂集流体上作为电容性能测试的电极片。电极片在120℃、真空环境下烘干12h备用。由此形成的两个相同的极片,以1mol/L ET4NBF4/PC为电解液、
Figure PCTCN2016081961-appb-000004
3501离子多孔膜为隔膜组装成纽扣电池,测试其有机体系超级电容恒电流充放电性能。微孔石墨烯材料比容量C计算方法如下:
Figure PCTCN2016081961-appb-000005
式中I为放电电流密度;Δt为一次放电时间;m为一个极片的活性材料质量;ΔV为扣除电压降IRdrop后的放电电压区间。
其中,图8为实施例1所得多孔石墨烯在商用电解液1mol/L ET4NBF4/PC的超级电容性能结果。图8(a)能够发现本发明所得多孔石墨烯在1mol/L ET4NBF4/PC体系中电压窗口能够达到4V且没有明显的极化;3.5V操作电压下,充放电电流密度为0.5A/g时,实施例1所得多孔石墨烯比电容可达176F/g,2A/g电流密度下经10000次循环充放电后仍有96%的容量,组成获得的超级电容器能量密度最高可达97.2Wh/kg,远远高于目前市场上商用活性碳基超级电容器。
以实施例所得多孔石墨烯为锂离子超级电容器正极材料,以金属锂片为负极组成半电池,测试锂离子超级电容性能。具体采用下述试验过程:将微孔石墨烯材料、炭黑、和PTFE乳液(质量分数60%)以8∶1∶1比例加到无水乙醇中研磨形成自支撑薄膜,裁剪质量为1mg左右的薄膜在研钵中擀成面积约为1cm2的片状极片,压在镀碳铝铂集流体上作为正极材料 性能测试的电极片。电极片在120℃、真空环境下烘干12h备用。以1M LiPF6(1∶1的EC-DMC为溶剂)为电解液、Whatman玻璃纤维膜为隔膜组成、金属锂片为负极组成纽扣电池,测试其循环伏安特性曲线及恒电容恒电流充放电曲线。其中,多孔石墨烯材料比容量C计算方法如下:
Figure PCTCN2016081961-appb-000006
式中I为放电电流密度;Δt为一次放电时间;m为正极极片所含的活性材料多孔石墨烯质量;ΔV为扣除电压降IRdrop后的放电电压区间。
其中,图9为实施例1得到的多孔石墨烯作为锂离子超级电容器正极材料时的电化学性能数据,包含2.8~4.2V(vs Li/Li+)操作电压下不同电流密度下恒电流充放电曲线以及2A/g下的长循环性能曲线。充放电性能曲线及倍率性能表明:电流密度为0.5A/g时,实施例1制备的多孔石墨烯比电容可达182F/g,2A/g电流密度下经5000次循环充放电后仍保有95%以上的容量。
以实施例所得多孔石墨烯为吸附剂,采用重量吸附法测试其对甲烷的吸附等温线,获得多孔石墨烯甲烷储存性能。图10所示,为实施例1得到的多孔石墨烯甲烷吸附等温线。能够看出,本发明方法制备得到的多孔石墨烯具有优异的甲烷储存性能:90bar左右的压力下能够获得大于20%的重量储存比。
以实施例14所得氮掺杂多孔石墨烯为锂离子电池负极材料,其性能测试方法为:以锂片为对电极,多孔石墨烯为工作电极活性物质,组装CR2032纽扣电池测试其作为锂离子电池负极材料性能。其中工作电极制备方法为:将硼掺杂多孔碳球、炭黑、和PVDF以7∶1.5∶1.5的质量比溶于NMP并研磨成均一浆料,之后将浆料涂覆在铜箔上并在80℃下真空烘干12h得到工作电极极片。烘干的极片裁剪为圆形片状并保持活性物质密度为0.5~1mgcm-2,与新鲜锂片在手套箱内组装为纽扣电池,电解液为1M LiPF6(溶剂为碳酸亚乙酯和碳酸二乙酯1∶1),Whatman玻璃纤维膜为隔膜。测试电池在0.01~3.0V vs.Li/Li+电压范围内的循环伏安特性曲线及恒电容恒电流充放电曲线。
其中,图11为实施例14得到的氮掺杂多孔石墨烯组成的锂离子电池在0.2mV s-1扫速下的循环伏安特性曲线,体现了典型碳材料的特征,首圈容量较大,经过两次循环后保持稳定,这是因为SEI层的形成。
其中,图12为实施例14得到的氮掺杂多孔石墨烯组成的锂离子电池在0.2A g-1电流密度下的恒电流充放电曲线,与图6中循环伏安曲线对应,首圈放电容量可达1814mAh g-1,经过50次循环后容量稳定在690mAh g-1,是商用石墨材料的2倍左右。
其中,图13为实施例14得到的氮掺杂多孔石墨烯的倍率性能曲线,能够看出,实施例14得到的氮掺杂多孔石墨烯表现出优异的倍率性能,在低电流密度0.1A g-1有830mAhg-1的放电容量,在高电流密度5Ag-1下仍有293mAh g-1的放电容量。
表1为实施例1~17所得的多孔石墨烯N2吸附孔隙结构参数及X射线光电子能谱(XPS)元素分析结果,能够看出改变多孔石墨合成过程参数如温度、碳化时间、搅拌时间、升温速率、原料比及碳化气氛灯能够显著改变所得多孔石墨烯孔隙结构及表面化学特性。
表1.N2吸附孔隙结构参数及XPS元素分析结果
Figure PCTCN2016081961-appb-000007
Figure PCTCN2016081961-appb-000008
综上可以看出,该制备方法通过煤粉与活化溶液浸渍干燥-高温活化-酸洗及水洗后干燥三个步骤即可得到本发明所述的微孔石墨烯材料。其中,高温活化过程,褐煤内部的小分子碳氢化合物及大部分无定型结构热解重塑;在此过程中赋存在褐煤结构内部的具有催化石墨化作用的Mg、Ca等金属催化褐煤内固有的类石墨微晶或片层结构向着单层或多层石墨烯结构转变;同时活化剂在高温条件下通过对石墨烯片层结构的刻蚀形成丰富的微孔结构。活化完成后通过对残留的活化剂的清洗即可得到本发明所述的具有大量微孔分布的石墨烯材料显然,在高温活化过程对褐煤结构热解、重塑及成孔进程产生影响的因素均会对最终形成的目标产物多孔石墨烯的形貌、孔隙结构以及碳结构纯度造成影响。
应理解的是,以上部分实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 以煤炭为原料制备石墨烯的方法,包括以下步骤:
    细化步骤:将煤块或煤粒进行细化,得到细化煤粉;
    活化步骤:将细化步骤得到的煤粉浸渍在活化溶液中并在常温下搅拌10~36小时后获得煤粉与活化溶液的混合液,将所述混合液干燥,得到煤粉与活化溶液的熔融混合物;
    碳化步骤:将活化步骤得到的熔融混合物在惰性气体或氢气与惰性气氛混合气氛下碳化后自然降温,得到碳化产物;
    清洗干燥步骤:将所述碳化产物酸洗及水洗,进行干燥,即得到多孔石墨烯。
  2. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述活化溶液为碱金属氢氧化物,碱土金属的氢氧化物或其混合物的溶液;所述活化步骤也包括用氨气做为活化剂。
  3. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述煤粉与所述活化溶液质量比为1∶0.1~1∶10。
  4. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述氢气与惰性气氛混合气氛中H2所占体积分数为0~100%。
  5. 根据权利要求1所述的制备石墨烯的方法,其特征在于,碳化步骤中的碳化温度为500℃~1200℃,碳化停留时间为0~10h。
  6. 根据权利要求1所述的制备石墨烯的方法,其特征在于,碳化步骤中的升温速率为0.1~15℃/min。
  7. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述活化溶液的浓度为0~10mol/L。
  8. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述酸洗采用稀盐酸或硝酸,且酸洗液的浓度为0.5mol/L~2mol/L。
  9. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述干燥温度为60~200℃。
  10. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述惰性气氛为氮气或氩气。
  11. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述煤粉的固定碳含量为40~70%,挥发份含量为20~50%,水分含量为0~30%,灰分含量为0~10%;煤种的元素分析要求碳元素含量为50~80%,氢元素含量为0~10%,氧元素含量为0~30%;
  12. 根据权利要求11所述的制备石墨稀的方法,其特征在于,所述煤粉中灰分包含 CaO、MgO、K2O、Na2O、SiO2、Al2O3、Fe2O3、TiO2、MnO2、P2O5中的一种或几种。
  13. 根据权利要求12所述的制备石墨稀的方法,其特征在于,所述煤粉中灰分包含CaO、MgO、K2O、Na2O中的一种或多种。
  14. 一种由权利要求1至13任意一项所述的制备石墨烯的方法得到的石墨烯材料。
PCT/CN2016/081961 2015-05-19 2016-05-13 以煤炭为原料制备石墨烯的方法 WO2016184355A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017559116A JP6682557B2 (ja) 2015-05-19 2016-05-13 石炭を原料としてグラフェンを調製する方法
CN201680026357.4A CN107848805B (zh) 2015-05-19 2016-05-13 以煤炭为原料制备石墨烯的方法
US15/575,297 US10703634B2 (en) 2015-05-19 2016-05-13 Method for preparing graphene using coal as raw material
EP16795842.0A EP3299337B1 (en) 2015-05-19 2016-05-13 Method for preparing graphene using coal as raw material
KR1020177034497A KR20170141779A (ko) 2015-05-19 2016-05-13 원료로서 석탄으로부터의 그라핀 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510257435.9 2015-05-19
CN201510257435 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016184355A1 true WO2016184355A1 (zh) 2016-11-24

Family

ID=57319428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081961 WO2016184355A1 (zh) 2015-05-19 2016-05-13 以煤炭为原料制备石墨烯的方法

Country Status (6)

Country Link
US (1) US10703634B2 (zh)
EP (1) EP3299337B1 (zh)
JP (1) JP6682557B2 (zh)
KR (1) KR20170141779A (zh)
CN (1) CN107848805B (zh)
WO (1) WO2016184355A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793119A (zh) * 2017-05-03 2018-11-13 申广 一种炭黑和石墨烯微片复合材料制备技术
CN108928810A (zh) * 2017-05-27 2018-12-04 马保卫 NaOH重新构造C-C健制备纳米碳材料的新用途
CN109775691A (zh) * 2017-11-13 2019-05-21 新奥石墨烯技术有限公司 硫掺杂石墨烯及其制备方法和***、太阳能电池
CN113234460A (zh) * 2021-04-26 2021-08-10 中国煤炭地质总局勘查研究总院 一种富油煤的分析方法
CN113851330A (zh) * 2021-08-30 2021-12-28 苏州艾古新材料有限公司 一种MnO2/氮掺杂活性炭复合材料及其制备方法和应用
CN114890420A (zh) * 2022-04-22 2022-08-12 太原理工大学 一种煤基新型多孔碳电极材料的制备方法
CN115417401A (zh) * 2022-05-12 2022-12-02 太原理工大学 一种可回收低温熔融盐制备石墨烯的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018389263A1 (en) 2017-12-22 2020-08-13 Carbon Holdings Intellectual Properties, Llc Methods for producing carbon fibers, resins, graphene, and other advanced carbon materials from coal
US11772972B2 (en) 2018-09-10 2023-10-03 Hl Science & Technology Limited Green method for producing a mixture of multiple nano-carbon polymorphs from coal
US11435313B2 (en) 2018-12-21 2022-09-06 Carbon Holdings Intellectual Properties, Llc Coal-based graphene biosensors
CN109437168B (zh) * 2019-01-03 2021-11-05 兖矿集团有限公司 一种石墨烯水凝胶及其制备方法
CN109626362A (zh) * 2019-01-08 2019-04-16 新奥石墨烯技术有限公司 多孔石墨烯材料及其制备方法和超级电容器
CN109850888A (zh) * 2019-01-31 2019-06-07 西安科技大学 一种半焦分质联产多孔活性炭与类石墨烯气凝胶的方法
WO2020198171A1 (en) * 2019-03-22 2020-10-01 Carbon Holdings Intellectual Properties, Llc Coal-based graphene biosensors
CN110171826B (zh) * 2019-05-24 2022-07-19 哈尔滨工业大学 基于煤内在灰分催化活化的煤基活性焦孔结构配组调控方法
JPWO2022065493A1 (zh) * 2020-09-28 2022-03-31
CN112366329A (zh) * 2020-11-20 2021-02-12 新疆大学 一种三维煤基石墨烯负载铂催化剂的制备方法
CN112978729A (zh) * 2021-02-09 2021-06-18 中国矿业大学 一种褐煤基类石墨烯的制备方法及其应用
GR1010267B (el) * 2021-04-08 2022-07-20 Γεωργιος Ζαχαρια Κυζας Παρασκευη γραφενιου υψηλης καθαροτητας απο λιγνιτη
CN114789998B (zh) * 2021-11-01 2024-03-19 广东一纳科技有限公司 负极材料及其制备方法、电池
CN113816370B (zh) * 2021-11-23 2022-02-08 山西沁新能源集团股份有限公司 煤基石墨复合材料及制备方法和使用该材料的电池
CN114735679A (zh) * 2022-04-14 2022-07-12 广西鲸络科技研发有限公司 利用桑杆炭热解活化制备多孔石墨烯电极材料的方法
JP2023170689A (ja) * 2022-05-19 2023-12-01 株式会社マテリアルイノベーションつくば 電極材料、電極及びキャパシタ
CN115583649B (zh) * 2022-10-28 2023-09-26 西安科技大学 一种无烟煤直接制备石墨烯的方法
CN116845222B (zh) * 2023-08-16 2024-02-20 湖南金阳烯碳新材料股份有限公司 一种用于钠离子电池的硬碳/石墨烯复合负极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110201739A1 (en) * 2010-01-12 2011-08-18 National Nanomaterials, Inc. Method and system for producing graphene and graphenol
US20130183459A1 (en) * 2011-06-03 2013-07-18 Cynthia S. Nickel Device and method for identifying microbes and counting microbes and determining antimicrobial sensitivity
CN103288076A (zh) * 2013-06-08 2013-09-11 新疆师范大学 一种煤基原料制备多层石墨烯的方法
CN103771403A (zh) * 2014-01-09 2014-05-07 新疆出入境检验检疫局 一种用褐煤渣制备多层石墨烯的方法
CN104540778A (zh) * 2012-04-09 2015-04-22 俄亥俄州立大学 生产石墨烯的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1206576A (en) * 1975-03-18 1977-09-22 Commonwealth Scientific And Industrial Research Organization Active carbon
DE3834745A1 (de) * 1988-10-12 1990-04-19 Degussa Verfahren zur herstellung von aktivkohle
JP3352316B2 (ja) 1995-03-17 2002-12-03 キヤノン株式会社 リチウム二次電池、リチウム二次電池用電極およびそれ等の作製方法
JP5551144B2 (ja) * 2004-07-30 2014-07-16 東洋炭素株式会社 活性炭およびその製法
JP5407055B2 (ja) * 2008-10-07 2014-02-05 国立大学法人東京農工大学 燃料電池用電極触媒の製造方法
JP2012101948A (ja) * 2010-11-05 2012-05-31 Kansai Coke & Chem Co Ltd 活性炭の製造方法
US8920764B2 (en) * 2011-02-11 2014-12-30 University of Pittsburgh—of the Commonwealth System of Higher Education Graphene composition, method of forming a graphene composition and sensor system comprising a graphene composition
GB201103499D0 (en) * 2011-03-01 2011-04-13 Univ Ulster Process
MY150618A (en) * 2011-11-24 2014-02-05 Univ Malaya Method of producing graphene, carbon nano-dendrites, nano-hexacones and nanostructured materials using waste tyres
JP5743945B2 (ja) * 2012-03-30 2015-07-01 株式会社東芝 酸素還元触媒と酸素還元触媒を用いた電気化学セル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110201739A1 (en) * 2010-01-12 2011-08-18 National Nanomaterials, Inc. Method and system for producing graphene and graphenol
US20130183459A1 (en) * 2011-06-03 2013-07-18 Cynthia S. Nickel Device and method for identifying microbes and counting microbes and determining antimicrobial sensitivity
CN104540778A (zh) * 2012-04-09 2015-04-22 俄亥俄州立大学 生产石墨烯的方法
CN103288076A (zh) * 2013-06-08 2013-09-11 新疆师范大学 一种煤基原料制备多层石墨烯的方法
CN103771403A (zh) * 2014-01-09 2014-05-07 新疆出入境检验检疫局 一种用褐煤渣制备多层石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299337A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793119A (zh) * 2017-05-03 2018-11-13 申广 一种炭黑和石墨烯微片复合材料制备技术
CN108928810A (zh) * 2017-05-27 2018-12-04 马保卫 NaOH重新构造C-C健制备纳米碳材料的新用途
CN109775691A (zh) * 2017-11-13 2019-05-21 新奥石墨烯技术有限公司 硫掺杂石墨烯及其制备方法和***、太阳能电池
CN109775691B (zh) * 2017-11-13 2024-04-05 新奥集团股份有限公司 硫掺杂石墨烯及其制备方法和***、太阳能电池
CN113234460A (zh) * 2021-04-26 2021-08-10 中国煤炭地质总局勘查研究总院 一种富油煤的分析方法
CN113851330A (zh) * 2021-08-30 2021-12-28 苏州艾古新材料有限公司 一种MnO2/氮掺杂活性炭复合材料及其制备方法和应用
CN114890420A (zh) * 2022-04-22 2022-08-12 太原理工大学 一种煤基新型多孔碳电极材料的制备方法
CN115417401A (zh) * 2022-05-12 2022-12-02 太原理工大学 一种可回收低温熔融盐制备石墨烯的方法

Also Published As

Publication number Publication date
JP6682557B2 (ja) 2020-04-15
CN107848805A (zh) 2018-03-27
US20180155201A1 (en) 2018-06-07
US10703634B2 (en) 2020-07-07
EP3299337A1 (en) 2018-03-28
EP3299337A4 (en) 2019-01-30
EP3299337B1 (en) 2020-05-27
KR20170141779A (ko) 2017-12-26
JP2018523623A (ja) 2018-08-23
CN107848805B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2016184355A1 (zh) 以煤炭为原料制备石墨烯的方法
Luo et al. Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors
Zhang et al. Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries
WO2018099173A1 (zh) 以煤为原料制备氮掺杂多孔碳材料的方法
Chen et al. Multiple Functional Biomass‐Derived Activated Carbon Materials for Aqueous Supercapacitors, Lithium‐Ion Capacitors and Lithium‐Sulfur Batteries
CN102956876B (zh) 热解硬炭材料及其制备方法和用途
CN106365163B (zh) 一种剑麻纤维活性炭的制备方法及该剑麻纤维活性炭在锂离子电容器中的应用
CN112830472B (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
Yang et al. Construction and preparation of nitrogen-doped porous carbon material based on waste biomass for lithium-ion batteries
CN112794324B (zh) 一种高介孔率木质素多级孔碳材料及其制备方法与应用
Guo et al. Design and synthesis of highly porous activated carbons from Sargassum as advanced electrode materials for supercapacitors
Yue et al. Nitrogen-doped cornstalk-based biomass porous carbon with uniform hierarchical pores for high-performance symmetric supercapacitors
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
CN113307254A (zh) 采用低温双盐化合物制备三维多孔石墨烯片的方法及应用
Chen et al. Design and structure optimization of coal-based hierarchical porous carbon by molten salt method for high-performance supercapacitors
Fu et al. Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
Liu et al. Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage
CN113809286B (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用
Zheng et al. Nitrogen self-doped porous carbon based on sunflower seed hulls as excellent double anodes for potassium/sodium ion batteries
CN116514094B (zh) 一种电池负极碳材料的制备方法及其应用
CN111883368A (zh) 松子壳衍生碳材料/三嗪聚合物衍生碳材料及其制备方法和应用、双碳钠离子混合电容器
CN109473293B (zh) 一种可用于超级电容器的碳材料的制备方法
Mao et al. Pre-oxidation and catalytic carbonization strategies of hemp-derived multifunctional carbon for lithium-ion batteries/hybrid supercapacitors with high energy density and outstanding cyclability
Du et al. Preparation of two-dimensional porous nitrogen‑oxygen co-doped recycled yeast cell wall derived‑carbon matrix for high-performance zinc ion supercapacitors
CN113735121A (zh) 一种类珊瑚条状多孔碳、其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559116

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034497

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016795842

Country of ref document: EP