WO2016143725A1 - コヒーレントレシーバ - Google Patents

コヒーレントレシーバ Download PDF

Info

Publication number
WO2016143725A1
WO2016143725A1 PCT/JP2016/056912 JP2016056912W WO2016143725A1 WO 2016143725 A1 WO2016143725 A1 WO 2016143725A1 JP 2016056912 W JP2016056912 W JP 2016056912W WO 2016143725 A1 WO2016143725 A1 WO 2016143725A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
coherent receiver
sig
signal light
Prior art date
Application number
PCT/JP2016/056912
Other languages
English (en)
French (fr)
Inventor
準治 渡辺
Original Assignee
住友電工デバイス・イノベーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工デバイス・イノベーション株式会社 filed Critical 住友電工デバイス・イノベーション株式会社
Priority to US15/556,711 priority Critical patent/US20180062757A1/en
Priority to CN201680014574.1A priority patent/CN107430312A/zh
Priority to JP2017505319A priority patent/JPWO2016143725A1/ja
Publication of WO2016143725A1 publication Critical patent/WO2016143725A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • H04B10/6151Arrangements affecting the optical part of the receiver comprising a polarization controller at the receiver's input stage
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • G02F2/006All-optical wavelength conversion

Definitions

  • the present invention relates to a coherent receiver.
  • Patent Document 1 discloses a photoelectric conversion device. Patent Document 1 describes the configuration of a coherent receiver.
  • the coherent receiver includes a multimode interference device, and the multimode interference device has, for example, two multimode interference units.
  • the coherent receiver uses two reference lights respectively input to the two multimode interference units, and demodulates the signal light input together with the reference lights. If the mounting accuracy of an optical element such as a duplexer is low when making a coherent receiver, the light intensity of the reference light and the signal light input to the two multimode interference units will be different, and the error rate during signal demodulation will increase. Sometimes.
  • the coherent receiver according to the present invention is a coherent receiver that extracts the phase information contained in the signal light by causing the local light and the signal light having two polarizations to interfere with each other.
  • the coherent receiver according to the present invention includes a polarization-dependent optical branching element that bisects signal light based on its polarization, an optical branching element that bisects local light, one of the two local lights, and the two signal lights.
  • a first multi-mode interferor that interferes with the other one of the two
  • a second multi-mode interferor that interferes with one of the bisected local light and one of the two halved signal lights.
  • the intensity of the one of the two divided local lights or one of the two divided signal lights is attenuated on at least one of the two divided local light paths or one of the two divided signal light paths.
  • a coherent receiver including an optical attenuator.
  • the intensity of one local light input to the first multimode interferometer is made closer to the intensity of the other local light input to the second multimode interferometer, or the second multimode is
  • the intensity of one signal light input to the interferometer can be made closer to the intensity of the other signal light input to the first multimode interferometer.
  • FIG. 1 is a plan view schematically showing a coherent receiver 1 according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing the inside of the coherent receiver 1 shown in FIG.
  • the coherent receiver 1 is an apparatus that demodulates information contained in phase-modulated Sig light by causing Lo light (Local Beam: L 2 O light) and Sig light (Signal Beam: Sig light) to interfere with each other. The demodulated information is converted into an electrical signal and output outside the coherent receiver.
  • the coherent receiver 1 includes an optical system for L 2 O light and Sig light, and two multi-mode interference units (MMI) 40 and 50. And it has the housing
  • MMI multi-mode interference units
  • the optical system and the MMIs 40 and 50 are mounted on the bottom surface 2E of the housing 2 via the carrier 3 and the base 4.
  • circuit boards 46 and 56 for mounting a circuit for processing demodulated information are mounted on the carrier 3 and the base 4.
  • the carrier 3 is made of a metal such as copper tungsten (CuW)
  • the base 4 is made of an insulating material such as alumina (Al 2 O 3 ) or aluminum nitride (AlN).
  • the two MMIs 40 and 50 are semiconductor MMIs, for example, made of InP.
  • the MMIs 40 and 50 have Lo light input units 41 and 51 and Sig light input units 42 and 52, respectively. Phase information is demodulated by causing the Lo light input to the Lo light input units 41 and 52 to interfere with the Sig light input to the Sig light input units 42 and 52.
  • the two MMIs 40 and 50 may be provided independently or may be integrated together.
  • the housing 2 has a first side wall (front wall) 2A.
  • the first side wall 2A side is referred to as the front side, and the opposite side is referred to as the rear side.
  • These front / rear are for explanation only and do not limit the scope of the present invention.
  • the Lo light input port 5 and the Sig light input port 6 are fixed to the front wall 2A by, for example, laser welding. Lo light is provided to the Lo light input port 5 via the polarization maintaining fiber 35, and Sig light is provided to the Sig light input port 6 via the single mode fiber 36.
  • collimating lenses are arranged in the two input ports 5 and 6 respectively, and Lo light and Sig light (respectively emitted from the polarization maintaining fiber 35 and the single mode fiber 36). In the state of being emitted from the fiber, divergent light) is changed to collimated light and guided into the housing 2.
  • the Lo light optical system introduces Lo light provided from the Lo light input port 5 into the Lo light input units 41 and 51 of the MMIs 40 and 50, respectively.
  • the Lo light optical system includes a polarizer 11, a first optical splitter (Beam Splitter: BS) 12, a first reflector 13, and two lens groups 14 and 15.
  • the lens groups 14 and 15 include first lenses 14b and 15b arranged relatively close to the MMIs 40 and 50, respectively, and second lenses 14a and 15a arranged relatively apart from each other.
  • the polarized light 11 is optically coupled to the Lo light input port 5 and adjusts the polarization direction of the Lo light (L 0 ) provided from the Lo light input port 5.
  • the light source of Lo light generally outputs very flat elliptically polarized light.
  • the Lo light (N 0 ) output from the Lo light input port is desired depending on the mounting accuracy of the optical component inserted in the optical path from the light source to the coherent receiver 1. It does not have linear polarization along the direction.
  • the polarizer 11 converts the input Lo light into linearly polarized light having a desired polarization direction (for example, a direction parallel to the housing bottom surface 2E).
  • the first BS 12 bifurcates the Lo light N 0 output from the polarizer 11.
  • the branching ratio is 50:50.
  • One of the branched Lo lights N 1 travels straight through the first BS 12 toward the first MMI 40.
  • the other Lo light N 2 has its optical axis converted by 90 ° by the first BS 12, and its optical axis is again converted by 90 ° by the first reflector 13, and goes to the second MMI 50.
  • two prisms are bonded together, and a prism type BS or reflector having the interface as a light branching surface or a light reflecting surface is given.
  • the first BS 12 and the first reflector 13 are not limited to the prism type. It is possible to adopt a so-called flat-plate type BS and reflector.
  • the Lo light optical system can further include two lens systems 14, 15, a first skew correction element 16, and a first attenuator 71.
  • Lens system 14 is between the first BS12 and the first MMI40, a Lo light L 1 having passed through the first BS to Lo light input section 41 optically coupled to the first MMI40.
  • the lens system 15 is mounted between the first reflector 13 and the second MMI 50, and Lo light (L 2 ) branched at the first BS 12 and reflected by the first reflector 12 is Lo of the second MMI 50.
  • the optical input 51 is optically coupled.
  • the first skew correction element 16 is interposed between the first BS 12 and the lens system 14, and each of the two Lo lights (L 1 , L 2 ) branched from the first BS respectively from the first BS 12.
  • the optical length difference reaching the Lo light input units 41 and 51 is corrected. That is, the Lo light L 2 is longer than the optical path length of the other Lo light L 1 by the optical path length from the first BS 12 to the first reflector 13.
  • the first skew correction element 16 compensates for the difference in optical path length, in other words, the time difference between the Lo lights reaching the two Lo light input units 41 and 52.
  • the first skew correction element 16 is made of silicon, and has a transmittance of about 99% for Lo light, and is made of a material that is substantially transparent to the wavelength of Lo light.
  • the path leading to the first MMI 40 for one Lo light L 1 branched by the first BS 12 is the first optical path
  • the second optical path for the other Lo light L 2 is the first optical path.
  • the path to the second MMI 50 may be referred to as a second optical path.
  • the optical coupling efficiency with respect to the Lo light input unit 41 of the first optical path is the second
  • the optical coupling efficiency with respect to the Lo light input portion 51 of the optical path is larger.
  • the optical system for Sig light includes a second BS 21, a second reflector 22, and two lens systems 23 and 24.
  • the second BS 21 is optically coupled to the Sig light input port 6 and bisects the Sig light provided from the single mode fiber 36 via the Sig light input port based on the polarization direction.
  • the branching ratio is in principle 50:50.
  • the polarization direction of the Sig light N 0 provided by the single mode fiber 36 is indefinite.
  • the second BS bisecting this based on the polarization direction of the Sig light N 0.
  • the second BS 21 transmits the polarization component parallel to the bottom surface 2E of the housing 2 out of the Sig light N 0 to be the Sig light N 1 and reflects the polarization component perpendicular to the bottom surface 2E to reflect the Sig light N 2 . Therefore, the second BS 21 can be a polarization-dependent optical splitter (Polarization Beam Splitter: PBS).
  • PBS Polarization Beam Splitter
  • the Sig light optical system further includes two lens systems 23 and 24, a skew adjustment element 26, and a half-wave ( ⁇ / 2) plate 25.
  • the Sig light N 1 that has passed through the PBS 21 passes through the second skew adjustment element 26 and is then optically coupled to the Sig light input portion 52 of the second MMI 50 by the lens system 23.
  • the second skew adjustment element 26 compensates the optical path length from the PBS 21 to the second reflector 22 for the Sig lights N 1 and N 2 . That is, the Sig light N 2 propagates longer than the optical path of the other Sig light N 1 by the optical path length from the PBS 21 to the second reflecting mirror 22 and then reaches the respective MMIs 40 and 50.
  • Skew adjustment element 26 sets the time delay corresponding to the optical path length Sig light N 1.
  • the Sig light N 0 is branched into two Sig lights N 1 and N 2 depending on the polarization direction.
  • the planes of polarization of Sig light immediately after branching are orthogonal to each other.
  • By passing the Sig light N 2 for lambda / 2 plate 25, is polarization planes 90 ° rotation of the Sig light N 2, the same as other Sig light N 1.
  • the optical axis of the Sig light N 2 is converted by 90 ° by the second reflecting mirror 22, and is coupled to the first MMI Sig light input unit 42 via the lens system 24.
  • FIG. 1 shows a so-called prism type component in which two prisms are bonded together and the interface is used as a polarization-dependent branching element and a light reflecting surface. It is also possible to adopt a flat plate type optical component having a light branching function and a light reflecting function on the surface of the flat plate member. Further, the two lens systems 23 and 24 are also relatively separated from the first lenses 23b and 24b disposed in proximity to the respective MMIs 40 and 50, similarly to the Lo light lens systems 14 and 15. A second lens 23a, 24a may be included.
  • the optical coupling efficiency of the SIG light N 1 , N 2 with respect to the SIG light input portions 42, 52 of the respective MMI 40, 50 is increased. Can do.
  • the second optical attenuator ATT81 can be interposed between the skew adjustment element 26 and the PBS 22 in the third path. In the state where the second optical attenuator 81 is not mounted, the optical coupling efficiency of the third optical path and the optical coupling efficiency of the fourth optical path are large in the former (third optical path).
  • the first MMI 40 includes a multimode interference waveguide (MMI waveguide) 44 and a photodiode (PD) 45 optically coupled to the waveguide 44.
  • the MMI waveguide 44 is a waveguide formed on, for example, an InP substrate, and the Lo light L 1 input to the first Lo light input unit 41 and the Sig light N 2 input to the first Sig light input unit 42. the causes interference Sig light information included in the N 2, Lo light and the phase component of the Sig light N 1 that matches the phase of the L 1, Lo light L 1 and the phase of the 90 ° different Sig light N 2 phase Separate into components and demodulate. That is, the first MMI 40 demodulates two pieces of independent information about the Sig light N 2 .
  • the second MMI 50 includes an MMI waveguide 54 and a PD 55 optically coupled to the waveguide 54.
  • the MMI waveguide 54 is a waveguide formed on the InP substrate, and interferes with the Lo light L 2 input to the second Lo light input unit 42 and the Sig light N 1 input to the second Sig light input 52. To demodulate two pieces of independent information.
  • the housing 2 has the second side wall (rear wall) 2B on the side opposite to the first side wall 2A.
  • the housing 2 has a continuous feedthrough 61 on the rear wall 2B and two side walls connecting the front wall 2A and the rear wall 2B.
  • the feedthrough 61 of the rear wall 2B has a plurality of signal output terminals 65.
  • the four independent information demodulated by the two MMIs 40 and 50 are processed by the integrated circuits 43 and 53, and then the signal output terminals 65 It is guided to the outside of the coherent receiver 1 through 65.
  • another terminal 66 is provided on the two side walls.
  • the other terminal 66 provides a DC or low-frequency signal, such as a signal for driving the two MMIs 40 and 50 and a signal for driving each optical component, through the terminal 66.
  • the first and second integrated circuits 43 and 53 are mounted on circuit boards 46 and 56 that surround the MMIs 40 and 50 and are mounted on the base 4. Furthermore, a resistor element, a capacitor element, and the like are mounted on the circuit boards 46 and 56. A DC / DC converter is also installed if necessary.
  • the coherent receiver according to the present embodiment has mounting areas 70 and 80 on the first and third optical paths, and optical ATTs 71 and 81 are mounted on the areas, respectively.
  • the optical ATT 71 is mounted in the mounting area 70.
  • the optical coupling efficiency of the third optical path with respect to the second MMI 50 is greater than the optical coupling efficiency of the fourth optical path with respect to the first MMI 40
  • the optical ATT 81 is placed on the mounting region 80 on the third optical path. Mount.
  • the optical ATTs 71 and 81 With these optical ATTs 71 and 81, it becomes possible to set the coupling efficiencies of the Lo lights L 1 and L 2 to the two MMIs 40 and 50 and the coupling efficiencies of the Sig lights N 1 and N 2 to the same level. Degradation of information demodulation accuracy can be suppressed.
  • the optical ATTs 71 and 81 are installed in the first optical path for Lo light and the third optical path for Sig light.
  • the effect of the present invention can be sufficiently expected by mounting the optical ATT 81 on at least the third optical path of the Sig light N 1 .
  • the Lo light it is difficult to imagine a scene where the intensity of the two Lo lights L 1 and L 2 branched by the BS 12 are greatly different.
  • the Lo light ATT 71 and the Sig light ATT 81 for example, a plurality of transmission type light ATTs having different light attenuation amounts can be prepared. From the plurality of transmissive light ATTs, for example, one light ATT having an optimum light attenuation is selected as the Lo light ATT71 and the Sig light ATT81 according to the required light attenuation.
  • the light transmittance of the light ATTs 71 and 81 is, for example, 95% to 98%. For example, it can be set as the structure which provided the reflective film or the absorption film in quartz glass.
  • the reflective film is made of a metal film made of at least one material of aluminum (Al) and gold (Au) and a multilayer film made of a dielectric such as a silicon nitride (SiN) film, and the absorption film is made of a material containing carbon. It is a membrane.
  • the shapes of the ATTs 71 and 81 may be basically any shape, and may be, for example, a cube, a rectangular parallelepiped, or a plate. The thickness in the direction along each optical axis is also arbitrary. As an example, the ATTs 71 and 81 can be a rectangular parallelepiped having a side of about 1 mm.
  • the first installation area 70 and the second installation area 80 can be, for example, a square having a side of about 1.5 mm.
  • the light intensity ratio between the first Lo light L 1 input to the first MMI 40 and the second Lo light L 2 input to the second MMI 50, and the second intensity input to the first MMI 40 is adjusted to fall within the range of 80 to 120%, for example.
  • FIGS. 3A to 3D are diagrams schematically showing the installation area 70 according to the first embodiment of the present invention.
  • FIG. 3A is a plan view of the installation area 70.
  • FIG. 3B is a cross-sectional view taken along line IIIb-IIIb in FIG. Since the other installation area 80 has the same mode as the first installation area 70, the illustration of the second installation area 80 is omitted in the following description.
  • the installation area 70 has an installation surface 72, and the optical ATT 71 is installed on the installation surface 72.
  • FIGS. 3C and 3D are views showing a state in which the light ATT 71 is installed on the installation surface 72.
  • FIG. 3C is a plan view of the installation area 70
  • FIG. 3D is a cross-sectional view taken along line IIId-IIId in FIG. 3C.
  • 3A to 3D show the optical path R 1 of the Lo light L 1 .
  • the installation surface 72 has a fixing agent 73 that fixes the optical ATT 71.
  • the fixing agent 73 is, for example, an adhesive or a brazing material.
  • the adhesive is, for example, an epoxy resin, and the brazing material is, for example, indium tin (InSn) or bismuth tin (BiSn) based low melting point solder.
  • the installation area 70 further includes a configuration 74 that prevents the fixing agent 73 from flowing out.
  • the configuration 74 can be, for example, a groove surrounding the installation surface 72. Fixative 73 is applied so as not to block the optical path R 1.
  • the other installation area 80 can also have a flow-out prevention mechanism.
  • a flow-out prevention mechanism 74 for the fixing agent 73 can be provided in at least one of the installation areas 70 and 80.
  • the phase-modulated Sig light is demodulated by the interference between the Lo light and the Sig light.
  • the intensity of Lo light and Sig light input to the second MMI 50 are extremely different depending on the mounting accuracy of the optical element such as the first BS 12 when the coherent receiver 1 is manufactured, and the error rate during signal demodulation increases. In such a case, the error rate can be reduced. That is, the intensity of the Sig light N 1 input to the second MMI 50 can be reduced by installing the optical ATT 81 in the installation area 80.
  • the intensity difference between the light intensity of the Sig light N 1 input to the second MMI 50 and the Sig light N 2 input to the first MMI 40 can be reduced. As a result, it is possible to reduce a decrease in information demodulation accuracy of the coherent receiver 1.
  • the coherent receiver 1 is installed on the optical path between the first BS 12 and the Lo light input unit 41 of the first MMI 40 to install an optical ATT 71 that attenuates the intensity of the Lo light L 1. Region 70 is provided.
  • the optical ATT 71 reduces the intensity of the Lo light L 1 that is input to the first MMI 40. Accordingly, the difference in intensity between the Lo light L 1 input to the first MMI 40 and the Lo light L 2 input to the second MMI 50 can be reduced. Therefore, it is possible to further reduce the deterioration of the information demodulation accuracy of the coherent receiver 1.
  • the installation area 70 is provided on the optical path R 1 of the Lo light L 1. Therefore, when installing a light ATT71 on the optical path R 1, the light coupling loss in the first MMI40 increases, the optical coupling loss, installation mount area 70 on the optical path R 2 of the other Lo light L 2 It is reduced than when it is done. This is because the other Lo light L 2 undergoes two optical path changes of the first BS 12 and the first reflecting mirror 13. The Lo light L 1 not subjected to the optical path change is less likely to cause a coupling loss than the other Lo light L 2 . The same applies to the other installation area 80.
  • the coherent receiver 1 According to the coherent receiver 1, one installation area 70 is provided for the Lo light and one installation area 80 is provided for the Sig light. For this reason, the coherent receiver 1 can be reduced in size as compared with the configuration in which the installation areas are provided independently for the four lights of the two Lo lights L 1 and L 2 and the two Sig lights N 1 and N 2. It becomes possible.
  • the space for arranging the optical ATTs 71 and 81 and the space for the mounting area are about half.
  • the intensity of the Lo lights L 1 and L 2 is substantially equal to each other, and the intensity of the Sig lights N 1 and N 2 is approximately equal in the first and second MMIs 40 and 50.
  • the PDs (45, 55) integrated in the first and second MMIs 40, 50 alignment of the lens systems 14, 15, 23, 24, etc. , 55 to maximize the optical coupling efficiency.
  • the optical coupling efficiency detected by the PDs 45 and 55 is not set to the same level due to the alignment accuracy of each optical component, the two Lo lights L 1 and L 2 for the two MMIs 40 and 50, and the two The optical ATTs 71 and 81 are installed in the respective optical paths so as to compensate for the difference in optical coupling efficiency between the Sig lights N 1 and N 2 .
  • the installation areas 70 and 80 have installation surfaces 72 and 82, respectively, and the installation surfaces 72 and 82 have an adhesive or a brazing material for fixing the optical ATTs 71 and 81, respectively.
  • the optical ATTs 71 and 81 are simply and reliably fixed to the installation surfaces 72 and 82 via an adhesive or a brazing material, respectively. Since the adhesive or the brazing material also covers the side surfaces of the optical ATTs 71 and 81, the optical ATTs 71 and 81 are more firmly fixed to the installation surfaces 72 and 82.
  • At least one of the installation areas 70 and 80 further includes a flow prevention mechanism for adhesive or brazing material.
  • a flow prevention mechanism for adhesive or brazing material According to this coherent receiver 1, when the optical ATTs 71 and 81 are installed in the installation areas 70 and 80, respectively, the adhesive or brazing material is prevented from flowing out around the installation areas 70 and 80.
  • the outflow prevention mechanism 74 can be used as an alignment mark when the optical ATTs 71 and 81 are mounted in the installation areas 70 and 80.
  • FIGS. 4A to 4D are diagrams schematically showing an installation area 70a according to a first modification of the present invention.
  • FIG. 4A is a plan view of the installation area 70a.
  • FIG. 4B is a cross-sectional view taken along the line IVb-IVb in FIG.
  • the installation area 70 a has an installation surface 72, and the optical ATT 71 is installed on the installation surface 72.
  • the other installation area 80a can also have an installation surface 82 on which the optical ATT 81 is installed.
  • FIG. 4C and FIG. 4D are diagrams illustrating a state in which the optical ATT 71 is installed on the installation surface 72.
  • 4C is a plan view of the installation area 70a, and FIG.
  • FIG. 4D is a cross-sectional view taken along the line IVd-IVd in FIG. 4C. 4A to 4D show the optical path R 1 of the Lo light L 1 .
  • the installation surface 72 according to the first modification has a fixing agent 73 that fixes the optical ATT 71. As shown in FIG. 4D, the optical ATT 71 is fixed to the installation surface 72 by the fixing agent 73 (FIG. 4C omits the fixing agent 73).
  • the installation area 70 a has a convex bank 74 a as a mechanism for preventing the fixing agent 73 from flowing out.
  • the bank 74a for example, be a two rib formed along the optical path R 1. These two protrusions do not interfere with the optical path R 1 of the Lo light L 1 .
  • the fixing agent 73 is applied so as not to block the optical path R 1 of the Lo light L 1 , for example.
  • the installation area 72 can be processed to have the installation area 70a so as to have a convex flow stop portion 74a.
  • a rectangular parallelepiped flow stop mechanism 74 a having an opening in the center may be mounted on the installation surface 72 to form the installation area 70.
  • a bank 74a as a mechanism for preventing the fixing agent 73 from flowing out can be provided in at least one of the installation regions 70a and 80a. This prevents the adhesive or brazing material from flowing out around the installation area 70a when the optical ATTs 71 and 81 are installed in the installation areas 70a and 80a, respectively.
  • FIGS. 5A and 5B are diagrams schematically showing a second modification.
  • FIG. 5A is a top view of the installation region 70b according to the second modification.
  • the optical path R 1 of the Lo light L 1 is shown.
  • Part (b) of FIG. 5 is a cross-sectional view taken along line Vb-Vb of part (a) of FIG.
  • the installation area 70b has an installation surface 72b.
  • the installation surface 72b can be, for example, a convex terrace.
  • the optical ATT 71 is installed on the installation surface 72b.
  • the installation surface 72 b of the second modification has a fixing agent 73 for fixing the optical ATT 71.
  • the optical ATT 71 of the second modified example is fixed to the installation surface 72b by the fixing agent 73 (FIG. 5A omits the fixing agent 73).
  • the fixing agent 73 is applied so as not to block the optical path R 1 of the Lo light L 1 , for example.
  • Optical path R 1 is not blocked by installation surface 72b and the fixing agent 73 of the second modification.
  • At least one of the installation surface 72 and the other installation surface may be provided with a terrace. Accordingly, the light ATTs 71 and 81 are installed on the installation surfaces 72 and 82 in a state in which the light ATTs 71 and 81 are adjusted to the heights of the optical paths of the Lo light and the Sig light, respectively.
  • FIG. 6 (a) and FIG. 6 (b) are diagrams schematically showing a third modification of the present invention.
  • 6A is a plan view of the installation region 70c
  • FIG. 6B is a cross-sectional view taken along the line VIb-VIb in FIG. 6A.
  • FIG. 6A also shows the optical path R 1 of the Lo light L 1 .
  • the installation area 70 c has an installation table 75 on the installation surface 72.
  • the installation stand 75 is made of alumina (Al 2 O 3 ), for example.
  • the optical ATT 71 is mounted on the installation table 75.
  • an installation table for installing the optical ATT 81 can be provided in the installation surface 82.
  • the installation base 75 can be provided in at least one of the installation area 70c of the third modification and the other installation area.
  • the installation surface 72 of the third modification has a fixing agent 73 for fixing the optical ATT 71.
  • the optical ATT 71 is fixed to the installation surface 72 by a fixing agent 73.
  • the fixing agent 73 is omitted.
  • the fixing agent 73 is applied so as not to block the optical path R 1 of the Lo light L 1 , for example.
  • the optical path R 1 is not blocked by the installation base 75 and the fixing agent 73.
  • an installation table 75 can be provided on at least one of the installation surface and the other installation surface. Accordingly, the light ATTs 71 and 81 are installed on the installation surface 72 and the second installation surface in a state in which the light ATTs 71 and 81 are matched with the heights of the optical paths of the Lo light and the Sig light, respectively.
  • FIGS. 7A and 7B are diagrams schematically showing an installation area 70 according to a fourth modification.
  • 7A and 7C are plan views of the installation region 70
  • FIG. 7B is a cross-sectional view taken along the line VIIb-VIIb in FIG. 7A.
  • FIG. 7D is a cross-sectional view taken along the line VIId-VIId in FIG.
  • the installation area 70 d has, for example, a brazing material 76 on the installation surface 72.
  • the optical ATT 71 is installed on the brazing material 76.
  • the brazing material 76 can be the same material as the fixing agent 73.
  • the brazing material 76 is provided by, for example, a screen printing method, and has a melting point lower than that of SnAgCu (tin silver copper) used for fixing other optical elements such as the first BS 12, for example.
  • the optical path R 1 of the Lo light L 1 is not blocked by the brazing material 76 of the fourth modified example.
  • a metal film 77 may be provided on the installation surface 72 as shown in FIGS. 7C and 7D.
  • the metal film 77 can be, for example, Au plating and Ni plating formed by selective plating.
  • FIG. 7D is a view showing a state in which the light ATT 71 is fixed on the metal film 77 formed on the installation surface 72 by the fixing agent 73 (FIG. 7C omits the fixing agent 73. ) As shown in FIG. 7 (d), fixing agent 73 is applied so as not to block the optical path R 1 in Lo light L 1.
  • On the other of the installation area of the Sig light N 1, can be similarly provided with a brazing material 76 or the metal film 77.
  • the brazing material 76 or the metal film 77 may be provided on at least one of the other installation surface according to the installation surface 72 or Sig light N 1.
  • optical ATT71, 81 can be simply fixed to the installation surface 72 and the other installation surface, respectively.
  • Formation of the metal film 77 improves the wettability of the brazing material and facilitates brazing. If the surface of the installation surface 72 is oxidized, the wettability of the brazing material is lowered, so that the metal film 77 is particularly effective when the surface of the installation surface 72 is oxidized.
  • the brazing material 76 applied to the installation surface 72 preferably has a melting point lower than the melting point of the brazing material used for fixing other elements such as the first BS 12. .
  • the brazing material fixing other optical elements such as the first BS 12 is not melted, so that the positional displacement of these elements is prevented.
  • the brazing material applied to the installation surfaces 72 and 82 may melt.
  • the surfaces of the installation surfaces 72 and 82 have a property of repelling the brazing material due to oxidation or the like, the outflow of the brazing material pattern is suppressed.
  • FIGS. 8A and 8B are diagrams schematically showing a fifth modification.
  • 8A is a plan view of the installation area 70e
  • FIG. 8B is a cross-sectional view taken along the line VIIIb-VIIIb shown in FIG. 8A.
  • the installation area 70 includes an installation table 75e, and the installation table 75e may further have a concave structure that prevents the fixing agent 73 from flowing out, as shown in FIG.
  • the concave outflow prevention portion 74 e can be a groove surrounding the installation surface 72.
  • the installation base 75e is fixed on the installation area 70e with, for example, gold tin (AuSn) solder.
  • the fixing agent 73 is applied so as not to block the optical path R 1 of the Lo light L 1 .
  • the optical path R 1 of the Lo light L 1 is not blocked by the installation base 75e and the fixing agent 73 of the fifth modification.
  • the installation base 75e can have, for example, a convex bank shown in FIG. 4 (d) instead of the concave groove 74e.
  • the bank is a two projections extending along the optical path R 1.
  • the two protrusions are formed so as not to block the optical path R 1 of the Lo light L 1 .
  • the coherent receiver 1 includes a mount base 75 to at least one of the installation region 70e other installation area of and Sig light N 1, this installation base 75e, be provided with a bank or grooves preventing the outflow of the fixative 73 it can.
  • FIGS. 9A and 9B are diagrams schematically showing a sixth modification.
  • FIG. 9A is a plan view of the installation area 70f.
  • FIG. 9B is a cross-sectional view along the line IXb-IXb shown in FIG.
  • the installation base 75f has a metal film 78 on its lower surface 75B and a metal film 77f on its upper surface 75A.
  • the installation table 75f has a third metal film 79a formed on the upper surface 70A of the installation region 70, and the installation region 75f is formed by an adhesive member 79b provided between the lower surface 75B of the installation table 75f and the upper surface 70A of the installation region 70f. 70 is fixed.
  • the adhesive member 79b is, for example, an adhesive or a brazing agent.
  • the installation base 75f has a groove 74f surrounding the installation surface 72f in order to prevent the fixing agent 73 from flowing. The fixing agent 73 is applied so as not to block the optical path R 1 of the Lo light L 1 , for example.
  • the optical path R 1 of the Lo light L 1 is not blocked by the installation base 75 f and the fixing agent 73 of the sixth modification.
  • the other installation area according to Sig light N 1 may also have an installation base 75f.
  • the installation base 75 f having the lower surface 75 ⁇ / b> B coated with the second metal film 78 can be provided in at least one of the two installation regions.
  • the installation base 75f may have a lower surface 75B on which the second metal film 78 is provided.
  • the carrier 3 is a rectangular plate-like member made of, for example, copper tungsten (CuW).
  • the base 4 is a rectangular plate-like member made of alumina (Al 2 O 3 ), for example.
  • AuSn eutectic solder can be used for fixing the base 4 and the carrier 3.
  • the relative position of the carrier 3 and the base 4 in the front-rear direction of the housing 2 is determined by visually aligning the rear end of the base 4 with the front edge. Instead of this, an alignment for matching the front edge of the carrier 3 and the front edge of the base 4 may be performed.
  • the width of the carrier 3 substantially matches the interval between the inner walls of the housing 2, so It is good to grip the constriction.
  • casing 2 of the base 4 may use a pair of constriction formed in the carrier 3. FIG. That is, since the interval between the central portions of the carrier 3 is narrowed due to the constriction, it is preferable to match the both end positions of the narrow portion with the both end positions of the base 4.
  • the MMI 40 is mounted on an MMI carrier (not shown) and fixed to each other (die bond).
  • the MMI 50 is mounted on another MMI carrier (not shown) and fixed to each other.
  • the MMI carrier is a rectangular parallelepiped member and is made of, for example, ceramic such as AlN or alumina.
  • AuSn eutectic solder is used for fixing the MMI 40, 50 and the MMI carrier.
  • a technique similar to a known method of mounting a normal semiconductor device on an insulating substrate can be used.
  • the two MMI carriers on which the MMIs 40 and 50 are respectively mounted are fixed to a region located on the rear end side of the base 4 on the carrier 3.
  • a groove is formed in advance on the carrier 3 so as to surround a fixed region of the MMI carrier, and the MMI carrier is arranged by visual alignment with the groove as a reference.
  • a groove for separating the front side and the rear side of the MMI carrier is formed on the MMI carrier.
  • the front side of the MMI carrier corresponds to the optical waveguide portions 44 and 54 built in the MMI 40 and 50.
  • the rear side of the MMI carrier corresponds to the PD portions 45 and 55 built in the MMI 40 and 50.
  • the back electrodes of the MMIs 40 and 50 are also separated into the front side and the rear side. As a result, the leakage current of the built-in PDs 45 and 55 is reduced.
  • a plurality of die capacitors are mounted on the two wiring boards 46 and 56 in parallel with the fixing of the MMI carrier and the MMIs 40 and 50 described above.
  • the wiring boards 46 and 56 are made of, for example, aluminum nitride (AlN).
  • AlN aluminum nitride
  • AuSn pellets can be used, and a known soldering process may be employed.
  • one of the two wiring boards 46 and 56 each mounted with a plurality of die capacitors is fixed to the carrier 3 so as to surround the MMI 40, and the other wiring board 56 is arranged so as to surround the MMI 50 to the carrier 3. Fix it.
  • the circuit boards 46 and 56 are mounted on the carrier 3 by, for example, eutectic solder such as AuSn, and then the carrier 3 is mounted in the housing 2.
  • the carrier 3 is mounted on the bottom surface 2E of the housing 2.
  • the carrier 3 is moved to the side wall by a predetermined dimension. It is good to arrange
  • the inner surface of each side wall of the housing 2 is configured in two stages as shown in FIG. 2, the upper stage is made of metal, and the lower stage is made of ceramic feed to insulate a plurality of terminals 3 from each other. Through 61.
  • the inner dimension of the lower stage (distance between walls) is almost the same as the width of the carrier 3, but the inner dimension of the upper stage is wider than the width of the carrier 3. Accordingly, the carrier 3 can be abutted against the inner surface of the upper side wall, thereby aligning the casing 2 and the carrier 3 (and each component already mounted on the carrier 3) within ⁇ 0.5 °. Can be realized.
  • the carrier 3 is fixed to the bottom surface 2E using, for example, solder.
  • the VOA carrier 30 is mounted on the bottom surface 2E of the housing 2 together with the carrier 3.
  • the VOA carrier 20 is moved by a predetermined dimension. It is good to arrange
  • the VOA carrier 20 is fixed to the bottom surface 2E using, for example, solder.
  • the integrated circuits 43 and 53 are mounted on the wiring boards 46 and 56.
  • the integrated circuits 43 and 53 are mounted by a known mounting method using a conductive resin such as silver paste.
  • the temperature of the entire housing 2 is raised (up to 180 ° C.) to vaporize the solvent contained in the conductive resin.
  • the electrode pads on the upper surfaces of the integrated circuits 43 and 53 and the terminals 65 (see FIGS. 1 and 2) on the rear side of the housing 2 are electrically connected by wiring.
  • each optical component in the subsequent process that is, the test light is input to the MMI 40, 50, and the output signal intensity of the PD (45, 55, not shown) built in the MMI 40, 50 is obtained. It becomes possible to arrange each optical component at a position where becomes the maximum.
  • each optical component is mounted in the housing 2.
  • Lo light for optical alignment is generated.
  • a standard reflector 104 having a light reflecting surface 104a and a bottom surface 104b perpendicular to each other is prepared.
  • the light reflecting surface 104a simulates one end surface 2A of the housing 2, and the bottom surface 104b simulates the bottom surface of the housing 2.
  • the standard reflector 104 is configured by a rectangular parallelepiped glass block, for example.
  • the standard reflector 104 is installed on a stage 103 fixed on a support base 105 of the alignment device. At this time, the bottom surface 104b and the stage 103 are brought into close contact.
  • the optical axis direction of the autocollimator 125 Align the optical axis direction of the autocollimator 125 with the optical axis direction of the standard reflector 104.
  • the visible laser beam L is output from the autocollimator 125, and the laser beam L is applied to the light reflecting surface 104a.
  • the light intensity of the visible laser beam L reflected by the light reflecting surface 104a is detected on the autocollimator 125 side.
  • the optical axis direction of the autocollimator 125 is aligned with the normal direction of the light reflecting surface 104a, that is, the optical axis direction of the standard reflector 104.
  • the standard reflector 104 is removed from the stage 103 and replaced with the casing 2 on which the MMIs 40 and 50, the circuit boards 46 and 56, and the VOA carrier 30 are mounted (FIG. 10B).
  • the bottom surface of the casing 2 is placed on the stage.
  • the optical axis of the autocollimator 125 passes through the space above the housing 2, so that the visible laser light L passes above the housing 2 and is not introduced into the housing 2.
  • the monitor PD 33 is mounted on the VOA carrier 30 as shown in FIG. Further, the PBS 21, the skew adjustment elements 16 and 26, the ⁇ / 2 plate 25, the polarizer 11, and the BS 12 are mounted at predetermined mounting positions in the housing 2. These optical components are optical components that do not perform alignment work, and are fixed after adjusting only the direction of the light incident surface thereof. Specifically, in this step, the angle of the optical component (the angle of the light incident surface) is adjusted using the optical axis of the autocollimator 125 that has already been adjusted.
  • One side of these optical components is used as a reflective surface for the visible laser light L of the autocollimator 125, and the visible laser light L before reflection and the visible laser light L after reflection are superimposed on each other, and the angle (light Adjust (axis direction).
  • This operation is performed on the optical axis of the autocollimator 125, that is, in the space above the housing 2. Then, while maintaining the orientation of the rod (or rotating it by a predetermined angle if necessary), move these optical components onto the adhesive resin provided at each mounting position, cure the adhesive resin, and fix them. To do.
  • the skew adjustment elements 16 and 26, and the polarizer 11 since the light incident surface faces the front wall 2 ⁇ / b> A side when mounted on the housing 2, the normal direction of the light incident surface and the autocollimator 125 The optical axis direction is adjusted by matching the optical axis, and the optical axis direction is maintained while maintaining the orientation.
  • the light incident surface faces sideways when mounted on the housing 2, so that the normal direction of the light incident surface coincides with the optical axis of the autocollimator 125. Then, after adjusting the direction of the optical axis, it is mounted after rotating by 90 ° around the normal line of the bottom surface 2E.
  • the monitor PD 33 is further electrically connected to the predetermined terminal 61 by wire bonding with the predetermined terminal 61.
  • the light incident surface faces sideways when mounted on the housing 2, but the light exit surface faces rearward, so the normal direction of the light exit surface or the surface opposite to the light exit surface
  • the optical axis direction of the autocollimator 125 are adjusted to adjust the optical axis direction, and then the orientation is maintained and it is preferably mounted in the housing 2.
  • an optical component different from the above-described optical components that is, the Sig optical lens 27 that requires alignment because the optical coupling tolerance with respect to the MMIs 40 and 50 is smaller than that of the above-described optical components; Reflector mirrors 13 and 22; and lens systems 14, 15, 23, and 24;
  • the simulated connectors 123 a and 123 b are arranged on the front wall 2 ⁇ / b> A of the housing 2.
  • the simulated connector rods 123a and 123b simulate the Sig optical port 6 and the Lo optical port 5, respectively, and test light used for alignment of the other optical components is emitted from the simulated connector rods 123a and 123b.
  • details of the process of preparing the test light will be described.
  • FIG. 12 is a perspective view showing a part of the manipulator 100 for holding the simulated connector rod 123a.
  • the manipulator 100 can freely adjust the position and the angle (specifically, the three axes orthogonal to each other (the position in the X, Y, and Z directions and the angle around the two axes perpendicular to the optical axis direction of the simulated connector 123a)). It has a changeable arm 101 and a head 102 provided at the tip of the arm 101.
  • a simulated connector rod 123a is held on the head 102 and is disposed at a position where the Sig optical port 6 is to be attached.
  • the connector rod 123b is also held by another manipulator 100 in the same manner as the simulated connector rod 123a, and is disposed at a position where the Lo optical port 5 is to be attached.
  • FIG. 13A is a block diagram showing a configuration for generating test light.
  • a bias voltage output from the bias power supply 111 is applied to a light source 112 (for example, a semiconductor laser) to generate test light (CW light).
  • This test light is introduced into the polarization control element 113 and its polarization plane is controlled.
  • the test light has a polarization component that simulates the two polarization components of the Sig light.
  • the test light reaches the connector 116 via the optical coupler 114.
  • the connector 116 is selectively connected to one of the connectors 117 and 118.
  • a simulated connector 123 a is optically coupled to the connector 117, and an optical power meter 119 is optically coupled to the other connector 118.
  • a power meter 115 is connected to the optical coupler 114.
  • FIG. 13A shows a system including two power meters 115 and 119, one power meter may be used in each of the power meters 115 and 119.
  • the same configuration as described above is also prepared for the simulated connector rod 123b.
  • the optical connector 116 and the optical connector 118 are connected. Then, the intensity of the test light output from the light source 112 is detected by the power meter 119, and the intensity of the test light, that is, the incident light intensity with respect to the housing 2 is set to a predetermined value by adjusting the bias voltage. Next, the housing 2 is removed from the stage 103 again and replaced with the standard reflector 104. Then, the optical connector 116 and the optical connector 117 are connected, and the simulated connectors 123 a and 123 b are opposed to the light reflecting surface 104 a of the standard reflector 104.
  • test light When test light is output from the light source 112 in this state, the test light is emitted from the simulated connector rods 123a and 123b, then reflected by the light reflecting surface 104a, and is incident on the simulated connector rods 123a and 123b again.
  • the intensity of the test light is detected by the power meter 115 via the optical coupler 114.
  • the optical axis direction of the simulated connector 123a (or 123b) is aligned with the optical axis direction of the standard reflector 104. Thereafter, as shown in FIG. 13B, the standard reflector 104 is removed from the stage 103 and replaced with the housing 2.
  • a kite for adjusting the polarization plane of the test light entering the housing 2 from the simulated connector kit 123a (step S1).
  • a test jig having PBS and two monitor PDs is arranged inside the housing 2 on the rear stage of the simulated connector 123 (for example, the mounting position of the VAO 31).
  • This test jig is assumed to have a configuration in which, for example, a monitor PD is attached to each of two light emitting ends of PBS.
  • this test jig may be one in which each of the two light emitting ends of the PBS and the monitor PD are optically coupled to each other and both are mounted on a common substrate.
  • test light is provided in the housing 2 via the simulated connector rod 123a, the intensity of the two polarization components branched by the polarization beam splitter is detected by each monitor PD, and the intensity of the two polarization components should be approximately equal to each other.
  • the polarization plane of the test light is adjusted by the polarization control element 113.
  • a simulation module on which a polarization beam splitter and two monitor PDs are mounted may be prepared and mounted on the stage 103 to adjust the polarization plane.
  • the output signals of the two monitor PDs included in the test jig may be taken out via any one of the terminals 65 of the housing 2. Further, when the test jig includes a terminal for taking out the output signals of the two monitor PDs, the polarization adjustment of the test light is performed before the housing 2 is placed on the stage 103. Also good.
  • the simulated connector rods 123a and 123b are further aligned.
  • the intensity of the test light that enters the housing 2 from the simulated connector rod 123a is detected by the PD built in the MMI 40.
  • the simulated connector rod 123a is moved on the front wall 2A of the housing 2 in the direction in which the intensity of the detected test light is increased, and alignment is performed in a plane perpendicular to the optical axis of the simulated connector rod 123a.
  • the intensity of the test light entering the housing 2 from the simulated connector rod 123b is detected by the PD built in the other MMI 50, and the simulated connector rod 123b is moved in the direction in which the detected light intensity increases.
  • the field diameter of the test light is about 300 ⁇ m, while the light input ends of the MMIs 40 and 50 are small, for example, a width of several ⁇ m and a thickness of 1 ⁇ m or less. Therefore, although the intensity of the test light input to the MMIs 40 and 50 is weak, it is possible to obtain a detection signal that can determine the optical axis of the test light.
  • the positions of the simulated connectors 123a and 123b in the optical axis direction can be determined by bringing the end surfaces of the simulated connectors 123a and 123b into contact with the front wall 2A of the housing 2.
  • each optical component requiring alignment is placed on the optical path between the simulated connector 123a or 123b and the MMI 40, 50, and the test light detected by the PD (or the monitor PD 33) built in the MMI 40, 50 is placed.
  • the optical components are aligned with reference to the strength. Further, these optical components are fixed in the housing 2.
  • the order of alignment and fixing of these optical components is not restricted to the following description, It can carry out in arbitrary orders.
  • the VOA bias power source 120 and the voltage monitors 121 and 122 are connected to the housing 2 as shown in FIG.
  • the VOA bias power supply 120 applies a bias voltage to the VOA 31 when a VOA 31 described later is installed on the VOA carrier 30.
  • the voltage monitors 121 and 122 monitor voltage signals from the circuit boards 46 and 56, respectively.
  • the angle (optical axis direction) ⁇ of the BS 32 is adjusted using the visible laser light L of the autocollimator 125 passing through the upper space of the housing 2 with the front surface of the BS 32 as a reflection surface. Then, the BS 32 is moved onto the VOA carrier 30 while maintaining the direction of the BS 32. Then, the BS 12 is moved along the optical axis of the Sig light on the VOA carrier 30 to determine the mounting position of the BS 12 where the light receiving intensity of the monitor PD 33 is maximized. Then, the BS 12 is attached to the VOA carrier 30 using an adhesive resin. Fix it.
  • the first and second reflecting mirrors 13 and 22 are aligned and fixed.
  • the angle ⁇ optical axis direction
  • the test light reflected by the reflecting mirrors 13 and 22 is detected by the built-in PDs of the MMIs 40 and 50 while maintaining the angles of the reflecting mirrors 13 and 22.
  • the reflecting mirrors 13 and 22 are slightly moved in a direction perpendicular to the optical axes of the two optical ports 5 and 6 to determine a position where the detection intensity of the built-in PD is maximized.
  • the angle determined by the visible laser beam emitted from the autocollimator 125 is maintained in the subsequent alignment operation. Since the mounting angles of the MMIs 40 and 50 with respect to the housing 2 and the optical axes of the optical ports 5 and 6 have already been determined, it is possible to change the mounting angles of the reflecting mirrors 12 and 21 that convert the optical axis by 90 °. This is because the alignment state that has already been performed is upset.
  • the four lens systems 14, 15, 23, 24 are aligned and fixed.
  • the first lens 14b, 15b, 23b, 24b that is, the lens closer to the MMI 40, 50
  • These lenses 14b, 15b, 23b, and 24b are arranged at predetermined mounting positions, and test light from the respective simulated connectors 123a and ⁇ 123b enters, passes through the lenses 14b, 15b, 23b, and 24b, and is input to the MMIs 40 and 50.
  • the test light is detected by the built-in PDs 44 and 55 of the MMI 40 and 50.
  • the position and angle of the lenses 14b, 15b, 23b, and 24b are slightly changed to determine the position and angle at which the received light intensity of the built-in PD is maximized.
  • the lenses 14b, 15b, 23b, and 24b are fixed using an ultraviolet curable resin.
  • the second lenses 14a, 15a, 23a, and 24a are aligned and fixed.
  • FIG. 23 shows that when two lenses are arranged side by side in the optical axis direction, the deviation of the lens position from the design position and a minute coupling target (in this embodiment, the light input units 41 and 42 of the MMIs 40 and 50).
  • , 51, 52) is a graph showing an example of a relationship with a change in coupling efficiency.
  • 23 (a) and 23 (b) show a positional shift (a) is a shift in a direction orthogonal to the optical axis of the lens on the coupling target side (a lens arranged relatively close to the coupling target).
  • FIG. 23C and FIG. 23D show the positional deviation ((c) orthogonal to the optical axis) of the lens opposite to the object to be combined (lens arranged relatively apart from the object to be combined).
  • (D) shows a change in the coupling efficiency due to a deviation in the direction of the optical axis.
  • FIGS. 23C and 23D it is assumed that the condensing lens on the coupling target side is arranged in advance at the design position.
  • the deviation in the direction (X, Y) perpendicular to the optical axis is examined.
  • the coupling efficiency is deteriorated even if the positional deviation is only a few ⁇ m, and the coupling efficiency is degraded by 30% due to the positional deviation of about 1 ⁇ m.
  • the coupling efficiency is hardly deteriorated if the positional deviation is several ⁇ m, and the deterioration of the coupling efficiency is several tens of times. A displacement of ⁇ m is required. Further, when examining the deviation in the optical axis direction, as shown in FIG.
  • the coupling efficiency of the lens on the coupling target side is deteriorated even if the positional deviation is several tens of ⁇ m, but FIG. As shown in FIG. 5, the coupling efficiency is hardly deteriorated if the lens on the side opposite to the coupling target is displaced by several tens of ⁇ m.
  • the lenses of the lens systems 14, 15, 23, and 24 are fixed to the base 4 with a resin such as an ultraviolet curable resin. Since the resin shrinks by several ⁇ m when solidified, the lens position may shift by several ⁇ m as the resin solidifies. As described above, the coupling efficiency of the lens on the coupling target side deteriorates even if the positional deviation is several ⁇ m.
  • each lens 14b, 15b, 23b, and 24b arranged close to the MMI 40 and 50 is aligned and fixed
  • the other four lenses 14a, 15a, 23a, and 24a are aligned. Alignment and fixing are performed.
  • the pair of light sources 112 to 116 shown in FIG. 13B is commonly used for the two simulated connectors 123a and 123b
  • the test light from one simulated connector is used.
  • each lens may be aligned and fixed using test light from the other simulated connector.
  • the lenses 14b and 15b are first aligned and fixed, the lenses 23b and 24b are aligned and fixed, and then the lenses 14a and 15a are aligned and fixed, and the lenses 23a and 24a are aligned and fixed. Fixing may be performed. Thereby, the frequency
  • the lens arranged close to the MMIs 40 and 50 is fixed at a position where the coupling efficiency is maximized, but the target is moved away from the coupling target by a predetermined distance from the position (offset).
  • These lenses may be fixed, and a lens disposed relatively apart from the MMIs 40 and 50 may be fixed at a position where the coupling efficiency is maximized.
  • the position where the coupling efficiency is maximized with only the lenses arranged close to each other and the position of the lens arranged close to each other when the coupling efficiency is maximized by the combination of the two lenses are different from the former. This is because it is far from the object to be combined.
  • the Sig light input lens 27 is aligned and fixed.
  • the Sig light port 6 has a built-in condensing lens.
  • the focal point of the built-in lens and the focal point of the input lens 27 are matched to determine the optical axis direction of the input lens 27.
  • the simulated connector rod 123b instead of the simulated connector rod 123b, another simulated connector 123B having a built-in lens having the same focal length as the lens built in the Sig optical port 6 may be used for the alignment of the input lens 27. . Therefore, in this step, the simulated connector rod 123b is replaced with the simulated connector 123B.
  • the standard reflector 104 is installed again on the stage 103 in place of the housing 2, and the connector 116 shown in FIG. 13 is replaced from the simulated connector 123b to the simulated connector 123B. Then, the simulated connector 123B is arranged at a position where the Sig light port 6 is to be attached using the manipulator 100 shown in FIG. 12, and is made to face the light reflecting surface 104a of the standard reflector 104. In this state, test light is output from the simulated connector 123B, the optical axis position of the simulated connector 123B is adjusted to maximize the light intensity detected by the power meter 115, and the simulated connector 123B is aligned in the optical axis direction of the standard reflector 104. Match the optical axis direction.
  • the polarization plane of the test light entering the housing 2 from the simulated connector 123B is adjusted using the test jig described above. That is, the test light is provided in the housing 2 via the simulated connector 123B, and the intensity of the two polarization components branched by the PBS of the test jig is detected in each monitor PD, so that these intensities are substantially equal to each other.
  • the polarization plane of the test light provided from the polarization control element 113 is adjusted.
  • the intensity of the test light incident into the housing 2 from the simulated connector 123B is detected by the PD 55 built in the MMI 50, and the simulated connector 123B is moved in a direction in which the received light intensity increases, so that the light of the simulated connector 123B Align in a plane perpendicular to the axis.
  • the position of the simulated connector 123B in the optical axis direction can be determined by bringing the end surface of the simulated connector 123B into contact with the front wall 2A of the housing 2.
  • the input lens 27 is moved to the mounting position, the test light provided by the simulated connector 123B is made incident on the input lens 27, and the intensity of the passed test light is detected by the PD 55 built in the MMI 50. Then, the position of the input lens 27 is slightly changed to determine a position (front-rear direction, left-right direction, and vertical direction) ⁇ ⁇ at which the received light intensity of the built-in PD 55 is maximized. After the determination, the input lens 27 is fixed using an adhesive resin.
  • the VOA 31 is mounted on the VOA carrier 30 as shown in FIG.
  • the VOA 31 is gripped by the special manipulator 100A, and the VOA 31 is placed on the optical path of the test light.
  • the manipulator 100A includes two arms 101A that can freely change positions and angles (specifically, positions in three axial directions orthogonal to each other and angles around two axes perpendicular to the optical axis direction of the VOA 31), And a head 102A provided at the tip of these arms 101A.
  • the VOA 31 is sandwiched and held by the head 102A. At this time, one head 102A is in electrical contact with one electrode of VOA 31.
  • the other head 102A is in electrical contact with the other electrode of the VOA 31.
  • a bias voltage is applied to the VOA 31 from the VOA bias power source 120 shown in FIG. 13 via the arms 101A and 102A.
  • An ultraviolet curable resin is applied in advance on the VOA carrier 30 with a predetermined thickness (for example, 100 ⁇ m or more), and the VOA 31 is held in a state where the VOA 31 is separated from the surface of the VOA carrier 30 by a predetermined distance (for example, 100 ⁇ m).
  • the bias provided from the VOA bias power source 120 is repeatedly applied to the VAO 31 between 0 to 5 V (for example, a cycle of about 1 second).
  • the VOA 31 is moved in a direction parallel to the bottom surface 2E of the housing 2 and perpendicular to the optical axis, and the intensities of the two polarization components of the test light attenuated by the VOA 31 are detected by the built-in PDs of the MMIs 40 and 50.
  • the VOA 31 is fixed at a position where the difference in attenuation of the polarized component after attenuation falls within the allowable range.
  • the output difference between the built-in PDs of the MMIs 40 and 50 may be regarded as a difference in the attenuation of the polarization component of the test light.
  • the VOA 31 is mounted with an inclination of a predetermined angle (for example, 7 °) with respect to the optical axis connecting the condenser lens in the simulated connector 123B and the input lens 27. This is to prevent the reflected light from returning to the Sig light port 6.
  • FIG. 19 is a graph showing an example of the attenuation characteristic with respect to the applied bias voltage of the VOA 31.
  • Graphs G11 and G22 show the attenuation of each polarization component (G11: X polarization, G12: Y polarization).
  • Graph G13 shows the difference in the attenuation of the polarization component.
  • two polarization components are obtained by aligning the optical axis direction of the VOA 31 in the three directions: the direction orthogonal to the optical axis and parallel to the bottom surface 2E, and the direction orthogonal to the optical axis and perpendicular to the bottom surface 2E.
  • the difference in attenuation is kept within the allowable range.
  • the bias voltage is 4.5V
  • the attenuation of each polarization component is 12 dB or more
  • the VOA 31 is aligned
  • the difference between the attenuation of the two polarization components is determined as the bias voltage of 0-5V.
  • the two optical ATTs 71 and 81 are mounted in the predetermined areas 70 and 80, respectively.
  • the coherent receiver 1 after the Lo light is branched at the BS 21 by the previous steps, the branched Lo lights L 1 and L 2 are respectively separated by the PDs 45 and 55 built in the MMI 40 and 50. It is in a state where the optical coupling strength to 50 can be known.
  • the two Lo lights L 1 and L 2 branched at the BS 12 are optically coupled to the MMIs 40 and 50 via different paths R 1 and R 2 , respectively.
  • the optical coupling efficiency with respect to the MMIs 40 and 50 is It will be different. When this difference is large, the extraction accuracy of the phase information contained in the Sig light by the MMIs 40 and 50 decreases.
  • the Sig light N 0 also reaches the MMI 40 and 50 via different paths R 3 and R 4 after branching by the PBS 21. It is difficult to accurately set the polarization-dependent branching ratio of the PBS 21 to 1: 1, the optical components interposed in the respective paths R 3 and R 4 are not equivalent, and the optical coupling efficiency for the MMIs 40 and 50 is also the path R. 3 and R 4 cannot be uniform.
  • the Sig light between the skew adjustment element 16 and the BS 12 on the optical path R 1 is compensated for the Lo light L 1 to compensate for the difference in optical coupling efficiency with respect to the MMI 40 and 50.
  • N 1 is characterized in that light ATTs 71 and 81 are interposed between the skew adjusting element 26 and the PBS 21 on the optical path R 3 , respectively.
  • the angles of the light ATTs 71 and 81 are determined by the visible laser light LD from the autocollimator 125 above the housing 2 as in the case of the BS 12 and the PBS 21.
  • the optical ATTs 71 and 81 are fixed by being placed on the predetermined mounting areas 70 and 80, respectively, while maintaining the angles, and curing the fixing resin.
  • a lid 2C for closing the casing 2 is attached by a seam seal, and the inside of the casing 2 is hermetically sealed.
  • the simulated connectors 123a and 123b are replaced with the original Sig optical port 6 and Lo optical port 5, and the Sig optical port 6 and Lo optical port 5 are aligned and fixed.
  • simulated Sig light is introduced from the Sig light port 6 and the intensity of the Sig light is detected by the built-in PD of the MMI 40.
  • the position of the Sig light port 6 is changed with reference to the intensity of the detected Sig light, and the position where the light reception intensity at the built-in PD is maximized is determined.
  • the Lo light port 5 actually introduces Lo light, and the intensity of the Lo light is detected by the built-in PDs 45 and 55 of the MMIs 40 and 50.
  • the position of the Lo light port 5 is changed while referring to the intensity of the detected Lo light, and the position where the light reception intensity at the built-in PDs 45 and 55 is maximized is determined.
  • the Sig optical port 6 and the Lo optical port 5 are fixed to the housing 2. For fixing, YAG welding can be adopted.
  • the manufacturing method according to the present embodiment prepares test light having two polarization components, arranges the VOA 31 on the optical path of the test light, and a first step in which the two polarization components of the test light have substantially the same intensity.
  • the second step of monitoring the intensities of the two polarization components of the attenuated test light, changing the attenuation of the VOA 31 and aligning the VOA 31, and the attenuation of the two polarization components of the attenuated test light A third step of fixing the VOA 31 at a position where the difference is within an allowable range. According to such a method, the attenuation of the two polarization components included in the Sig light can be made close to each other.
  • the simulated connector 125b that simulates the Sig optical port 6 of the coherent receiver 1 is disposed at a position where the Sig optical port 6 is to be attached, and the test light is transmitted via the simulated connector 124b.
  • the position accuracy of the optical axis of the test light can be increased, and the alignment of the VOA 31 can be performed with high accuracy.
  • the intensity of two polarization components of the test light is monitored using the PDs 45 and 55 built in the MMIs 40 and 50, and in the third step, these PD 45, The difference in output of 55 is regarded as the difference in attenuation between the two polarization components of the test light. Thereby, a difference in attenuation between the two polarization components can be detected.
  • the opening diameter (shutter diameter) of the MEMS type VOA is generally as small as about 70 ⁇ m. Therefore, for example, when mounting the VOA immediately before the PD, the mounting is performed while aligning the position of the opening of the VOA with the PD by visual observation through a microscope.
  • the VOA 31 is not disposed immediately before the PD, but is disposed between optical components such as the BS 12 and the input lens 27. Therefore, in the present embodiment, the test light is introduced into the VOA 31 and the shutter of the VOA 31 is dynamically opened and closed to appropriately adjust the relative positional relationship between the shutter and the test light.
  • a bias is applied to the electrode of the VOA 31 via the manipulator 100A. Thereby, alignment of VOA31 can be performed easily.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

コヒーレントレシーバ1は、筐体2と、第1基準光入力部41及び第1信号光入力部42を含む第1多モード干渉器40と、第2基準光入力部51及び第2信号光入力部52を含む第2多モード干渉器50と、第1分波器12と、第1反射器13と、第2分波器21と、第2反射器22と、第1分波器12と第1基準光入力部51との間の光路上に位置し、基準光の一部の光強度を減衰させる信号光減衰部品71を設置するための設置領域70と、を備える。

Description

コヒーレントレシーバ
 本発明は、コヒーレントレシーバに関する。
 特許文献1は、光電変換装置を開示する。特許文献1では、コヒーレントレシーバの構成について説明されている。
特開平5-82810号公報
 本出願は、2015年3月9日に出願された日本出願である特願2015-046196号に基づく優先権を主張し、当該日本出願に記載された全ての内容を援用するものである。コヒーレントレシーバは、多モード干渉器を備え、この多モード干渉器は、例えば、二つの多モード干渉部を有する。コヒーレントレシーバでは、二つの多モード干渉部にそれぞれ入力された二つの基準光を用いて、それらの基準光とともに入力された信号光を復調する。コヒーレントレシーバ作製時において分波器などの光学素子の実装精度が低いと、二つの多モード干渉部に入力される基準光及び信号光の光強度が相違し、信号復調時のエラーレートが増大することがある。
 本発明に係るコヒーレントレシーバは、局発光と二つの偏光を有する信号光を干渉させてこの信号光に含まれる位相情報を取り出すコヒーレントレシーバである。そして本発明に係るコヒーレントレシーバは、信号光をその偏光に基づき二分する偏波依存光分岐素子と、局発光を二分する光分岐素子と、二分された局発光の一方と、二分された信号光の他方を干渉させる第1の多モード干渉器と、二分された局発光の他方と、二分された信号光の一方を干渉させる第2の多モード干渉器とを含む。さらに、少なくとも、二分された一方の局発光の光路上、もしくは、二分された一方の信号光の光路上に、この二分された一方の局発光もしくは二分された一方の信号光の強度を減衰する光減衰器を、備えるコヒーレントレシーバである。
 本発明によれば、第1の多モード干渉器に入力する一方の局発光の強度を第2の多モード干渉器に入力する他方の局発光の強度を近づけること、もしくは、第2の多モード干渉器に入力する一方の信号光の強度を第1の多モード干渉器に入力する他方の信号光の強度に近付けることができる。
本発明の第1実施形態に係るコヒーレントレシーバを概略的に示した平面図である。 本発明の第1実施形態に係るコヒーレントレシーバの内部を俯瞰した図である。 本発明の第1実施形態に係る光減衰器設置領域を概略的に示した図である。 本発明の第1実施形態に係る光減衰器設置領域の第1変形例を概略的に示した図である。 本発明の第1実施形態に係る光減衰器設置領域の第2変形例を概略的に示した図である。 本発明の第1実施形態に係る光減衰器設置領域の第3変形例を概略的に示した図である。 本発明の第1実施形態に係る光減衰器設置領域の第4変形例を概略的に示した図である。 本発明の第1実施形態に係る光減衰器設置領域の第5変形例を概略的に示した図である。 本発明の第1実施形態に係る光減衰器設置領域の第6変形例を概略的に示した図である。 本発明に係るコヒーレントレシーバの製造工程を模式的に示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造手順を模式的に示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 光減衰器の印加バイアス電圧と減衰量の関係を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 本発明に係るコヒーレントレシーバの製造工程を示す図である。 2レンズ系におけるそれぞれのレンズの結合トレランスの関係を示す図である。
 本発明の実施形態に係るコヒーレントレシーバ、およびその製造方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は本発明の第1の実施の形態に係るコヒーレントレシーバ1を概略的に示した平面図である。図2は図1に示すコヒーレントレシーバ1の内部を示す斜視図である。コヒーレントレシーバ1は、Lo光(Local Beam:L光)とSig光(Signal Beam:Sig光)とを干渉させ、位相変調されたSig光に含まれる情報を復調する装置である。復調された情報は電気信号に変換されてコヒーレントレシーバ外に出力される。コヒーレントレシーバ1は、L光、Sig光それぞれに対する光学系と、二つの多モード干渉器(Multi-Mode Interference:MMI)40、50を含む。そして、これら光学系とMMI40、50を搭載する筐体2を有する。光学系とMMI40、50はキャリア3およびベース4を介して筐体2の底面2E上に搭載されている。また、キャリア3上には復調された情報を処理する回路を搭載する回路基板46、56が搭載されている。キャリア3は、たとえば銅タングステン(CuW)等の金属製であり、一方、ベース4はアルミナ(Al)、窒化アルミニウム(AlN)等の絶縁材料で構成される。二つのMMI40、50は半導体MMIであり、たとえばInP製である。MMI40、50はそれぞれ、Lo光入力部41、51、及びSig光入力部42、52を有する。Lo光入力部41、52に入力したLo光とSig光入力部42、52に入力したSig光を干渉させて位相情報を復調する。二つのMMI40、50は独立して設けられてもよく、あるいは一体に集積化されていてもよい。
 筐体2は第1の側壁(前壁)2Aを有する。以下の説明において、第1の側壁2A側を前方、反対側を後方と呼ぶ。が、これら前方/後方はあくまでも説明のためだけであり、本発明の範囲を制限するものではない。前壁2AにLo光入力ポート5とSig光入力ポート6が、たとえばレーザ溶接により固定されている。Lo光入力ポート5には偏波保持ファイバ35を介してLo光が提供され、Sig光入力ポート6には単一モードファイバ36を介してSig光が提供される。図面には記載されていないが、二つの入力ポート5、6にはそれぞれコリメートレンズが配されており、偏波保持ファイバ35、単一モードファイバ36から出射されたLo光、Sig光(それぞれのファイバから出射された状態では発散光)をそれぞれコリメート光に変更して筐体2内に導く。
 Lo光用光学系は、Lo光入力ポート5から提供されたLo光をそれぞれのMMI40、50のLo光入力部41、51に導入する。具体的には、Lo光用光学系は、偏光子(polarizer)11、第1光分波器(Beam Splitter:BS)12、第1反射器13、及び二つのレンズ群14、15を含む。レンズ群14、15はそれぞれMMI40、50に相対的に近接配置された第1レンズ14b、15b、及び相対的に離間して配置された第2レンズ14a、15aを有する。偏光光11はLo光入力ポート5に光結合し、Lo光入力ポート5から提供されたLo光(L)の偏波方向を整える。Lo光の光源は一般的に非常に扁平な楕円偏光を出力する。また、たとえ直線偏光を出力したとしても、光源からこのコヒーレントレシーバ1に至る光経路に挿入された光部品の実装精度などにより、Lo光入力ポートから出力されるLo光(N)が所望の方向に沿った直線偏光を有しているわけではない。偏光子11は、この入力Lo光を、所望の偏光方向(たとえば筐体底面2Eに平行な方向)を有する直線偏光に変換する。
 第1のBS12は、偏光子11が出力するLo光Nを二分岐する。分岐比は50:50である。分岐した一方のLo光Nは第1のBS12を直進して第1のMMI40に向かう。他方のLo光Nは第1のBS12によりその光軸が90°変換され、さらに、第1の反射器13により再度その光軸が90°変換されて第2のMMI50に向かう。図1の例では、第1のBS12、第1の反射器13それぞれについて、二つのプリズムを張り合わせ、その界面を光分岐面、あるいは光反射面とするプリズム型のBS、反射器を挙げている。が、第1のBS12、第1の反射器13についてプリズム型に限定されることはない。所謂、平板型のBS、反射器を採用することは可能である。
 Lo光用光学系はさらに二つのレンズ系14、15、第1のスキュー補正素子16、及び第1の減衰器71を含むことができる。レンズ系14は、第1のBS12と第1のMMI40との間にあり、第1のBSを透過したLo光Lを第1のMMI40のLo光入力部41光結合する。レンズ系15は第1の反射器13と第2のMMI50との間に搭載され、第1のBS12で分岐し第1の反射器に反射したLo光(L)を第2のMMI50のLo光入力部51に光結合する。第1のスキュー補正素子16は、第1のBS12とレンズ系14の間に介在し、第1のBSが分岐した二つのLo光(L、L)についての、第1のBS12からそれぞれのLo光入力部41、51に至る光学長の差を補正する。すなわち、Lo光Lについては、第1のBS12から第1の反射器13に至る光路長だけ他方のLo光Lについての光路長より長い。第1のスキュー補正素子16はこの光路長の差を、換言すると、二つのLo光入力部41、52に至るまでのLo光の時間差を補償する。第1のスキュー補正素子16はシリコン製であり、また、そのLo光に対する透過率は99%程度と、Lo光の波長に対しては実質透明な材料で構成される。
 以上のLo光の光学経路において、第1のBS12により分岐された一方のLo光Lについての第1のMMI40に至るまでの経路を第1の光学経路、他方のLo光Lについての第2のMMI50に至るまでの経路を第2の光学経路、と呼ぶことがある。本明細書の後半で説明する様に、第1の光学経路に光減衰器(ATT)71を挿入しない状態において、第1の光学経路のLo光入力部41に対する光結合効率は、第2の光学経路のLo光入力部51に対する光結合効率よりも大きい。
 Sig光用光学系は第2のBS21、第2の反射器22、及び二つのレンズ系23、24を含む。第2のBS21はSig光入力ポート6に光結合し、単一モードファイバ36から当該Sig光入力ポートを介して提供されたSig光をその偏波方向に基づいて二分する。分岐比は原則50:50である。単一モードファイバ36が提供するSig光Nの偏波方向は不定である。第2のBSはSig光Nの偏波方向に基づいてこれを二分する。たとえば、第2のBS21は、Sig光Nのうち、筐体2の底面2Eに平行な偏光成分は透過してSig光Nとし、底面2Eに垂直な偏光成分を反射してSig光Nとする。従って、第2のBS21は偏波依存光分岐器(Polarization Beam Splitter:PBS)とすることができる。
 Sig光用光学系はさらに二つのレンズ系23、24、スキュー調整素子26、及び半波長(λ/2)板25を含む。PBS21を透過したSig光Nは第2のスキュー調整素子26を透過した後、レンズ系23により第2のMMI50のSig光入力部52に光結合する。第2のスキュー調整素子26はSig光N、Nについて、PBS21から第2の反射器22に至る光路長を補償する。すなわち、Sig光Nについて、PBS21から第2の反射鏡22に至る光路長だけ他方のSig光Nの光路よりも長く伝搬した後それぞれのMMI40、50に至る。スキュー調整素子26は、この光路長に相当する時間遅れをSig光Nに設定する。
 PBS21により反射された他方のSig光はλ/2板25を通過する間にその偏波面が90°回転される。すなわち、Sig光Nはその偏光方向に依存して二つのSig光N、Nに分岐される。分岐直後のSig光の偏波面は互いに直交している。Sig光Nについてλ/2板25を通過させることで、Sig光Nの偏波面が90°回転され、他方のSig光Nと同様となる。そして、このSig光Nは第2の反射鏡22によりその光軸が90°変換され第1のMMIのSig光入力部42に、レンズ系24を介して結合する。ここで、PBS21、第2の反射鏡について図1では、二つのプリズムを張り合わせ、その界面を偏波依存分岐素子、光反射面として利用する、いわゆるプリズム型の部品を記載しているが、透明平板部材の表面に光分岐機能、光反射機能を付与した平板型光部品を採用することも可能である。また、二つのレンズ系23、24についても、Lo光用レンズ系14、15と同様に、それぞれのMMI40、50に近接して配置される第1のレンズ23b、24bと、相対的に離して配置された第2のレンズ23a、24aを含むことができる。二つのレンズ、23b、23aおよび24a、24bを組み合わせて集光レンズとすることで、Sig光N、NのそれぞれのMMI40、50のSig光入力部42、52に対する光結合効率を高めることができる。
 Sig光NについてPBS22から第2のMMI50のSig光入力部52に至る経路を第3の光路と、Sig光Nについて、PBS22から第1のMMI40のSig光入力部42に至る経路を第4の光路とそれぞれ呼ぶことができる。そして、本実施の形態に係るコヒーレントレシーバ1では、第3の経路において、スキュー調整素子26とPBS22との間に第2の光減衰器ATT81を介在させることができる。この第2の光減衰器81を搭載しない状態で、第3の光路についての光結合効率と、第4の光路の光結合効率は、前者(第3の光路)の光結合効率が大きい。
 第1のMMI40は、マルチモード干渉導波路(MMI導波路)44と、この導波路44に光結合したフォトダイオード(PD)45を含む。MMI導波路44は、たとえばInP基板上に形成された導波路であり、第1のLo光入力部41に入力したLo光Lと第1のSig光入力部42に入力したSig光Nを干渉させてSig光Nに含まれている情報を、Lo光Lの位相に一致したSig光Nの位相成分と、Lo光Lの位相と90°異なるSig光Nの位相成分に分離して復調する。すなわち、第1のMMI40はSig光Nについて二つの独立した情報を復調する。同様に、第2のMMI50はMMI導波路54とこの導波路54に光結合したPD55を含む。MMI導波路54はInP基板上に形成された導波路であり、第2のLo光入力部42に入力したLo光Lと第2のSig光入力52に入力したSig光Nを干渉させて二つの互いに独立した情報を復調する。
 本実施の形態に係るコヒーレントレシーバ1では、筐体2が第1の側壁2Aとは反対側に第2の側壁(後壁)2Bを有する。また、筐体2は、後壁2B、及び前壁2Aと後壁2Bを接続する二つの側壁には連続したフィードスルー61を有する。後壁2Bのフィードスルー61には複数の信号出力端子65を有し、二つのMMI40、50で復調された都合4つの独立情報は、集積回路43、53で処理された後、この信号出力端子65を介してコヒーレントレシーバ1外に導かれる。また、二つの側壁には別の端子66を有する。別の端子66はもっぱら二つのMMI40、50を駆動するための信号、各光部品を駆動するための信号等、DCあるいは低周波信号を筐体2内部にこれら端子66を介して提供する。第1、第2の集積回路43、53は、それぞれMMI40、50を取り囲んでベース4上に実装されている回路基板46、56上に搭載されている。さらに、これら回路基板46、56上には、抵抗素子、容量素子等も搭載される。必要に応じてDC/DC変換器も搭載する。
 本実施の形態に係るコヒーレントレシーバは、第1、第3の光路にそれぞれ搭載領域70、80を有し、当該領域上にそれぞれ光ATT71、81を搭載する。第1の光路の第1のMMI40に対する光結合効率が、第2の光路の第2のMMI40に対する光結合効率よりも大きい時、搭載領域70に光ATT71を搭載する。同様に、第3の光路の第2のMMI50に対する光結合効率は、第4の光路の第1のMMI40に対する光結合効率よりも大きいとき、第3の光路上の搭載領域80上に光ATT81を搭載する。これら光ATT 71、81により、二つのMMI40、50に対するLo光L、Lの結合効率、Sig光N、Nの結合効率を同程度に設定することが可能となり、MMI40、50での情報復調精度の劣化を抑制することができる。なお、本実施の形態では、Lo光について第1の光路、Sig光についての第3の光路に光ATT71、81を設置している。が、少なくともSig光Nについての第3の光路について光ATT81を搭載することで本発明の効果は十分に期待できる。Lo光については、BS12により分岐された二つのLo光L、Lについてその強度が大きく異なる場面は想定し難い。単にBS12により分岐されるのみである。一方、Sig光Nについては、その光源の偏波特性、光源から本コヒーレントレシーバ1に至る光路中に挿入された光部品の偏波特性、等により、PBS21で分岐される二つのSig光N、Nの強度が大きく異なる場面は容易に想定される。その様な場合に、本発明に係る光ATT81を第3光路に挿入することで、MMI40、50における情報の復調精度を大きく改善することができる。
 本実施形態では、Lo光ATT71及びSig光ATT81として、例えば、異なる光減衰量を有する複数の透過型光ATTを用意することができる。この複数の透過型光ATTの中から、必要な光減衰量に応じて、例えば、最適な光減衰量を有する一の光ATTがLo光ATT71及びSig光ATT81として選択される。光ATT71、81の光透過率は、例えば、95%~98%である。例えば、石英ガラスに反射膜又は吸収膜を設けた構成とすることができる。反射膜は、アルミニウム(Al)及び金(Au)の少なくとも1つの材料からなる金属膜と窒化シリコン(SiN)膜などの誘電体からなる多層膜からなり、吸収膜は、カーボンを含む材料からなる膜である。ATT71、81の形状は、基本的にはいかなるものでもよく、例えば、立方体、直方体、又は板状体であることができる。それぞれの光軸に沿った方向の厚みも任意である。一例を挙げれば、ATT71、81は、一辺1mm程度の直方体とすることができる。第1設置領域70及び第2設置領域80は、例えば、一辺1.5mm程度の正方形とすることができる。
 コヒーレントレシーバ1では、第1のMMI40に入力する第1のLo光Lと第2のMMI50に入力する第2のLo光Lの光強度比、及び、第1のMMI40に入力する第2のSig光Nと、第2のMMI50に入力する第1のSig光Nの光強度比は、共に、例えば、80~120%の範囲に収まるように調整される。
 図3(a)~図3(d)は、本発明の第1実施形態に係る設置領域70を概略的に示した図である。図3(a)は、設置領域70の平面図である。図3(b)部は、図3(a)部のIIIb-IIIb線に沿った断面図である。他方の設置領域80は、第1設置領域70と同じ態様を有するので、引き続く説明において第2設置領域80についての図示を省略する。図3(a)及び図3(b)部に示されるように、設置領域70は設置面72を有し、光ATT71は設置面72上に設置される。図3(c)及び図3(d)は、光ATT71が設置面72に設置された様子を表す図である。図3(c)は、設置領域70の平面図であり、図3(d)は、図3(c)のIIId-IIId線に沿った断面図である。図3(a)~図3(d)には、Lo光Lの光路Rが示されている。
 設置面72は、光ATT71を固定する固定剤73を有する。(図3(c)では、固定剤73を省略している)。固定剤73は、たとえば接着剤あるいははロウ材である。接着剤は、例えば、エポキシ系樹脂であり、ロウ材は、例えば、インジウム錫(InSn)、ビスマス錫(BiSn)系の低融点半田である。図3(a)~図3(d)に示すように、設置領域70は、固定剤73の流れ出しを防止する構成74を更に有する。構成74は、例えば、設置面72を囲む溝とすることができる。固定剤73は、光路Rを遮らないように塗布される。すなわち、光路Rは、設置面72及び固定剤73によって遮断されない。他方の設置領域80も、流れ出し防止機構を有することができる。コヒーレントレシーバ1では、設置領域70、80の少なくとも一方に、固定剤73の流れ出し防止機構74を設けることができる。
 以上に説明したコヒーレントレシーバ1によって得られる効果について説明する。このコヒーレントレシーバ1によれば、位相変調されたSig光が、Lo光とSig光との干渉によって復調される。また、コヒーレントレシーバ1の作製時における第1のBS12などの光学素子の実装精度によって、第2のMMI50に入力するLo光及びSig光の強度が極端に相違して信号復調時のエラーレートが増大してしまう場合に、そのエラーレートを軽減することができる。即ち、設置領域80に光ATT81を設置して、第2のMMI50に入力するSig光Nの強度を低減することができる。このため、第2のMMI50に入力するSig光Nの光強度と、第1のMMI40に入力するSig光Nの強度差を緩和することができる。その結果、コヒーレントレシーバ1の情報復調精度の低下を軽減することが可能なる。
 また、このコヒーレントレシーバ1は、第1のBS12と第1のMMI40のLo光入力部41との間の光路上に位置し、Lo光Lの強度を減衰する光ATT71を設置するための設置領域70を備える。光ATT71は、第1のMMI40に入力するLo光Lの強度を低減する。従って、第1のMMI40に入力するLo光Lの強度と、第2のMMI50に入力するLo光Lの強度差を緩和することができる。従って、コヒーレントレシーバ1の情報復調精度等の低下をさらに軽減することが可能とる。
 また、このコヒーレントレシーバ1によれば、設置領域70は、Lo光Lの光路R上に設けられる。このため、光ATT71を光路R上に設置すると、第1のMMI40で光結合損失が増大するが、この光結合損失は、設置領域70が他方のLo光Lの光路R上に設置されるときよりも低減される。他方のLo光Lは、第1のBS12と第1の反射鏡13の2回の光路変更を受けるからである。光路変更を受けないLo光Lは、他方のLo光Lに比較して、結合損失を起こし難い。他方の設置領域80についても同様である。
 このコヒーレントレシーバ1によれば、Lo光に対して一つの設置領域70が設けられ、Sig光に対して一つの設置領域80が設けられる。このため、二つのLo光L、L及二つのSig光N、Nの四つの光に対してそれぞれ独立に設置領域が設けられる構成と比較して、コヒーレントレシーバ1の小型化が可能となる。このコヒーレントレシーバ1では、光ATT71、81の配置スペースと実装領域ためのスペースとが半分程度になる。このコヒーレントレシーバ1では、Lo光LとLの強度が互いにほぼ等しく、Sig光N、Nの光強度が第1、第2のMMI40、50においてほぼ等しい。加えて、部品実装工程では、第1、第2のMMI40、50に集積化されたそれぞれのPD(45、55)を用いて、レンズ系14、15、23、24等の調芯が、PD45、55に対する光結合効率が最大となる様に行われる。各光部品の調芯精度に起因して、PD45、55で検知される光結合効率が同程度に設定されない場合に、二つのMMI40、50に対する二つのLo光L、L、及び二つのSig光N、Nの光結合効率の差を補償する様に、光ATT71,81がそれぞれの光路に設置される。
 このコヒーレントレシーバ1では、設置領域70、80それぞれ設置面72、82を有し、設置面72、82は、それぞれ、光ATT71、81を固定するための接着剤又はロウ材を有する。このコヒーレントレシーバ1によれば、接着剤又はロウ材を介して、光ATT71、81がそれぞれ簡便かつ確実に、設置面72、82に固定される。接着剤又はロウ材が光ATT71,81の側面も覆うので、光ATT71、81の設置面72、82への固定がより強固となる。
 このコヒーレントレシーバ1では設置領域70、80の少なくとも一方は、接着剤又はロウ材の流れ防止機構を更に有する。このコヒーレントレシーバ1によれば、光ATT71、81がそれぞれ設置領域70、80に設置されるときに、接着剤又はロウ材が設置領域70、80の周囲に流れ出ることが防止される。流れ出し防止機構74は、光ATT71、81を設置領域70、80に搭載する際の位置合わせマークとして利用することができる。
 第1の変形例
 図4(a)~図4(d)は、本発明の第1の変形例に係る設置領域70aを概略的に示した図である。図4(a)は、設置領域70aの平面図である。図4(b)部は、図4(a)部のIVb-IVb線に沿った断面図である。図4(a)及び図4(b)部に示されるように、設置領域70aは設置面72を有し、光ATT71は設置面72上に設置される。同様に、他方の設置領域80aについても、光ATT81を設置する設置面82を有することができる。図4(c)及び図4(d)は、光ATT71が設置面72に設置された様子を表す図である。図4(c)は、設置領域70aの平面図であり、図4(d)は、図4(c)のIVd-IVd線に沿った断面図である。図4(a)~図4(d)には、Lo光Lの光路Rが示されている。第1の変形例に係る設置面72は、光ATT71を固定する固定剤73を有する。図4(d)に示すように、光ATT71は、固定剤73によって設置面72に固定される(図4(c)は固定剤73を省略している)。設置領域70aは、固定剤73の流れ出し防止機構として凸型の土手74aを有する。この土手74aは、例えば、光路Rに沿って形成された二つのリブとすることができる。この二つの突起は、Lo光Lの光路Rとは干渉しない。固定剤73は、例えば、Lo光Lの光路Rを遮らないように塗布される。凸型の流れ止め部分74aを有するように設置領域72を加工し設置領域70aとすることができる。あるいは、中央に開口を有する直方体の流れ止め機構74aを設置面72に搭載して設置領域70としてもよい。コヒーレントレシーバ1では、設置領域70a、80aの少なくとも一方に、固定剤73の流れ出し防し機構としての土手74aを設けることができる。これにより、光ATT71、81がそれぞれ設置領域70a、80aに設置される際に、接着剤又はロウ材が設置領域70aの周囲に流れ出すことが防止される。
 第2の変形例
 図5(a)、図5(b)は第2の変形例を概略的に示した図である。図5(a)は第2の変形例に係る設置領域70bの上面図である。図5の(a)部には、Lo光Lの光路Rが示されている。図5の(b)部は、図5の(a)部のVb-Vb線に沿った断面図である。
 図5(a)、図5(b)部に示すように、設置領域70bは、設置面72bを有する。設置面72bは、例えば、凸型のテラスとすることができる。光ATT71は設置面72bに設置される。コヒーレントレシーバ1では、第2変形例の設置面72b及びSig光Nについての設置面の少なくとも一方が、テラスを有することができる。第2変形例の設置面72bは、光ATT71を固定するための固定剤73を有する。図5(b)に示すように、第2変形例の光ATT71は、固定剤73によって設置面72bに固定される(図5(a)は固定剤73を省略している)。固定剤73は、例えば、Lo光Lの光路Rを遮らないように塗布される。光路Rは、第2変形例の設置面72b及び固定剤73によって遮断されない。
 本変形例のように、設置面72及び他方の設置面の少なくとも一方は、テラスを設けてもよい。これにより、光ATT71、81が、それぞれ、Lo光及びSig光の光路の高さに合わせた状態で、設置面72、82に設置される。
 第3の変形例
 図6(a)、図6(b)は、本発明の第3の変形例を概略的に示した図である。図6(a)は、設置領域70cの平面図であり、図6(b)は、図6(a)のVIb-VIb線に沿った断面図である。図6(a)は、Lo光Lの光路Rも示している。
 図6(a)及び図6(b)に示すように、設置領域70cは、設置面72の上に設置台75を有する。設置台75は、例えば、アルミナ(Al)製である。光ATT71は設置台75の上に搭載される。同様に、他方の設置領域についても、光ATT81を設置する設置台を設置面上82内に有することができる。コヒーレントレシーバ1では、第3変形例の設置領域70c及び他方の設置領域の少なくとも一方に、設置台75を設けることができる。第3変形例の設置面72は、光ATT71を固定するための固定剤73を有する。光ATT71は、固定剤73によって設置面72に固定される。図6(a)は、固定剤73を省略している。固定剤73は、例えば、Lo光Lの光路Rを遮らないように塗布される。光路Rは、設置台75及び固定剤73によって遮断されない。
 本変形例のように、設置面及び他方の設置面の少なくとも一方に設置台75を備えることができる。これにより、光ATT71、81が、それぞれ、Lo光及びSig光の光路の高さに合わせた状態で、設置面72及び第2設置面に設置される。
 第4の変形例
 図7(a)、図7(b)は、第4変形例に係る設置領域70を概略的に示した図である。図7(a)、図7(c)は、設置領域70の平面図であり、図7(b)は図7(a)中のVIIb-VIIb線に沿った断面図である。図7(d)は、図7(c)中のVIId-VIId線に沿った断面図である。
 図7(a)及び図7(b)に示すように、設置領域70dは、設置面72の上に、例えば、ロウ材76を有する。光ATT71は、ロウ材76上に設置される。ロウ材76は、固定剤73と同じ材料とすることができる。ロウ材76は、例えば、スクリーン印刷法によって設けられ、また、例えば、第1のBS12などの他の光学素子の固定に用いられるSnAgCu(錫銀銅)などの融点よりも低い融点を有する。Lo光Lの光路Rは、第4変形例のロウ材76によって遮断されない。
 第4変形例では、図7(c)及び図7(d)に示すように、設置面72の上に、例えば、金属膜77を設けてもよい。金属膜77は、例えば、選択めっき法により形成されたAuメッキ及びNiメッキとすることができる。図7(d)は、設置面72上に形成された金属膜77上に光ATT71が固定剤73によって固定された様子を示す図である(図7(c)は固定剤73を省略している)。図7(d)に示すように、固定剤73は、Lo光Lの光路Rを遮らないように塗布される。Sig光Nに係る他方の設置領域にも、同様に、ロウ材76又は金属膜77を設けることができる。
 本変形例のように、ロウ材76又は金属膜77を、設置面72あるいはSig光Nに係る他方の設置面の少なくとも一方に設けることができる。これにより、光ATT71、81を、それぞれ設置面72、他方の設置面に簡便に固定することができる。金属膜77の形成によって、ロウ材の濡れ性が向上しロウ付けが容易となる。設置面72の表面が酸化されていると、ロウ材の濡れ性が低くなるので、金属膜77は設置面72の表面が酸化されているときに特に効果的となる。
 また、本変形例のように、設置面72に塗布されるロウ材76は、例えば、第1のBS12などの他の素子の固定に用いられるロウ材の融点よりも低い融点を有することが好ましい。例えば、設置面72上のロウ材を溶融するときに、第1のBS12などの他の光学素子を固定しているロウ材は溶融しないので、これらの素子の位置ずれが防止される。なお、光ATT71、81が設置された後に、第1のBS12などの他の光学素子を実装する場合には、設置面72、82に塗布されたロウ材が溶融することがある。ただし、設置面72、82の表面が、酸化等を受けてロウ材を弾く性質を持っていると、ロウ材パターンの流出が抑制される。
 第5の変形例
 図8(a)、図8(b)は、第5の変形例を概略的に示した図である。図8(a)は、設置領域70eの平面図であり、図8(b)は、図8(a)に示すVIIIb-VIIIb線に沿った断面図である。第5の変形例において、設置領域70は、設置台75eを有し、この設置台75eは、図8に示すように、固定剤73の流れ出しを防止する凹型の構造を更に有することができる。凹型の流れだし防止部74eは、設置面72を囲む溝とすることができる。設置台75eは、例えば、金錫(AuSn)系の半田によって、設置領域70e上に固定される。固定剤73は、Lo光Lの光路Rを遮らないように塗布される。Lo光Lの光路Rは、第5変形例の設置台75e及び固定剤73によって遮断されない。
 設置台75eは、凹状の溝74eに代えて、例えば、図4(d)に示す凸型の土手を有することができる。この土手は、光路Rに沿って延在する二つの突起である。二つの突起は、Lo光Lの光路Rを遮らないように形成される。コヒーレントレシーバ1では、設置領域70e及びSig光Nに係る他方の設置領域の少なくとも一方に設置台75を備え、この設置台75eに、固定剤73の流れ出しを防止する土手又は溝を設けることができる。これにより、光ATT71、81を搭載するときに、接着剤又はロウ材が設置台75eの周囲に流れ出ることが防止される。
 第6の変形例
 図9(a)、図9(b)は、第6の変形例を概略的に示した図である。図9(a)は、設置領域70fの平面図である。図9(b)は、図9(a)に示すIXb-IXb線に沿った断面図である。
 設置台75fは、その下面75Bに金属膜78を有し、その上面75Aに金属膜77fを有する。また、設置台75fは、設置領域70の上面70Aに第3金属膜79aを形成し、設置台75fの下面75Bと設置領域70fの上面70Aとの間に設けられた接着部材79bによって、設置領域70に固定される。接着部材79bは、例えば、接着剤又はロウ剤である。設置台75fは、固定剤73の流れ防止のために、設置面72fを囲む溝74fを有する。固定剤73は、例えば、Lo光Lの光路Rを遮らないように塗布される。Lo光Lの光路Rは、第6変形例の設置台75f及び固定剤73によって遮断されない。なお、Sig光Nに係る他方の設置領域も、設置台75fを有することができる。コヒーレントレシーバ1では、二つの設置領域の少なくとも一方に、第2金属膜78が塗布された下面75Bを有する設置台75fを備えることができる。本変形例のように、設置台75fは、第2金属膜78が設けられた下面75Bを有してもよい。これにより、設置台75fがロウ材によって設置領域70f又は第2設置領域に設置されるときに、ロウ材の濡れ性が向上しロウ付けが簡便となる。
 第2の実施の形態
 以上の構成を備える本実施形態のコヒーレントレシーバ1の製造方法について説明する。
 まず、筐体2の外部において、ベース4をキャリア3上に搭載し、互いに固着させる。キャリア3は、例えば銅タングステン(CuW)からなる矩形の板状部材である。ベース4は、例えばアルミナ(Al)からなる矩形の板状部材である。ベース4とキャリア3の固着は、例えばAuSn共晶半田を用いることができる。キャリア3上にはベース4の搭載領域とMMI40、50の搭載領域とを区画する溝が予め形成されている。この前縁にベース4の後端を目視で合わせることにより、筐体2の前後方向におけるキャリア3とベース4との相対位置を決定する。なお、これに代えて、キャリア3の前縁とベース4の前縁を合致させるアライメントを行ってもよい。
 なお、後の工程においてキャリア3を筐体2内に配置する際には、キャリア3の幅が筐体2の内壁の間隔にほぼ合致しているため、キャリア3の側面に形成された一対の括れを把持するとよい。そして、ベース4の筐体2の左右方向についてのアライメントは、キャリア3に形成された一対の括れを用いてもよい。すなわち、括れによりキャリア3の中央部分の間隔が狭くなっているので、その狭い部分の両端位置とベース4の両端位置とを一致させるとよい。
 次に、MMI40をMMIキャリア(不図示)上に搭載し、互いに固着(ダイボンド)する。同様に、MMI50を別のMMIキャリア(不図示)上に搭載し、互いに固着する。MMIキャリアは、直方体状の部材であり、例えばAlN、あるいはアルミナ等のセラミックからなる。MMI40、50とMMIキャリアとの固着には、例えばAuSn共晶半田が用いられる。この固着には、通常の半導体デバイスを絶縁基板上にマウントする公知の方法と同様の技術を用いることができる。その後、MMI40、50をそれぞれ搭載した2つのMMIキャリアを、キャリア3上であってベース4の後端側に位置する領域に固定する。キャリア3上には予めMMIキャリアの固定領域を囲むように溝が形成されており、MMIキャリアは当該溝を基準として目視アライメントにより配置される。
 なお、MMIキャリア上には、MMIキャリアの前方側と後方側とを分離する溝が形成されている。MMIキャリアの前方側は、MMI40、50に内蔵される光導波路部分44、54に相当する。MMIキャリアの後方側は、MMI40、50に内蔵されるPD部分45、55に相当する。MMI40、50の裏面電極もまた前方側と後方側とに分離されており、その結果、内蔵PD45、55のリーク電流の減少が実現される。
 上述したMMIキャリアとMMI40、50との固着と並行して、2つの配線基板46、56上に複数のダイキャパシタ(平行平板コンデンサ)を実装する。配線基板46、56は、例えば窒化アルミニウム(AlN)からなる。複数のダイキャパシタの実装には、例えばAuSnペレットを使用でき、また、公知のソルダリング工程を採用してもよい。その後、複数のダイキャパシタがそれぞれ実装された2つの配線基板46、56のうち一方を、MMI40を囲んでキャリア3に固定し、他方の配線基板56を、MMI50を囲んで配置してキャリア3に固定する。回路基板46、56のキャリア3上への搭載は、例えばAuSn等の共晶半田にて、その後、キャリア3を筐体2内に搭載する。
 続いて、キャリア3を筐体2の底面2E上に搭載する。このとき、例えば、筐体2の一端面2Aを構成する前壁の内面にキャリア3の前端を突き当て、キャリア3と筐体2とのアライメントを行った後、所定寸法だけキャリア3を当該側壁から離し、その状態でキャリア3を筐体2の底面2Eに配置するとよい。ここで、筐体2の各側壁の内面は図2に示されるように2段に構成されており、上段は金属製であり、下段は複数の端子3を互いに絶縁するためにセラミック製のフィードスルー61である。下段の内寸(壁間距離)はキャリア3の幅とほぼ一致しているが、上段の内寸はキャリア3の幅よりも広い。従って、上段の側壁の内面にキャリア3を突き当てることができ、これにより、筐体2とキャリア3(及び既にキャリア3上に搭載されている各部品)とのアライメントを±0.5°以内で実現することが可能である。底面2Eへのキャリア3の固定は、例えば半田を用いて行われる。
 また、この工程では、キャリア3とともにVOAキャリア30を筐体2の底面2E上に搭載する。このとき、たとえば、筐体2の一端面2Aを構成する側壁の内面にVOAキャリア30の前端を突き当て、VOAキャリア30と筐体2とのアライメントを行った後、所定寸法だけVOAキャリア20を当該側壁から離し、その状態でVOAキャリア30を筐体2の底面2Eに配置するとよい。これにより、前述のキャリア3の前端と、VOAキャリア30の後端とが互いに平行になる。底面2EへのVOAキャリア20の固定は、例えば半田を用いて行われる。
 キャリア3を底面2Eに固定したのち、集積回路43、53(図1、図2を参照)を配線基板46、56上に実装する。集積回路43、53の実装は、たとえば銀ペースト等の導電性樹脂を使用して公知の実装方法により行う。集積回路43、53の搭載後、筐体2全体を昇温(~180℃)することにより、導電性樹脂に含まれる溶剤を気化する。その後、集積回路43、53の上面の電極パッドと、筐体2の後方側の端子65(図1、図2を参照)をワイヤリングにより電気的に接続する。なお、このワイヤリングにより、次工程以降における各光部品のアクティブ調芯、すなわちMMI40、50に試験光を入力し、MMI40、50に内蔵されているPD(45、55、不図示)の出力信号強度が最大となる位置に各光部品を配置することが可能となる。
 続いて、各光部品を筐体2内に搭載する。まず、光学調芯のためのLo光を生成する。図10(a)に示されるように、互いに垂直な光反射面104a及び底面104bを有する標準反射器104を用意する。光反射面104aは筐体2の一端面2Aを模擬し、底面104bは筐体2の底面を模擬する。標準反射器104は、例えば直方体状のガラスブロックにより構成される。そして、この標準反射器104を、調芯装置の支持台105上に固定されたステージ103上に設置する。このとき、底面104bとステージ103を密に接触させる。
 標準反射器104の光軸方向にオートコリメータ125の光軸方向を合わせる。具体的には、オートコリメータ125から可視レーザ光Lを出力し、該レーザ光Lを光反射面104aに当てる。そして、光反射面104aが反射した可視レーザ光Lの光強度を、オートコリメータ125側で検出する。反射前の可視レーザ光Lと反射後の可視レーザ光Lとが互いに重なるとき、検出される光強度は最大となる。このことを利用して、光反射面104aの法線方向、すなわち標準反射器104の光軸方向にオートコリメータ125の光軸方向を合わせる。その後、標準反射器104をステージ103から取り外し、MMI40、50、回路基板46、56及びVOAキャリア30を搭載した筐体2に置き換える (図10(b) 。このとき、筐体2の底面をステージ103に密に接触させる。オートコリメータ125の光軸は筐体2の上方空間を通過するので、可視レーザ光Lは筐体2の上方を通過し、筐体2内には導入されない。
 続いて、図11に示すように、モニタPD33をVOAキャリア30上に搭載する。また、PBS21、スキュー調整素子16、26、λ/2板25、偏光子11、及びBS12を筐体2内の所定の搭載位置にそれぞれ搭載する。これらの光部品は、調芯作業を実施しない光部品であって、その光入射面の方向のみが調整されたのち固定される。具体的には、この工程では、すでにその調整が終了しているオートコリメータ125の光軸を利用して光部品の角度(光入射面の角度)を調整する。これらの光部品の一側面をオートコリメータ125の可視レーザ光Lに対する反射面とし、反射前の可視レーザ光Lと反射後の可視レーザ光Lとを互いに重ね合わせ、これらの光部品の角度 (光軸方向) を調整する。なお、この作業はオートコリメータ125の光軸上すなわち筐体2の上方空間において行われる。そして、その向きを保持したまま (或いは必要に応じて所定角度だけ回転させ) 、各搭載位置に設けられた接着樹脂上にこれらの光部品を移動させ、該接着樹脂を硬化させてこれらを固定する。
 PBS21、スキュー調整素子16、26、及び偏光子11については、筐体2に搭載された状態において光入射面が前壁2A側を向くので、該光入射面の法線方向とオートコリメータ125の光軸とを一致させて光軸方向を調整し、その向きを維持しつつ搭載するとよい。また、λ/2板25およびモニタPD33については、筐体2に搭載された状態において光入射面が側方を向くので、該光入射面の法線方向とオートコリメータ125の光軸とを一致させそれらの光軸方向を調整したのち、底面2Eの法線周りに90°回転してから搭載する。なお、モニタPD33については、更に所定の端子61との間のワイヤボンディングにより、該所定の端子61に対して電気的接続を行う。BS12については、筐体2に搭載された状態において光入射面が側方を向くが、光出射面が後方を向くので、光出射面若しくはこの光出射面とは反対側の面の法線方向とオートコリメータ125の光軸とを一致させ光軸方向を調整したのち、その向きを維持し筐体2内に搭載するとよい。
 続いて、上述の各光部品とは別の光部品、すなわちMMI40、50に対する光結合トレランスが上記の各光部品よりも小さい故に調芯を必要とするSig光レンズ27;第1、第2の反射鏡13、22;及び各レンズ系14、15、23、24;を筐体2内に搭載する。その準備として、図12に示すように、模擬コネクタ123a、123bを筐体2の前壁2Aに配置する。模擬コネクタ 123a,123bは、Sig光ポート6及びLo光ポート5をそれぞれ模擬し、模擬コネクタ 123a, 123bからは、当該別の光部品の調芯に用いられる試験光が出射される。以下、試験光を準備する工程の詳細について説明する。
 図12は、模擬コネクタ 123aを保持するためのマニピュレータ100の一部を示す斜視図である。マニピュレータ100は、位置及び角度 (具体的には、互いに直交する3軸(X、Y、Z軸の方向の位置、及び模擬コネクタ 123aの光軸方向に垂直な2軸周りの角度)を自在に変更可能なアーム101と、アーム101の先端に設けられたヘッド102を有する。模擬コネクタ 123aは、ヘッド102上に保持されており、Sig光ポート6の取り付け予定位置に配置される。なお、模擬コネクタ 123bもまた、別のマニピュレータ100によって模擬コネクタ 123aと同様に保持され、Lo光ポート5の取り付け予定位置に配置される。
 図13Aは、試験光を生成する構成を示すブロック図である。この構成では、バイアス電源111が出力するバイアス電圧を光源112 (例えば半導体レーザ) に与えて、試験光(CW光)を発生させる。この試験光は偏光制御素子113に導入され、その偏光面が制御される。これにより、試験光は、Sig光が有する二つの偏光成分を模擬する偏光成分を有することになる。その後、試験光は光カプラ114を介してコネクタ116に達する。コネクタ116は、コネクタ117、118のいずれか一方と選択的に接続される。コネクタ117には模擬コネクタ123aが光結合しており、他方のコネクタ118には光パワーメータ119が光結合されている。また、光カプラ114にはパワーメータ115が接続されている。図13(A)は二つのパワーメータ115、119を備える系を示しているが、一つのパワーメータを、それぞれのパワーメータ115、119で併用してもよい。また、模擬コネクタ 123bに対しても、上記と同様の構成が用意される。
 まず、光コネクタ116と光コネクタ118を接続する。そして、光源112から出力される試験光の強度をパワーメータ119により検出し、バイアス電圧を調整することにより試験光の強度、すなわち、筐体2に対する入射光強度を所定の値に設定する。次に、筐体2をステージ103から再び取り外し、標準反射器104に置き換える。そして、光コネクタ116と光コネクタ117を接続し、模擬コネクタ 123a, 123bを、標準反射器104の光反射面104aと対向させる。この状態で光源112から試験光が出力されると、この試験光は模擬コネクタ 123a, 123bから出射されたのち光反射面104aにて反射し、再び模擬コネクタ 123a, 123bに入射する。この試験光の強度は、光カプラ114を経由してパワーメータ115において検出される。模擬コネクタ 123a, 123bの光軸方向を調整してその光検出強度を最大とすることで、標準反射器104の光軸方向に模擬コネクタ 123a (もしくは 123b) の光軸方向を合わせる。その後、図13Bに示すように、標準反射器104をステージ103から取り外し、筐体2に置き換える。
 続いて、模擬コネクタ 123aから筐体2内に入射する試験光の偏光面を調整する (第S1工程) 。そのために、PBS及び2つのモニタPDを有する試験治具を、筐体2内部で模擬コネクタ 123aの後段 (例えばVAO31の搭載位置) に配置する。この試験治具は、例えばPBSの2つの光出射端それぞれにモニタPDを貼り付けられた構成が想定される。或いは、この試験治具は、PBSの2つの光出射端それぞれとモニタPDとを互いに光結合させ、両者を共通の基板上に搭載したものであってもよい。そして、模擬コネクタ 123aを介して試験光を筐体2内に提供し、偏光ビームスプリッタによって分岐した2つの偏光成分の強度を各モニタPDにおいて検知し、二つの偏光成分の強度が互いに略等しくなるべく、偏光制御素子113により試験光の偏光面を調整する。なお、この工程では、筐体2に代えて、偏光ビームスプリッタ及び2つのモニタPDを搭載する模擬モジュールを用意し、これをステージ103上に搭載して偏光面の調整を行ってもよい。
 なお、上述の偏光調整において、試験治具が有する2つのモニタPDの出力信号を、筐体2のいずれかの端子65を介して取り出してもよい。また、試験治具が、2つのモニタPDの出力信号を取り出すための端子を備えている場合には、筐体2をステージ103上に配置する前に、上記の試験光の偏光調整を行ってもよい。
 この工程では、更に、模擬コネクタ 123a,123bの調芯を行う。まず、模擬コネクタ 123aから筐体2内に入射した試験光の強度を、MMI40に内蔵されたPDにより検出する。そして、検出される試験光の強度が大きくなる方向に模擬コネクタ 123aを筐体2の前壁2A上で移動させ、模擬コネクタ 123aの光軸に垂直な面内での調芯を行う。同様に、模擬コネクタ 123bから筐体2内に入射した試験光の強度を、他方のMMI50に内蔵されたPDで検出し、その検出光の強度が大きくなる方向に模擬コネクタ 123bを移動する。これにより、模擬コネクタ 123bの光軸に垂直な面内での調芯を行う。なお、試験光のフィールド径は300μm程度もあり、一方、MMI40、50の光入力端は小さく、例えば幅数μm、厚さ1μm以下といった程度である。従って、MMI40、50に入力される試験光の強度は微弱となるが、試験光の光軸を決定する程度の検出信号を得ることは可能である。
 模擬コネクタ 123a, 123bの光軸方向の位置に関しては、模擬コネクタ 123a, 123bの端面を筐体2の前壁2Aに当接させることにより決定することができる。
 続いて、調芯を要する各光部品を模擬コネクタ 123a若しくは 123bとMMI40、50との間の光路上に配置し、MMI40、50に内蔵されるPD (もしくはモニタPD33)で検出される試験光の強度を参照し、これらの光部品の調芯を行う。更に、これらの光部品を筐体2内に固定する。なお、これらの光部品の調芯及び固定の順序は以下の説明に限られるものではなく、任意の順序で行うことができる。
 この工程では、図13(b)に示すように、VOAバイアス電源120、電圧モニタ121、122を筐体2と接続する。VOAバイアス電源120は、後述するVOA31をVOAキャリア30上に設置する際に、VOA31にバイアス電圧を与える。電圧モニタ121、122は、回路基板46、56からの電圧信号をそれぞれモニタする。
 まず、BS32 (図1,図2を参照) の調芯及び固定を行う。すなわち、BS32の前面を反射面とし、筐体2の上方空間を通過しているオートコリメータ125の可視レーザ光Lを用いて、BS32の角度 (光軸方向) を調整する。そして、BS32の向きを維持したまま、VOAキャリア30上にBS32を移動する。そして、VOAキャリア30上で、BS12をSig光の光軸に沿って移動させ、モニタPD33の受光強度が最大となるBS12の搭載位置を決定するその後、接着樹脂を用いてBS12をVOAキャリア30に固定する。
 次に、図14に示されるように、第1、第2の反射鏡13、22の調芯及び固定を行う。まず、これらの反射鏡13、22の前面を反射面とし、筐体2の上方空間を通過しているオートコリメータ125の可視レーザ光を用いて、反射鏡13、22の角度 (光軸方向) を調整する。そして、反射鏡13、22の角度を維持しつつ、反射鏡13、22が反射した試験光をMMI40、50の内蔵PDにより検出する。そして、反射鏡13、22を二つの光ポート5、6の光軸に垂直な方向に僅かに移動し、内蔵PDの検出強度が最大となる位置を決定する。留意すべきは、反射鏡13、22の調芯に際しては、オートコリメータ125が出射する可視レーザ光により決定された角度は、以後の調芯作業で維持される点にある。MMI40、50の筐体2に対する搭載角度、及び、光ポート5、6の光軸が既に決定されているため、光軸を90°変換する反射鏡12、21についてその搭載角度を変更することは、これら既に実施された調芯状態を狂わせてしまうからである。
 続いて、4つのレンズ系14、15、23、24の調芯、及び固定を行う。まず、図15に示すように、第1レンズ14b、15b、23b、24b(すなわちMMI40、50寄りのレンズ) の調芯及び固定を行う。これらのレンズ14b、15b、23b、24bを所定の搭載位置に配置し、各模擬コネクタ 123a, 123bからの試験光を入射し、レンズ14b、15b、23b、24bを通過しMMI40、50に入力した試験光をMMI40、50の内蔵PD44、55により検出する。そして、レンズ14b、15b、23b、24bの位置及び角度を僅かに変化させ、内蔵PDの受光強度が最大となる位置及び角度を決定する。位置及び角度の決定後、紫外線硬化樹脂を用いてレンズ14b、15b、23b、24bを固定する。続いて、図16に示すように、第2レンズ14a、15a、23a、24aの調芯及び固定を行う。これらの調芯及び固定の方法は、上述した第1レンズ14b、15b、23b、24bの調芯及び固定の方法と同様である。
 ここで、各レンズ系14、15、23、及び24が2個のレンズ(集光レンズ)を光軸方向に並べて配置する理由について説明する。図23は、2個のレンズが光軸方向に並んで配置された場合に、レンズ位置の設計位置からのずれと、微小な結合対象(本実施形態ではMMI40、50の光入力部41、42、51、52)に対する結合効率の変化との関係の一例を示すグラフである。図23(a)及び図23(b)は、結合対象側のレンズ(結合対象に相対的に近接して配置されたレンズ)の位置ずれ((a)は光軸に直交する方向のずれ、(b)は光軸方向のずれ)による結合効率の変化を示す。また、図23(c)及び図23(d)は、結合対象とは反対側のレンズ(結合対象から相対的に離間して配置されたレンズ)の位置ずれ((c)は光軸に直交する方向のずれ、(d)は光軸方向のずれ)による結合効率の変化を示す。なお、図23(c)及び図23(d)においては、結合対象側の集光レンズが予めその設計位置に配置されているものと仮定している。
 まず、光軸に直交する方向(X、Y)のずれについて検討する。図23(a)に示されるように、結合対象側のレンズでは、わずか数μmの位置ずれであっても結合効率が劣化し、1μm程度の位置ずれによって結合効率が30%も劣化する。これに対し、図23(c)に示されるように、結合対象とは反対側のレンズにおいては、数μmの位置ずれであれば結合効率はほとんど劣化せず、結合効率の劣化には数十μmの位置ずれを要する。また、光軸方向のずれについて検討すると、図23(b)に示されるように、結合対象側のレンズでは数十μmの位置ずれであっても結合効率が劣化するが、図23(d)に示されるように、結合対象とは反対側のレンズでは数十μmの位置ずれであれば結合効率はほとんど劣化しない。
 各レンズ系14、15、23、及び24の各レンズは、例えば紫外線硬化樹脂などの樹脂によってベース4に固定される。樹脂は固化時に数μmの収縮を生じるので、レンズの位置は、樹脂の固化に伴って数μmのずれを生じることがある。そして、上述したように、結合対象側のレンズでは数μmの位置ずれであっても結合効率が劣化してしまう。
 これに対し、結合対象とは反対側のレンズでは、数μmの位置ずれであれば結合効率はほとんど劣化しないので、結合対象側のレンズと比較して格段に大きな結合トレランスを確保できる。特に、光軸方向においては数十μmの位置ずれであっても許容されるので、実質的に光軸方向の調芯精度は無視できる。従って、結合対象側のレンズ(本実施形態ではレンズ14b、15b、23b、及び24b)の調芯及び固定を行った後に、結合対象とは反対側のレンズ(本実施形態ではレンズ14a、15a、23a、及び24a)の調芯及び固定を行うことにより、結合対象側のレンズにおいて生じる結合効率の劣化を十分に補償することができる。
 なお、上記の方法では、MMI40、50に近接配置された4つのレンズ14b、15b、23b、及び24bの調芯及び固定を行ったのち、別の4つのレンズ14a、15a、23a、及び24aの調芯及び固定を行っている。これに対し、例えば2つの模擬コネクタ123a,123bに対して図13(b)に示された一組の光源112~コネクタ116を共通して使用する場合には、一方の模擬コネクタからの試験光を利用して各レンズの調芯及び固定を行ったのち、他方の模擬コネクタからの試験光を利用して各レンズの調芯及び固定を行ってもよい。例えば、まずレンズ14b、15bの調芯及び固定を行い、レンズ23b、24bの調芯及び固定を行ったのちに、レンズ14a、15aの調芯及び固定を行い、レンズ23a、24aの調芯及び固定を行ってもよい。これにより、光源112等の接続替えの回数を低減することができる。
 また、上記の方法では、MMI40、50に近接配置されるレンズを、その結合効率が最大となる位置で固定しているが、当該位置から所定距離だけ結合対象から遠ざかる(オフセットした)位置に対象のレンズを固定し、MMI40、50から相対的に離間して配置されるレンズを、結合効率が最大となる位置で固定してもよい。近接配置されるレンズのみで結合効率が最大となる位置と、2つのレンズの組み合わせにより結合効率が最大となるときの近接配置されるレンズの位置とは異なり、後者の場合は前者と比較して結合対象から遠くなるからである。
 続いて、図17に示すように、Sig光入力レンズ27の調芯及び固定を行う。Sig光ポート6には集光レンズが内蔵されており、この内蔵レンズの焦点と入力レンズ27の焦点とを一致させ、入力レンズ27の光軸方向を決定する。そして、内蔵レンズと入力レンズ27の間に形成されるビームウェストの位置にVOA31を配置することにより、VOA31の限られた面積のシャッタにSig光を通過させることができ、VOA31の消光比を大きくすることができる。以上の理由により、入力レンズ27の調芯には、模擬コネクタ 123bに代えて、Sig光ポート6に内蔵されているレンズと同じ焦点距離を有するレンズを内蔵する別の模擬コネクタ123Bを用いるとよい。従って、本工程では、模擬コネクタ 123bを模擬コネクタ123Bに置き換える。
 具体的には、筐体2に代えて標準反射器104をステージ103上に再び設置し、図13に示されたコネクタ116を模擬コネクタ 123bから模擬コネクタ123Bに付け替える。そして、模擬コネクタ123Bを、図12に示されたマニピュレータ100を用いてSig光ポート6の取り付け予定位置に配置し、標準反射器104の光反射面104aと対向させる。この状態で模擬コネクタ123Bから試験光を出力し、模擬コネクタ123Bの光軸位置を調整してパワーメータ115により検出される光強度を最大とし、標準反射器104の光軸方向に模擬コネクタ123Bの光軸方向を合わせる。次に、模擬コネクタ123Bから筐体2内に入射する試験光の偏光面を、前述した試験治具を用いて調整する。すなわち、模擬コネクタ123Bを介して試験光を筐体2内に提供し、試験治具のPBSによって分岐した2つの偏光成分の強度を各モニタPDにおいて検知し、これらの強度が互いに略等しくなるよう、偏光制御素子113から提供される試験光の偏光面を調整する。更に、模擬コネクタ123Bから筐体2内に入射した試験光の強度をMMI50に内蔵されたPD55により検出し、その受光強度が大きくなる方向に模擬コネクタ123Bを移動させることにより、模擬コネクタ123Bの光軸に垂直な面内での調芯を行う。なお、模擬コネクタ123Bの光軸方向の位置に関しては、模擬コネクタ123Bの端面を筐体2の前壁2Aに当接させることにより決定することができる。
 次に、入力レンズ27を搭載位置に移動し、入力レンズ27に模擬コネクタ123Bが提供する試験光を入射し、通過した試験光の強度をMMI50に内蔵したPD55により検出する。そして、入力レンズ27の位置を僅かに変化させ、内蔵PD55の受光強度が最大となる位置 (前後方向、左右方向、及び上下方向) を決定する。決定後、接着樹脂を用いて入力レンズ27を固定する。
 続いて、図18に示す様に、VOA31をVOAキャリア30上に搭載する。この工程では、VOA31を特殊マニピュレータ100Aにより把持し、VOA31を試験光の光路上に配置する。マニピュレータ100Aは、位置及び角度 (具体的には、互いに直交する3軸方向の位置、及びVOA31の光軸方向に垂直な2軸まわりの角度)を自在に変更可能な2本のアーム101Aと、これらのアーム101Aの先端に設けられたヘッド102Aとを有する。VOA31は、ヘッド102Aにより挟まれ、保持される。このとき、一方のヘッド102AはVOA31の一方の電極に電気的に接触している。また、他方のヘッド102AはVOA31の他方の電極に電気的に接触している。そして、図13に示されたVOAバイアス電源120からアーム101A及び102Aを介して、VOA31にバイアス電圧を印加する。
VOAキャリア30上に予め紫外線硬化樹脂を所定厚さ (例えば100μm以上) 塗布しておき、VOA31をVOAキャリア30の表面から所定距離 (例えば100μm)離れた状態でVOA31を保持する。そして、VOAバイアス電源120から提供されるバイアスを、0~5Vの間で繰り返し(例えば1秒程度の周期)VAO31に印加する。同時に、筐体2の底面2Eに平行で且つ光軸に垂直な方向にVOA31を移動させ、VOA31による減衰後の試験光の2つの偏光成分の強度を、MMI40、50の内蔵PDにより検出する。
 その後、減衰後の偏光成分の減衰度の差が許容範囲内に収まる位置にてVOA31を固定する。このとき、MMI40、50の内蔵PDの出力差を、試験光の偏光成分の減衰度の差と見なしてもよい。なお、VOA31は、模擬コネクタ123B内の集光レンズと入力レンズ27とを結ぶ光軸に対して所定角度 (例えば7°)傾けて搭載される。反射光をSig光ポート6に回帰させないためである。
 図19は、VOA31の印加バイアス電圧に対する減衰特性の一例を示すグラフである。グラフG11、G22は、各偏光成分 (G11:X偏波、G12:Y偏波) の減衰度を示す。また、グラフG13は、偏波成分の減衰度の差を示す。印加バイアス電圧が0Vのとき、VOA31は全開状態となる。図19に示すように、バイアス電圧が大きくなるほど減衰度が大きくなるが、同じバイアス電圧であっても各偏波成分の減衰度が僅かに異なる。そして、それらの減衰度の差はバイアス電圧が大きくなるほど拡大する傾向にある。本実施形態では、VOA31の光軸方向、光軸と直交し底面2Eと平行な方向、及び光軸と直交し底面2Eと垂直な方向の3方向について調芯することにより、2つの偏波成分の減衰度の差を許容範囲内に収める。一例では、バイアス電圧が4.5Vのときに各偏波成分の減衰度が12dB以上となり、且つ、VOA31を調芯し、2つの偏波成分の減衰度の差をバイアス電圧が0~5Vの範囲で±0.5dB以内に収めることができる。
 続いて図20に示すように、二つの光ATT71、81をそれぞれの所定領域70、80に搭載する。具体的には、これまでの工程により、コヒーレントレシーバ1では、Lo光についてBS21で分岐した後、それぞれの分岐Lo光L、LをMMI40、50に内蔵されているPD45、55によってMMI40、50に対する光結合強度を知ることができる状態にある。Lo光Lについて、BS12で分岐された二つのLo光L、Lはそれぞれ異なる経路R、Rを介してMMI40、50に光結合する。各経路R、R上に搭載された光部品の光透過率、MMIに対する調芯状態により、BS12の分岐比が1:1に設定されていたとしても、MMI40、50に対する光結合効率は異なるものとなる。この差が大きい場合には、MMI40、50によるSig光に含まれる位相情報の抽出精度が低下する。
 同様にSig光Nについても、PBS21で分岐後に異なる経路R、Rを経てMMI40、50に至る。PBS21の偏波依存分岐比を正確に1:1に設定することは難しく、また、それぞれの経路R、Rに介在する光部品も等価ではなく、MMI40、50に対する光結合効率も経路R、Rについて一様にはなり得ない。本発明に係るコヒーレントレシーバ1ではLo光、Sig光についてMMI40、50に対する光結合効率の差を補償すべく、Lo光Lについて光路R上のスキュー調整素子16とBS12との間、Sig光Nについて光路R上のスキュー調整素子26とPBS21との間に、それぞれ光ATT71、81を介在させることに特徴を有する。具体的な搭載手順としては、BS12、PBS21と同様に、筐体2の上方においてオートコリメータ125からの可視レーザ光LDにより、光ATT71、81の角度を決定する。その後、当該角度を維持したまま、それぞれ所定の搭載領域70、80上に載置し、固定用の樹脂を硬化させて光ATT71、81を固定する。
 続いて、図21に示すように、筐体2を塞ぐリッド2Cをシームシールにより取り付け、筐体2の内部を気密封止する。そして、図22に示すように、模擬コネクタ123a、123bを本来のSig光ポート6及びLo光ポート5に置き換え、Sig光ポート6及びLo光ポート5の調芯及び固定を行う。具体的には、Sig光ポート6から模擬Sig光を導入し、該Sig光の強度をMMI40の内蔵PDにより検出する。そして、検出されるSig光の強度を参照しSig光ポート6の位置を変化させ、内蔵PDでの受光強度が最大となる位置を決定する。Lo光ポート5についても同様に、実際にLo光を導入し、該Lo光の強度をMMI40、50の内蔵PD45、55により検出する。検出されるLo光の強度を参照しつつLo光ポート5の位置を変化させ、内蔵PD45、55での受光強度が最大となる位置を決定する。決定後、Sig光ポート6及びLo光ポート5を筐体2に固定する。固定はYAG溶接を採用することができる。
 以上に説明した、本実施形態によるコヒーレントレシーバ1の製造方法によって得られる効果について説明する。本実施形態による製造方法は、2つの偏光成分を有する試験光を準備し、該試験光の2つの偏光成分の強度を互いに略等しくする第1の工程と、試験光の光路上にVOA31を配置し、減衰後の試験光の2つの偏光成分の強度をモニタし、VOA31の減衰度を変化させさらにVOA31を調芯する第2の工程と、減衰後の試験光の2つの偏光成分の減衰度の差が許容範囲内に収まる位置にてVOA31を固定する第3の工程を含む。このような方法によれば、Sig光に含まれる2つの偏光成分の減衰度を互いに等しい大きさに近づけることができる。
 また、本実施形態のように、第1の工程は、コヒーレントレシーバ1のSig光ポート6を模擬する模擬コネクタ125bをSig光ポート6の取り付け予定位置に配置し、模擬コネクタ124bを介して試験光をコヒーレントレシーバ1内に入力する工程と、模擬コネクタ125bの調芯を行う工程を含むことができる。これにより、試験光の光軸の位置精度を高め、VOA31の調芯を精度良く行うことができる。
 また、本実施形態のように、第2の工程では、MMI40、50に内蔵されたPD45、55を用いて試験光の2つの偏光成分の強度をモニタし、第3の工程では、これらPD45,55の出力の差を、試験光の2つの偏光成分の減衰度の差と見なす。これにより、2つの偏光成分の減衰度の差を検出することができる。
 また、従来より、コヒーレントレシーバには、電圧駆動式のMEMS型のVOAが多く採用されている。MEMS型VOAの開口径(シャッタ径)は70μm程度と概して小さい。従って、例えばPDの直前にVOAを実装する場合には、顕微鏡を介した目視によりVOAの開口部の位置をPDに合わせながら実装を行う。しかし、本実施形態のコヒーレントレシーバでは、VOA31はPDの直前に配置されるわけではなく、BS12や入力レンズ27といった光学部品の間に配置される。従って、本実施形態では、VOA31に試験光を導入し、VOA31のシャッタを動的に開閉させシャッタと試験光との相対位置関係を適切に調整する。本実施形態では、第2の工程において、VOA31の電極にマニピュレータ100Aを介してバイアスを印加する。これにより、VOA31の調芯を容易に行うことができる。

Claims (13)

  1.  局発光と二つの偏光を有する信号光を干渉させて前記信号光に含まれる位相情報を取り出すコヒーレントレシーバであって、
     前記信号光を前記偏光に基づき二分する偏波依存光分岐素子と、
     前記局発光を二分する光分岐素子と、
     前記二分された局発光の一方と、前記二分された信号光の他方を干渉させる第1の多モード干渉器と、
     前記二分された局発光の他方と、前記二分された信号光の一方を干渉させる第2の多モード干渉器と、
     少なくとも、前記二分された一方の局発光の光路上、もしくは、前記二分された一方の信号光の光路上に、前記二分された一方の局発光もしくは前記二分された一方の信号光の強度を減衰する光減衰器を備える、コヒーレントレシーバ。
  2.  前記二分された他方の局発光は第1の反射器を介して前記第2の多モード干渉器に入力し、前記二分された他方の信号光は第2の反射器を介して前記第1の多モード干渉器に入力する、請求項1に記載のコヒーレントレシーバ。
  3.  前記偏波依存光分岐素子、前記光分岐素子、前記第1の反射器、前記第2の反射器はベース上に搭載されており、
     前記ベースは、前記一方の局発光の光路上もしくは前記一方の信号光の光路上に前記光減衰器搭載領域を備え、
     前記光減衰器は接着剤を介して前記光減衰器搭載領域に搭載されている、請求項2に記載のコヒーレントレシーバ。
  4.  前記光減衰器搭載領域は、前記ベースに形成された一対の溝の間に配置されている、請求項3に記載のコヒーレントレシーバ。
  5.  前記光減衰器搭載領域は、前記ベース上に設けられた一対の土手の間に配置されている、請求項3に記載のコヒーレントレシーバ。
  6.  前記光減衰器搭載領域は、前記光減衰器を搭載するテラスを備える、請求項3に記載コヒーレントレシーバ。
  7.  前記一方の局発光の光路上のみに前記光減衰器を備える請求項1~6に記載のコヒーレントレシーバ。
  8.  前記一方の局発光の光路上および前記一方の信号光の光路上にそれぞれスキュー調整素子を備える請求項1~7に記載のコヒーレントレシーバ。
  9.  前記一方の局発光、前記他方の局発光、前記一方の信号光、前記他方の信号光はそれぞれ第1のレンズ、第2のレンズを介して前記第1の多モード干渉器、前記第2の多モード干渉器と光結合する、請求項1~8に記載のコヒーレントレシーバ。
  10.  前記第1の多モード干渉器は、前記一方の局発光の強度および前記他方の信号光の強度をそれぞれ検知するフォトダイオードを含み、前記第2の多モード干渉器は、前記他方の局発光の強度および前記一方の信号光の強度をそれぞれ検知するフォトダイオードを含む、請求項1~9に記載のコヒーレントレシーバ。
  11.  さらに、前記信号光を減衰する減衰器を備え、前記信号光は、前記減衰器を介して前記偏波依存光分岐素子に提供される、請求項1~10に記載のコヒーレントレシーバ。
  12.  さらに、偏光子を備え、前記局発光は、前記偏光子を介して前記光分岐素子に提供される、請求項1~11に記載のコヒーレントレシーバ。
  13.  さらに、回転子を備え、前記第1の多モード干渉器は、前記分岐された一方の局発光と、前記回転子により偏光が回転された前記他方の信号光を干渉する、請求項1~12に記載のコヒーレントレシーバ。
PCT/JP2016/056912 2015-03-09 2016-03-07 コヒーレントレシーバ WO2016143725A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/556,711 US20180062757A1 (en) 2015-03-09 2016-03-07 Coherent receiver
CN201680014574.1A CN107430312A (zh) 2015-03-09 2016-03-07 相干接收器
JP2017505319A JPWO2016143725A1 (ja) 2015-03-09 2016-03-07 コヒーレントレシーバ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015046196 2015-03-09
JP2015-046196 2015-03-09

Publications (1)

Publication Number Publication Date
WO2016143725A1 true WO2016143725A1 (ja) 2016-09-15

Family

ID=56879592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056912 WO2016143725A1 (ja) 2015-03-09 2016-03-07 コヒーレントレシーバ

Country Status (4)

Country Link
US (1) US20180062757A1 (ja)
JP (1) JPWO2016143725A1 (ja)
CN (1) CN107430312A (ja)
WO (1) WO2016143725A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167006A (ja) * 2015-03-10 2016-09-15 住友電気工業株式会社 光モジュール及びその製造方法
JP2020042055A (ja) * 2018-09-06 2020-03-19 住友電工デバイス・イノベーション株式会社 光受信装置の製造方法
WO2021002402A1 (ja) * 2019-07-02 2021-01-07 住友電工デバイス・イノベーション株式会社 光モジュール
WO2023026380A1 (ja) * 2021-08-25 2023-03-02 三菱電機株式会社 集積光モジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180006729A1 (en) * 2016-06-30 2018-01-04 Sumitomo Electric Device Innovations, Inc. Process of assembling coherent optical receiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169430A (ja) * 1986-01-22 1987-07-25 Hitachi Ltd 半導体装置
WO2006119795A1 (en) * 2005-05-13 2006-11-16 Pirelli & C. S.P.A. Method and system for optical communication comprising osnr monitoring by use of optical homodyne tomography
US20110150503A1 (en) * 2009-12-18 2011-06-23 Winzer Peter J Receiver Algorithms for Coherent Detection of Polarization-Multiplexed Optical Signals
JP2014187506A (ja) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd 光受信器及びその製造方法
JP2015007670A (ja) * 2013-06-24 2015-01-15 住友電気工業株式会社 光受信器及びその光軸調芯方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317426A (ja) * 1986-07-09 1988-01-25 Nec Corp 光アイソレ−タ
US6870998B2 (en) * 2001-04-26 2005-03-22 Jds Uniphase Corporation Variable optical attenuator
US7483641B1 (en) * 2004-07-07 2009-01-27 Nortel Networks Limited Optical hybrid
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
JP2012518202A (ja) * 2009-02-17 2012-08-09 オクラロ テクノロジー リミテッド 光通信用の光チップおよび光デバイス
US8401405B2 (en) * 2009-05-28 2013-03-19 Freedom Photonics, Llc. Monolithic widely-tunable coherent receiver
US8299417B2 (en) * 2009-06-23 2012-10-30 Infinera Corporation Variable optical attentuator (VOA) having an absorber for receiving residual light outputfrom the VOA
US8867930B2 (en) * 2010-10-29 2014-10-21 Queen's University At Kingston System and method for determining the envelope of a modulated signal
JP5700050B2 (ja) * 2010-11-18 2015-04-15 日本電気株式会社 コヒーレント光受信装置およびコヒーレント光受信方法
CN104487878A (zh) * 2012-07-17 2015-04-01 日本电气株式会社 偏振分离器、偏振分离结构、光混合器和偏振分离器的制造方法
JP5920467B2 (ja) * 2012-07-30 2016-05-18 富士通オプティカルコンポーネンツ株式会社 光受信回路
US9128347B2 (en) * 2013-08-16 2015-09-08 Infinera Corporation Optical hybrid mixer without waveguide crossings
US10110318B2 (en) * 2015-02-19 2018-10-23 Elenion Technologies, Llc Optical delay lines for electrical skew compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169430A (ja) * 1986-01-22 1987-07-25 Hitachi Ltd 半導体装置
WO2006119795A1 (en) * 2005-05-13 2006-11-16 Pirelli & C. S.P.A. Method and system for optical communication comprising osnr monitoring by use of optical homodyne tomography
US20110150503A1 (en) * 2009-12-18 2011-06-23 Winzer Peter J Receiver Algorithms for Coherent Detection of Polarization-Multiplexed Optical Signals
JP2014187506A (ja) * 2013-03-22 2014-10-02 Sumitomo Electric Ind Ltd 光受信器及びその製造方法
JP2015007670A (ja) * 2013-06-24 2015-01-15 住友電気工業株式会社 光受信器及びその光軸調芯方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKO INOUE ET AL.: "InP-based Photodetector Monolithically Integrated with 90.DEG. Hybrid for 100Gbit/s Compact Coherent Receivers", SEI TECHNICAL REVIEW, July 2014 (2014-07-01), pages 61 - 66, XP055309110 *
NAOKO INOUE: "Spot Size Henkanki Shuseki InP- kei Doharogata Juko Soshi o Mochiita Kogata Coherent Receiver no Kokandoka", THE 61ST JSAP SPRING MEETING KOEN YOKOSHU, March 2014 (2014-03-01), pages 05 - 031 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167006A (ja) * 2015-03-10 2016-09-15 住友電気工業株式会社 光モジュール及びその製造方法
JP2020042055A (ja) * 2018-09-06 2020-03-19 住友電工デバイス・イノベーション株式会社 光受信装置の製造方法
JP7088472B2 (ja) 2018-09-06 2022-06-21 住友電工デバイス・イノベーション株式会社 光受信装置の製造方法
WO2021002402A1 (ja) * 2019-07-02 2021-01-07 住友電工デバイス・イノベーション株式会社 光モジュール
JPWO2021002402A1 (ja) * 2019-07-02 2021-01-07
CN112912779A (zh) * 2019-07-02 2021-06-04 住友电工光电子器件创新株式会社 光模块
US20210405307A1 (en) * 2019-07-02 2021-12-30 Sumitomo Electric Device Innovations, Inc. Optical module
CN112912779B (zh) * 2019-07-02 2022-07-19 住友电工光电子器件创新株式会社 光模块
JP7452802B2 (ja) 2019-07-02 2024-03-19 住友電工デバイス・イノベーション株式会社 光モジュール
WO2023026380A1 (ja) * 2021-08-25 2023-03-02 三菱電機株式会社 集積光モジュール

Also Published As

Publication number Publication date
JPWO2016143725A1 (ja) 2018-03-01
US20180062757A1 (en) 2018-03-01
CN107430312A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US9989755B2 (en) Method of producing optical module and optical module
WO2016143725A1 (ja) コヒーレントレシーバ
CN107566046B (zh) 组装相干光接收器的方法
JP4809353B2 (ja) マイクロマシン構造体に気密パッケージされた光学モジュール
JP3794552B2 (ja) 光モジュール、光送信器及び光モジュールの製造方法
US9261362B2 (en) Measuring device for distance measurement
JP2021509483A (ja) 光モジュール及び光モジュールの組立方法
KR19980030121A (ko) 브이홈에 정렬된 렌즈를 가진 광모듈 및 그 제작방법
US11454768B2 (en) Assembly method for coherent receiver
CN106662711B (zh) 偏振合成模块
JP6470140B2 (ja) コヒーレント光受信モジュールの製造方法
JP6791471B2 (ja) コヒーレントレシーバの組立方法
JP2018010036A (ja) 光結合方法
JP7088470B2 (ja) 光源調整方法
CN108292020B (zh) 光学接收器及其装配方法
JP6507659B2 (ja) 光モジュールの製造方法
JP2004191607A (ja) 光モジュール及びその製造方法
JP6641931B2 (ja) 光モジュールの組立方法および光受信器の組立方法
JP6491980B2 (ja) 光モジュールの製造方法
JP6524725B2 (ja) 光モジュール及びその製造方法
JP2021043469A (ja) 光結合方法
US20240068904A1 (en) Method of assembling optical module
JP2010237366A (ja) 光学装置及び光学装置の製造方法
JP2004347811A (ja) 光結合構造及び光結合方法、光結合素子、光配線基板
US20040202433A1 (en) Ferrule flexure assembly for optical modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505319

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15556711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761693

Country of ref document: EP

Kind code of ref document: A1