WO2016103768A1 - ベローズポンプ装置 - Google Patents

ベローズポンプ装置 Download PDF

Info

Publication number
WO2016103768A1
WO2016103768A1 PCT/JP2015/069449 JP2015069449W WO2016103768A1 WO 2016103768 A1 WO2016103768 A1 WO 2016103768A1 JP 2015069449 W JP2015069449 W JP 2015069449W WO 2016103768 A1 WO2016103768 A1 WO 2016103768A1
Authority
WO
WIPO (PCT)
Prior art keywords
bellows
air
extension
air pressure
pressure
Prior art date
Application number
PCT/JP2015/069449
Other languages
English (en)
French (fr)
Inventor
篤 中野
慶士 永江
Original Assignee
日本ピラー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピラー工業株式会社 filed Critical 日本ピラー工業株式会社
Priority to EP15872337.9A priority Critical patent/EP3239523B1/en
Priority to CN201580070335.3A priority patent/CN107110147B/zh
Priority to US15/527,245 priority patent/US10718324B2/en
Priority to KR1020177015941A priority patent/KR102249282B1/ko
Publication of WO2016103768A1 publication Critical patent/WO2016103768A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0058Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0081Special features systems, control, safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • F04B43/113Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/022Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • F04B45/0336Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive the actuating fluid being controlled by one or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/10Motor parameters of linear elastic fluid motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/13Pressure pulsations after the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves

Definitions

  • the present invention relates to a bellows pump device.
  • the present invention has been made in view of such circumstances, and provides a bellows pump device that can easily suppress an impact pressure generated when switching from suction of working fluid to discharge even with an existing bellows pump. The purpose is to do.
  • the bellows pump device of the present invention by supplying pressurized air to one of the two sealed air chambers, the bellows expands to suck in the transfer fluid and pressurize the other air chamber.
  • a bellows pump device that discharges a transfer fluid by contracting the bellows by supplying air, the first air pressure being the air pressure of the pressurized air supplied to the one air chamber, and the other air chamber
  • An electropneumatic regulator that adjusts the second air pressure that is the air pressure of the pressurized air supplied to the bellows, and at least at the end of the extension of the bellows extension operation, the first air pressure is lower than the second air pressure.
  • a control unit that controls the electropneumatic regulator.
  • the first air pressure of the pressurized air supplied to the one air chamber at the time of the extension is the other air chamber when the bellows contracts.
  • the air pressure is adjusted by the electropneumatic regulator so as to be lower than the second air pressure of the pressurized air supplied to.
  • control unit controls the electropneumatic regulator so that the first air pressure changes continuously or discontinuously from an extension start time to an extension end time of the bellows. .
  • the control unit controls the electropneumatic regulator so that the first air pressure changes continuously or discontinuously from an extension start time to an extension end time of the bellows.
  • the control unit may be configured such that the first half period of extension from the extension start time to a predetermined halfway point of the extension operation is higher than the first half of extension period from the halfway point to the extension end point. It is preferable to control the electropneumatic regulator so that the air pressure becomes high. In this case, the extension speed of the first half period of the bellows from the start of extension to the midpoint can be made faster than the extension speed of the second half of the extension period from the midpoint to the end of extension. Thereby, it is possible to prevent the extension time of the bellows from becoming too long due to the first air pressure being lowered when the bellows is extended. As a result, it is possible to suppress a decrease in the fluid discharge flow rate.
  • the intermediate point is preferably a point in time at which the bellows can be extended to an extension end position by an inertial force.
  • the first air pressure is changed to the extension operation of the bellows during the latter half of the extension period from the midpoint to the end of extension.
  • the required air pressure can be lowered. Thereby, the pressure fluctuation when the bellows extension operation is switched to the contraction operation can be more effectively suppressed.
  • the said bellows pump apparatus WHEREIN The said control part may control the said electropneumatic regulator so that a said 1st air pressure may become constant from the expansion start time of the said bellows to the expansion end time.
  • the electropneumatic regulator can be controlled more easily than when the first air pressure is controlled to change continuously or discontinuously.
  • the impact pressure generated when the working fluid is switched from suction to discharge can be easily suppressed even with the existing bellows pump.
  • FIG. 1 is a schematic configuration diagram of a bellows pump device according to a first embodiment of the present invention. It is sectional drawing of a bellows pump. It is explanatory drawing which shows operation
  • FIG. 1 is a schematic configuration diagram of a bellows pump device according to a first embodiment of the present invention.
  • the bellows pump device according to the present embodiment is used, for example, when supplying a certain amount of transfer fluid such as a chemical solution or a solvent in a semiconductor manufacturing apparatus.
  • This bellows pump device includes a bellows pump 1, an air supply device 2 such as an air compressor that supplies pressurized air (working fluid) to the bellows pump 1, a mechanical regulator 3 that adjusts the air pressure of the pressurized air, and Two first and second electropneumatic regulators 51 and 52, two first and second electromagnetic valves 4 and 5, and a control unit 6 are provided.
  • an air supply device 2 such as an air compressor that supplies pressurized air (working fluid) to the bellows pump 1
  • a mechanical regulator 3 that adjusts the air pressure of the pressurized air
  • Two first and second electropneumatic regulators 51 and 52, two first and second electromagnetic valves 4 and 5, and a control unit 6 are provided.
  • FIG. 2 is a cross-sectional view of the bellows pump 1 according to the present embodiment.
  • the bellows pump 1 of the present embodiment includes a pump head 11, a pair of pump cases 12 attached to both sides of the pump head 11 in the left-right direction (horizontal direction), and the right and left sides of the pump head 11 inside each pump case 12.
  • Two first and second bellows 13, 14 attached to the side surface in the direction, and four check valves 15, 16 attached to the side surface in the left-right direction of the pump head 11 inside each bellows 13, 14, It has.
  • the first and second bellows 13 and 14 are formed in a bottomed cylindrical shape from a fluororesin such as PTFE (polytetrafluoroethylene) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), and open end portions thereof Are integrally fixed to the side surface of the pump head 11 in an airtight manner.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • first and second bellows 13, 14 are in a fully extended state where an outer surface of a working plate 19 described later comes into contact with an inner side surface of the bottom wall portion 12 a of the pump case 12 and a piston body 23 described later.
  • the inner side surface expands and contracts between the most contracted state contacting the outer side surface of the bottom wall portion 12 a of the pump case 12.
  • An operation plate 19 is fixed to the outer surfaces of the bottom portions of the first and second bellows 13 and 14 together with one end of the connecting member 20 by bolts 17 and nuts 18.
  • the pump case 12 is formed in a bottomed cylindrical shape, and the opening peripheral edge thereof is airtightly fixed to the flange portion 13a (14a) of the corresponding bellows 13 (14). As a result, a discharge-side air chamber 21 that is kept airtight is formed inside the pump case 12.
  • the pump case 12 is provided with an intake / exhaust port 22, and the intake / exhaust port 22 is connected to the air supply device 2 via the electromagnetic valve 4 (5), the electropneumatic regulator 51 (52), and the mechanical regulator 3. (See FIG. 1).
  • pressurized air is supplied from the air supply device 2 to the inside of the discharge side air chamber 21 through the mechanical regulator 3, the electropneumatic regulator 51 (52), the electromagnetic valve 4 (5), and the intake / exhaust port 22.
  • the bellows 13 (14) contracts.
  • the connecting member 20 is supported on the bottom wall portion 12a of each pump case 12 so as to be slidable in the horizontal direction, and a piston body 23 is fixed to the other end of the connecting member 20 by a nut 24. ing.
  • the piston body 23 is supported so as to be slidable in the horizontal direction while maintaining an airtight state with respect to an inner peripheral surface of a cylindrical cylinder body 25 integrally provided on the outer side surface of the bottom wall portion 12a. Yes.
  • the space surrounded by the bottom wall portion 12a, the cylinder body 25, and the piston body 23 is a suction-side air chamber 26 in which an airtight state is maintained.
  • the cylinder body 25 is formed with an intake / exhaust port 25a communicating with the suction side air chamber 26.
  • the intake / exhaust port 25a includes the electromagnetic valve 4 (5), the electropneumatic regulator 51 (52), and a mechanical regulator. 3 is connected to the air supply device 2 (see FIG. 1).
  • pressurized air is supplied from the air supply device 2 to the inside of the suction side air chamber 26 through the mechanical regulator 3, the electropneumatic regulator 51 (52), the electromagnetic valve 4 (5), and the intake / exhaust port 25a.
  • the bellows 13 (14) is extended.
  • a leakage sensor 40 for detecting leakage of the transfer fluid to the discharge-side air chamber 21 is attached below the bottom wall portion 12a of each pump case 12.
  • the first bellows 13 is formed by the pump case 12 in which the discharge side air chamber 21 on the left side of FIG. 2 is formed, and the piston body 23 and the cylinder body 25 that form the suction side air chamber 26 on the left side of FIG.
  • a first air cylinder portion (first driving device) 27 is configured to continuously expand and contract between the most extended state and the most contracted state.
  • the second bellows 14 is extended most by the pump case 12 in which the discharge side air chamber 21 on the right side of FIG. 2 is formed and the piston body 23 and the cylinder body 25 in which the suction side air chamber 26 on the right side of FIG. 2 is formed.
  • a second air cylinder portion (second drive device) 28 is configured to continuously expand and contract between the state and the most contracted state.
  • a pair of proximity sensors 29A and 29B are attached to the cylinder body 25 of the first air cylinder portion 27, and a detection plate 30 to be detected by the proximity sensors 29A and 29B is attached to the piston body 23.
  • the plate 30 to be detected is detected by reciprocating with the piston body 23 and alternately approaching the proximity sensors 29A and 29B.
  • the proximity sensor 29 ⁇ / b> A is disposed at a position to detect the detection plate 30 when the first bellows 13 is in the most contracted state.
  • the proximity sensor 29B is disposed at a position where the detection plate 30 is detected when the first bellows 13 is in the maximum extension state. Detection signals from the proximity sensors 29A and 29B are transmitted to the control unit 6.
  • the pair of proximity sensors 29 ⁇ / b> A and 29 ⁇ / b> B constitutes a first detection unit 29 that detects the expansion / contraction state of the first bellows 13.
  • a pair of proximity sensors 31A and 31B are attached to the cylinder body 25 of the second air cylinder portion 28, and a detection plate 32 detected by the proximity sensors 31A and 31B is attached to the piston body 23. Yes.
  • the detected plate 32 is detected by reciprocating together with the piston body 23 to alternately approach the proximity sensors 31A and 31B.
  • the proximity sensor 31 ⁇ / b> A is disposed at a position to detect the detection plate 32 when the second bellows 14 is in the most contracted state.
  • the proximity sensor 31 ⁇ / b> B is disposed at a position to detect the detection plate 32 when the second bellows 14 is in the maximum extension state. Detection signals from the proximity sensors 31A and 31B are transmitted to the control unit 6.
  • the pair of proximity sensors 31 ⁇ / b> A and 31 ⁇ / b> B constitute the second detection means 31 that detects the expansion / contraction state of the second bellows 14.
  • the compressed air generated by the air supply device 2 is detected by the pair of proximity sensors 29A and 29B of the first detection means 29 alternately, so that the suction side air chamber of the first air cylinder portion 27 is detected. 26 and the discharge-side air chamber 21 are alternately supplied. As a result, the first bellows 13 continuously expands and contracts.
  • the pressurized air is detected by the pair of proximity sensors 31A and 31B of the second detection means 31 alternately, so that the suction side air chamber 26 and the discharge side air of the second air cylinder portion 28 are detected. Alternately supplied to the chamber 21.
  • the second bellows 14 continuously expands and contracts. At this time, the expansion operation of the second bellows 14 is performed during the contraction operation of the first bellows 13, and the contraction operation of the second bellows 14 is mainly performed during the expansion operation of the first bellows 13.
  • the first bellows 13 and the second bellows 14 alternately extend and contract, whereby the suction and discharge of the transfer fluid into the bellows 13 and 14 are alternately performed, and the transfer fluid is It is to be transferred.
  • the 1st and 2nd detection means 29 and 31 are comprised by the proximity sensor, you may be comprised by other detection means, such as a limit switch.
  • the first and second detection means 29 and 31 detect the most extended state and the most expanded / contracted state of the first and second bellows 13 and 14, but may detect a state during expansion / contraction. good.
  • the pump head 11 is made of a fluororesin such as PTFE or PFA. Inside the pump head 11, a suction passage 34 and a discharge passage 35 for the transfer fluid are formed.
  • the suction passage 34 and the discharge passage 35 open at the outer peripheral surface of the pump head 11, and are provided on the outer peripheral surface.
  • the suction port and the discharge port (both not shown) are connected.
  • the suction port is connected to a transfer fluid storage tank or the like, and the discharge port is connected to a transfer fluid destination.
  • the suction passage 34 and the discharge passage 35 respectively branch toward the left and right side surfaces of the pump head 11, and have a suction port 36 and a discharge port 37 that open on both the left and right side surfaces of the pump head 11.
  • Each suction port 36 and each discharge port 37 communicate with the inside of the bellows 13 and 14 via the check valves 15 and 16, respectively.
  • Each suction port 36 and each discharge port 37 are provided with check valves 15 and 16.
  • the check valve 15 (hereinafter also referred to as “suction check valve”) attached to the suction port 36 includes a valve case 15a, a valve body 15b accommodated in the valve case 15a, and a valve closing direction of the valve body 15b. And a compression coil spring 15c for urging the spring.
  • the valve case 15a is formed in a bottomed cylindrical shape, and a through hole 15d communicating with the inside of the bellows 13 and 14 is formed in the bottom wall.
  • the valve body 15b closes (closes) the suction port 36 by the biasing force of the compression coil spring 15c, and opens (opens) the suction port 36 when back pressure due to the flow of the transfer fluid accompanying expansion and contraction of the bellows 13 and 14 acts. It is supposed to be.
  • the suction check valve 15 opens when the bellows 13 and 14 on which the suction check valve 15 is extended extends, and allows suction of the transfer fluid from the suction passage 34 toward the inside of the bellows 13 and 14.
  • the valve is closed to prevent the backflow of the transfer fluid from the inside of the bellows 13 and 14 toward the suction passage 34.
  • a check valve 16 (hereinafter also referred to as “discharge check valve”) attached to the discharge port 37 includes a valve case 16a, a valve body 16b accommodated in the valve case 16a, and a valve closing direction of the valve body 16b. And a compression coil spring 16c for urging the spring.
  • the valve case 16a is formed in a bottomed cylindrical shape, and a through-hole 16d communicating with the inside of the bellows 13 and 14 is formed in the bottom wall.
  • the valve body 16b closes (closes) the through hole 16d of the valve case 16a by the urging force of the compression coil spring 16c, and when the back pressure due to the flow of the transfer fluid accompanying the expansion and contraction of the bellows 13 and 14 acts, The hole 16d is opened (opened).
  • the discharge check valve 16 opens when the bellows 13 and 14 on which the discharge check valve 16 is disposed contracts, and allows the transfer fluid to flow out from the inside of the bellows 13 and 14 toward the discharge passage 35. Then, when the bellows 13 and 14 are extended, the valve is closed to prevent the backflow of the transfer fluid from the discharge passage 35 toward the inside of the bellows 13 and 14.
  • FIG.3 and FIG.4 show the configurations of the first and second bellows 13 and 14 in a simplified manner.
  • the valve bodies of the suction check valve 15 and the discharge check valve 16 mounted on the left side of the pump head 11 in the figure. 15b and 16b receive pressure from the transfer fluid in the first bellows 13 and move to the right side of the valve cases 15a and 16a in the drawing.
  • the suction check valve 15 is closed and the discharge check valve 16 is opened, so that the transfer fluid in the first bellows 13 is discharged from the discharge passage 35 to the outside of the pump.
  • valve bodies 15b, 16b of the suction check valve 15 and the discharge check valve 16 mounted on the right side of the pump head 11 in the drawing are shown in the drawing of the valve cases 15a, 16a by the suction action by the second bellows 14. Move to the right respectively. Accordingly, the suction check valve 15 is opened, the discharge check valve 16 is closed, and the transfer fluid is sucked into the second bellows 14 from the suction passage 34.
  • each valve body 15b, 16b receives pressure from the transfer fluid in the second bellows 14, and moves to the left side of each valve case 15a, 16a in the figure.
  • the suction check valve 15 is closed and the discharge check valve 16 is opened, so that the transfer fluid in the second bellows 14 is discharged from the discharge passage 35 to the outside of the pump.
  • valve bodies 15b and 16b of the suction check valve 15 and the discharge check valve 16 mounted on the left side of the pump head 11 in the figure are shown in the figure of the valve cases 15a and 16a by the suction action of the first bellows 13, respectively.
  • the suction check valve 15 is opened, the discharge check valve 16 is closed, and the transfer fluid is sucked into the first bellows 13 from the suction passage 34.
  • the left and right bellows 13 and 14 can alternately suck and discharge the transfer fluid.
  • the first solenoid valve 4 is configured to supply / discharge pressurized air to / from one of the discharge-side air chamber 21 and the suction-side air chamber 26 of the first air cylinder portion 27 and the other air chamber. This switches the supply and discharge of pressurized air to and from.
  • the 1st electromagnetic valve 4 consists of a three-position electromagnetic switching valve which has a pair of solenoid 4a, 4b, for example. Each solenoid 4a, 4b is excited based on a command signal received from the control unit 6.
  • the second solenoid valve 5 supplies and discharges pressurized air to one of the discharge side air chamber 21 and the suction side air chamber 26 of the second air cylinder portion 28 and pressurizes the other air chamber. This switches between air supply and exhaust.
  • the second electromagnetic valve 5 is composed of, for example, a three-position electromagnetic switching valve having a pair of solenoids 5a and 5b. Each solenoid 5a, 5b is excited by receiving a command signal from the control unit 6.
  • the 1st and 2nd solenoid valves 4 and 5 of this embodiment consist of a three-position electromagnetic switching valve, you may be a two-position electromagnetic switching valve which does not have a neutral position.
  • a first quick exhaust valve 61 is adjacent to the discharge side air chamber 21 between the discharge side air chamber 21 (intake and exhaust port 22) of the first air cylinder portion 27 and the first electromagnetic valve 4.
  • the first quick exhaust valve 61 has an exhaust port 61a that discharges pressurized air, allows the flow of pressurized air from the first electromagnetic valve 4 to the discharge side air chamber 21, and discharge side air chambers.
  • the pressurized air that has flowed out from the exhaust gas 21 is discharged from the exhaust port 61a. Thereby, the pressurized air in the discharge side air chamber 21 can be quickly discharged from the first quick exhaust valve 61 without passing through the first electromagnetic valve 4.
  • a second quick exhaust valve 62 is disposed adjacent to the discharge side air chamber 21 between the discharge side air chamber 21 (intake and exhaust port 22) of the second air cylinder portion 28 and the second electromagnetic valve 5.
  • the second quick exhaust valve 62 has an exhaust port 62a for discharging pressurized air, allows the flow of pressurized air from the second electromagnetic valve 5 to the discharge side air chamber 21, and discharge side air chambers.
  • the pressurized air flowing out from the gas outlet 21 is discharged from the exhaust port 62a. Thereby, the pressurized air in the discharge side air chamber 21 can be quickly discharged from the second quick exhaust valve 62 without passing through the second electromagnetic valve 5.
  • a quick exhaust valve is not disposed between the suction side air chamber 26 (intake / exhaust port 25a) of each air cylinder portion 27, 28 and the corresponding solenoid valve 4, 5.
  • control unit 6 switches the electromagnetic valves 4 and 5 based on the detection results of the first detection unit 29 and the second detection unit 31 (see FIG. 2), so that the first air cylinder unit 27 of the bellows pump 1 and Each drive of the 2nd air cylinder part 28 is controlled.
  • control unit 6 contracts the second bellows 14 from the maximum extension state before the first bellows 13 reaches the maximum contraction state based on the detection results of the first detection unit 29 and the second detection unit 31.
  • first and second air cylinder portions 27 and 28 are driven and controlled so that the first bellows 13 is contracted from the maximum extension state before the second bellows 14 is in the maximum contraction state.
  • control part 6 of this embodiment is contracting the other bellows 14 (13) from the most extended state before one bellows 13 (14) will be in the most contracted state
  • one bellows 13 (14 ) May be controlled such that the other bellows 14 (13) is contracted from the most extended state when the most contracted state is reached.
  • the first electropneumatic regulator 51 is disposed between the mechanical regulator 3 and the first electromagnetic valve 4.
  • the first electropneumatic regulator 51 supplies the first air pressure, which is the air pressure of the pressurized air supplied to the suction side air chamber 26 of the first air cylinder portion 27, and the discharge side air chamber 21 of the first air cylinder portion 27.
  • the second air pressure which is the air pressure of the pressurized air, is adjusted.
  • the second electropneumatic regulator 52 is disposed between the mechanical regulator 3 and the second electromagnetic valve 5.
  • the second electropneumatic regulator 52 supplies the first air pressure, which is the air pressure of the pressurized air supplied to the suction side air chamber 26 of the second air cylinder portion 28, and the discharge side air chamber 21 of the second air cylinder portion 28.
  • the second air pressure which is the air pressure of the pressurized air, is adjusted.
  • the electropneumatic regulators 51 and 52 are arranged on the upstream side of the electromagnetic valves 4 and 5, but may be arranged on the downstream side of the electromagnetic valves 4 and 5. However, in this case, since the impact pressure generated when the solenoid valves 4 and 5 are switched acts on the primary side of the electropneumatic regulators 51 and 52, from the viewpoint of preventing failure of the electropneumatic regulators 51 and 52.
  • the electropneumatic regulators 51 and 52 are preferably arranged upstream of the solenoid valves 4 and 5.
  • the control unit 6 supplies the suction side air chamber 26 to the suction side air chamber 26 at least at the end of extension during the extension operation of the bellows 13 (14) based on the detection results of the first and second detection means 29 and 31.
  • the electropneumatic regulators 51 and 52 are controlled so that the first air pressure of the pressurized air is lower than the second air pressure of the pressurized air supplied to the discharge-side air chamber 21.
  • the control unit 6 of the present embodiment is configured so that the electropneumatic regulator 51, the first air pressure is constant at a lower pressure value than the second air pressure from the time when the bellows 13 (14) starts to end until the time when the bellows 13 (14) extends. 52 is controlled.
  • FIG. 5 is a graph showing an example of control of the electropneumatic regulator 51 (52) by the controller 6 of the present embodiment.
  • the control unit 6 controls the electropneumatic regulator 51 so that the second air pressure becomes a constant air pressure P2 (for example, 0.50 MPa) during the contraction period T2 during which the bellows 13 (14) contracts when the transfer fluid is discharged.
  • the control unit 6 controls the first air pressure to be a constant air pressure P1 (for example, 0.15 MPa) lower than the air pressure P2 during the extension period T1 in which the bellows 13 (14) extends when sucking the transfer fluid.
  • the electropneumatic regulator 51 (52) is controlled.
  • the extension speed of the bellows 13 (14) is reduced accordingly. Therefore, the air pressure P1 is applied to the one bellows 13 (14) within a contraction period from the start of expansion of one bellows 13 (14) to the end of contraction of the other bellows 14 (13) that is contracting at the start of expansion. 13 is set so as to be in the most extended state.
  • the first and second air pressures of the first electropneumatic regulator 51 controlled by the control unit 6 and the first and second air pressures of the second electropneumatic regulator are set to the same values P1 and P2, respectively. However, it may be set to a different value depending on each electropneumatic regulator.
  • FIG. 6 is a graph showing the discharge pressure of the transfer fluid discharged from the conventional bellows pump. This graph shows the discharge pressure when the first air pressure and the second air pressure of the pressurized air supplied to the suction side air chamber and the discharge side air chamber of the bellows pump are both set to 0.5 MPa. As shown in FIG. 6, the maximum value of the impact pressure generated in the conventional bellows pump is 0.593 MPa.
  • FIG. 7 is a graph showing the discharge pressure of the transfer fluid discharged from the bellows pump 1 of the present embodiment.
  • the second air pressure of the pressurized air supplied to the discharge side air chamber of the bellows pump is set to 0.50 MPa
  • the first air pressure of the pressurized air supplied to the suction side air chamber of the bellows pump is 0.15 MPa.
  • the discharge pressure when set to.
  • the maximum value of the impact pressure generated in the bellows pump 1 of the present embodiment is 0.159 MPa, and it can be seen that the impact pressure is significantly reduced as compared with the conventional bellows pump.
  • the first air pressure of the pressurized air supplied to the suction side air chamber 26 when the bellows 13 (14) is extended is discharged when the bellows 13 (14) is contracted.
  • the electropneumatic regulator 51 (52) is controlled to be lower than the second air pressure of the pressurized air supplied to the side air chamber 21.
  • control part 6 controls the electropneumatic regulator 51 (52) so that a 1st air pressure may become constant from the expansion
  • the one bellows 13 (14) when the one bellows 13 (14) is extended, the first air pressure of the pressurized air supplied to the suction side air chamber 26 is the most contracted by the other bellows 14 (13) that is contracted during the extension operation.
  • the one bellows 13 (14) is set so as to be in the most extended state, and thus the following operational effects are obtained. That is, even if the extension speed of one bellows 13 (14) is slowed by the low air pressure, one bellows 13 (in the contraction period until the end of contraction of the other bellows 14 (13) contracting in the meantime is reduced. Since the extension operation 14) is completed, the impact pressure can be suppressed without reducing the discharge amount of the transferred fluid due to the contraction operation of the bellows 13 and 14.
  • FIG. 8 is a graph showing another control example of the electropneumatic regulator 51 (52) by the control unit 6.
  • the control unit 6 performs the suction-side air from the start of extension of the bellows 13 (14) to the end of extension, that is, during the extension period T ⁇ b> 1 in which the bellows 13 (14) extends when sucking the transfer fluid.
  • the electropneumatic regulators 51 and 52 are controlled so that the first air pressure of the pressurized air supplied to the chamber 26 changes discontinuously.
  • the control unit 6 determines that the first half period T11 from the start of extension of the bellows 13 (14) to a predetermined middle point of the extension operation is the latter half period T12 from the middle point to the end of extension.
  • the electropneumatic regulator 51 (52) is controlled so that the first air pressure becomes higher than the first air pressure.
  • the intermediate point is preferably a point in time at which the bellows 13 (14) can be extended to the extension end position by inertial force.
  • the mid-point is preferably set so that the expansion latter half period T12 is 30 to 50% of the expansion period T1.
  • the mid-point is set so that the extension latter half period T12 is 30% of the extension period T1.
  • the control unit 6 controls the electropneumatic regulator 51 (52) so that the first air pressure in the first half period T11 becomes the same constant air pressure P2 as the second air pressure of the pressurized air supplied to the discharge-side air chamber 21. I have control. Further, the control unit 6 controls the electropneumatic regulator 51 (52) so that the first air pressure in the second half of the expansion period T12 becomes a constant air pressure P1 lower than the air pressure P2.
  • the air cylinder portion 27 (28) Accordingly, in the contraction period T2 from the contraction start time to the contraction end time of the bellows 13 (14) and the first half period T11 from the expansion start time to the midpoint of the bellows 13 (14), the air cylinder portion 27 (28).
  • the discharge-side air chamber 21 and the suction-side air chamber 26 are supplied with pressurized air having a high air pressure P2.
  • pressurized air having a low air pressure P1 is supplied to the suction side air chamber 26 of the air cylinder portion 27 (28).
  • the control unit 6 controls the pressure of the pressurized air to be supplied to the suction side air chamber 26 between the expansion start time and the expansion end time of the bellows 13 (14). Since the electropneumatic regulator 51 (52) is controlled so that one air pressure changes discontinuously, the change timing (here, halfway time) can be freely set. Accordingly, the degree of freedom in changing the pressure of the first air pressure can be increased between the start of extension of the bellows 13 (14) and the end of extension.
  • control unit 6 controls the electropneumatic regulator 51 (52) so that the first air pressure is higher in the first half period of the bellows 13 (14) than in the second half period of the extension.
  • the extension speed in the first half period can be made faster than the extension speed in the second half period.
  • the bellows 13 (14) can be extended from the midpoint of the extension operation to the extension end position by the inertial force, the first air pressure is applied to the bellows 13 during the latter half of the extension period from the midpoint to the end of extension.
  • the air pressure required for the extension operation of (14) can be made lower. Thereby, the pressure fluctuation when the bellows 13 (14) is switched from the expansion operation to the contraction operation can be more effectively suppressed.
  • FIG. 9 is a graph showing still another control example of the electropneumatic regulator 51 (52) by the control unit 6.
  • the control unit 6 performs the suction-side air from the start of extension of the bellows 13 (14) to the end of extension, that is, during the extension period T ⁇ b> 1 in which the bellows 13 (14) extends when sucking the transfer fluid.
  • the electropneumatic regulators 51 and 52 are controlled so that the first air pressure of the pressurized air supplied to the chamber 26 continuously changes.
  • control unit 6 first sets each air pressure P2 to be the same as the second air pressure of the pressurized air that supplies the first air pressure to the discharge-side air chamber 21 when the bellows 13 (14) starts to expand.
  • the electropneumatic regulators 51 and 52 are controlled.
  • the controller 6 decreases the first air pressure in direct proportion to the extension time of the bellows 13 (14), for example, as indicated by the solid line in the figure, and is lowest at the end of the extension of the bellows 13 (14).
  • the electropneumatic regulators 51 and 52 are controlled so that the air pressure becomes P1.
  • the first air pressure is decreased in direct proportion to the extension time of the bellows 13 (14).
  • the first air pressure may be decreased in inverse proportion to the extension time, or may be changed as indicated by a two-dot chain line or a broken line in the figure.
  • the first air pressure at the start of expansion of the bellows 13 (14) is set to the same value (air pressure P2) as the second air pressure. It may be set to a different value. In this case, the first air pressure at the start of expansion of the bellows 13 (14) may be set to be equal to or lower than the air pressure P1 at the end of expansion.
  • control unit 6 is configured to adjust the pressure of the compressed air supplied to the suction side air chamber 26 between the expansion start time and the expansion end time of the bellows 13 (14). Since the electropneumatic regulator 51 (52) is controlled so that one air pressure continuously changes, the degree of freedom in changing the pressure of the first air pressure is increased between the start time of extension of the bellows 13 (14) and the end time of extension. be able to.
  • the control unit 6 controls the electropneumatic regulator 51 (52) so that the second air pressure becomes the constant air pressure P2.
  • the control unit 6 may control to increase the second air pressure as the bellows 13 (14) contracts for the purpose of reducing the drop in the discharge pressure of the fluid discharged from the bellows pump 1. Good.
  • the control unit 6 controls the electropneumatic regulator 51 (52) so that at least the first air pressure at the end of the extension of the bellows 13 (14) is lower than the maximum value of the second air pressure. That's fine.
  • FIG. 10 is a schematic configuration diagram showing a modification of the bellows pump device according to the second embodiment of the present invention.
  • the bellows pump device of the present embodiment includes a bellows pump 1, an air supply device 2 such as an air compressor that supplies pressurized air (working fluid) to the bellows pump 1, and a mechanical type that adjusts the air pressure of the pressurized air.
  • the regulator 3 and the single electropneumatic regulator 52, the single solenoid valve 5, and the control part 6 are provided.
  • FIG. 11 is a cross-sectional view of the bellows pump according to the second embodiment.
  • the bellows pump 1 of the present embodiment is of a built-in accumulator type, and includes a pump head 11, an air cylinder portion 28 attached to one side (right side in FIG. 10) of the pump head 11, And an accumulator 70 attached to the other side in the left-right direction (left side in FIG. 10).
  • a suction passage 34 In the pump head 11, a suction passage 34, a discharge passage 35, and a communication passage 38 are formed.
  • the suction passage 34 is formed in an L shape, and one end is opened on the outer peripheral surface of the pump head 11 and is connected to a suction port (not shown) provided on the outer peripheral surface.
  • a suction port 36 At the other end of the suction passage 34, a suction port 36 is formed that is open on the side surface (the right side surface in FIG. 10) of the pump head 11 on the air cylinder portion 28 side.
  • the suction port 36 communicates with the inside of the bellows 14 via the suction check valve 15.
  • the discharge passage 35 is formed in an L shape, and one end is opened on the outer peripheral surface of the pump head 11 and is connected to a discharge port (not shown) provided on the outer peripheral surface.
  • a discharge port 37 is formed that is open on the side surface (left side surface in FIG. 10) of the pump head 11 on the accumulator unit 70 side.
  • the communication passage 38 is formed so as to penetrate the pump head 11 in the horizontal direction, and one end opens on the side surface (left side surface in FIG. 10) of the pump head 11 on the accumulator unit 70 side, and the other end of the pump head 11.
  • An opening is formed on the side surface (the right side surface in FIG. 10) on the air cylinder portion 28 side. The opening on the other end side communicates with the inside of the bellows 14 via the discharge check valve 16.
  • the accumulator unit 70 includes an accumulator case 71 attached to the pump head 11, an accumulator bellows 72 attached to the side surface of the pump head 11 inside the accumulator case 71, and an automatic pressure adjusting mechanism 73.
  • the accumulator bellows 72 is formed in a bottomed cylindrical shape, and its open end is fixed to the pump head 11.
  • the peripheral wall of the accumulator bellows 72 is formed in a bellows shape and is configured to be able to expand and contract in the horizontal direction.
  • a space surrounded by the side surface of the pump head 11 and the inner wall of the accumulator bellows 72 is an accumulator chamber 74 whose volume can be changed.
  • the accumulator case 71 is formed in a bottomed cylindrical shape, and a space surrounded by the side surface of the pump head 11, the outer wall of the accumulator bellows 72, and the inner wall of the accumulator case 71 is defined as an accumulator air chamber 75. The air for reducing pulsation is enclosed.
  • the automatic pressure adjusting mechanism 73 includes an automatic air supply valve mechanism 73a and an automatic exhaust valve mechanism 73b for balancing the air pressure in the accumulator air chamber 75 with the discharge pressure of the transfer fluid discharged by the air cylinder unit 28 according to the fluctuation. And is attached to the bottom wall of the accumulator case 71. Below the bottom wall of the accumulator case 71, a leakage sensor 76 for detecting leakage of the transferred fluid to the accumulator air chamber 75 is attached.
  • the bellows 14 can alternately perform suction and discharge of the transfer fluid.
  • the accumulator bellows 72 extends so as to enlarge the volume of the accumulator chamber 74.
  • the flow rate of the transfer fluid flowing out from the accumulator chamber 74 becomes smaller than the flow rate flowing into the accumulator chamber 74.
  • the discharge pressure reaches the valley of the discharge pressure curve due to the pulsation, it becomes lower than the enclosed air pressure of the accumulator air chamber 75 which is compressed as the accumulator bellows 72 is expanded, so that the accumulator bellows 72
  • the chamber 74 contracts to reduce the volume.
  • the flow rate of the transfer fluid flowing out from the accumulator chamber 74 becomes larger than the flow rate flowing into the accumulator chamber 74. That is, the liquid is transferred at a discharge pressure that is substantially smoothed by absorbing and attenuating pulsations.
  • the control unit 6 determines that the first air pressure is lower than the second air pressure during the period from the start of extension of the bellows 13 (14) to the end of extension, as in the first embodiment.
  • the electropneumatic regulators 51 and 52 are controlled so as to be constant. Thereby, in the contraction period from the contraction start time of the bellows 14 to the contraction end time (maximum contraction time), high-pressure pressurized air is supplied to the discharge-side air chamber 21 of the air cylinder portion 28. Further, during the extension period from the start of extension of the bellows 14 to the end of extension (maximum extension time), low-pressure pressurized air is supplied to the suction-side air chamber 26 of the air cylinder portion 28.
  • omitted description in 2nd Embodiment is the same as that of 1st Embodiment.
  • the first air pressure of the pressurized air supplied to the suction side air chamber 26 when the bellows 14 is extended is supplied to the discharge side air chamber 21 when the bellows 14 is contracted.
  • the electropneumatic regulator 52 is controlled to be lower than the second air pressure of the pressurized air.
  • control of the electropneumatic regulator 51 (52) by the control unit 6 is not limited to the control example shown in the above embodiment, and the first air pressure is the second air pressure at least when the bellows 14 (15) is extended. It is only necessary to be controlled to be lower.
  • Control part 13 1st bellows (bellows) 14 Second bellows (bellows) 21 Discharge side air chamber (the other air chamber) 26 Suction side air chamber (one air chamber) 51 First electropneumatic regulator (electropneumatic regulator) 52 Second electropneumatic regulator (electropneumatic regulator)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 作動流体の吸い込みから吐出に切り換わるときに発生する衝撃圧力を、既設のベローズポンプでも容易に抑制することができるベローズポンプ装置を提供する。ベローズポンプ装置は、密閉された2つの空気室(21,26)のうち、一方の空気室(26)に加圧空気を供給することでベローズ(13,14)を伸長動作させて移送流体を吸入し、他方の空気室(21)に加圧空気を供給することでベローズ(13,14)を収縮動作させて移送流体を吐出する。このベローズポンプ装置は、一方の空気室(26)に供給する加圧空気の第1空気圧、及び他方の空気室(21)に供給する加圧空気の第2空気圧を調整する電空レギュレータ(51,52)と、ベローズ(13,14)の伸長動作時における少なくとも伸長終了時点で、第1空気圧が第2空気圧よりも低くなるように電空レギュレータ(51,52)を制御する制御部(6)とを備えている。

Description

ベローズポンプ装置
 本発明は、ベローズポンプ装置に関する。
 半導体製造や化学工業等において、薬液や溶剤等の移送流体を送給させるために使用されるベローズポンプとして、例えば、特許文献1に記載されているように、密閉された2つの空気室のうち、一方の空気室に加圧空気を供給することでベローズを伸長動作させて移送流体を吸入し、他方の空気室に加圧空気を供給することでベローズを収縮動作させて移送流体を吐出するように構成されたものが知られている。
 このようなベローズポンプにおいては、移送流体の吐出流量を増加させるために、各空気室に供給する加圧空気の空気圧を上げることが一般的に行われる。しかし、前記空気圧を上げると、ベローズの伸長動作による移送流体の吸い込みから、ベローズの収縮動作による移送流体の吐出に切り換わったときに、瞬間的に大きな圧力変動(圧力上昇)が生じ、「ウォータハンマ」と呼ばれる衝撃圧力が発生する。この衝撃圧力が発生すると、当該衝撃圧力による振動がポンプ、配管又は機器に伝播し、これらのポンプ等が破損する恐れがある。また、吸込時の負圧が大きくなることで、液体の沸騰(ベーパーやキャビテーション等)が発生し、半導体製造プロセス等に悪影響を及ぼす恐れもある。
 そこで、従来のベローズポンプでは、例えば、特許文献2に記載されているように、前記衝撃圧力を抑制する対策として、移送流体が吸い込まれるベローズ内の容積を増加させるように弾性変形可能な隔壁がベローズの端部に設けられている。この隔壁は、ベローズ内で圧力上昇が発生したときに弾性変形することで、前記圧力上昇を吸収してポンプ等の振動を低減するようになっている。
特開2001-123959号公報 特開2010-196541号公報(図3参照)
 しかし、従来の衝撃圧力を抑制する対策では、弾性変形可能な隔壁を有する専用のベローズを製作する必要があるため、既設のベローズポンプに採用することが困難であった。
 本発明はこのような事情に鑑みてなされたものであり、作動流体の吸い込みから吐出に切り換わるときに発生する衝撃圧力を、既設のベローズポンプでも容易に抑制することができるベローズポンプ装置を提供することを目的とする。
 本発明のベローズポンプ装置は、密閉された2つの空気室のうち、一方の空気室に加圧空気を供給することでベローズを伸長動作させて移送流体を吸入し、他方の空気室に加圧空気を供給することで前記ベローズを収縮動作させて移送流体を吐出するベローズポンプ装置であって、前記一方の空気室に供給する加圧空気の空気圧である第1空気圧、及び前記他方の空気室に供給する加圧空気の空気圧である第2空気圧を調整する電空レギュレータと、前記ベローズの伸長動作時における少なくとも伸長終了時点で、前記第1空気圧が前記第2空気圧よりも低くなるように前記電空レギュレータを制御する制御部と、を備えていることを特徴とする。
 上記のように構成されたベローズポンプ装置によれば、少なくともベローズの伸長終了時点で、その伸長時に一方の空気室に供給される加圧空気の第1空気圧は、ベローズの収縮時に他方の空気室に供給される加圧空気の第2空気圧よりも低くなるように電空レギュレータにより調整される。これにより、ベローズの伸長動作による移送流体の吸い込みから、ベローズの収縮動作による移送流体の吐出に切り換わったときの圧力変動を抑えることができるため、その切り換わり時に衝撃圧力が発生するのを抑制することができる。また、既設のベローズポンプであっても、電空レギュレータと制御部とを追加することで、作動流体の吸い込みから吐出に切り換わるときに発生する衝撃圧力を容易に抑制することができる。
 上記ベローズポンプ装置において、前記制御部は、前記ベローズの伸長開始時点から伸長終了時点までの間に、前記第1空気圧が連続または不連続に変化するように前記電空レギュレータを制御するのが好ましい。
 この場合、ベローズの伸長開始時点から伸長終了時点までの間において、第1空気圧の圧力変化の自由度を高めることができる。
 上記ベローズポンプ装置において、前記制御部は、前記伸長開始時点からその伸長動作の所定の途中時点までの伸長前半期間のほうが、前記途中時点から前記伸長終了時点までの伸長後半期間よりも前記第1空気圧が高くなるように前記電空レギュレータを制御するのが好ましい。
 この場合、ベローズの伸長開始時点から途中時点までの伸長前半期間の伸長速度を、その途中時点から伸長終了時点までの伸長後半期間の伸長速度よりも速くすることができる。これにより、ベローズの伸長時に第1空気圧が低くなることに起因してベローズの伸長時間が長くなり過ぎるのを抑制することができる。その結果、流体の吐出流量が減少するのを抑制することができる。
 上記ベローズポンプ装置において、前記途中時点は、前記ベローズが慣性力によって伸長終了位置まで伸長することが可能な時点であるのが好ましい。
 この場合、ベローズを、その伸長動作の途中時点から慣性力によって伸長終了位置まで伸長させることができるため、前記途中時点から伸長終了時点までの伸長後半期間において、第1空気圧をベローズの伸長動作に必要な空気圧よりも低くすることができる。これにより、ベローズの伸長動作から収縮動作に切り換わったときの圧力変動をさらに効果的に抑えることができる。
 上記ベローズポンプ装置において、前記制御部は、前記ベローズの伸長開始時点から伸長終了時点まで前記第1空気圧が一定となるように前記電空レギュレータを制御しても良い。
 この場合、第1空気圧を連続または不連続に変化させるように制御する場合に比べて、電空レギュレータの制御が容易となる。
 本発明のベローズポンプ装置によれば、作動流体の吸い込みから吐出に切り換わるときに発生する衝撃圧力を、既設のベローズポンプでも容易に抑制することができる。
本発明の第1実施形態に係るベローズポンプ装置の概略構成図である。 ベローズポンプの断面図である。 ベローズポンプの動作を示す説明図である。 ベローズポンプの動作を示す説明図である。 電空レギュレータの制御例を示すグラフである。 従来のベローズポンプから吐出される移送流体の吐出圧力を示すグラフである。 本発明のベローズポンプから吐出される移送流体の吐出圧力を示すグラフである。 電空レギュレータの他の制御例を示すグラフである。 電空レギュレータのさらに他の制御例を示すグラフである。 本発明の第2実施形態に係るベローズポンプ装置の概略構成図である。 第2実施形態に係るベローズポンプの断面図である。
 次に、本発明の好ましい実施形態について添付図面を参照しながら説明する。
[第1実施形態]
 <ベローズポンプの全体構成>
 図1は、本発明の第1実施形態に係るベローズポンプ装置の概略構成図である。本実施形態のベローズポンプ装置は、例えば半導体製造装置において薬液や溶剤等の移送流体を一定量供給するときに用いられる。このベローズポンプ装置は、ベローズポンプ1と、当該ベローズポンプ1に加圧空気(作動流体)を供給するエアコンプレッサ等の空気供給装置2と、前記加圧空気の空気圧を調整する機械式レギュレータ3及び2個の第1及び第2電空レギュレータ51,52と、2個の第1及び第2電磁弁4,5と、制御部6とを備えている。
 図2は、本実施形態に係るベローズポンプ1の断面図である。
 本実施形態のベローズポンプ1は、ポンプヘッド11と、このポンプヘッド11の左右方向(水平方向)の両側に取り付けられる一対のポンプケース12と、各ポンプケース12の内部において、ポンプヘッド11の左右方向の側面に取り付けられる2個の第1及び第2ベローズ13,14と、各ベローズ13,14の内部において、ポンプヘッド11の左右方向の側面に取り付けられる4個のチェックバルブ15,16と、を備えている。
 <ベローズの構成>
 第1及び第2ベローズ13,14は、PTFE(ポリテトラフルオロエチレン)やPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等のフッ素樹脂により有底筒形状に形成され、その開放端部に一体形成されたフランジ部13a,14aはポンプヘッド11の側面に気密状に押圧固定されている。第1及び第2ベローズ13,14の各周壁は蛇腹形状に形成され、互いに独立して水平方向に伸縮可能に構成されている。具体的には、第1及び第2ベローズ13,14は、後述する作動板19の外面がポンプケース12の底壁部12aの内方側面に当接する最伸長状態と、後述するピストン体23の内方側面がポンプケース12の底壁部12aの外方側面に当接する最収縮状態との間で伸縮するようになっている。
 第1及び第2ベローズ13,14の底部の外面には、ボルト17及びナット18により作動板19が連結部材20の一端部とともに固定されている。
 <ポンプケースの構成>
 ポンプケース12は、有底円筒状に形成されており、その開口周縁部は、対応するベローズ13(14)のフランジ部13a(14a)に気密状に押圧固定されている。これにより、ポンプケース12の内部には、気密状態が保持された吐出側空気室21が形成されている。
 ポンプケース12には吸排気ポート22がそれぞれ設けられており、吸排気ポート22は、電磁弁4(5)、電空レギュレータ51(52)及び機械式レギュレータ3を介して空気供給装置2に接続されている(図1参照)。これにより、空気供給装置2から機械式レギュレータ3、電空レギュレータ51(52)及び電磁弁4(5)及び吸排気ポート22を介して吐出側空気室21の内部に加圧空気を供給することで、ベローズ13(14)が収縮するようになっている。
 また、各ポンプケース12の底壁部12aには、前記連結部材20が水平方向に摺動可能に支持されており、この連結部材20の他端部にはピストン体23がナット24により固定されている。ピストン体23は、前記底壁部12aの外方側面に一体に設けられた円筒状のシリンダ体25の内周面に対して、気密状態を保持しながら水平方向へ摺動可能に支持されている。これにより、前記底壁部12a、シリンダ体25、及びピストン体23とによって囲まれた空間は、気密状態が保持された吸込側空気室26とされている。
 前記シリンダ体25には吸込側空気室26に連通する吸排気口25aが形成されており、この吸排気口25aは、前記電磁弁4(5)、電空レギュレータ51(52)及び機械式レギュレータ3を介して空気供給装置2に接続されている(図1参照)。これにより、空気供給装置2から機械式レギュレータ3、電空レギュレータ51(52)及び電磁弁4(5)及び吸排気口25aを介して吸込側空気室26の内部に加圧空気を供給することで、ベローズ13(14)が伸長するようになっている。
 各ポンプケース12の底壁部12aの下方には、移送流体の吐出側空気室21への漏洩を検知するための漏洩センサ40が取り付けられている。
 以上の構成により、図2左側の吐出側空気室21が形成されたポンプケース12と、図2左側の吸込側空気室26を形成するピストン体23及びシリンダ体25とにより、第1ベローズ13を最伸長状態と最収縮状態との間で連続して伸縮動作させる第1エアシリンダ部(第1駆動装置)27が構成されている。
 また、図2右側の吐出側空気室21が形成されたポンプケース12と、図2右側の吸込側空気室26が形成されたピストン体23及びシリンダ体25とにより、第2ベローズ14を最伸長状態と最収縮状態との間で連続して伸縮動作させる第2エアシリンダ部(第2駆動装置)28が構成されている。
 <検知手段の構成>
 第1エアシリンダ部27のシリンダ体25には、一対の近接センサ29A,29Bが取り付けられ、ピストン体23には各近接センサ29A,29Bにより検知される被検知板30が取り付けられている。被検知板30は、ピストン体23とともに往復動することで、近接センサ29A,29Bに交互に近接することにより検知される。
 近接センサ29Aは、第1ベローズ13が最収縮状態のときに被検知板30を検知する位置に配置されている。近接センサ29Bは、第1ベローズ13が最伸長状態のときに被検知板30を検知する位置に配置されている。各近接センサ29A,29Bの検知信号は制御部6に送信される。本実施形態では、上記一対の近接センサ29A,29Bにより、第1ベローズ13の伸縮状態を検知する第1検知手段29が構成されている。
 同様に、第2エアシリンダ部28のシリンダ体25には、一対の近接センサ31A,31Bが取り付けられ、ピストン体23には各近接センサ31A,31Bより検知される被検知板32が取り付けられている。被検知板32は、ピストン体23とともに往復動することで、近接センサ31A,31Bに交互に近接することにより検知される。
 近接センサ31Aは、第2ベローズ14が最収縮状態のときに被検知板32を検知する位置に配置されている。近接センサ31Bは、第2ベローズ14が最伸長状態のときに被検知板32を検知する位置に配置されている。各近接センサ31A,31Bの検知信号は制御部6に送信される。本実施形態では、一対の近接センサ31A,31Bにより、第2ベローズ14の伸縮状態を検知する第2検知手段31が構成されている。
 空気供給装置2によって生成された加圧空気は、第1検知手段29の一対の近接センサ29A,29Bが被検知板30を交互に検知することで、第1エアシリンダ部27の吸込側空気室26と吐出側空気室21とに交互に供給される。これにより、第1ベローズ13は連続して伸縮動作する。
 また、前記加圧空気は、第2検知手段31の一対の近接センサ31A,31Bが被検知板32を交互に検知することで、第2エアシリンダ部28の吸込側空気室26と吐出側空気室21とに交互に供給される。これにより、第2ベローズ14は連続して伸縮動作する。その際、第2ベローズ14の伸長動作は第1ベローズ13の収縮動作時に行われ、第2ベローズ14の収縮動作は主に第1ベローズ13の伸長動作時に行われる。このように、第1ベローズ13及び第2ベローズ14は、交互に伸縮動作を繰り返すことで、各ベローズ13,14の内部への移送流体の吸込と吐出とが交互に行われ、当該移送流体が移送されるようになっている。
 なお、第1及び第2検知手段29,31は、近接センサによって構成されているが、リミットスイッチ等の他の検知手段により構成されていても良い。また、第1及び第2検知手段29,31は、第1及び第2ベローズ13,14の最伸長状態と最伸縮状態とを検知しているが、伸縮途中の状態を検知するようにしても良い。
 <ポンプヘッドの構成>
 ポンプヘッド11は、PTFEやPFA等のフッ素樹脂から形成されている。ポンプヘッド11の内部には、移送流体の吸込通路34と吐出通路35とが形成されており、この吸込通路34及び吐出通路35は、ポンプヘッド11の外周面において開口し、当該外周面に設けられた吸込ポート及び吐出ポート(いずれも図示省略)に接続されている。吸込ポートは移送流体の貯留タンク等に接続され、吐出ポートは移送流体の移送先に接続される。また、吸込通路34及び吐出通路35は、それぞれポンプヘッド11の左右両側面に向けて分岐するとともに、ポンプヘッド11の左右両側面において開口する吸込口36及び吐出口37を有している。各吸込口36及び各吐出口37は、それぞれチェックバルブ15,16を介してベローズ13,14の内部と連通している。
 <チェックバルブの構成>
 各吸込口36及び各吐出口37には、チェックバルブ15,16が設けられている。
 吸込口36に取り付けられたチェックバルブ15(以下、「吸込用チェックバルブ」ともいう)は、バルブケース15aと、このバルブケース15aに収容された弁体15bと、この弁体15bを閉弁方向に付勢する圧縮コイルバネ15cとを有している。バルブケース15aは有底円筒形状に形成されており、その底壁にはベローズ13,14の内部に連通する貫通孔15dが形成されている。弁体15bは、圧縮コイルバネ15cの付勢力により吸込口36を閉鎖(閉弁)し、ベローズ13,14の伸縮に伴う移送流体の流れによる背圧が作用すると吸込口36を開放(開弁)するようになっている。
 これにより、吸込用チェックバルブ15は、自身が配置されているベローズ13,14が伸長したときに開弁して、吸込通路34からベローズ13,14内部に向かう方向への移送流体の吸引を許容し、当該ベローズ13,14が収縮したときに閉弁して、ベローズ13,14内部から吸込通路34に向かう方向への移送流体の逆流を阻止する。
 吐出口37に取り付けられたチェックバルブ16(以下、「吐出用チェックバルブ」ともいう)は、バルブケース16aと、このバルブケース16aに収容された弁体16bと、この弁体16bを閉弁方向に付勢する圧縮コイルバネ16cとを有している。バルブケース16aは有底円筒形状に形成されており、その底壁にはベローズ13,14の内部に連通する貫通孔16dが形成されている。弁体16bは、圧縮コイルバネ16cの付勢力によりバルブケース16aの貫通孔16dを閉鎖(閉弁)し、ベローズ13,14の伸縮に伴う移送流体の流れによる背圧が作用するとバルブケース16aの貫通孔16dを開放(開弁)するようになっている。
 これにより、吐出用チェックバルブ16は、自身が配置されているベローズ13,14が収縮したときに開弁して、ベローズ13,14内部から吐出通路35に向かう方向への移送流体の流出を許容し、当該ベローズ13,14が伸長したときに閉弁して、吐出通路35からベローズ13,14内部に向かう方向への移送流体の逆流を阻止する。
 <ベローズポンプの動作>
 次に、本実施形態のベローズポンプ1の動作を図3及び図4を参照して説明する。なお、図3及び図4においては第1及び第2ベローズ13,14の構成を簡略化して示している。
 図3に示すように、第1ベローズ13が収縮し、第2ベローズ14が伸長した場合、ポンプヘッド11の図中左側に装着された吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、第1ベローズ13内の移送流体から圧力を受けて各バルブケース15a,16aの図中右側にそれぞれ移動する。これにより吸込用チェックバルブ15が閉じるともに、吐出用チェックバルブ16が開き、第1ベローズ13内の移送流体が吐出通路35からポンプ外へ排出される。
 一方、ポンプヘッド11の図中右側に装着された吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、第2ベローズ14による吸引作用によって各バルブケース15a,16aの図中右側にそれぞれ移動する。これにより吸込用チェックバルブ15が開くとともに、吐出用チェックバルブ16が閉じ、吸込通路34から第2ベローズ14内に移送流体が吸い込まれる。
 次に、図4に示すように、第1ベローズ13が伸長し、第2ベローズ14が収縮した場合、ポンプヘッド11の図中右側に装着された吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、第2ベローズ14内の移送流体から圧力を受けて各バルブケース15a,16aの図中左側に移動する。これにより吸込用チェックバルブ15が閉じるともに、吐出用チェックバルブ16が開き、第2ベローズ14内の移送流体が吐出通路35からポンプ外へ排出される。
 一方、ポンプヘッド11の図中左側に装着された吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、第1ベローズ13による吸引作用によって各バルブケース15a,16aの図中左側に移動する。これにより吸込用チェックバルブ15が開くとともに、吐出用チェックバルブ16が閉じ、吸込通路34から第1ベローズ13内に移送流体が吸い込まれる。
 以上の動作を繰り返し行うことで、左右のベローズ13,14は、交互に移送流体の吸引と排出とを行うことができる。
 <電磁弁の構成>
 図1において、第1電磁弁4は、第1エアシリンダ部27の吐出側空気室21及び吸込側空気室26のうち、一方の空気室への加圧空気の給排、及び他方の空気室内への加圧空気の給排を切り換えるものである。第1電磁弁4は、例えば、一対のソレノイド4a,4bを有する三位置の電磁切換弁からなる。各ソレノイド4a,4bは制御部6から受けた指令信号に基づいて励磁されるようになっている。
 第2電磁弁5は、第2エアシリンダ部28の吐出側空気室21及び吸込側空気室26のうち、一方の空気室への加圧空気の給排、及び他方の空気室内への加圧空気の給排を切り換えるものである。第2電磁弁5は、例えば一対のソレノイド5a,5bを有する三位置の電磁切換弁からなる。各ソレノイド5a,5bは制御部6から指令信号を受けて励磁されるようになっている。
 なお、本実施形態の第1及び第2電磁弁4,5は、三位置の電磁切換弁からなるが、中立位置を有しない二位置の電磁切換弁であっても良い。
 図1において、第1エアシリンダ部27の吐出側空気室21(吸排気ポート22)と第1電磁弁4との間には、第1急速排気弁61が吐出側空気室21に隣接して配置されている。第1急速排気弁61は、加圧空気を排出する排気口61aを有しており、第1電磁弁4から吐出側空気室21への加圧空気の流れを許容するとともに、吐出側空気室21から流れ出た加圧空気を排気口61aから排出するようになっている。これにより、吐出側空気室21内の加圧空気を、第1電磁弁4を介することなく、第1急速排気弁61から迅速に排出することができる。
 同様に、第2エアシリンダ部28の吐出側空気室21(吸排気ポート22)と第2電磁弁5との間には、第2急速排気弁62が吐出側空気室21に隣接して配置されている。第2急速排気弁62は、加圧空気を排出する排気口62aを有しており、第2電磁弁5から吐出側空気室21への加圧空気の流れを許容するとともに、吐出側空気室21から流れ出た加圧空気を排気口62aから排出するようになっている。これにより、吐出側空気室21内の加圧空気を、第2電磁弁5を介することなく、第2急速排気弁62から迅速に排出することができる。
 なお、各エアシリンダ部27,28の吸込側空気室26(吸排気口25a)と、対応する電磁弁4,5との間には急速排気弁は配置されていない。吸込側に急速排気弁を取り付けた場合、吐出側に急速排気弁を取り付けた場合と同様の効果が得られるが、その効果は吐出側ほど大きくない。そのため、本実施形態では、吸込側の急速排気弁はコスト面より設置していない。
 <制御部の構成>
 制御部6は、第1検知手段29及び第2検知手段31(図2参照)の検知結果に基づいて、各電磁弁4,5を切り換えることで、ベローズポンプ1の第1エアシリンダ部27及び第2エアシリンダ部28の各駆動を制御するものである。
 具体的には、制御部6は、第1検知手段29及び第2検知手段31の検知結果に基づいて、第1ベローズ13が最収縮状態となる手前で第2ベローズ14を最伸長状態から収縮させるとともに、第2ベローズ14が最収縮状態となる手前で第1ベローズ13を最伸長状態から収縮させるように、第1及び第2エアシリンダ部27,28を駆動制御する。
 これにより、一方のベローズの収縮(吐出)から伸長(吸い込み)への切り換えタイミングにおいて、他方のベローズは既に収縮して移送流体を吐出しているので、前記切り換えタイミングにおいて移送流体の吐出圧力が大きく落ち込むのを低減することができる。その結果、ベローズポンプ1の吐出側の脈動を低減することができる。
 なお、本実施形態の制御部6は、一方のベローズ13(14)が最収縮状態となる手前で他方のベローズ14(13)を最伸長状態から収縮させているが、一方のベローズ13(14)が最収縮状態となったときに、他方のベローズ14(13)を最伸長状態から収縮させるように制御しても良い。但し、ベローズポンプ1の吐出側の脈動を低減するという観点では、本実施形態のように制御するのが好ましい。
 <電空レギュレータの構成>
 図1及び図2において、第1電空レギュレータ51は、機械式レギュレータ3と第1電磁弁4との間に配置されている。第1電空レギュレータ51は、第1エアシリンダ部27の吸込側空気室26に供給する加圧空気の空気圧である第1空気圧、及び第1エアシリンダ部27の吐出側空気室21に供給する加圧空気の空気圧である第2空気圧を調整する。
 第2電空レギュレータ52は、機械式レギュレータ3と第2電磁弁5との間に配置されている。第2電空レギュレータ52は、第2エアシリンダ部28の吸込側空気室26に供給する加圧空気の空気圧である第1空気圧、及び第2エアシリンダ部28の吐出側空気室21に供給する加圧空気の空気圧である第2空気圧を調整する。
 なお、電空レギュレータ51,52は、電磁弁4,5の上流側に配置されているが、電磁弁4,5の下流側に配置されていても良い。但し、この場合には、電空レギュレータ51,52の一次側に、電磁弁4,5を切り換えたときに生じる衝撃圧力が作用するので、電空レギュレータ51,52の故障を防止するという観点では、電磁弁4,5の上流側に電空レギュレータ51,52を配置するのが好ましい。
 <電空レギュレータの制御例>
 図2において、制御部6は、第1及び第2検知手段29,31の検知結果に基づいて、ベローズ13(14)の伸長動作時における少なくとも伸長終了時点で、吸込側空気室26に供給する加圧空気の第1空気圧が吐出側空気室21に供給する加圧空気の第2空気圧よりも低くなるように各電空レギュレータ51,52を制御する。
 本実施形態の制御部6は、ベローズ13(14)の伸長開始時点から伸長終了時点までの間、第1空気圧が第2空気圧よりも低い圧力値で一定となるように各電空レギュレータ51,52を制御している。
 図5は、本実施形態の制御部6による電空レギュレータ51(52)の制御例を示すグラフである。図5において、制御部6は、ベローズ13(14)が移送流体の吐出時に収縮する収縮期間T2の間、第2空気圧が一定の空気圧P2(例えば0.50MPa)となるように電空レギュレータ51(52)を制御する。また、制御部6は、ベローズ13(14)が移送流体の吸い込み時に伸長する伸長期間T1の間、第1空気圧が前記空気圧P2よりも低い一定の空気圧P1(例えば0.15MPa)となるように電空レギュレータ51(52)を制御する。
 これにより、ベローズ13(14)の収縮開始時点から収縮終了時点(最収縮時点)までの収縮期間T2において、エアシリンダ部27(28)の吐出側空気室21には高い空気圧P2の加圧空気が供給される。また、ベローズ13(14)の伸長開始時点から伸長終了時点(最伸長時点)までの伸長期間T1において、エアシリンダ部27(28)の吸込側空気室26には低い空気圧P1の加圧空気が供給される。
 エアシリンダ部27(28)の吸込側空気室26に供給される加圧空気が低い空気圧になると、その分だけベローズ13(14)の伸長速度は遅くなる。したがって、前記空気圧P1は、一方のベローズ13(14)の伸長開始時点から、当該伸長開始時点において収縮中の他方のベローズ14(13)の収縮終了時点までの収縮期間内に、前記一方のベローズ13が最伸長状態となるように設定される。
 なお、本実施形態では、制御部6が制御する第1電空レギュレータ51の第1及び第2空気圧と、第2電空レギュレータの第1及び第2空気圧は、それぞれ同じ値P1,P2に設定されているが、各電空レギュレータによって異なる値に設定されていても良い。
 図6は、従来のベローズポンプから吐出される移送流体の吐出圧力を示すグラフである。このグラフは、ベローズポンプの吸込側空気室および吐出側空気室にそれぞれ供給する加圧空気の第1空気圧及び第2空気圧をいずれも0.5MPaに設定した場合の吐出圧力を示している。
 図6に示すように、従来のベローズポンプにおいて発生する衝撃圧力の最大値は0.593MPaである。
 図7は、本実施形態のベローズポンプ1から吐出される移送流体の吐出圧力を示すグラフである。このグラフは、ベローズポンプの吐出側空気室に供給する加圧空気の第2空気圧を0.50MPaに設定し、ベローズポンプの吸込側空気室に供給する加圧空気の第1空気圧を0.15MPaに設定した場合の吐出圧力を示している。
 図7に示すように、本実施形態のベローズポンプ1において発生する衝撃圧力の最大値は0.159MPaであり、従来のベローズポンプに比べて衝撃圧力が大幅に低減されているのが分かる。
 <効果について>
 以上、本実施形態のベローズポンプ装置によれば、ベローズ13(14)の伸長動作時に吸込側空気室26に供給される加圧空気の第1空気圧は、ベローズ13(14)の収縮動作時に吐出側空気室21に供給される加圧空気の第2空気圧よりも低くなるように電空レギュレータ51(52)が制御される。これにより、ベローズ13(14)の伸長動作による移送流体の吸い込みから、ベローズ13(14)の収縮動作による移送流体の吐出に切り換わるときの圧力変動を抑えることができるため、その切り換わり時に衝撃圧力が発生するのを抑制することができる。したがって、既設のベローズポンプであっても、電空レギュレータ51(52)と制御部6とを追加することで、作動流体の吸い込みから吐出に切り換わるときに発生する衝撃圧力を容易に抑制することができる。
 また、制御部6は、ベローズ13(14)の伸長開始時点から伸長終了時点まで第1空気圧が一定となるように電空レギュレータ51(52)を制御するので、第1空気圧を連続または不連続に変化させるように制御する場合に比べて、電空レギュレータ51(52)の制御が容易となる。
 また、一方のベローズ13(14)の伸長動作時に、吸込側空気室26に供給される加圧空気の第1空気圧は、当該伸長動作時に収縮している他方のベローズ14(13)が最収縮するまでに、当該一方のベローズ13(14)が最伸長状態となるように設定されているので、以下の作用効果を奏する。すなわち、一方のベローズ13(14)の伸長速度が低空気圧により遅くなっても、その間に収縮している他方のべローズ14(13)の収縮終了時点までの収縮期間内に一方のベローズ13(14)の伸長動作が終了するため、各ベローズ13,14の収縮動作による移送流体の吐出量が減少することなく、衝撃圧力を抑制することができる。
 <電空レギュレータの他の制御例>
 図8は、制御部6による電空レギュレータ51(52)の他の制御例を示すグラフである。
 図8において、制御部6は、ベローズ13(14)の伸長開始時点から伸長終了時点までの間、つまりベローズ13(14)が移送流体の吸い込み時に伸長する伸長期間T1の間において、吸込側空気室26に供給する加圧空気の第1空気圧が不連続に変化するように各電空レギュレータ51,52を制御している。
 具体的には、制御部6は、ベローズ13(14)の伸長開始時点からその伸長動作の所定の途中時点までの伸長前半期間T11のほうが、前記途中時点から伸長終了時点までの伸長後半期間T12よりも第1空気圧が高くなるように電空レギュレータ51(52)を制御する。
 前記途中時点は、ベローズ13(14)が慣性力によって伸長終了位置まで伸長することが可能な時点とするのが好ましい。具体的には、前記途中時点は、伸長後半期間T12が伸長期間T1の30~50%となるように設定されるのが好ましい。
 ここでは、前記途中時点は、伸長後半期間T12が伸長期間T1の30%となるように設定されている。そして、制御部6は、伸長前半期間T11における第1空気圧が、吐出側空気室21に供給する加圧空気の第2空気圧と同じ一定の空気圧P2となるように電空レギュレータ51(52)を制御している。また、制御部6は、伸長後半期間T12における第1空気圧が、前記空気圧P2よりも低い一定の空気圧P1となるように電空レギュレータ51(52)を制御している。
 これにより、ベローズ13(14)の収縮開始時点から収縮終了時点までの収縮期間T2、及びベローズ13(14)の伸長開始時点から途中時点までの伸長前半期間T11において、エアシリンダ部27(28)の吐出側空気室21及び吸込側空気室26には高い空気圧P2の加圧空気が供給される。また、ベローズ13(14)の前記途中時点から伸長終了時点までの伸長後半期間T12において、エアシリンダ部27(28)の吸込側空気室26には低い空気圧P1の加圧空気が供給される。
 以上、図8に示す他の制御例によれば、制御部6は、ベローズ13(14)の伸長開始時点から伸長終了時点までの間において、吸込側空気室26に供給する加圧空気の第1空気圧が不連続に変化するように電空レギュレータ51(52)を制御するため、その変化するタイミング(ここでは途中時点)を自由に設定することができる。したがって、ベローズ13(14)の伸長開始時点から伸長終了時点までの間において第1空気圧の圧力変化の自由度を高めることができる。
 また、制御部6は、ベローズ13(14)の伸長前半期間のほうが伸長後半期間よりも第1空気圧が高くなるように電空レギュレータ51(52)を制御するため、ベローズ13(14)の伸長前半期間の伸長速度を伸長後半期間の伸長速度よりも速くすることができる。これにより、ベローズ13(14)の伸長時に第1空気圧が低くなることに起因してベローズの伸長時間が長くなり過ぎるのを抑制することができる。その結果、流体の吐出流量が減少するのを抑制することができる。
 また、ベローズ13(14)を、その伸長動作の途中時点から慣性力によって伸長終了位置まで伸長させることができるため、前記途中時点から伸長終了時点までの伸長後半期間において、第1空気圧をベローズ13(14)の伸長動作に必要な空気圧よりも低くすることができる。これにより、ベローズ13(14)の伸長動作から収縮動作に切り換わったときの圧力変動をさらに効果的に抑えることができる。
 図9は、制御部6による電空レギュレータ51(52)のさらに他の制御例を示すグラフである。
 図9において、制御部6は、ベローズ13(14)の伸長開始時点から伸長終了時点までの間、つまりベローズ13(14)が移送流体の吸い込み時に伸長する伸長期間T1の間において、吸込側空気室26に供給する加圧空気の第1空気圧が連続して変化するように各電空レギュレータ51,52を制御している。
 具体的には、制御部6は、まずベローズ13(14)の伸長開始時点において、第1空気圧を吐出側空気室21に供給する加圧空気の第2空気圧と同じ空気圧P2となるように各電空レギュレータ51,52を制御する。そして、制御部6は、例えば図中の実線で示すように、第1空気圧をベローズ13(14)の伸長時間に対して正比例して減少させ、ベローズ13(14)の伸長終了時点で最も低い空気圧P1となるように各電空レギュレータ51,52を制御する。
 なお、ここでは、第1空気圧を連続して変化させる制御例として、第1空気圧をベローズ13(14)の伸長時間に対して正比例して減少させているが、図中の一点鎖線で示すように第1空気圧を前記伸長時間に対して反比例して減少させたり、図中の二点鎖線や破線で示すように変化させたりしても良い。
 また、図8に示す4種類の制御例では、ベローズ13(14)の伸長開始時点における第1空気圧は、いずれも第2空気圧と同じ値(空気圧P2)に設定されているが、第2空気圧と異なる値に設定されていても良い。この場合、ベローズ13(14)の伸長開始時点における第1空気圧を、その伸長終了時点の空気圧P1以下に設定しても良い。
 以上、図9に示す他の制御例によれば、制御部6は、ベローズ13(14)の伸長開始時点から伸長終了時点までの間において、吸込側空気室26に供給する加圧空気の第1空気圧が連続して変化するように電空レギュレータ51(52)を制御するため、ベローズ13(14)の伸長開始時点から伸長終了時点までの間において第1空気圧の圧力変化の自由度を高めることができる。
 なお、本実施形態の図5、図8および図9に示した制御例において、制御部6は、第2空気圧が一定の空気圧P2となるように電空レギュレータ51(52)を制御する例を説明したが、必ずしも一定の空気圧P2となるように制御しなくても良い。
 例えば、制御部6は、ベローズポンプ1から吐出される流体の吐出圧力が落ち込むのを低減することを目的として、ベローズ13(14)が収縮するに従って第2空気圧を上昇させるように制御してもよい。この場合、制御部6は、ベローズ13(14)の伸長動作時における少なくとも伸長終了時点の第1空気圧が、第2空気圧の最大値よりも低くなるように電空レギュレータ51(52)を制御すればよい。
[第2実施形態]
 図10は、本発明の第2実施形態に係るベローズポンプ装置の変形例を示す概略構成図である。本実施形態のベローズポンプ装置は、ベローズポンプ1と、当該ベローズポンプ1に加圧空気(作動流体)を供給するエアコンプレッサ等の空気供給装置2と、前記加圧空気の空気圧を調整する機械式レギュレータ3及び単一の電空レギュレータ52と、単一の電磁弁5と、制御部6とを備えている。
 図11は、第2実施形態に係るベローズポンプの断面図である。
 本実施形態のベローズポンプ1は、アキュムレータ内蔵型であり、ポンプヘッド11と、このポンプヘッド11の左右方向の一方側(図10の右側)に取り付けられたエアシリンダ部28と、ポンプヘッド11の左右方向の他方側(図10の左側)に取り付けられたアキュムレータ部70とを備えている。
 ポンプヘッド11の内部には、吸込通路34、吐出通路35及び連絡通路38が形成されている。吸込通路34は、L字形に形成されており、一端がポンプヘッド11の外周面において開口し、当該外周面に設けられた吸込ポート(図示省略)に接続されている。吸込通路34の他端には、ポンプヘッド11のエアシリンダ部28側の側面(図10では右側面)において開口した吸込口36が形成されている。吸込口36は、吸込用チェックバルブ15を介してベローズ14の内部と連通している。
 吐出通路35は、L字形に形成されており、一端がポンプヘッド11の外周面において開口し、当該外周面に設けられた吐出ポート(図示省略)に接続されている。吐出通路35の他端には、ポンプヘッド11のアキュムレータ部70側の側面(図10では左側面)において開口した吐出口37が形成されている。
 連絡通路38は、ポンプヘッド11を水平方向に貫通して形成されており、一端がポンプヘッド11のアキュムレータ部70側の側面(図10では左側面)において開口し、他端がポンプヘッド11のエアシリンダ部28側の側面(図10では右側面)において開口している。この他端側の開口は、吐出用チェックバルブ16を介してベローズ14の内部と連通している。
 アキュムレータ部70は、ポンプヘッド11に取り付けられたアキュムレータケース71と、このアキュムレータケース71の内部においてポンプヘッド11の側面に取り付けられたアキュムレータベローズ72と、圧力自動調整機構73とを有している。
 アキュムレータベローズ72は、有底筒形状に形成され、その開放端部がポンプヘッド11に固定されている。アキュムレータベローズ72の周壁は蛇腹形状に形成されて水平方向に伸縮可能に構成されている。ポンプヘッド11の側面とアキュムレータベローズ72の内壁によって囲まれた空間が、容積変化可能なアキュムレータ室74とされている。
 アキュムレータケース71は、有底筒形状に形成され、ポンプヘッド11の側面とアキュムレータベローズ72の外壁とアキュムレータケース71の内壁によって囲まれた空間がアキュムレータ空気室75とされ、このアキュムレータ空気室75には、脈動低減用の空気が封入されている。
 圧力自動調整機構73は、アキュムレータ空気室75内の空気圧をエアシリンダ部28により吐出される移送流体の吐出圧とこの変動に応じてバランスさせるための自動給気弁機構73aおよび自動排気弁機構73bとで構成されており、アキュムレータケース71の底壁に取り付けられている。
 アキュムレータケース71の底壁の下方には、移送流体のアキュムレータ空気室75への漏洩を検知するための漏洩センサ76が取り付けられている。
 以上の構成により、エアシリンダ部28のベローズ14が収縮した場合、吸入用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、ベローズ14内の移送流体から圧力を受けて各バルブケース15a,16aの図中左側にそれぞれ移動する。これにより吸込用チェックバルブ15が閉じるともに、吐出用チェックバルブ16が開き、ベローズ14内の移送流体が連絡通路38よりアキュムレータ室74に流出し、このアキュムレータ室74に一時的に貯留された移送流体は、吐出通路35からポンプ外へ排出される。
 逆に、エアシリンダ部28のベローズ14が伸長した場合、吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、ベローズ14による吸引作用によって各バルブケース15a,16aの図中右側にそれぞれ移動する。これにより吸込用チェックバルブ15が開くとともに、吐出用チェックバルブ16が閉じ、吸込通路34からベローズ14内に移送流体が吸い込まれる。
 以上の動作を繰り返し行うことで、ベローズ14は、移送流体の吸引と排出とを交互に行うことができる。その際、エアシリンダ部28により吐出される移送流体の吐出圧が、その脈動により吐出圧曲線の山部にある場合、アキュムレータベローズ72は、アキュムレータ室74の容積を拡大するように伸長する。これにより、アキュムレータ室74より流出する移送流体の流量は、当該アキュムレータ室74に流入する流量よりも少なくなる。
 また、前記吐出圧は、その脈動により吐出圧曲線の谷部にさしかかると、アキュムレータベローズ72の伸長に伴って圧縮されたアキュムレータ空気室75の封入空気圧よりも低くなるので、アキュムレータベローズ72は、アキュムレータ室74の容積を縮小するように収縮する。これにより、アキュムレータ室74より流出する移送流体の流量は、当該アキュムレータ室74に流入する流量よりも多くなる。すなわち脈動が吸収減衰されて略平滑化された吐出圧で液体を移送する。
 図10及び図11において、制御部6は、第1実施形態と同様に、ベローズ13(14)の伸長開始時点から伸長終了時点までの間、第1空気圧が第2空気圧よりも低い圧力値で一定となるように各電空レギュレータ51,52を制御している。
 これにより、ベローズ14の収縮開始時点から収縮終了時点(最収縮時点)までの収縮期間において、エアシリンダ部28の吐出側空気室21には高い空気圧の加圧空気が供給される。また、ベローズ14の伸長開始時点から伸長終了時点(最伸長時点)までの伸長期間において、エアシリンダ部28の吸込側空気室26には低い空気圧の加圧空気が供給される。
 なお、第2実施形態において説明を省略した点は、第1実施形態と同様である。
 以上、本実施形態のベローズポンプ装置においても、ベローズ14の伸長動作時に吸込側空気室26に供給される加圧空気の第1空気圧は、ベローズ14の収縮動作時に吐出側空気室21に供給される加圧空気の第2空気圧よりも低くなるように電空レギュレータ52が制御される。これにより、ベローズ14の伸長動作による移送流体の吸い込みから、ベローズ14の収縮動作による移送流体の吐出に切り換わるときの圧力変動を抑えることができるため、その切り換わり時に衝撃圧力が発生するのを効果的に抑制することができる。したがって、既設のベローズポンプであっても、電空レギュレータ52と制御部6とを追加することで、作動流体の吸い込みから吐出に切り換わるときに発生する衝撃圧力を容易に抑制することができる。
 本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において適宜変更できるものである。
 例えば、制御部6による電空レギュレータ51(52)の制御は、上記実施形態に示す制御例に限定されるものではなく、少なくともベローズ14(15)の伸長終了時点で第1空気圧が第2空気圧よりも低くなるように制御されていれば良い。
 6 制御部
13 第1ベローズ(ベローズ)
14 第2ベローズ(ベローズ)
21 吐出側空気室(他方の空気室)
26 吸込側空気室(一方の空気室)
51 第1電空レギュレータ(電空レギュレータ)
52 第2電空レギュレータ(電空レギュレータ)

Claims (5)

  1.  密閉された2つの空気室のうち、一方の空気室に加圧空気を供給することでベローズを伸長動作させて移送流体を吸入し、他方の空気室に加圧空気を供給することで前記ベローズを収縮動作させて移送流体を吐出するベローズポンプ装置であって、
     前記一方の空気室に供給する加圧空気の空気圧である第1空気圧、及び前記他方の空気室に供給する加圧空気の空気圧である第2空気圧を調整する電空レギュレータと、
     前記ベローズの伸長動作時における少なくとも伸長終了時点で、前記第1空気圧が前記第2空気圧よりも低くなるように前記電空レギュレータを制御する制御部と、を備えていることを特徴とするベローズポンプ装置。
  2.  前記制御部は、前記ベローズの伸長開始時点から伸長終了時点までの間に、前記第1空気圧が連続または不連続に変化するように前記電空レギュレータを制御する請求項1に記載のベローズポンプ装置。
  3.  前記制御部は、前記伸長開始時点からその伸長動作の所定の途中時点までの伸長前半期間のほうが、前記途中時点から前記伸長終了時点までの伸長後半期間よりも前記第1空気圧が高くなるように前記電空レギュレータを制御する請求項2に記載のベローズポンプ装置。
  4.  前記途中時点は、前記ベローズが慣性力によって伸長終了位置まで伸長することが可能な時点である請求項3に記載のベローズポンプ装置。
  5.  前記制御部は、前記ベローズの伸長開始時点から伸長終了時点まで前記第1空気圧が一定となるように前記電空レギュレータを制御する請求項1に記載のベローズポンプ装置。
PCT/JP2015/069449 2014-12-25 2015-07-06 ベローズポンプ装置 WO2016103768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15872337.9A EP3239523B1 (en) 2014-12-25 2015-07-06 Bellows pump apparatus
CN201580070335.3A CN107110147B (zh) 2014-12-25 2015-07-06 波纹管泵装置
US15/527,245 US10718324B2 (en) 2014-12-25 2015-07-06 Bellows pump apparatus
KR1020177015941A KR102249282B1 (ko) 2014-12-25 2015-07-06 벨로우즈 펌프 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262753 2014-12-25
JP2014262753A JP6362535B2 (ja) 2014-12-25 2014-12-25 ベローズポンプ装置

Publications (1)

Publication Number Publication Date
WO2016103768A1 true WO2016103768A1 (ja) 2016-06-30

Family

ID=56149814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069449 WO2016103768A1 (ja) 2014-12-25 2015-07-06 ベローズポンプ装置

Country Status (7)

Country Link
US (1) US10718324B2 (ja)
EP (1) EP3239523B1 (ja)
JP (1) JP6362535B2 (ja)
KR (1) KR102249282B1 (ja)
CN (1) CN107110147B (ja)
TW (1) TWI657198B (ja)
WO (1) WO2016103768A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217897A1 (de) * 2014-09-08 2016-03-10 Pressure Wave Systems Gmbh Kompressorvorrichtung, eine damit ausgerüstete Kühlvorrichtung und ein Verfahren zum Betreiben der Kompressorvorrichtung und der Kühlvorrichtung
US11946466B2 (en) * 2016-10-27 2024-04-02 Baxter International Inc. Medical fluid therapy machine including pneumatic pump box and accumulators therefore
NO344401B1 (en) * 2017-07-04 2019-11-25 Rsm Imagineering As Method, system and use, of controlling working range of a pump bellows
JP7120899B2 (ja) * 2018-12-11 2022-08-17 日本ピラー工業株式会社 ベローズポンプ装置
JP7272913B2 (ja) * 2019-09-09 2023-05-12 日本ピラー工業株式会社 ベローズポンプ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224841A (en) * 1992-04-24 1993-07-06 Semitool, Inc. Pneumatic bellows pump with supported bellows tube
JPH11324926A (ja) * 1998-05-15 1999-11-26 Nippon Pillar Packing Co Ltd 隔膜式往復動ポンプ
JP2000002187A (ja) * 1998-06-15 2000-01-07 Dainippon Screen Mfg Co Ltd ポンプ制御機構およびそれを用いた基板処理装置ならびにポンプ制御方法
WO2010143469A1 (ja) * 2009-06-10 2010-12-16 株式会社イワキ 二連往復動ポンプ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021156A (en) * 1976-01-15 1977-05-03 Western Electric Co. High pressure hydraulic system
US4666374A (en) * 1983-01-11 1987-05-19 Cooper Industries, Inc. Methods and apparatus for producing uniform discharge and suction flow rates
US4534044A (en) * 1983-05-02 1985-08-06 Honeywell Information Systems Inc. Diskette read data recovery system
JPS6144686A (ja) * 1984-08-10 1986-03-04 Mitsubishi Paper Mills Ltd 感熱記録材料
DE4215403C2 (de) * 1991-05-16 2000-10-19 Mbt Holding Ag Zuerich Doppelkolbenpumpe zum Fördern von flüssigen Materialien, insbesondere von Beton oder Mörtel
JPH08296564A (ja) * 1995-04-28 1996-11-12 Sony Corp ベローズポンプによる液体供給方法及びその装置
FR2783021B1 (fr) * 1998-09-09 2000-10-13 Inst Francais Du Petrole Procede et systeme de pompage de fluide utilisant une pompe avec un debit constant a l'aspiration ou au refoulement
JP3205909B2 (ja) 1999-10-25 2001-09-04 日本ピラー工業株式会社 脈動低減装置付きポンプ
JP3874416B2 (ja) * 2003-05-02 2007-01-31 日本ピラー工業株式会社 往復動ポンプ
DE10343802B4 (de) * 2003-09-22 2007-12-06 Schwing Gmbh Kolben-Dickstoffpumpe mit kontinuierlichem Förderstrom
DE10348832A1 (de) * 2003-09-30 2006-05-18 Erbe Elektromedizin Gmbh Fördereinrichtung für sterile Medien
JP4324568B2 (ja) * 2005-01-26 2009-09-02 日本ピラー工業株式会社 ベローズポンプ
JP2009030442A (ja) * 2007-07-24 2009-02-12 Ckd Corp 混合流体供給システム
SE534535C2 (sv) 2008-12-29 2011-09-27 Alfa Laval Corp Ab Pumpanordning med två pumpenheter,användning och förfarande för styrning av en sådan
JP4982515B2 (ja) 2009-02-24 2012-07-25 日本ピラー工業株式会社 ベローズポンプ
FR2967220B1 (fr) 2010-11-05 2013-01-04 Commissariat Energie Atomique Systeme de compression a gaz
CN103261817B (zh) * 2011-03-15 2015-04-01 伊格尔工业股份有限公司 液体供给***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224841A (en) * 1992-04-24 1993-07-06 Semitool, Inc. Pneumatic bellows pump with supported bellows tube
JPH11324926A (ja) * 1998-05-15 1999-11-26 Nippon Pillar Packing Co Ltd 隔膜式往復動ポンプ
JP2000002187A (ja) * 1998-06-15 2000-01-07 Dainippon Screen Mfg Co Ltd ポンプ制御機構およびそれを用いた基板処理装置ならびにポンプ制御方法
WO2010143469A1 (ja) * 2009-06-10 2010-12-16 株式会社イワキ 二連往復動ポンプ

Also Published As

Publication number Publication date
CN107110147A (zh) 2017-08-29
CN107110147B (zh) 2019-04-16
US20170350382A1 (en) 2017-12-07
JP2016121636A (ja) 2016-07-07
TWI657198B (zh) 2019-04-21
TW201623796A (zh) 2016-07-01
KR20170096625A (ko) 2017-08-24
EP3239523B1 (en) 2019-12-18
EP3239523A4 (en) 2018-08-29
US10718324B2 (en) 2020-07-21
KR102249282B1 (ko) 2021-05-07
JP6362535B2 (ja) 2018-07-25
EP3239523A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6362535B2 (ja) ベローズポンプ装置
WO2016021350A1 (ja) ベローズポンプ装置
KR20110013347A (ko) 2연 왕복동 펌프
JP6367645B2 (ja) ベローズポンプ装置
JP6780959B2 (ja) ベローズポンプ装置
JP6353732B2 (ja) ベローズポンプ装置
JP6371207B2 (ja) ベローズポンプ装置
JP6734704B2 (ja) ベローズポンプ装置
WO2023139832A1 (ja) ベローズポンプ装置
JP7120899B2 (ja) ベローズポンプ装置
KR102552382B1 (ko) 벨로즈 펌프 장치
JP6387265B2 (ja) ベローズポンプ装置
WO2024053158A1 (ja) ベローズポンプ
JP7429804B2 (ja) ベローズポンプ装置
JP2023170046A (ja) ベローズポンプ装置
CN115962122A (zh) 波纹管泵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527245

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015872337

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177015941

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE