WO2016093148A1 - 液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法 - Google Patents

液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2016093148A1
WO2016093148A1 PCT/JP2015/084025 JP2015084025W WO2016093148A1 WO 2016093148 A1 WO2016093148 A1 WO 2016093148A1 JP 2015084025 W JP2015084025 W JP 2015084025W WO 2016093148 A1 WO2016093148 A1 WO 2016093148A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
resin composition
liquid
liquid epoxy
Prior art date
Application number
PCT/JP2015/084025
Other languages
English (en)
French (fr)
Inventor
鈴木 真
東之 吉井
小原 和之
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020177005859A priority Critical patent/KR102352908B1/ko
Priority to CN201580047046.1A priority patent/CN106687496A/zh
Publication of WO2016093148A1 publication Critical patent/WO2016093148A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a liquid epoxy resin composition, and in particular, to a liquid epoxy resin composition suitable for a liquid semiconductor encapsulant, especially a liquid semiconductor encapsulant for flip chip type semiconductor devices.
  • Flip chip bonding is used as a semiconductor element mounting method that can cope with higher density and higher output of wiring and the like of a semiconductor device.
  • a semiconductor element and a substrate are joined by bumps, and a gap between the semiconductor element and the substrate is sealed with a liquid semiconductor sealing agent called an underfill material.
  • An object of the present invention is to provide a liquid semiconductor encapsulant that is excellent in injectability into a flip chip type semiconductor device having a fine pitch wiring pattern and suppresses fillet cracks after curing.
  • the present invention relates to a liquid epoxy resin composition, a semiconductor encapsulant, a semiconductor device, and a method for producing a liquid epoxy resin composition that have solved the above problems by having the following configuration.
  • a liquid epoxy resin containing (A) an aminophenol type epoxy resin, (B) an amine curing agent, (C) a silica filler, and (D) a silane coupling agent, (A) The aminophenol type epoxy resin is included in an amount of 10.0 to 70 parts by mass with respect to 100 parts by mass of the component, (B) component is a ratio of 0.7 to 1.2 equivalents with respect to (A) component: 1 equivalent,
  • the aminophenol type epoxy resin contained in the component (A) is represented by the formula (1):
  • the component (B) is represented by chemical formulas (2) to (4):
  • the average particle size of the component (C) is 0.1 to 3.0 ⁇ m, and the component (C) is 55 to 75 parts by mass with respect to 100 parts by mass of the liquid epoxy resin composition.
  • the component (D) is dispersed in at least a part of the component (A) excluding the aminophenol type epoxy resin to form a master batch, and then the master batch contains the aminophenol type epoxy resin.
  • a liquid semiconductor encapsulant comprising the liquid epoxy resin composition according to the above [1].
  • a flip chip type semiconductor device comprising a copper pillar according to [10].
  • the component (D) is dispersed in the component (A) excluding the aminophenol type epoxy resin to form a master batch, and then the amino batch type epoxy resin and the component (B) are mixed into the master batch.
  • liquid epoxy resin composition which is excellent in injectability into a flip chip type semiconductor device having a fine pitch wiring pattern and suppresses fillet cracks after curing.
  • a highly reliable semiconductor device in which a liquid semiconductor encapsulant is satisfactorily injected into a fine-pitch wiring pattern and fillet cracks of the cured liquid semiconductor encapsulant are suppressed is easy. Can be provided.
  • liquid epoxy resin composition The liquid epoxy resin composition of the present invention (hereinafter referred to as liquid epoxy resin composition) (A) a liquid epoxy resin containing an aminophenol type epoxy resin, (B) an amine curing agent, (C) a silica filler and (D) a silane coupling agent, (A) The aminophenol type epoxy resin is included in an amount of 10.0 to 70 parts by mass with respect to 100 parts by mass of the component, (B) component is a ratio of 0.7 to 1.2 equivalents with respect to (A) component: 1 equivalent, The glass transition temperature (Tg) after curing is 110 to 200 ° C.
  • Tg glass transition temperature after curing
  • the aminophenol type epoxy resin contained in the component (A) is an epoxy resin having a low molecular weight, which makes the liquid epoxy resin composition low in viscosity and good injectability. Moreover, generation
  • the aminophenol type epoxy resin is preferably represented by the formula (5):
  • liquid epoxy resin composition In view of the injection property of the liquid epoxy resin composition, curability, heat resistance, adhesiveness, durability such as fillet crack suppression of the liquid epoxy resin composition after curing, particularly from the viewpoint of migration resistance preferable.
  • Commercially available products include aminophenol type epoxy resins (grade: JER630, JER630LSD) manufactured by Mitsubishi Chemical.
  • the aminophenol type epoxy resin may be used alone or in combination of two or more.
  • component (A) other than aminophenol type epoxy resin liquid bisphenol A type epoxy resin, liquid bisphenol F type epoxy resin, liquid naphthalene type epoxy resin, liquid hydrogenated bisphenol type epoxy resin, liquid alicyclic epoxy resin, liquid type Examples include alcohol ether type epoxy resins, liquid cycloaliphatic type epoxy resins, liquid fluorene type epoxy resins, liquid siloxane type epoxy resins, etc., liquid bisphenol A type epoxy resins, liquid bisphenol F type epoxy resins, and liquid siloxane type epoxy resins. From the viewpoint of curability, heat resistance, adhesion, and durability.
  • the epoxy equivalent is preferably 80 to 250 g / eq from the viewpoint of viscosity adjustment.
  • Nippon Steel Chemical's bisphenol A type epoxy resin product name: YDF8170
  • Nippon Steel Chemical's bisphenol F type epoxy resin product name: YDF870GS
  • DIC naphthalene type epoxy resin product name: HP4032D
  • Shin-Etsu examples include chemical siloxane-based epoxy resins (product name: TSL9906).
  • Components (A) other than the aminophenol-type epoxy resin may be used alone or in combination of two or more.
  • the aminophenol type epoxy resin is contained in an amount of 10.0 to 70 parts by weight with respect to 100 parts by weight of the component (A) from the viewpoint of injectability and suppression of fillet cracks.
  • the aminophenol type epoxy resin is less than 10.0 parts by mass, the injectability is deteriorated and fillet cracks are easily generated.
  • the aminophenol type epoxy resin exceeds 70 parts by mass, the glass transition of the cured liquid epoxy resin composition The point becomes too high, fillet cracks are likely to occur, and the reliability is lowered.
  • the aminophenol type epoxy resin is 10.0 to 70 parts by weight, the crosslink density of the liquid epoxy resin composition after curing is increased, the rigidity of the bond of the component (A) is maintained, and the fillet crack is extended.
  • the aminophenol type epoxy resin is added excessively, the rigidity of the bond of the component (A) is weakened, and the fillet crack of the liquid epoxy resin composition after curing is likely to extend. It is done.
  • Component (B) imparts good reactivity (curing speed) and moderate viscosity to the liquid epoxy resin composition.
  • any component having at least one active hydrogen capable of addition reaction with an epoxy group in the molecule may be used.
  • aliphatic amine compounds such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4′-diamino-dicyclohexylmethane; 4,4′- Aromatic amine compounds such as diaminodiphenylmethane and 2-methylaniline; imidazole compounds such as imidazole, 2-methylimidazole, 2-ethylimidazole and 2-isopropylimidazole; imidazoline compounds such as imidazoline, 2-methylimidazoline and 2-ethylimidazoline An aromatic amine compound is preferable from the viewpoint of liquidity and storage stability.
  • (B) component is represented by chemical formulas (2) to (4):
  • the amine-based curing agent represented by at least one of the above is included from the viewpoint of being liquid and storage stability.
  • (B) component ALBEMARLE Co., Ltd. , Ltd., Ltd. Diethyltoluenediamine (compound of chemical formula (2), product name: Etacure 100), Nippon Kayaku amine curing agent (compound of chemical formula (3), product name: HDAA), ADEKA amine curing agent (chemical formula (4 ), Product name: EH105L).
  • a component may be individual or may use 2 or more types together.
  • the linear expansion coefficient of the liquid epoxy resin composition can be controlled by the component (C).
  • the component (C) include colloidal silica, hydrophobic silica, fine silica, and nano silica.
  • the average particle diameter of component (C) (or the average maximum diameter if not granular) is not particularly limited, but when it is 0.1 to 3 ⁇ m, component (C) is uniformly distributed in the liquid epoxy resin composition. It is preferable to disperse in the range of 0.3 to 2.0 ⁇ m. Moreover, it is preferable for reasons such as excellent injectability of the liquid epoxy resin composition. If it is less than 0.1 ⁇ m, the viscosity of the liquid epoxy resin composition increases and the injectability may be deteriorated.
  • the component (C) preferably contains nanosilica having an average particle diameter of 10 to 100 nm from the viewpoint of bleeding.
  • the average particle diameter of the filler is measured by a dynamic light scattering nanotrack particle size analyzer.
  • a component may be individual or may use 2 or more types together.
  • component (D) component provides adhesiveness to a liquid epoxy resin composition.
  • component (D) 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, p-styryltrimethoxysilane, 3-methacryloxypropylmethyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetra And sulfide, 3-isocyanatopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N- (1,
  • a component may be individual or may use 2 or more types together.
  • the component (B) is in a ratio of 0.7 to 1.2 equivalents and preferably in a ratio of 0.7 to 1.0 equivalents to 1 equivalent of the component (A).
  • the equivalent of (A) component is an epoxy equivalent
  • the equivalent of (B) component is an amine equivalent.
  • it is 0.7 or more, the reactivity, moisture resistance reliability of the liquid epoxy resin composition after curing, and migration resistance are good.
  • it is 1.2 or less, the viscosity increase ratio does not become too high. , The generation of voids is suppressed.
  • the component (C) is preferably 55 to 75 parts by mass with respect to 100 parts by mass of the liquid epoxy resin composition from the viewpoint of the linear expansion coefficient of the liquid epoxy resin composition after curing.
  • the component (D) is preferably 0.05 to 5.0 parts by mass, more preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the component (A).
  • it is 0.05 parts by mass or more, the adhesion of the liquid epoxy resin composition is improved, the moisture resistance reliability of the liquid epoxy resin composition after curing becomes better, and when it is 5.0 parts by mass or less, Foaming of the liquid epoxy resin composition is suppressed.
  • the liquid epoxy resin composition further contains (E) polyalkylsiloxane (alkyl groups bonded to Si include methyl, dimethyl, ethyl, etc.), the flow characteristics of the liquid epoxy resin composition are improved. This is preferable because the fillet shape can be changed.
  • the component (E) is more preferably polyalkyldimethylsiloxane.
  • Toray Dow Corning polyalkyl dimethylsiloxane product name: SF8421
  • a component may be individual or may use 2 or more types together.
  • the liquid epoxy resin composition contains (F) a block copolymer, since the flow characteristics of the liquid epoxy resin composition can be improved and the fillet shape can be changed.
  • the component (F) include block copolymers such as acrylic copolymers, and a block copolymer of methyl methacrylate and butyl acrylate is more preferable.
  • Commercially available products of the component (F) include Arkema block copolymer acrylic copolymer, product name: M52N, and molecular weight: 80,000 to 100,000.
  • a component may be individual or may use 2 or more types together.
  • the component (E) is preferably 2 to 8 parts by mass with respect to 100 parts by mass of the liquid epoxy resin composition from the viewpoint of the fillet shape.
  • the component (F) is preferably 4 to 10 parts by mass with respect to 100 parts by mass of the liquid epoxy resin composition from the viewpoint of the fillet shape.
  • liquid epoxy resin composition of the present invention a curing accelerator, a clathrate compound, a leveling agent, an ion trapping agent, an antifoaming agent, a decoloring agent, an oxidation agent are further added as necessary without departing from the object of the present invention.
  • Additives such as inhibitors, pigments and dyes can be blended.
  • the liquid epoxy resin composition has a glass transition temperature (Tg) after curing of 110 to 200 ° C, preferably 120 to 200 ° C. If the Tg is less than 110 ° C, the strength at high temperature decreases, so the reliability in the environmental test with the maximum temperature of 110 to 120 ° C is inferior. If the Tg exceeds 200 ° C, it becomes too hard and the fret Cracks are likely to occur, and shrinkage at the time of curing increases, so that the semiconductor device is likely to warp and the water absorption rate is likely to increase.
  • Tg glass transition temperature
  • the liquid epoxy resin composition preferably has a viscosity of 5 to 20 Pa ⁇ s at a temperature of 25 ° C. from the viewpoint of injectability.
  • the viscosity is measured with a Brookfield HBT viscometer (model number: DV-I).
  • the epoxy resin composition of the present invention is suitable for a liquid semiconductor encapsulant using flip chip bonding having a fine pitch wiring pattern in which the gap between the chip and the substrate is 5 to 25 ⁇ m.
  • the component (D) is dispersed in the component (A) excluding the aminophenol type epoxy resin to form a master batch, and then the amino batch type epoxy resin is added to the master batch.
  • the component (B) is mixed.
  • (D) Component is dispersed in (A) component excluding aminophenol-type epoxy resin, and a master batch is used to separate (D) component in liquid epoxy resin composition, (D) component and aminophenol As compared with the case where all raw materials are mixed at the same time, the liquid epoxy resin composition can be easily produced.
  • the component (A) excluding the aminophenol type epoxy resin mixed with the component (D) is 10 to 1000 parts by mass with respect to 100 parts by mass of the component (C).
  • the amount is 50 to 500 parts by mass.
  • a master batch When producing a master batch, it can be obtained by stirring, melting, mixing, and dispersing while applying heat treatment if necessary.
  • the mixing, stirring, dispersing and the like devices are not particularly limited, and a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Moreover, you may use combining these apparatuses suitably.
  • the mixing order is not particularly limited.
  • the mixing method may be the same as that for producing a master batch.
  • the liquid epoxy resin composition of the present invention is formed and applied at a desired position on the substrate by a dispenser, printing or the like.
  • the liquid epoxy resin composition is formed between a substrate such as a flexible wiring substrate and a semiconductor element so that at least a part thereof is in contact with the wiring of the substrate.
  • the liquid resin composition of the present invention is preferably cured at 90 to 170 ° C. for 60 to 180 minutes. Particularly, curing within 120 minutes is preferable from the viewpoint of productivity improvement as a sealant used in a semiconductor device.
  • liquid semiconductor sealant The liquid semiconductor encapsulant of the present invention is suitable as a liquid semiconductor encapsulant for flip chip type semiconductor devices containing the above-described liquid epoxy resin composition and having a gap between the chip and the substrate of 5 to 25 ⁇ m.
  • the semiconductor device of the present invention is sealed using the above-mentioned liquid semiconductor sealing agent. Any desired semiconductor element and substrate can be used, but a flip-chip semiconductor device having a gap between the chip and the substrate of 5 to 25 ⁇ m is suitable for exhibiting the effects of the present invention. In addition, the effect of the present invention can be exhibited also for a flip chip type semiconductor device including a copper pillar.
  • Example 1 to 14 Comparative Examples 1 to 6
  • resin composition a liquid epoxy resin composition (hereinafter referred to as “resin composition”) was prepared by dispersing using a three-roll mill at room temperature.
  • component (D) was mixed with the component (A) and the component (C) excluding the aminophenol type epoxy resin at room temperature, and then dispersed with a three-roll mill to obtain a master batch.
  • the aminophenol type epoxy resin and the component (B) were mixed in a master batch at room temperature and then dispersed by a three-roll mill.
  • FIG. 1 the schematic diagram explaining the injection
  • a test piece was prepared in which a gap 40 of 50 ⁇ m or 25 ⁇ m was provided on a substrate 20 and a glass plate 30 was fixed instead of a semiconductor element.
  • a glass substrate was used instead of the flexible substrate.
  • this test piece is placed on a hot plate set at 110 ° C., and as shown in FIG. 1 (B), the prepared resin composition 10 is applied to one end side of the glass plate 30, and FIG. ), The time until the gap 40 was filled with the resin composition 11 was measured.
  • Tables 1 to 3 show the results.
  • Tg glass transition point
  • FIG. 2 is a photograph of a portion where no fillet crack is generated.
  • FIG. 3 is a photograph of a location where the amount of fillet cracks generated is suppressed using the present invention. In FIG. 3, the locations (three locations) where the fillet crack has occurred are indicated by arrows.
  • FIG. 4 is a photograph of a location where a large amount of fillet cracks occurred. In FIG. 4, the location (seven locations) where the fillet crack has occurred is indicated by an arrow.
  • the component (D) is a master batch with the component (A) excluding the aminophenol type epoxy resin, and then the aminophenol type epoxy resin is added to the master batch and the component (B).
  • Example 14 which was mixed at room temperature, the storage characteristics of the liquid epoxy resin composition were better than those in the other examples.
  • Comparative Example 1 containing no aminophenol epoxy resin the rate of occurrence of fillet cracks was high.
  • Comparative Examples 2 to 4 in which the content of the aminophenol epoxy resin was too low, the injectability at a gap of 20 ⁇ m was poor and the rate of occurrence of fillet cracks was also high.
  • Comparative Example 5 in which the content of aminophenol epoxy resin was too high, the glass transition point was too high, the reliability could not be ensured, and the rate of occurrence of fillet cracks was also high.
  • Comparative Example 6 in which the equivalent ratio of the component (B) is low and the glass transition point is too low, the glass transition point is too low and reliability cannot be ensured.
  • the liquid epoxy resin composition of the present invention is excellent in injectability into a flip-chip type semiconductor device having a fine pitch wiring pattern and can suppress fillet cracks after curing. Suitable for stopping agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wire Bonding (AREA)

Abstract

 ファインピッチの配線パターンを有するフリップチップ型半導体装置への注入性に優れ、かつ硬化後にフィレットクラックを抑制する液状半導体封止剤を提供することを目的とする。 (A)アミノフェノール型エポキシ樹脂を含む液状エポキシ樹脂、(B)アミン系硬化剤、(C)シリカフィラーおよび(D)シランカップリング剤を含有し、(A)成分100質量部に対して、アミノフェノール型エポキシ樹脂を10.0~70質量部を含み、(B)成分が、(A)成分:1当量に対して、0.7~1.2当量の比率であり、硬化後のガラス転移温度が、110~200℃であることを特徴とする、液状エポキシ樹脂組成物である。

Description

液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法
 本発明は、液状エポキシ樹脂組成物に関し、特に、液状半導体封止剤、中でもフリップチップ型半導体装置用の液状半導体封止剤に適した液状エポキシ樹脂組成物に関する。
半導体装置のさらなる配線等の高密度化、高出力化に対応可能な半導体素子の実装方式で、フリップチップボンディングが利用されている。一般的に、フリップチップボンディングでは、半導体素子と基板をバンプで接合し、半導体素子と基板の間隙を、アンダーフィル材と呼ばれる液状半導体封止剤で封止を行う。
 近年、半導体装置等の高密度化、高出力化の要求に応えるため、液晶ドライバIC等を搭載する配線パターンのファインピッチ化が進んでいる。このファインピッチ化および狭ギャップ化により、液状半導体封止剤が注入できない箇所が発生する、という問題が発生している。
 このように、液状半導体封止剤を、狭ギャップの半導体装置に注入する場合、粘度が高いと注入できない問題が発生するため、信頼性向上のために、フィラー添加量の低減による粘度の低下が試みられたが、フィラー添加量の低減は、吸湿リフローやサーマルサイクルなどの信頼性試験において、信頼性の低下を招いてしまう、という別の問題が発生する。
特開2012-193284号公報
 本発明は、ファインピッチの配線パターンを有するフリップチップ型半導体装置への注入性に優れ、かつ硬化後にフィレットクラックを抑制する液状半導体封止剤を提供することを目的とする。
 本発明は、以下の構成を有することによって上記問題を解決した液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法に関する。
〔1〕(A)アミノフェノール型エポキシ樹脂を含む液状エポキシ樹脂、(B)アミン系硬化剤、(C)シリカフィラーおよび(D)シランカップリング剤を含有し、
(A)成分100質量部に対して、アミノフェノール型エポキシ樹脂を10.0~70質量部を含み、
(B)成分が、(A)成分:1当量に対して、0.7~1.2当量の比率であり、
硬化後のガラス転移温度が、110~200℃であることを特徴とする、液状エポキシ樹脂組成物。
〔2〕(A)成分に含まれるアミノフェノール型エポキシ樹脂が、式(1):
Figure JPOXMLDOC01-appb-C000005
で表される、上記〔1〕記載の液状エポキシ樹脂組成物。
〔3〕(B)成分が、化学式(2)~(4):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
の少なくとも一つで表されるアミン系硬化剤を含む、上記〔1〕記載の液状エポキシ樹脂組成物。
〔4〕(C)成分の平均粒径が、0.1~3.0μmであり、かつ、液状エポキシ樹脂組成物100質量部に対して、(C)成分が55~75質量部である、上記〔1〕記載の液状エポキシ樹脂組成物。
〔5〕さらに、(E)ポリアルキルシロキサンを含む、上記〔1〕記載の液状エポキシ樹脂組成物。
〔6〕さらに、(F)ブロックコポリマーを含む、上記〔1〕記載の液状エポキシ樹脂組成物。
〔7〕(D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分の少なくとも一部に分散させ、マスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂を含む(A)成分の残部と(B)成分を混合することにより得られる、上記〔1〕記載の液状エポキシ樹脂組成物。
〔8〕上記〔1〕記載の液状エポキシ樹脂組成物を含む、液状半導体封止剤。
〔9〕上記〔8〕記載の、基板とチップ間のギャップが5~25μmであるフリップチップ型半導体装置用の液状半導体封止剤。
〔10〕上記〔8〕記載の液状半導体封止剤を用いて封止された、半導体装置。
〔11〕上記〔10〕記載の、銅ピラーを備えるフリップチップ型半導体装置。
〔12〕(D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分に分散させ、マスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂と(B)成分を混合することを特徴とする、上記〔1〕記載の液状エポキシ樹脂組成物の製造方法。
 本発明〔1〕によれば、ファインピッチの配線パターンを有するフリップチップ型半導体装置への注入性に優れ、かつ硬化後にフィレットクラックを抑制する液状エポキシ樹脂組成物を提供することができる。
 本発明〔8〕によれば、ファインピッチの配線パターンへの注入性に優れ、かつ硬化後にフィレットクラックを抑制する液状半導体封止剤を容易に提供することができる。
 本発明〔10〕によれば、ファインピッチの配線パターンに液状半導体封止剤が良好に注入され、かつ硬化後の液状半導体封止剤のフィレットクラックが抑制された高信頼性の半導体装置を容易に提供することができる。
 本発明〔12〕によれば、ファインピッチの配線パターンを有するフリップチップ型半導体装置への注入性に優れ、かつ硬化後にフィレットクラックを抑制する液状エポキシ樹脂組成物を簡便に製造することが可能となる。
樹脂組成物の注入性の評価方法を説明する模式図である。 フィレットクラックが発生していない箇所の写真である。 本発明を用いてフィレットクラックの発生量を抑制した箇所の写真である。 フィレットクラックが多量に発生した箇所の写真である。
〔液状エポキシ樹脂組成物〕
 本発明の液状エポキシ樹脂組成物(以下、液状エポキシ樹脂組成物という)は、
(A)アミノフェノール型エポキシ樹脂を含む液状エポキシ樹脂、(B)アミン系硬化剤、(C)シリカフィラーおよび(D)シランカップリング剤を含有し、
(A)成分100質量部に対して、アミノフェノール型エポキシ樹脂を10.0~70質量部を含み、
(B)成分が、(A)成分:1当量に対して、0.7~1.2当量の比率であり、
硬化後のガラス転移温度(Tg)が、110~200℃であることを特徴とする。
 (A)成分に含有されるアミノフェノール型エポキシ樹脂は、分子量が低いエポキシ樹脂であり、液状エポキシ樹脂組成物を低粘度にし、注入性を良好にする。また、硬化後の液状エポキシ樹脂組成物のフィレットクラックの発生を抑制する。アミノフェノール型エポキシ樹脂は、好ましくは、式(5):
Figure JPOXMLDOC01-appb-C000009
で表され、2個の官能基がオルト位またはパラ位にあるものがより好ましく、式(1):
Figure JPOXMLDOC01-appb-C000010
で表されるものが、液状エポキシ樹脂組成物の注入性、硬化性、耐熱性、接着性、硬化後の液状エポキシ樹脂組成物のフィレットクラック抑制等の耐久性、耐マイグレーション性の観点から、特に好ましい。市販品としては、三菱化学製アミノフェノール型エポキシ樹脂(グレード:JER630、JER630LSD)が挙げられる。アミノフェノール型エポキシ樹脂は、単独でも2種以上を併用してもよい。
 アミノフェノール型エポキシ樹脂以外の(A)成分としては、液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状ナフタレン型エポキシ樹脂、液状水添ビスフェノール型エポキシ樹脂、液状脂環式エポキシ樹脂、液状アルコールエーテル型エポキシ樹脂、液状環状脂肪族型エポキシ樹脂、液状フルオレン型エポキシ樹脂、液状シロキサン系エポキシ樹脂等が挙げられ、液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、液状シロキサン系エポキシ樹脂が、硬化性、耐熱性、接着性、耐久性の観点から好ましい。また、エポキシ当量は、粘度調整の観点から、80~250g/eqが好ましい。市販品としては、新日鐵化学製ビスフェノールA型エポキシ樹脂(品名:YDF8170)、新日鐵化学製ビスフェノールF型エポキシ樹脂(品名:YDF870GS)、DIC製ナフタレン型エポキシ樹脂(品名:HP4032D)、信越化学製シロキサン系エポキシ樹脂(品名:TSL9906)等が挙げられる。アミノフェノール型エポキシ樹脂以外の(A)成分は、単独でも2種以上を併用してもよい。
 アミノフェノール型エポキシ樹脂は、注入性、フィレットクラック抑制の観点から、(A)成分:100重量部に対して、10.0~70重量部含有される。アミノフェノール型エポキシ樹脂が、10.0質量部未満であると、注入性が悪くなり、かつフィレットクラックが発生し易くなり、70質量部を超えると、硬化後の液状エポキシ樹脂組成物のガラス転移点が高くなり過ぎ、フィレットクラックが発生し易くなり、信頼性が低下する。アミノフェノール型エポキシ樹脂が、10.0~70重量部であると、硬化後の液状エポキシ樹脂組成物の架橋密度が上がり、(A)成分の結合の剛直性が維持され、フィレットクラックが伸展しにくくなり、一方、アミノフェノール型エポキシ樹脂が過剰に配合されると、(A)成分の結合の剛直性が弱くなり、硬化後の液状エポキシ樹脂組成物のフィレットクラックが伸展しやすくなる、と考えられる。
 (B)成分は、液状エポキシ樹脂組成物に良好な反応性(硬化速度)、適度な粘性を付与する。(B)成分としては、エポキシ基と付加反応しうる活性水素を分子内に1個以上有するものであればよい。(B)成分としては、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4’-ジアミノ-ジシクロヘキシルメタン等の脂肪族アミン化合物;4,4’-ジアミノジフェニルメタン、2-メチルアニリン等の芳香族アミン化合物;イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール等のイミダゾール化合物;イミダゾリン、2-メチルイミダゾリン、2-エチルイミダゾリン等のイミダゾリン化合物等が挙げられ、液状であることと保存安定性の観点から、芳香族アミン化合物が好ましい。
 (B)成分は、化学式(2)~(4):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
の少なくとも一つで表されるアミン系硬化剤を含むと、液状であることと保存安定性の観点から、好ましい。(B)成分の市販品としては、ALBEMARLE Co.,Ltd.製ジエチルトルエンジアミン、(化学式(2)の化合物、品名:エタキュア100)、日本化薬製アミン系硬化剤(化学式(3)の化合物、品名:HDAA)、ADEKA製アミン系硬化剤(化学式(4)の化合物、品名:EH105L)が挙げられる。(B)成分は、単独でも2種以上を併用してもよい。
 (C)成分により、液状エポキシ樹脂組成物の線膨張係数を制御することができる。(C)成分としては、コロイダルシリカ、疎水性シリカ、微細シリカ、ナノシリカ等が挙げられる。また、(C)成分の平均粒径(粒状でない場合は、その平均最大径)は、特に限定されないが、0.1~3μmであると、液状エポキシ樹脂組成物中に(C)成分を均一に分散させるうえで好ましく、0.3~2.0μmだと更に好ましい。また、液状エポキシ樹脂組成物の注入性に優れる等の理由から好ましい。0.1μm未満だと、液状エポキシ樹脂組成物の粘度が上昇して、注入性が悪化するおそれがある。3μm超だと、液状エポキシ樹脂組成物中に(C)成分を均一に分散させることが困難になるおそれがある。市販品としては、アドマテックス製高純度合成球状シリカ(品名:SE2200SEE、平均粒径:0.6μm;品名:SE1053SEO、平均粒径:0.3μm;品名:SE5200SEE、平均粒径:2.0μm;品名:SO-E5、平均粒径:2μm;品名:SE-2300、平均粒径:0.6μm)等が挙げられる。なお、(C)成分は、ブリードの観点から、平均粒径が10~100nmのナノシリカを含むと、より好ましい。ここで、充填剤の平均粒径は、動的光散乱式ナノトラック粒度分析計により測定する。(C)成分は、単独でも2種以上を併用してもよい。
 (D)成分は、液状エポキシ樹脂組成物に密着性を付与する。(D)成分としては、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられ、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンが好ましい。市販品としては、信越化学工業製3-グリシドキシプロピルトリメトキシシラン(品名:KBM403)、3-アミノプロピルトリエトキシシラン(品名:KBE903)、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(品名:KBE9103)等が挙げられる。(D)成分は、単独でも2種以上を併用してもよい。
  (B)成分は、(A)成分:1当量に対して、0.7~1.2当量の比率であり、0.7~1.0当量の比率であると、好ましい。(A)成分の当量はエポキシ当量であり、(B)成分の当量はアミン当量である。0.7以上であると、反応性、硬化後の液状エポキシ樹脂組成物の耐湿信頼性、耐マイグレーション性が良好であり、一方、1.2以下であると、増粘倍率が高くなり過ぎず、ボイドの発生が抑制される。
 (C)成分は、硬化後の液状エポキシ樹脂組成物の線膨張係数の観点から、液状エポキシ樹脂組成物100質量部に対して、55~75質量部であると好ましい。
 (D)成分は、(A)成分:100質量部に対して、好ましくは0.05~5.0質量部、より好ましくは0.1~3.0質量部含有される。0.05質量部以上であると、液状エポキシ樹脂組成物の密着性が向上し、硬化後の液状エポキシ樹脂組成物の耐湿信頼性がより良好になり、5.0質量部以下であると、液状エポキシ樹脂組成物の発泡が抑制される。
 液状エポキシ樹脂組成物は、さらに、(E)ポリアルキルシロキサン(Siに結合するアルキル基としては、メチル、ジメチル、エチル等が挙げられる)を含むと、液状エポキシ樹脂組成物の流動特性を改良し、フィレット形状を変化させることができるので、好ましい。(E)成分としては、ポリアルキルジメチルシロキサンであると、より好ましい。(E)成分の市販品としては、東レ・ダウコーニング製ポリアルキルジメチルシロキサン(品名:SF8421)が挙げられる。(E)成分は、単独でも2種以上を併用してもよい。
 液状エポキシ樹脂組成物は、(F)ブロックコポリマーを含むと、液状エポキシ樹脂組成物の流動特性を改良し、フィレット形状を変化させることができるので、好ましい。この(F)成分としては、アクリルコポリマー等のブロックコポリマーが挙げられ、メタクリル酸メチルとアクリル酸ブチルのブロックコポリマーであると、より好ましい。(F)成分の市販品としては、アルケマ製ブロックコポリマーのアクリルコポリマー、品名:M52N、分子量:80000~100000が挙げられる。(F)成分は、単独でも2種以上を併用してもよい。
 (E)成分は、フィレット形状の観点から、液状エポキシ樹脂組成物100質量部に対して、2~8質量部であると好ましい。
 (F)成分は、フィレット形状の観点から、液状エポキシ樹脂組成物100質量部に対して、4~10質量部であると好ましい。
 本発明の液状エポキシ樹脂組成物には、本発明の目的を損なわない範囲で、更に必要に応じ、硬化促進剤、包接化合物、レベリング剤、イオントラップ剤、消泡剤、搖変剤、酸化防止剤、顔料、染料等の添加剤を配合することができる。
 液状エポキシ樹脂組成物は、硬化後のガラス転移温度(Tg)が、110~200℃であり、120~200℃であると好ましい。Tgが110℃未満では、高温での強度が低下するため、最高温度が110~120℃である環境試験での信頼性に劣ってしまい、Tgが200℃を超えると、硬くなりすぎて、フレットクラックが発生しやすくなり、また、硬化時の収縮が大きくなることにより、半導体装置に反りが発生し易くなり、吸水率も高くなり易くなってしまう。
 液状エポキシ樹脂組成物は、温度:25℃での粘度が5~20Pa・sであると、注入性の観点から好ましい。ここで、粘度は、ブルックフィールド製HBT型粘度計(型番:DV-I)で測定する。
 本発明のエポキシ樹脂組成物は、チップと基板の間隙が5~25μmであるファインピッチの配線パターンを有するフリップチップボンディングを利用する液状半導体封止剤に適している。
〔液状エポキシ樹脂組成物の製造方法〕
 本発明の液状エポキシ樹脂組成物の製造方法は、(D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分に分散させ、マスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂と(B)成分を混合することを特徴とする。
 (D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分に分散させ、マスタバッチとする工程により、液状エポキシ樹脂組成物中での(D)成分の分離、(D)成分とアミノフェノール型エポキシ樹脂とのハジキを抑制することができ、全ての原料を同時に混合する場合と比較して、容易に液状エポキシ樹脂組成物を製造することができる。
 ここで、マスタバッチを作製するとき、(D)成分と混合するアミノフェノール型エポキシ樹脂を除く(A)成分は、(C)成分:100質量部に対して、10~1000質量部であると好ましく、50~500質量部であると、より好ましい。
 マスタバッチを作製するときには、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。
 マスタバッチに、アミノフェノール型エポキシ樹脂を含む(A)成分の残部と(D)成分を混合するときに、混合する順序は、特に、限定されない。混合する方法は、マスタバッチを作製する場合と同様でよい。
 本発明の液状エポキシ樹脂組成物は、ディスペンサー、印刷等で基板の所望の位置に形成・塗布される。ここで、液状エポキシ樹脂組成物は、フレキシブル配線基板等の基板と半導体素子との間に、少なくとも一部が基板の配線上に接するように形成する。
 本発明の液状樹脂組成物の硬化は、90~170℃、60~180分間行うことが好ましく、特に120分以内で硬化させると、半導体装置に用いる封止剤として生産性向上から好ましい。
〔液状半導体封止剤〕
 本発明の液状半導体封止剤は、上述の液状エポキシ樹脂組成物を含み、チップと基板の間隙が5~25μmであるフリップチップ型半導体装置用の液状半導体封止剤に適している。
〔半導体装置〕
 本発明の半導体装置は、上述の液状半導体封止剤を用いて封止される。半導体素子、基板は、所望のものを使用することができるが、チップと基板の間隙が5~25μmであるフリップチップ型半導体装置であると、本発明の効果を発揮するために適している。また、銅ピラーを備えるフリップチップ型半導体装置に対しても、本発明の効果を発揮することができる。
 本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。
〔実施例1~14、比較例1~6〕
 表1~3に示す配合で原料を混合した後、室温で3本ロールミルを用いて分散し、液状エポキシ樹脂組成物(以下、「樹脂組成物」という)を作製した。なお、実施例14のみは、(D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分と(C)成分とに、室温で混合した後、3本ロールミルで分散させ、マスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂と(B)成分を、室温で混合した後、3本ロールミルで分散することにより作製した。
〔粘度の評価〕
 作製した液状エポキシ樹脂組成物の粘度(初期粘度、単位:Pa・s)を、ブルックフィールド社製DV-1型粘度計/14号スピンドルを用いて、25℃、50rpmで1分間回転させたときの粘度(表1~3には、粘度(50rpm)と記載した)を測定した。次に、液状エポキシ樹脂組成物を、DV-1型粘度計/14号スピンドルを用いて、25℃、50rpmと5rpmで1分間回転させたときの粘度を測定した。得られた〔(50rpmでの粘度)/(5rpmでの粘度)〕からチキソトロピック指数(TI)を求めた。TIは、0.5~1.1であると好ましい。表1~3に、結果を示す。
〔注入性の評価〕
 図1に、液状エポキシ樹脂組成物の注入性の評価方法を説明する模式図を示す。まず、図1(A)に示すように、基板20上に、50μmまたは25μmの間隙40を設けて、半導体素子の代わりにガラス板30を固定した試験片を作製した。但し、基板20としては、フレキシブル基板の代わりにガラス基板を使用した。次に、この試験片を110℃に設定したホットプレート上に置き、図1(B)に示すように、ガラス板30の一端側に、作製した樹脂組成物10を塗布し、図1(C)に示すように、間隙40が樹脂組成物11で満たされるまでの時間を測定した。表1~3に、結果を示す。
〔ガラス転移点(Tg)の評価〕
 動的粘弾性測定(DMA)で測定した。支持体上に、幅:40mm、長さ:70mm、厚さ:2mmに塗布した液状エポキシ樹脂組成物を、165℃で120分間、加熱硬化させ、支持体から剥離した後、該接着性フィルムから試験片(10±0.5mm×50±1mm)を切り出し、試験片の幅、厚みを測定した。その後、SII製動的粘弾性測定装置(型番:DMS6100)で測定を行った(3℃/min 25-300℃)。tanDのピーク温度を読み取り、Tgとした。表1~3に、結果を示す。
〔フィレットクラック発生率の評価〕
 Cuピラーのバンプで、チップサイズが10mm□、基板が30mm□のTEGを使用した。そのTEGに、液状エポキシ樹脂組成物を塗布し、165℃で120分間、加熱硬化させた。液状エポキシ樹脂組成物を硬化させたTEGに、-55℃、30分間と125℃、30分間を1サイクルとするサーマルサイクルを掛けた。500サイクル後、フィレットクラックの長さを計測し、チップ周辺の長さ(40mm)で割り、フィレットクラック発生率を算出した。フィレットクラック発生率は、65%以下であると好ましい。図2~4に、フィレットクラックを説明するための写真を示す。図2は、フィレットクラックが発生していない箇所の写真である。図3は、本発明を用いてフィレットクラックの発生量を抑制した箇所の写真である。図3では、フィレットクラックが発生した箇所(3箇所)を矢印で示す。図4は、フィレットクラックが多量に発生した箇所の写真である。図4では、フィレットクラックが発生した箇所(7箇所)を矢印で示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表1~3からわかるように、実施例1~18の全てで、粘度、チキソトロピック係数、注入性、ガラス転移点、フィレットクラック発生率の評価結果が良好であった。なお、表1に記載していないが、(D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分とマスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂をと(B)成分を、室温で混合した実施例14は、液状エポキシ樹脂組成物の保存特性が、他の実施例と比較して良好であった。
 これに対して、アミノフェノールエポキシ樹脂を含有しない比較例1では、フィレットクラック発生率が高かった。アミノフェノールエポキシ樹脂の含有率が低すぎる比較例2~4では、20μm間隙での注入性が悪く、フィレットクラック発生率も高かった。アミノフェノールエポキシ樹脂の含有率が高すぎる比較例5では、ガラス転移点が高過ぎ、信頼性が確保できない値であり、かつフィレットクラック発生率も高かった。(B)成分の当量比が低く、ガラス転移点が低すぎる比較例6は、ガラス転移点が低過ぎ、信頼性が確保できない値であった。
 上記のように、本発明の液状エポキシ樹脂組成物は、ファインピッチの配線パターンを有するフリップチップ型半導体装置への注入性に優れ、かつ硬化後にフィレットクラックを抑制することができるため、液状半導体封止剤に適している。
  10、11  液状樹脂組成物
  20  基板
  30  ガラス板
  40  間隙

Claims (12)

  1.  (A)アミノフェノール型エポキシ樹脂を含む液状エポキシ樹脂、(B)アミン系硬化剤、(C)シリカフィラーおよび(D)シランカップリング剤を含有し、
    (A)成分100質量部に対して、アミノフェノール型エポキシ樹脂を10.0~70質量部を含み、
    (B)成分が、(A)成分:1当量に対して、0.7~1.2当量の比率であり、
    硬化後のガラス転移温度が、110~200℃であることを特徴とする、液状エポキシ樹脂組成物。
  2.  (A)成分に含まれるアミノフェノール型エポキシ樹脂が、式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表される、請求項1記載の液状エポキシ樹脂組成物。
  3.  (B)成分が、化学式(2)~(4):
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    の少なくとも一つで表されるアミン系硬化剤を含む、請求項1記載の液状エポキシ樹脂組成物。
  4.  (C)成分の平均粒径が、0.1~3.0μmであり、かつ、液状エポキシ樹脂組成物100質量部に対して、(C)成分が55~75質量部である、請求項1記載の液状エポキシ樹脂組成物。
  5.  さらに、(E)ポリアルキルシロキサンを含む、請求項1記載の液状エポキシ樹脂組成物。
  6.  さらに、(F)ブロックコポリマーを含む、請求項1記載の液状エポキシ樹脂組成物。
  7.  (D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分の少なくとも一部に分散させ、マスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂を含む(A)成分の残部と(B)成分を混合することにより得られる、請求項1記載の液状エポキシ樹脂組成物。
  8.  請求項1記載の液状エポキシ樹脂組成物を含む、液状半導体封止剤。
  9.  請求項8記載の、基板とチップの間隙が5~25μmであるフリップチップ型半導体装置用の液状半導体封止剤。
  10.  請求項8記載の液状半導体封止剤を用いて封止された、半導体装置。
  11.  請求項10記載の、銅ピラーを備えるフリップチップ型半導体装置。
  12.  (D)成分を、アミノフェノール型エポキシ樹脂を除く(A)成分に分散させ、マスタバッチとした後、マスタバッチに、アミノフェノール型エポキシ樹脂と(B)成分を混合することを特徴とする、請求項1記載の液状エポキシ樹脂組成物の製造方法。
PCT/JP2015/084025 2014-12-12 2015-12-03 液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法 WO2016093148A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177005859A KR102352908B1 (ko) 2014-12-12 2015-12-03 액상 에폭시 수지 조성물, 반도체 밀봉제, 반도체 장치, 및 액상 에폭시 수지 조성물의 제조 방법
CN201580047046.1A CN106687496A (zh) 2014-12-12 2015-12-03 液态环氧树脂组合物、半导体封装剂、半导体装置和液态环氧树脂组合物制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-252471 2014-12-12
JP2014252471A JP6969729B2 (ja) 2014-12-12 2014-12-12 液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法

Publications (1)

Publication Number Publication Date
WO2016093148A1 true WO2016093148A1 (ja) 2016-06-16

Family

ID=56107336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084025 WO2016093148A1 (ja) 2014-12-12 2015-12-03 液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法

Country Status (5)

Country Link
JP (1) JP6969729B2 (ja)
KR (1) KR102352908B1 (ja)
CN (1) CN106687496A (ja)
TW (1) TW201629117A (ja)
WO (1) WO2016093148A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181603A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 液状エポキシ樹脂組成物、半導体装置及び半導体装置の製造方法
KR20200023312A (ko) 2017-06-29 2020-03-04 히타치가세이가부시끼가이샤 밀봉용 수지 조성물, 반도체 패키지 및 반도체 패키지의 제조 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119032A (ja) * 2017-01-23 2018-08-02 株式会社ダイセル 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP6929069B2 (ja) * 2017-01-23 2021-09-01 株式会社ダイセル 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
KR20190104063A (ko) * 2017-01-23 2019-09-05 주식회사 다이셀 광반사용 경화성 수지 조성물 및 그의 경화물, 그리고 광반도체 장치
WO2018135557A1 (ja) * 2017-01-23 2018-07-26 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP6920723B2 (ja) * 2017-07-14 2021-08-18 ナミックス株式会社 加圧実装用ncf
CN110527046A (zh) * 2019-08-19 2019-12-03 湖北三选科技有限公司 改质双胺型苯并恶嗪树脂及制备方法、及其在液态晶圆级封装材料中作为应力释放剂的应用
JP7099490B2 (ja) * 2020-05-07 2022-07-12 昭和電工マテリアルズ株式会社 封止用液状樹脂組成物及び電子部品装置
CN112457808A (zh) * 2020-11-20 2021-03-09 湖北三选科技有限公司 氮化镓功率器件用低翘曲高接着力液态模封胶及制备方法
KR102625325B1 (ko) * 2021-08-11 2024-01-16 한국생산기술연구원 자가치유 가능한 에폭시접착제
WO2023140154A1 (ja) * 2022-01-18 2023-07-27 パナソニックIpマネジメント株式会社 液状封止用樹脂組成物及び半導体装置
WO2024075342A1 (ja) * 2022-10-07 2024-04-11 ナミックス株式会社 エポキシ樹脂組成物、半導体装置、及び半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016429A (ja) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物
JP2012162585A (ja) * 2011-02-03 2012-08-30 Namics Corp 半導体樹脂封止材
JP2013001811A (ja) * 2011-06-16 2013-01-07 Hitachi Chemical Co Ltd 電子部品用樹脂組成物及び電子部品装置
JP2014227465A (ja) * 2013-05-22 2014-12-08 京セラケミカル株式会社 射出成形用液状樹脂組成物および半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655056B1 (ko) * 2003-12-30 2006-12-06 제일모직주식회사 반도체 소자 밀봉용 액상 에폭시 수지 조성물
TW200948888A (en) * 2008-04-16 2009-12-01 Henkel Corp Flow controllable B-stageable composition
US20110253943A1 (en) * 2010-04-19 2011-10-20 Trillion Science, Inc. One part epoxy resin including a low profile additive
JP5593259B2 (ja) 2011-03-16 2014-09-17 ナミックス株式会社 液状エポキシ樹脂組成物
JP5862176B2 (ja) * 2011-10-06 2016-02-16 日立化成株式会社 液状エポキシ樹脂組成物の選択方法及び製造方法、並びに電子部品装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016429A (ja) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物
JP2012162585A (ja) * 2011-02-03 2012-08-30 Namics Corp 半導体樹脂封止材
JP2013001811A (ja) * 2011-06-16 2013-01-07 Hitachi Chemical Co Ltd 電子部品用樹脂組成物及び電子部品装置
JP2014227465A (ja) * 2013-05-22 2014-12-08 京セラケミカル株式会社 射出成形用液状樹脂組成物および半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181603A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 液状エポキシ樹脂組成物、半導体装置及び半導体装置の製造方法
KR20200023312A (ko) 2017-06-29 2020-03-04 히타치가세이가부시끼가이샤 밀봉용 수지 조성물, 반도체 패키지 및 반도체 패키지의 제조 방법

Also Published As

Publication number Publication date
KR102352908B1 (ko) 2022-01-19
CN106687496A (zh) 2017-05-17
JP2016113525A (ja) 2016-06-23
KR20170094115A (ko) 2017-08-17
JP6969729B2 (ja) 2021-11-24
TW201629117A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
WO2016093148A1 (ja) 液状エポキシ樹脂組成物、半導体封止剤、半導体装置、および液状エポキシ樹脂組成物の製造方法
JP2011006618A (ja) 封止用液状樹脂組成物、フリップチップ実装体およびその製造方法
JPWO2011129272A1 (ja) 半導体装置
JP5265430B2 (ja) エポキシ樹脂組成物、及び半導体装置
JP6125262B2 (ja) 液状モールド剤、および液状モールド剤の製造方法
JP5593259B2 (ja) 液状エポキシ樹脂組成物
JP6013906B2 (ja) 液状エポキシ樹脂組成物
JPWO2013080732A1 (ja) 一液型エポキシ樹脂組成物
JP6046894B2 (ja) 液状封止材
JP2012056979A (ja) エポキシ樹脂組成物
JP2021119239A (ja) アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
JP2010209266A (ja) 半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置
JP6837237B2 (ja) ダイボンディング剤
JP5723557B2 (ja) エポキシ樹脂組成物
JP2009269934A (ja) スクリーン印刷用接着剤組成物
TWI664230B (zh) 液狀環氧樹脂組成物
TW201837074A (zh) 液狀環氧樹脂組成物、半導體裝置及半導體裝置的製造方法
JP2013118276A (ja) 半導体装置
JP2013253195A (ja) エポキシ樹脂組成物
WO2014013970A1 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
JP5788765B2 (ja) 樹脂組成物
WO2021117582A1 (ja) 封止用樹脂組成物、及び半導体装置
JP6758051B2 (ja) 液状エポキシ樹脂組成物、半導体封止剤、および半導体装置
JP2009051970A (ja) 封止用液状エポキシ樹脂組成物および半導体装置
JP5186459B2 (ja) エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177005859

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866631

Country of ref document: EP

Kind code of ref document: A1