WO2021117582A1 - 封止用樹脂組成物、及び半導体装置 - Google Patents

封止用樹脂組成物、及び半導体装置 Download PDF

Info

Publication number
WO2021117582A1
WO2021117582A1 PCT/JP2020/044927 JP2020044927W WO2021117582A1 WO 2021117582 A1 WO2021117582 A1 WO 2021117582A1 JP 2020044927 W JP2020044927 W JP 2020044927W WO 2021117582 A1 WO2021117582 A1 WO 2021117582A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing resin
sealing
less
silica
Prior art date
Application number
PCT/JP2020/044927
Other languages
English (en)
French (fr)
Inventor
敦 木佐貫
光 大橋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021563894A priority Critical patent/JPWO2021117582A1/ja
Priority to CN202080083820.5A priority patent/CN114761459B/zh
Publication of WO2021117582A1 publication Critical patent/WO2021117582A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Definitions

  • the present disclosure relates to a sealing resin composition and a semiconductor device, and more specifically, is prepared from a sealing resin composition for sealing an electronic component such as a semiconductor element, and the sealing resin composition.
  • the present invention relates to a semiconductor device including a sealing material.
  • Patent Document 1 discloses a liquid epoxy resin composition for sealing containing a liquid bisphenol type epoxy resin, silicone rubber fine particles, a silicone-modified epoxy resin, an aromatic amine curing agent, a coupling agent, an inorganic filler, and an organic solvent. doing.
  • This liquid epoxy resin composition for encapsulation can be applied to electronic component devices that require low warpage, but the warpage can be suppressed to a small level, and the reliability such as strength, thermal shock resistance, and moisture resistance can be excellent. It is disclosed.
  • An object of the present disclosure is that even when a sealing material for sealing between a base material and a large chip is produced, it is easy to be filled between the base material and the chip, and the sealing material is cracked. It is an object of the present invention to provide a semiconductor device including a sealing resin composition that is unlikely to occur and a sealing material made of a cured product of the sealing resin composition.
  • the sealing resin composition according to one aspect of the present disclosure contains an epoxy resin (A), a phosphoric acid (B), and a polyester phosphate (C).
  • the epoxy resin (A) contains a silicone resin (A1) having two or more epoxy groups in one molecule.
  • the semiconductor device includes a base material, a mounting component mounted on the base material, and a sealing material for sealing a gap between the base material and the mounting component.
  • the sealing material is made of a cured product of the sealing resin composition.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor device according to an embodiment of the present disclosure.
  • the sealing resin composition according to the present embodiment contains an epoxy resin (A), a phosphoric acid (B), and a polyester phosphate (C).
  • the epoxy resin (A) contains a silicone resin (A1) having two or more epoxy groups in one molecule.
  • the size of the chip has been increased.
  • the size of the encapsulant also increases, which tends to increase the stress applied to the encapsulant, which may result in insufficient performance such as thermal shock resistance. Therefore, cracks, peeling, etc. of the sealing material are likely to occur.
  • the encapsulant is produced from the composition, there is a problem that when the chip becomes large, it becomes difficult to sufficiently fill the composition between the substrate and the substrate such as a substrate.
  • the sealing resin composition of the present embodiment since the epoxy resin (A) contains the silicone resin (A1), the sealing resin composition can be imparted with thermosetting property and sealed. It is possible to reduce the storage elasticity of the cured product of the resin composition for sealing and the resin composition for sealing. In addition, the CTE in the cured product produced from the sealing resin composition can be lowered. Further, the sealing resin composition of the present embodiment can have a good fluidity because the viscosity can be maintained low and the Chixo index can be brought close to 1.
  • the sealing resin composition contains phosphoric acid (B) and polyester phosphate (C), the dispersibility of the components in the sealing resin composition can be improved. Therefore, even if the viscosity of the silicone resin (A1) is likely to increase, the dispersibility of the sealing resin composition is enhanced, so that good fluidity can be maintained. As a result, the sealing resin composition can be easily flowed in the gap between the base material and the mounting substrate, and therefore the sealing material can be sufficiently filled in the gap.
  • phosphoric acid (B) and polyester phosphate (C) the dispersibility of the components in the sealing resin composition can be improved. Therefore, even if the viscosity of the silicone resin (A1) is likely to increase, the dispersibility of the sealing resin composition is enhanced, so that good fluidity can be maintained. As a result, the sealing resin composition can be easily flowed in the gap between the base material and the mounting substrate, and therefore the sealing material can be sufficiently filled in the gap.
  • the sealing resin composition of the present embodiment can realize good fluidity, and can achieve low CTE and low elastic modulus of the cured product produced from the sealing resin composition.
  • the cured product produced from the sealing resin composition of the present embodiment contains silicone resin (A1), phosphoric acid (B), and polyester phosphate (C) to reduce CTE.
  • improvement of fracture toughness K1c can be realized.
  • the fracture toughness K1c is resistance to fracture when a force is applied to a defective material. Fracture toughness is measured by the method described in Examples below.
  • the sealing resin composition of the present embodiment since the fracture toughness is high, it is possible to produce a sealing material which is less likely to cause cracks. In particular, in the present embodiment, it is possible to prevent cracks from occurring when the chip size of the semiconductor chip is increased due to the sophistication of the semiconductor device, and it is possible to improve the reliability of the semiconductor device.
  • the chip size of a semiconductor chip or the like in a mounting component is rectangular in a plan view and the length of one side is 25 mm or more, or the area in a plan view is 625 mm. It means that it is 2 or more.
  • the size of the chip is not limited to the above, and the composition according to the present embodiment can be applied regardless of the size of the chip.
  • such a sealing resin composition can be realized by appropriately adjusting the components of the composition described below.
  • the sealing resin composition according to the present embodiment is suitable as a sealing material 4 for sealing between a base material 2 and a mounting component 3 such as a semiconductor chip in a semiconductor device 1.
  • a sealing material 4 for sealing between a base material 2 and a mounting component 3 such as a semiconductor chip in a semiconductor device 1.
  • the sealing resin composition can be suitably used as an underfill material. When the sealing resin composition is used as the underfill material and the sealing material 4 is produced from the sealing resin composition, cracks can be less likely to occur in the sealing material 4.
  • Epoxy resin (A) The sealing resin composition of the present embodiment contains an epoxy resin (A).
  • the epoxy resin (A) is a thermosetting component.
  • the epoxy resin (A) has at least one epoxy group in one molecule.
  • the epoxy resin (A) contains a silicone resin (A1) having two or more epoxy groups in one molecule.
  • the viscosity of the epoxy resin (A) at 25 ° C. is preferably 100 mPa ⁇ s or more and 20 Pa ⁇ s or less.
  • the viscosity of the epoxy resin (A) can be measured using, for example, a B-type rotational viscometer under the condition of a rotational speed of 50 rpm.
  • the sealing resin composition contains the silicone resin (A1).
  • the silicone resin (A1) has two or more epoxy groups in one molecule.
  • Silicone resin is a compound that has a siloxane bond in the molecule.
  • the silicone resin (A1) has at least one siloxane bond and two or more epoxy groups in one molecule. Since the silicone resin (A1) in the sealing resin composition of the present embodiment has a siloxane skeleton, it can contribute to a decrease in CTE. Further, since it has an epoxy group, it is possible to impart thermosetting property to the sealing resin composition.
  • the silicone resin (A1) preferably has at least one epoxy group at the end of one molecule.
  • the silicone resin (A1) does not easily agglomerate, it is difficult to excessively increase the viscosity of the sealing resin composition, and therefore good fluidity can be ensured.
  • the end of one molecule means the position of the end of the connecting chain bonded to the silicon atom in the siloxane bond in the molecule, which is the farthest from the silicon atom.
  • the end may be any of the positions of the ends of the respective branches.
  • the silicone resin (A1) when the epoxy group is present at the terminal in the molecule, the reactivity of the sealing resin composition is unlikely to increase excessively, so that the storage stability of the sealing resin composition can be maintained. Therefore, when molding the sealing resin composition, moldability (processability) can be maintained, it is difficult to cure during molding, and it is easy to fill the gap between the base material and the semiconductor chip.
  • the silicone resin (A1) is preferably liquid at 25 ° C. In this case, it is particularly easy to adjust the viscosity of the sealing resin composition to a good viscosity for molding. Further, in this case, it is easy to prepare the sealing resin composition so as to have a suitable viscosity even if it does not contain a solvent.
  • the viscosity of the silicone resin (A1) at 25 ° C. is preferably 1000 mPa ⁇ s or less, for example.
  • the content of the silicone resin (A1) with respect to the total amount of the epoxy resin (A) is preferably 0.1% by mass or more and 15.0% by mass or less. In this case, it can contribute to lowering the viscosity of the sealing resin composition and improving the fracture toughness K1c.
  • the content of the silicone resin (A1) is more preferably 0.5% by mass or more and 12.0% by mass or less, and further preferably 1.0% by mass or more and 10.0% by mass or less.
  • the epoxy resin (A) preferably further contains a bisphenol type epoxy resin (A2). That is, the sealing resin composition preferably further contains a bisphenol type epoxy resin (A2). In this case, thermosetting property can be imparted to the sealing resin composition.
  • the bisphenol type epoxy resin (A2) contains, for example, at least one selected from the group consisting of bisphenol A type epoxy resin, bisphenol type epoxy resin, bisphenol S type epoxy resin, and derivatives of these resins.
  • the bisphenol type epoxy resin (A2) preferably contains a bisphenol F type epoxy resin. In this case, better thermosetting property can be imparted to the sealing resin composition.
  • the bisphenol F type epoxy resin is a compound in which two phenol skeletons are bonded via one ethylene chain.
  • the bisphenol F type epoxy resin may have a substituent in the phenol skeleton.
  • the viscosity of the bisphenol type epoxy resin (A2) at 25 ° C. is preferably, for example, 1000 mPa ⁇ s or more and 4000 mPa ⁇ s or less.
  • the epoxy resin (A) preferably further contains the aromatic amino epoxy resin (A3). That is, the sealing resin composition preferably further contains an aromatic aminoepoxy resin (A3). In this case, better thermosetting property can be imparted to the sealing resin composition while maintaining the storage stability of the sealing resin composition.
  • the aromatic amino epoxy resin (A3) preferably has an aromatic ring, an amino group bonded to the aromatic ring, and three or more epoxy groups in one molecule. That is, the aromatic amino epoxy resin (A3) is preferably trifunctional or higher.
  • the aromatic amino epoxy resin (A3) comprises an aromatic ring, an amino group bonded to the aromatic ring, an epoxy group bonded to the amino group, and an epoxy group bonded to a position different from the amino group bonded to the aromatic ring. Is more preferable. That is, when the aromatic amino epoxy resin (A3) has three or more epoxy groups, it is preferable that at least one is bonded to the amino group bonded to the aromatic ring.
  • aromatic aminoepoxy resin (A3) examples include N, N-diglycidyl-p-glycidyloxyaniline and the like.
  • the aromatic amino epoxy resin (A3) is not limited to the above compound.
  • the viscosity of the aromatic amino epoxy resin (A3) at 25 ° C. is preferably 400 mPa ⁇ s or more and 800 mPa ⁇ s or less.
  • the epoxy resin (A) preferably further contains at least one of a bisphenol type epoxy resin (A2) and an aromatic amino epoxy resin (A3). It is more preferable that the sealing resin composition contains both the above-mentioned bisphenol type epoxy resin (A2) and the aromatic amino epoxy resin (A3). In this case, it is easy to proceed with an appropriate curing reaction of the components in the sealing resin composition, and therefore, the sealing material produced from the sealing resin composition has a good gap between the base material and the semiconductor chip. Easy to seal.
  • the sealing resin composition contains the bisphenol type epoxy resin (A2) and the aromatic amino epoxy resin (A3)
  • the bisphenol type epoxy resin (A2) and the aromatic amino epoxy resin (A2) with respect to the epoxy resin (A) The mass ratio of the total amount with A3) is preferably 85% by mass or more and 95% by mass or less.
  • the sealing resin composition contains a bisphenol type epoxy resin (A2) and an aromatic amino epoxy resin (A3)
  • the bisphenol type epoxy resin (A2) and the aromatic amino epoxy resin (A2) with respect to the total amount of the sealing resin composition ( A3) The total content is preferably 30% by mass or more and 50% by mass or less, more preferably 35% by mass or more and 45% by mass or less, and further preferably 30% by mass or more and 40% by mass or less.
  • the fluidity of the sealing resin composition can be more easily maintained, and the gap between the base material and the semiconductor chip can be well filled, so that the space between the base material and the semiconductor chip can be satisfactorily filled.
  • the gap can be sufficiently sealed.
  • the component that can be contained in the epoxy resin (A) in the sealing resin composition is not limited to that described above, and may contain a resin having an epoxy group other than the above.
  • Phosphoric acid (B) The sealing resin composition contains phosphoric acid (B).
  • Phosphoric acid (B) has a structure represented by the following formula (1).
  • the sealing resin composition contains phosphoric acid (B)
  • the effect of improving the dispersibility in the sealing resin composition by the polyester phosphate (C) described later can be promoted.
  • Phosphoric acid (B) is a mixture prepared by mixing with polyester (C) phosphate, and is preferably blended in the sealing resin composition.
  • the sealing resin composition contains polyester (C) phosphate.
  • polyester (C) phosphate it is easy to enhance the dispersibility of the components in the sealing resin composition. Therefore, even if the sealing resin composition contains a silicone resin (A1) which is a compound containing silicon, the viscosity of the sealing resin composition is less likely to increase excessively, and good fluidity is obtained. Can be secured. Further, it is difficult to inhibit the effect of reducing CTE of the cured product produced from the sealing resin composition. Further, since the sealing resin composition contains phosphoric acid (B) and polyester phosphate (C), it is difficult to reduce the dispersibility even if the proportion of the inorganic filler is increased. Therefore, the proportion of the filler in the sealing resin composition can be easily increased, and it is easier to achieve a reduction in the CTE of the cured product produced from the sealing resin composition.
  • the polyester phosphate (C) may have a structure represented by the following formula (2).
  • R 1 , R 2 , and R 3 are substituents independently selected from the group consisting of, for example, an alkyl group, an alkenyl group, and an alkynyl group, respectively.
  • R 1 , R 2 , and R 3 may be independently long-chained or branched.
  • At least one of R 1 , R 2 , and R 3 may be a hydrogen atom. That is, polyester phosphate (C) is a compound in which at least two hydrogen atoms in the formula (1) of phosphoric acid (B) are independently substituted with R 1 , R 2 , and R 3 , respectively.
  • Substituents R 1 , R 2 , and R 3 may contain a phosphorus atom.
  • polyester phosphate (C) is a compound derived from polyphosphoric acid represented by the following formula (3), for example. Good. That is, the polyester phosphate (C) may have two or more phosphorus atoms in one molecule.
  • n 2 or more.
  • the polyester phosphate (C) is derived from the formula (3), at least two of the hydrogen atoms in the formula (3) are substituted with a group selected from the group consisting of an alkyl group, an alkenyl group, and an alkynyl group. Just do it. Further, the polyester phosphate (C) may have a hydroxy group at the terminal.
  • n 1, it corresponds to phosphoric acid (B) represented by the formula (1).
  • the polyester phosphate (C) is not limited to the above, and may include, for example, a reaction product obtained by reacting an appropriate alkyl ether, polyalkylene glycol monoalkyl ether, or the like with a phosphoric acid esterifying agent.
  • polyester phosphate (C) examples can be included in, for example, BYK-W series (for example, BYK-W9010, etc.) and DISPERBYK series (for example, DISPERBYK-111, etc.) manufactured by Big Chemie Japan Co., Ltd. Phosphate polyester can be mentioned.
  • the mass ratio of the polyester (C) phosphate is preferably more than 0% by mass and less than 100% by mass, and more preferably 0.01% by mass or more and 90% by mass or less. It is more preferably 0.02% by mass or more and 50% by mass or less, and particularly preferably 0.05% by mass or more and less than 10% by mass.
  • the total mass ratio of phosphoric acid (B) and polyester phosphate (C) to silica (E1) is 0.05% by mass or more. It is preferably 0% by mass or less. In this case, the CTE of the cured product of the sealing resin composition can be further lowered.
  • the mass ratio of the phosphoric acid polyester (C) is more preferably 0.1% by mass or more and 0.5% by mass or less, and further preferably 0.2% by mass or more and 0.4% by mass or less. In this case, good fluidity can be imparted to the sealing resin composition, which makes it easier to fill the gaps with the sealing resin composition.
  • the total mass ratio of phosphoric acid (B) and polyester phosphate (C) to the silicone resin (A1) is more preferably 30% by mass or more and 70% by mass or less, more preferably 40% by mass. It is more preferable if it is% or more and 60% by mass or less.
  • the sealing resin composition preferably contains a curing aid (D). In this case, it can contribute to the storage stability of the sealing resin composition. Further, in this case, when the sealing resin composition is cured, the speed of the curing reaction can be controlled.
  • the curing aid (D) contains a curing accelerator.
  • the curing aid (D) has a function of promoting the progress of the reaction of the curable component in the sealing resin composition. In the present embodiment, the progress of the curing reaction of the silicone resin (A1) in the sealing resin composition can be slowly promoted. Further, when the sealing resin composition contains curable components such as a bisphenol type epoxy resin (A2) and an aromatic amino epoxy resin (A3), the curing of these components can be promoted.
  • the curing aid (D) when curing the epoxy resin (A) in the sealing resin composition, the curing aid (D) can suppress the excessive progress of the curing reaction. That is, the curing aid (D) is unlikely to excessively increase the curing reactivity of the sealing resin composition, and can proceed with curing at a good curing rate. Therefore, even if the sealing resin composition starts to cure due to a temperature rise during molding of the sealing resin composition, it is possible to prevent rapid curing from progressing, so that the fluidity is not easily impaired during molding. This allows it to be fully filled and then cured.
  • the curing aid (D) preferably contains a chelate compound (D1).
  • a chelate compound (D1) since the metal atom in the chelate compound (D1) can coordinate the oxygen atom in the epoxy resin (A), the excessive thermal curing reaction of the epoxy resin (A) in the sealing resin composition can be suppressed. .. Thereby, the storage stability of the sealing resin composition can be further improved. Further, in this case, an excessive increase in the viscosity of the sealing resin composition can be suppressed. Therefore, the fluidity of the sealing resin composition can be maintained better.
  • the chelate compound (D1) is at least one compound selected from the group consisting of, for example, aluminum acetylacetone, titanium acetylacetonate, titaniumtetraacetylacetone, titaniumacetate, zirconium ethylacetate, and zirconiumtetraacetylacetone. including.
  • the chelate compound (D1) preferably contains aluminum acetylacetonate.
  • the mass ratio of the curing aid (D) to the epoxy resin (A) is preferably 0.01% by mass or more and 2.0% by mass or less, preferably 0.03% by mass. % Or more and 1.5% by mass or less are more preferable, and 0.1% by mass or more and 1.0% by mass or less are further preferable. Within this range, the curability of the epoxy resin (A) in the sealing resin composition can be improved, and even if the chip size is increased, the gap between the base material and the semiconductor chip can be sealed. It can be sufficiently sealed with a cured product of the composition.
  • the content of the chelate compound (D1) with respect to the curing aid (D) is preferably 20% by mass or more and 100% by mass or less, more preferably 30% by mass or more and 90% by mass or less, and 50% by mass or more and 70% by mass or less. % Or less is more preferable.
  • the sealing resin composition preferably contains an inorganic filler (E).
  • the inorganic filler (E) can contribute to a decrease in the coefficient of linear expansion of the cured product produced from the sealing resin composition.
  • the sealing resin composition contains phosphoric acid (B) and polyester phosphate (C)
  • the sealing resin composition It is difficult to reduce the dispersibility of objects. Therefore, the viscosity of the sealing resin composition is unlikely to increase excessively, the fluidity can be maintained, and the thixotropy is unlikely to be deteriorated.
  • the sealing resin composition is less likely to deteriorate in fluidity even if the content of the inorganic filler (E) is increased, and the linear expansion coefficient of the sealing resin composition can be lowered. ..
  • the inorganic filler (E) preferably contains silica (E1), and it is also preferable that at least a part of the silica (E1) is surface-treated with a coupling agent.
  • the silica (E1) can be easily blended with the silicone resin (A1), and therefore can further contribute to the improvement of the dispersibility of the sealing resin composition.
  • the coupling agent is, for example, a silane coupling agent.
  • the silane coupling agent include compounds having at least one functional group selected from the group consisting of an epoxy group, an amino group, a (meth) acryloyl group, and a phenyl group.
  • the silane coupling agent is preferably a silane coupling agent having a phenyl group.
  • silica (E1) is surface-treated with a silane coupling agent having a phenyl group.
  • the silica (E1) can be particularly easily adapted to the silicone resin (A1) in the sealing resin composition, and the dispersibility of the sealing resin composition can be further improved.
  • the silica (E1) When the inorganic filler (E) contains silica (E1), the silica (E1) has a second silica filler (E11) having a different average particle size from the first silica filler (E11). It preferably contains a silica filler (E12).
  • the "average particle size" in the present disclosure is a volume average diameter. The volume average diameter is calculated from the particle size distribution obtained by measuring with a laser diffraction / scattering method. The particle size distribution can be measured by, for example, a laser diffraction type particle size distribution measuring device, and examples of the laser diffraction type particle size distribution measuring device include the LA-960 series manufactured by HORIBA, Ltd.
  • the average particle size of the first silica filler (E11) is preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less, and the standard deviation in the particle size distribution of the first silica filler (E11) in this case is 0.01. It is preferably less than 1.0.
  • the average particle size of the second silica filler (E12) is 10% or more and 50% or less of the average particle size of the first silica filler (E11), and the average particle size of the second silica filler (E12).
  • the standard deviation in the particle size distribution is preferably 0.01 or more and less than 1.0.
  • the "standard deviation in the particle size distribution" in the present disclosure is an index indicating the breadth and narrowness of the particle size distribution.
  • the standard deviation in the particle size distribution can be calculated as follows. Similar to the above average particle size (volume average diameter), the standard deviation can be calculated from the particle size data of each particle and the average particle size in the particle size distribution obtained by measuring by the laser diffraction / scattering method.
  • the silica (E1) in the sealing resin composition the silica particles in each of the first silica filler (E11) and the second silica filler (E12) have a standard deviation of 0.01 or more and 1,0 in the particle size distribution. If it is less than, the viscosity of the sealing resin composition can be further lowered. Thereby, the sealing resin composition can secure the fluidity. Therefore, in sealing the gap between the substrate and the semiconductor element with the sealing resin composition, more excellent moldability can be achieved.
  • the average particle size of the first silica filler (E11) is more preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less. Further, the standard deviation in the particle size distribution of the first silica filler (E11) is preferably 0.01 or more and 0.6 or less, more preferably 0.02 or more and 0.40 or less, and 0.02 or more and 0. It is more preferably 36 or less, and particularly preferably 0.05 or more and 0.36 or less.
  • the average particle size of the second silica filler (E12) is not particularly limited as long as it satisfies the above, but the average particle size of the second silica filler (E12) is, for example, 0.01 ⁇ m or more and 0.75 ⁇ m or less. can do.
  • the standard deviation in the particle size distribution of the second silica filler (E12) is preferably 0.01 or more and less than 0.10, more preferably 0.02 or more and 0.08 or less, and 0.03 or more and 0.08. The following is more preferable, and 0.04 or more and 0.06 or less is particularly preferable.
  • each of the first silica filler (E11) and the second silica filler (E12) is wet silica.
  • the wet silica is an amorphous silica synthesized in a liquid.
  • the wet silica can be produced by at least one method selected from the group consisting of a sedimentation method and a sol-gel method.
  • Wet silica is particularly preferably produced by the sol-gel method.
  • the average particle size of the wet silica particles can be kept relatively small, such as 0.1 ⁇ m or more and 1.5 ⁇ m or less, and the particle size distribution can be less likely to vary.
  • the sol-gel method is a synthesis method for obtaining a solid substance from a sol state in which fine particles such as colloids are dispersed in a solution through a gel state in which fluidity is lost, and an appropriate method may be adopted as the synthesis method.
  • the fact that the first silica filler (E11) of the present disclosure is produced by the sol-gel method can be confirmed by cutting the particles of the appropriate first silica filler (E11) and observing the cross section thereof.
  • the sol-gel method was produced by a sol-gel method by cutting a cured product of a sealing resin composition, observing the cut surface with an electron microscope or the like, and measuring the particle size of silica on the cut surface. It can be judged that it is a thing. It can be confirmed in the same manner as the first silica filler (E11) that the second silica filler (E12) and the third silica filler (E13) described later are produced by the sol-gel method.
  • the silica (E1) further contains a third silica filler (E13) having an average particle size different from that of both the first silica filler (E11) and the second silica filler (E12). That is, it is also preferable that the sealing resin composition contains the first silica filler (E11), the second silica filler (E12), and the third silica filler (E13). Especially when the silica (E1) contains the third silica filler (E13), the average particle size of the third silica filler (E13) is smaller than the average particle size of the second silica filler (E12). Not limited.
  • the standard deviation in the particle size distribution of the third silica filler (E13) is preferably 0.01 or more and less than 0.10, more preferably 0.02 or more and 0.09 or less, and 0.03 or more and 0.08. The following is more preferable, and 0.04 or more and 0.06 or less is particularly preferable.
  • the sealing resin composition contains the third silica filler (E13)
  • the sealing resin composition can be made particularly less fluid, and the sealing resin composition can be made less fluid. However, it can have good thixotropy.
  • the mass ratio of the third silica filler (E13) is preferably 5% by mass or more and 40% by mass or less with respect to the total amount of silica (E1).
  • the mass ratio of the third silica filler (E13) to the total amount of silica (E1) is 5% by mass or more, the thixophilicity can be improved, and when it is 40% by mass or less, good fluidity is maintained. Can be done.
  • the third silica (E13) is also preferably wet silica.
  • the third silica filler (E13) is also preferably wet silica produced by the sol-gel method.
  • each of the first silica filler (E11), the second silica filler (E12), and the third silica filler (E13) can be easily adjusted to be silica particles having a uniform particle size.
  • the first silica filler (E11) may be surface-treated with a coupling agent.
  • the surface treatment of the silica filler is possible by reacting, for example, wet silica produced by the sol-gel method with a coupling agent (for example, a silane coupling agent).
  • a coupling agent for example, a silane coupling agent.
  • the second silica filler (E12) and the third silica filler (E13) may be surface-treated with a coupling agent.
  • the mass ratio of the first silica filler (E11) and the second silica filler (E12) in the silica (E1) is preferably in the range of 60:40 to 98: 2.
  • the silica (E1) further contains a third silica filler (E13)
  • the mass ratio of the first silica filler (E11) to the second silica filler (E12) to the third silica filler (E13) is 60: It is preferable if it is in the range of 30:10 to 90: 8: 2.
  • the content of the inorganic filler (E) with respect to the total amount of the sealing resin composition is preferably 50% by mass or more and 75% by mass or less.
  • the CTE of the sealing resin composition can be further lowered.
  • the fluidity of the sealing resin composition can be maintained particularly well even if the proportion of the inorganic filler is relatively large. Therefore, it is possible to prevent the sealing resin composition from being unfilled in the gaps.
  • the content of the inorganic filler (E) is more preferably 50% by mass or more and 70% by mass or less, and further preferably 55% by mass or more and 65% by mass or less.
  • the inorganic filler (E) may contain a filler other than silica as long as the effects of the present disclosure are not impaired.
  • the sealing resin composition may contain components other than those described above as long as the effects of the present disclosure are not impaired.
  • the sealing resin composition may contain a resin component other than that described above.
  • the sealing resin composition can contain an appropriate additive.
  • additives include curing agents, fluxes, viscosity modifiers, surface modifiers, silane coupling agents, defoamers, leveling agents, low stress agents, pigments and the like.
  • the sealing resin composition contains a silane coupling agent.
  • the compatibility between the silicone resin (A1) and the silane coupling agent in the sealing resin composition is improved, and the dispersibility of the sealing resin composition is more likely to be improved.
  • the sealing resin composition contains silica (E1), the dispersibility of the sealing resin composition can be more easily enhanced.
  • the silane coupling agent an appropriate coupling agent can be adopted, and for example, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyl.
  • It may be an epoxysilane coupling agent such as trimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane.
  • the sealing resin composition preferably does not contain an organic solvent, or the content ratio of the organic solvent is 0.5% by mass or less.
  • the sealing resin composition can be obtained, for example, by blending the above components, adding appropriate additives as necessary, and mixing them.
  • the sealing resin composition can be prepared, for example, by the following method.
  • a mixture is obtained by simultaneously or sequentially blending the components that can be contained in the sealing resin composition described above. This mixture is stirred and mixed while performing heat treatment and cooling treatment as necessary.
  • a resin composition for sealing can be obtained.
  • a disper, a planetary mixer, a ball mill, a three-roll, a bead mill and the like can be applied in an appropriate combination as necessary.
  • the viscosity of the sealing resin composition at 25 ° C. is preferably less than 35 Pa ⁇ s. In this case, when molding the sealing resin composition, the coating workability by jet dispense and the discharge stability can be improved. Further, in this case, good filling property under the mounting component such as a semiconductor chip can be achieved.
  • the viscosity of the sealing resin composition at 25 ° C. is more preferably 25 Pa ⁇ s or less, and even more preferably 20 Pa ⁇ s or less.
  • the lower limit of the viscosity of the sealing resin composition at 25 ° C. is not particularly limited, but is, for example, 2 Pa ⁇ s or more.
  • the sealing resin composition can be cured, for example, by heating.
  • the conditions for heating for example, the heating temperature, the heating time, the maximum heating temperature, and the like may be appropriately adjusted according to the type of the curable component (A), the type of the curing agent, and the like.
  • the glass transition temperature Tg of the cured product of the sealing resin composition is preferably 80 ° C. or higher. Further, the glass transition temperature Tg is preferably less than 180 ° C. When the glass transition temperature Tg is 80 ° C. or higher, the cured product of the sealing resin composition may have heat resistance.
  • the glass transition temperature Tg is more preferably 90 ° C. or higher and 170 ° C. or lower.
  • the glass transition temperature can be measured by, for example, TMA (Thermomechanical Analysis).
  • the coefficient of linear expansion (CTE) of the cured product of the sealing resin composition at a glass transition temperature of Tg or less is preferably 20 ppm / ° C. or higher and 40 ppm / ° C. or lower, more preferably 30 ppm / ° C. or lower, and 25 ppm / ° C. More preferably, it is below ° C.
  • the sealing resin composition and the cured product of the sealing resin composition can be less likely to be warped by heating. Therefore, cracks can be less likely to occur in the cured product of the sealing resin composition.
  • the coefficient of linear expansion of the cured product of the sealing resin composition is a tangent line based on the dimensional change at a temperature of Tg or less and the dimensional change at an arbitrary temperature of Tg or more from the Tg of the result measured by TMA. It is obtained by calculating the slope of.
  • the storage elastic modulus of the cured product of the sealing resin composition at 25 ° C. is preferably 6.0 GPa or more and 12.0 GPa or less, and more preferably 6.5 GPa or more and 10 GPa or less.
  • the storage elastic modulus of the cured product of the sealing resin composition is obtained by measuring it with a DMA device in accordance with JIS K6911.
  • the fracture toughness K1c of the cured product of the sealing resin composition at 25 ° C. is preferably 2.0 MPa ⁇ m 1/2 or more. In this case, cracks can be further less likely to occur in the cured product of the sealing resin composition. Thereby, the reliability of the semiconductor device including the sealing material made of the cured product of the sealing resin composition can be improved. Fracture toughness K1c of the cured product is more preferably as long as 2.5 MPa ⁇ m 1/2 or more, further preferably equal to 3.0 MPa ⁇ m 1/2 or more.
  • the fracture toughness K1c can be measured in accordance with JIS R1607. Specifically, it can be measured by the method described in the examples described later.
  • the sealing resin composition of the present embodiment can be suitably used as an underfill material as described above.
  • the sealing resin composition can be particularly preferably used as a post-supply type underfill material particularly in flip chip mounting.
  • FIG. 1 shows an example of the semiconductor device 1 of the present embodiment.
  • the semiconductor device 1 seals a gap between a base material 2 that supports a mounting component 3 such as a semiconductor chip, a mounting component 3 that is face-down mounted on the base material 2, and a gap between the base material 2 and the mounting component 3.
  • a stopper 4 is provided.
  • the sealing material 4 is made of a cured product of the liquid sealing resin composition described above.
  • the semiconductor device 1 and its manufacturing method will be specifically described.
  • the semiconductor device 1 includes a base material 2 having a conductor wiring 21, a mounting component 3 such as a semiconductor chip, which is provided with a bump electrode 33 and is mounted on the base material 2 by joining the bump electrode 33 to the conductor wiring.
  • a sealing material 4 that covers the bump electrode 33 is provided.
  • the sealing material 4 is a cured product of the sealing resin composition described above.
  • the base material 2 is, for example, a mother substrate, a package substrate, or an interposer substrate.
  • the base material 2 includes an insulating substrate made of glass epoxy, polyimide, polyester, ceramic, etc., and a conductor wiring 21 made of a conductor such as copper formed on the surface of the insulating substrate.
  • the conductor wiring 21 includes, for example, an electrode pad.
  • the mounting component 3 is, for example, a semiconductor chip.
  • the semiconductor chip is a flip chip type chip such as BGA (ball grid array), LGA (land grid array), or CSP (chip size package).
  • the semiconductor chip may be a PoP (package on package) type chip.
  • the mounting component 3 may include a plurality of bump electrodes 33.
  • the bump electrode 33 includes solder.
  • the bump electrode 33 includes a pillar 31 and a solder bump 32 provided at the tip of the pillar 31, as shown in FIG.
  • the solder bump 32 is made of solder, so that the bump electrode 33 includes solder.
  • the pillar 31 is made of copper, for example.
  • the melting point of the solder provided in the bump electrode 33 is not particularly limited, but can be melted at a mounting temperature (for example, 220 to 260 ° C.) or lower when mounting a mounting component 3 such as a semiconductor chip. It may be the temperature.
  • the composition of the solder is not particularly limited and may be an appropriate composition, and for example, Sn-Ag-based solder and Sn-Ag-Cu-based solder can be used.
  • the structure of the bump electrode 33 including solder is not limited to the above.
  • the bump electrode 33 may include only spherical solder bumps 32 (solder balls). That is, the bump electrode 33 does not have to be provided with pillars.
  • the sealing material 4 fills the entire gap between the base material 2 and the mounting component 3. As a result, the sealing material 4 covers the entire bump electrode 33 and covers the joint between the bump electrode 33 and the conductor wiring 21. That is, the sealing material 4 is a so-called underfill.
  • the manufacturing method of the semiconductor device 1 will be described with an example. However, the manufacturing method of the semiconductor device 1 is not limited to the method described below, and the semiconductor device 1 is the sealing resin composition described above. It suffices if the gap between the base material 2 and the mounting component 3 can be covered and sealed.
  • a base material 2 having a conductor wiring 21 and a mounting component 3 having a bump electrode 33 are prepared, the mounting component 3 is placed on the base material 2, and the bump electrode 33 is placed on the conductor wiring 21.
  • the sealing resin composition is arranged so as to cover the bump electrode 33, and the sealing resin composition and the bump electrode 33 are heat-treated to cure and seal the sealing resin composition.
  • the stopper 4 is manufactured, and the bump electrode 33 and the conductor wiring 21 are electrically connected.
  • arranging the sealing resin composition is not limited to the case where the solid sealing resin composition is arranged on the sealing object (for example, the bump electrode 33), and the liquid sealing resin composition is used. This includes applying an object to the object to be sealed, injecting a liquid sealing resin composition into a gap between the objects to be sealed, and arranging the resin composition so as to cover the object to be sealed.
  • the sealing resin composition may be arranged so as to cover the bump electrode 33.
  • the mounting component 3 may be arranged on the base material 2 and the bump electrode 33 may be arranged on the conductor wiring 21.
  • the sealing resin composition may be placed on the mounting component 3 and the base material 2 at any time. It may be placed in any position.
  • the sealing resin composition is placed on the base material 2, and then the mounting component 3 is placed on the base material 2.
  • the sealing resin composition is interposed between the mounting component 3 and the mounting component 3, and the bump electrode 33 is arranged so as to be arranged on the conductor wiring 21.
  • the sealing resin composition is arranged so as to cover the bump electrode 33.
  • the mounting component 3 is arranged on the base material 2 so that the bump electrode 33 is arranged on the conductor wiring 21, and then the sealing resin composition is placed between the base material 2 and the mounting component 3.
  • the sealing resin composition may be interposed between the base material 2 and the mounting component 3, and the sealing resin composition may be arranged so as to cover the bump electrode 33.
  • a sealing resin composition is arranged on the mounting component 3 so as to cover the bump electrode 33.
  • the mounting component 3 is arranged on the base material 2 so that the sealing resin composition is interposed between the base material 2 and the mounting component 3 and the bump electrode 33 is arranged on the conductor wiring 21. To do.
  • the sealing resin composition is arranged so as to cover the bump electrode 33.
  • the sealing resin composition When the sealing resin composition is placed on the base material 2 or the sealing resin composition is placed on the mounting component 3, for example, a method using a dispenser, a screen printing method, an inkjet method, a dipping method, or the like can be used. Place the sealing resin composition.
  • the heat treatment of the sealing resin composition and the bump electrode 33 is performed using a heating furnace such as a reflow furnace.
  • the heat treatment may be performed by an appropriate method using equipment other than the reflow furnace.
  • the sealing resin composition and the bump electrode 33 are heat-treated, the solder in the bump electrode 33 melts, so that the bump electrode 33 and the conductor wiring 21 are electrically connected, and the sealing resin composition.
  • the sealing material 4 is produced by curing the solder.
  • the semiconductor device 1 is obtained.
  • the conditions of the heat treatment may be appropriately set according to the composition of the sealing resin composition.
  • the maximum heating temperature is preferably 220 ° C. or higher and 260 ° C. or lower, for example.
  • the present invention is not limited to the above, and the maximum heating temperature may be appropriately set according to the composition of the sealing resin composition and the like.
  • -Bisphenol type epoxy resin Bisphenol F type epoxy resin (manufactured by Toto Kasei Co., Ltd., product name YDF8170. Epoxy equivalent 175 eq./g).
  • -Aromatic amino epoxy resin manufactured by jRR Co., Ltd.
  • Product name 636. Matture of phosphoric acid and polyester phosphate
  • -Mixed mixture of phosphoric acid and polyester phosphate manufactured by Big Chemie Japan Co., Ltd.
  • Product name BYK-W 9010 Composition: Polyester phosphate content 90% by weight or more and less than 100% by weight, Phosphoric acid content 1% by weight or more and 10% by weight
  • (Hardener) -Amine hardener manufactured by Nippon Kayaku Co., Ltd.
  • (Hardening aid) -Chelate compound 1 Manufactured by Kawaken Fine Chemical Co., Ltd.
  • -Chelate compound 2 Product name TC-100 manufactured by Matsumoto Fine Chemicals Co., Ltd. Titanium trisacetylacetone.
  • (Inorganic filler) -Silica 1 Silica produced by the sol-gel method and surface-treated with a silane coupling agent having a phenyl group (average particle size 1.0 ⁇ m. Standard deviation in particle size distribution is 0.04 or more and 0.5 or less).
  • .. -Silica 2 Silica produced by the sol-gel method and surface-treated with a silane coupling agent having a phenyl group (average particle size 0.3 ⁇ m. Standard deviation in particle size distribution is 0.04 or more and 0.5 or less).
  • .. -Silica 3 Silica produced by the sol-gel method and surface-treated with a silane coupling agent having a phenyl group (average particle size 0.1 ⁇ m.
  • Standard deviation in particle size distribution is 0.04 or more and 0.5 or less).
  • .. -Silica 4 Silica produced by the sol-gel method and surface-treated with phenylsilane (average particle size 50 nm, standard deviation in particle size distribution is 0.04 or more and 0.5 or less).
  • -Silica 5 Silica produced by the sol-gel method and surface-treated with phenylsilane (average particle size 10 nm, standard deviation in particle size distribution is 0.04 or more and 0.5 or less).
  • (Additive) -Coupling agent Epoxysilane (silane coupling agent. Product name KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.).
  • -Colorant Carbon black (product name MA100 manufactured by jER Co., Ltd.).
  • Viscosity 1. Using a BM type viscometer (model number TVB-10 manufactured by Toki Sangyo Co., Ltd.), the viscosity of the resin composition prepared in 1. 6 Measured under the condition of rotation speed of 5 rpm. Based on the obtained measurement results, evaluation was made according to the following criteria. A: The viscosity is less than 25 Pa ⁇ s. B: The viscosity is 25 Pa ⁇ s or more and 35 Pa ⁇ s or less. C: The viscosity is 35 Pa ⁇ or more.
  • the obtained cured product was subjected to a dynamic viscoelasticity measurement (DMA) device (Hitachi High-Tech Science Co., Ltd., model number DMA7100) from room temperature -60 ° C to 280 ° C under the condition of a temperature rise rate of 5 ° C / min. From the results obtained by measurement, the glass transition temperature of the cured product was obtained. The numerical values (° C.) of the obtained glass transition temperature are shown in Table 1.
  • TMA test Coefficient of linear expansion
  • a thermomechanical analysis (TMA) device (model number TMA7000 manufactured by Hitachi High-Tech Science Co., Ltd.) was used under the conditions of a load of 1 g and a heating rate of 5 ° C./min.
  • the coefficient of linear expansion was calculated from the results obtained by heating from -60 ° C. to 280 ° C. and measuring the dimensional change, and evaluated according to the following criteria.
  • C 35 ppm / ° C. or higher.
  • P ⁇ maximum load until the test piece breaks [kgf]
  • S distance between three-point bending fulcrums [mm]
  • B thickness of test piece [mm]
  • W Width [mm] of test piece
  • a Length of pre-crack [mm].

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

基材と、大型のチップとの間を封止する封止材を作製する場合であっても、基材とチップとの間に充填されやすく、かつ封止材にクラック生じにくい封止用樹脂組成物を提供する。封止用樹脂組成物は、エポキシ樹脂(A)と、リン酸(B)と、リン酸ポリエステル(C)と、を含有する。エポキシ樹脂(A)は、1分子内に2つ以上のエポキシ基を有するシリコーン樹脂(A1)を含有する。

Description

封止用樹脂組成物、及び半導体装置
 本開示は、封止用樹脂組成物、及び半導体装置に関し、詳しくは、半導体素子等の電子部品を封止するための封止用樹脂組成物、及びこの封止用樹脂組成物から作製される封止材を備える半導体装置に関する。
 特許文献1では、液状ビスフェノール型エポキシ樹脂、シリコーンゴム微粒子、シリコーン変性エポキシ樹脂、芳香族アミン硬化剤、カップリング剤、無機充填剤、及び有機溶剤を含有する封止用液状エポキシ樹脂組成物を開示している。この封止用液状エポキシ樹脂組成物では、低反り性が要求される電子部品装置に適用しても、反りが小さく抑えられ、かつ強度、耐熱衝撃性、耐湿性等の信頼性に優れることが開示されている。
特開2007-23272号公報
 本開示の目的は、基材と、大型のチップとの間を封止する封止材を作製する場合であっても、基材とチップとの間に充填されやすく、かつ封止材にクラック生じにくい封止用樹脂組成物及びこの封止用樹脂組成物の硬化物からなる封止材を備える半導体装置を提供することである。
 本開示の一態様に係る封止用樹脂組成物は、エポキシ樹脂(A)と、リン酸(B)と、リン酸ポリエステル(C)と、を含有する。前記エポキシ樹脂(A)は、1分子内に2つ以上のエポキシ基を有するシリコーン樹脂(A1)を含有する。
 本開示の一態様に係る半導体装置は、基材と、前記基材に実装される実装部品と、前記基材と前記実装部品との隙間を封止する封止材と、を備える。前記封止材は、前記封止用樹脂組成物の硬化物からなる。
図1は、本開示の一実施形態に係る半導体装置を示す概略の断面図である。
 1.概要
 本実施形態に係る封止用樹脂組成物は、エポキシ樹脂(A)と、リン酸(B)と、リン酸ポリエステル(C)と、を含有する。エポキシ樹脂(A)は、1分子内に2つ以上のエポキシ基を有するシリコーン樹脂(A1)を含有する。
 従来、封止用の樹脂組成物において、シリカ等の無機充填材(フィラー)を配合することによって、樹脂組成物から作製される封止材の、耐熱性の向上、及び線膨張係数(CTE:Coefficient of Thermal Expansion)を低下させることが行われてきた。しかしながら、樹脂組成物中でのフィラーの割合を高くしすぎると、フィラーが凝集しやすくなり、樹脂組成物の粘度が過度に上昇することで、流動性が低下し、その結果、成形性が低下するおそれがあった。そして、樹脂組成物を成形する際の成形性が低下すると、半導体装置における基材と半導体チップとの間の隙間を樹脂組成物で封止するにあたって、樹脂組成物を隙間の奥まで十分に充填できないという問題があった。
 また、近年、チップを大型化させることも行われている。チップの大型化に伴い、封止材のサイズも大型化し、これにより封止材にかかる応力が大きくなりやすく、そのため耐熱衝撃性等の性能が十分に得られないことがあった。そのため、封止材のクラック、剥離等が生じやすくなる。また、組成物から封止材を作製する場合、チップが大型化すると、基板等の基材とチップとの間に組成物を十分に充填することが困難になるという問題もあった。
 これに対し、本実施形態の封止用樹脂組成物は、エポキシ樹脂(A)がシリコーン樹脂(A1)を含有することで、封止用樹脂組成物に熱硬化性を付与でき、かつ封止用樹脂組成物及び封止用樹脂組成物の硬化物の貯蔵弾性率を低めることができる。また、封止用樹脂組成物から作製される硬化物におけるCTEを低めることができる。また、本実施形態の封止用樹脂組成物は、粘度を低く維持することができ、かつチクソ指数も1に近づけることができるため、良好な流動性を有しうる。
 さらに、封止用樹脂組成物は、リン酸(B)及びリン酸ポリエステル(C)を含有することで、封止用樹脂組成物中における成分の分散性を向上できる。そのため、仮にシリコーン樹脂(A1)によって粘度が上昇しやすくなっても、封止用樹脂組成物の分散性が高められているため、良好な流動性を維持可能である。これにより、封止用樹脂組成物で基材と実装基板との間の隙間で流動させやすく、そのため封止材を隙間に充分に充填させやすい。
 本実施形態の封止用樹脂組成物では、上記のとおり、良好な流動性を実現でき、封止用樹脂組成物から作製される硬化物の低CTE化、及び低弾性率化を達成できる。特に、本実施形態の封止用樹脂組成物から作製される硬化物は、シリコーン樹脂(A1)とリン酸(B)と、リン酸ポリエステル(C)とを含有することで、低CTE化、及び低弾性率化だけでなく、破壊靭性K1cの向上が実現できうる。なお、本開示において、破壊靭性K1cとは、欠陥を有する材料に力がかかった際の破壊に対する抵抗である。破壊靭性は、後掲の実施例に記載の方法により測定される。そして、本実施形態の封止用樹脂組成物では、破壊靭性が高いことで、クラックを生じにくい封止材を作製可能である。特に、本実施形態では、半導体装置の高機能化に伴う半導体チップのチップサイズが大型化された場合のクラックを生じにくくすることができ、かつ半導体装置の信頼性を向上させることができる。
 なお、本開示において、チップが大型化するとは、例えば実装部品における半導体チップ等のチップサイズが、平面視矩形状であり一辺の長さが25mm以上であること、又は平面視での面積が625mm2以上であることを意味する。ただし、本実施形態では、チップのサイズは前記には制限されず、本実施形態にかかる組成物は、チップのサイズがいかなる場合であっても適用されうる。
 このような封止用樹脂組成物の好ましい特性は、より具体的には、以下で説明する組成の成分を適宜調整することにより、実現可能である。
 本実施形態に係る封止用樹脂組成物は、図1に示すように、半導体装置1において、基材2と半導体チップ等の実装部品3との間を封止する封止材4に好適に用いることができる。特に、封止用樹脂組成物は、アンダーフィル材として好適に用いることができる。封止用樹脂組成物がアンダーフィル材として用いられ、封止用樹脂組成物から封止材4を作製すると、封止材4にクラックが発生しにくくできる。
 2.詳細
 封止用樹脂組成物に含まれうる成分について、詳細に説明する。
 [エポキシ樹脂(A)]
 本実施形態の封止用樹脂組成物は、エポキシ樹脂(A)を含有する。エポキシ樹脂(A)は、熱硬化性の成分である。エポキシ樹脂(A)は、1分子中に少なくとも1つのエポキシ基を有する。本実施形態では、エポキシ樹脂(A)は、1分子内に2つ以上のエポキシ基を有するシリコーン樹脂(A1)を含有する。
 エポキシ樹脂(A)の25℃における粘度は、100mPa・s以上20Pa・s以下であることが好ましい。エポキシ樹脂(A)の粘度は、例えばB型回転粘度計を用いて、回転速度50rpmの条件で測定できる。
 [シリコーン樹脂(A1)]
 封止用樹脂組成物は、上記のとおり、シリコーン樹脂(A1)を含有する。シリコーン樹脂(A1)は、1分子内に2つ以上のエポキシ基を有する。
 シリコーン樹脂とは、分子内にシロキサン結合を有する化合物である。本実施形態では、シリコーン樹脂(A1)は、1分子内に少なくとも1つのシロキサン結合と、2つ以上のエポキシ基とを有する。本実施形態の封止用樹脂組成物におけるシリコーン樹脂(A1)は、シロキサン骨格を有していることで、CTEの低下に寄与しうる。また、エポキシ基を有するため、封止用樹脂組成物に熱硬化性を付与することができる。
 シリコーン樹脂(A1)は、1分子の末端に、少なくとも一つのエポキシ基を有することが好ましい。この場合、シリコーン樹脂(A1)は凝集を生じにくいため、過度に封止用樹脂組成物の粘度を上昇させにくく、そのため、良好な流動性を確保することができる。ここで、1分子の末端とは、分子中のシロキサン結合においてケイ素原子に結合する連結鎖の、ケイ素原子から最も離れた端の位置をいう。例えば、シリコーン樹脂(A1)が分枝状である場合であっても、末端とは、各々の分枝の端の位置のいずれかであってよい。シリコーン樹脂(A1)において、エポキシ基が分子内の末端に存在すると、封止用樹脂組成物の反応性が過度に上昇しにくいため、封止用樹脂組成物の保存安定性を維持できうる。このため、封止用樹脂組成物を成形する際に、成形性(加工性)を維持でき、成形の途中では硬化しにくく、基材と半導体チップとの間の隙間に充填しやすい。
 シリコーン樹脂(A1)は、25℃において液状であることが好ましい。この場合、封止用樹脂組成物の粘度を、成形するにあたっての良好な粘度に特に調整しやすい。また、この場合、封止用樹脂組成物が溶剤を含有しなくても、好適な粘度を有するように調製しやすい。シリコーン樹脂(A1)の25℃における粘度は、例えば1000mPa・s以下であることが好ましい。
 エポキシ樹脂(A)全量に対するシリコーン樹脂(A1)の含有量は、0.1質量%以上15.0質量%以下であることが好ましい。この場合、封止用樹脂組成物の低粘度化、及び破壊靭性K1cの向上に寄与しうる。シリコーン樹脂(A1)の含有量は、0.5質量%以上12.0質量%以下であればより好ましく、1.0質量%以上10.0質量%以下であれば更に好ましい。
 [ビスフェノール型エポキシ樹脂(A2)]
 エポキシ樹脂(A)は、ビスフェノール型エポキシ樹脂(A2)を更に含有することが好ましい。すなわち、封止用樹脂組成物は、ビスフェノール型エポキシ樹脂(A2)を更に含有することが好ましい。この場合、封止用樹脂組成物に熱硬化性を付与できる。
 ビスフェノール型エポキシ樹脂(A2)は、例えばビスフェノールA型エポキシ樹脂、ビスフェノール型エポキシ樹脂、及びビスフェノールS型エポキシ樹脂、並びにこれらの樹脂の誘導体からなる群から選択される少なくとも一種を含有する。ビスフェノール型エポキシ樹脂(A2)は、特にビスフェノールF型エポキシ樹脂を含有することが好ましい。この場合、封止用樹脂組成物に、より良好な熱硬化性を付与できる。ビスフェノールF型エポキシ樹脂は、2つのフェノール骨格が1つのエチレン鎖を介して結合した化合物である。ビスフェノールF型エポキシ樹脂は、フェノール骨格中に置換基を有していてもよい。
 ビスフェノール型エポキシ樹脂(A2)の25℃における粘度は、例えば1000mPa・s以上4000mPa・s以下であることが好ましい。
 [芳香族アミノエポキシ樹脂(A3)]
 エポキシ樹脂(A)は、芳香族アミノエポキシ樹脂(A3)を更に含有することが好ましい。すなわち、封止用樹脂組成物は、芳香族アミノエポキシ樹脂(A3)を更に含有することが好ましい。この場合、封止用樹脂組成物の保存安定性を維持しながら、封止用樹脂組成物に、より良好な熱硬化性を付与できる。
 芳香族アミノエポキシ樹脂(A3)は、芳香環と、芳香環に結合するアミノ基と、1分子中に3つ以上のエポキシ基とを有することが好ましい。すなわち、芳香族アミノエポキシ樹脂(A3)は、3官能以上であることが好ましい。
 芳香族アミノエポキシ樹脂(A3)は、芳香環と、芳香環に結合するアミノ基、アミノ基に結合するエポキシ基、及び芳香環に結合するアミノ基とは別の位置に結合するエポキシ基を備えることがより好ましい。すなわち、芳香族アミノエポキシ樹脂(A3)は、3つ以上のエポキシ基を有する場合、少なくとも1つが、芳香環に結合するアミノ基に結合していることが好ましい。
 芳香族アミノエポキシ樹脂(A3)の具体的な例としては、例えばN,N-ジグリシジル-p-グリシジルオキシアニリン等を挙げることができる。なお、芳香族アミノエポキシ樹脂(A3)は、前記の化合物に限らない。
 芳香族アミノエポキシ樹脂(A3)の25℃における粘度は、400mPa・s以上800mPa・s以下であることが好ましい。
 エポキシ樹脂(A)は、ビスフェノール型エポキシ樹脂(A2)と、芳香族アミノエポキシ樹脂(A3)とのうち少なくとも一方を更に含有することが好ましい。封止用樹脂組成物は、上記のビスフェノール型エポキシ樹脂(A2)と、芳香族アミノエポキシ樹脂(A3)との両方を含有することがより好ましい。この場合、封止用樹脂組成物における成分の適度な硬化反応を進行させやすく、このため、封止用樹脂組成物から作製される封止材で良好に基材と半導体チップとの間の隙間を封止しやすい。封止用樹脂組成物が、ビスフェノール型エポキシ樹脂(A2)と芳香族アミノエポキシ樹脂(A3)とを含有する場合、エポキシ樹脂(A)に対するビスフェノール型エポキシ樹脂(A2)と芳香族アミノエポキシ樹脂(A3)との合計量の質量割合は、85質量%以上95質量%以下であれば好ましい。
 封止用樹脂組成物がビスフェノール型エポキシ樹脂(A2)及び芳香族アミノエポキシ樹脂(A3)を含有する場合、封止用樹脂組成物全量に対するビスフェノール型エポキシ樹脂(A2)及び芳香族アミノエポキシ樹脂(A3)合計含有量は、30質量%以上50質量%以下であることが好ましく、35質量%以上45質量%以下であればより好ましく、30質量%以上40質量%以下であれば更に好ましい。この範囲内であれば、封止用樹脂組成物の流動性をより良好に維持しやすく、基材と半導体チップとの間の隙間に良好に充填できるため、基材と半導体チップとの間の隙間を十分に封止することができる。
 なお、封止用樹脂組成物においてエポキシ樹脂(A)に含まれうる成分は、上記で説明したものに限らず、上記以外のエポキシ基を有する樹脂を含有してもよい。
 [リン酸(B)]
 封止用樹脂組成物は、リン酸(B)を含有する。リン酸(B)は、下記式(1)で示す構造を有する。
Figure JPOXMLDOC01-appb-C000001
 封止用樹脂組成物がリン酸(B)を含有すると、後述のリン酸ポリエステル(C)による封止用樹脂組成物中の分散性の向上の効果を促進しうる。リン酸(B)は、リン酸ポリエステル(C)と混合することで調製された混合物で封止用樹脂組成物に配合されていることが好ましい。
 [リン酸ポリエステル(C)]
 封止用樹脂組成物は、リン酸ポリエステル(C)を含有する。封止用樹脂組成物がリン酸ポリエステル(C)を含有すると、封止用樹脂組成物中の成分の分散性を高めやすい。このため、封止用樹脂組成物が、ケイ素を含む化合物であるシリコーン樹脂(A1)を含有していても、封止用樹脂組成物の粘度を過度に上昇しにくくし、良好な流動性を確保できる。さらに、封止用樹脂組成物から作製される硬化物のCTE低減の効果を阻害しにくい。また、封止用樹脂組成物は、リン酸(B)とリン酸ポリエステル(C)とを含有することで、無機充填材(フィラー)の割合を高めても分散性を低下させにくい。このため、封止用樹脂組成物のフィラーの割合を容易に高めることができ、封止用樹脂組成物から作製される硬化物のCTEを低めることをより容易に達成しやすい。
 リン酸ポリエステル(C)は、下記式(2)で示す構造を有しうる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R1、R2、及びR3は、例えば各々独立にアルキル基、アルケニル基、及びアルキニル基からなる群から選択される置換基である。R1、R2、及びR3は、各々独立に長鎖状であってもよく、分枝状であってもよい。なお、R1、R2、及びR3のうち少なくとも一つは水素原子であってもよい。すなわち、リン酸ポリエステル(C)は、リン酸(B)の式(1)中における、少なくとも2つの水素原子が各々独立にR1、R2、及びR3で置換された化合物である。
 置換基R1、R2、及びR3は、リン原子を含んでいてもよく、例えばリン酸ポリエステル(C)は、例えば下記式(3)で示されるポリリン酸から誘導される化合物であってよい。すなわち、リン酸ポリエステル(C)は、1分子内にリン原子を2つ以上有していてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(3)において、nは2以上である。リン酸ポリエステル(C)が式(3)から誘導される場合、式(3)における水素原子の少なくとも2つがアルキル基、アルケニル基、及びアルキニル基からなる群から選択される基で置換されていればよい。また、リン酸ポリエステル(C)は、末端にヒドロキシ基を有していてもよい。なお、n=1の場合、式(1)で示されるリン酸(B)に相当する。
 リン酸ポリエステル(C)は、前記に限られず、例えば適宜のアルキルエーテル、ポリアルキレングリコールモノアルキルエーテル等をリン酸エステル化剤で反応させた反応物を含んでもよい。
 リン酸ポリエステル(C)の具体的な製品の例は、例えばビッグケミー・ジャパン株式会社製のBYK-Wシリーズ(例えば、BYK-W9010等)、DISPERBYKシリーズ(例えばDISPERBYK-111等)等に含まれうるリン酸ポリエステルを挙げることができる。
 封止用樹脂組成物において、リン酸ポリエステル(C)の質量割合は、0質量%超100質量%未満であることが好ましく、0.01質量%以上90質量%以下であることがより好ましく、0.02質量%以上50質量%以下であることが更に好ましく、0.05質量%以上10質量%未満であることが特に好ましい。
 封止用樹脂組成物がシリカ(E1)を含有する場合、シリカ(E1)に対する、リン酸(B)とリン酸ポリエステル(C)との合計の質量割合は、0.05質量%以上1.0質量%以下であることが好ましい。この場合、封止用樹脂組成物の硬化物のCTEをより低めることができうる。リン酸ポリエステル(C)の質量割合は、0.1質量%以上0.5質量%以下であることがより好ましく、0.2質量%以上0.4質量%以下であれば更に好ましい。この場合、封止用樹脂組成物により良好な流動性を付与することができ、これにより封止用樹脂組成物を隙間に更に充填しやすくできる。
 封止用樹脂組成物において、シリコーン樹脂(A1)に対するリン酸(B)とリン酸ポリエステル(C)との合計の質量割合は、30質量%以上70質量%以下であればより好ましく、40質量%以上60質量%以下であれば更に好ましい。
 [硬化助剤(D)]
 封止用樹脂組成物は、硬化助剤(D)を含有することが好ましい。この場合、封止用樹脂組成物の保存安定性に寄与しうる。また、この場合、封止用樹脂組成物を硬化させるにあたって、硬化反応の速度をコントロールできうる。なお、硬化助剤(D)は、硬化促進剤を含む。硬化助剤(D)は、封止用樹脂組成物において、硬化性の成分の反応の進行を促す機能を有する。本実施形態では、封止用樹脂組成物におけるシリコーン樹脂(A1)の硬化反応の進行を緩やかに促進しうる。また、封止用樹脂組成物がビスフェノール型エポキシ樹脂(A2)及び芳香族アミノエポキシ樹脂(A3)等の硬化性成分を含有する場合には、これらの成分の硬化も促進しうる。特に本実施形態では、封止用樹脂組成物におけるエポキシ樹脂(A)を硬化させるにあたって、硬化助剤(D)は、過剰に硬化反応が進行しすぎるのを抑制しうる。すなわち、硬化助剤(D)は、封止用樹脂組成物の硬化の反応性を過剰に高めにくく、良好な硬化速度で硬化を進行させることができる。このため、封止用樹脂組成物の成形時の温度上昇等によって、封止用樹脂組成物が硬化し始めても、急激な硬化の進行をしにくくできることで、成形途中で流動性を損ないにくく、これにより、十分に充填されてから硬化させることができる。
 硬化助剤(D)は、キレート化合物(D1)を含有することが好ましい。この場合、キレート化合物(D1)中の金属原子がエポキシ樹脂(A)における酸素原子を配位しうるため、封止用樹脂組成物におけるエポキシ樹脂(A)の過度な熱硬化反応を抑制しうる。これにより、封止用樹脂組成物の保存安定性をより向上させうる。また、この場合、封止用樹脂組成物の粘度の過度な上昇も抑制されうる。このため、封止用樹脂組成物の流動性もより良好に維持可能である。
 キレート化合物(D1)は、例えばアルミニウムアセチルアセトネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンアセトアセテート、ジルコニウムエチルアセトアセテート、及びジルコニウムテトラアセチルアセトネートからなる群から選択される少なくとも一種の化合物を含む。キレート化合物(D1)は、アルミニウムアセチルアセトネートを含有することが好ましい。
 硬化助剤(D)を含有する場合、エポキシ樹脂(A)に対する硬化助剤(D)の質量割合は、0.01質量%以上2.0質量%以下であることが好ましく、0.03質量%以上1.5質量%以下であればより好ましく、0.1質量%以上1.0質量%以下であれば更に好ましい。この範囲内であれば、封止用樹脂組成物におけるエポキシ樹脂(A)の硬化性を良好にでき、チップサイズが大型化しても、基材と半導体チップとの間の隙間を封止用樹脂組成物の硬化物で十分に封止することができる。
 硬化助剤(D)に対するキレート化合物(D1)の含有量は、20質量%以上100質量%以下であれば好ましく、30質量%以上90質量%以下であればより好ましく、50質量%以上70質量%以下であれば更に好ましい。
 [無機充填材(E)]
 封止用樹脂組成物は、無機充填材(E)を含有することが好ましい。無機充填材(E)は、封止用樹脂組成物から作製される硬化物の線膨張係数の低下に寄与することができる。また、本実施形態では、封止用樹脂組成物がリン酸(B)とリン酸ポリエステル(C)とを含有するため、無機充填材(E)を含有していても、封止用樹脂組成物の分散性を低下させにくい。このため、封止用樹脂組成物の粘度の過度な上昇は生じにくく、流動性を維持でき、チクソ性を悪化させにくい。これにより、封止用樹脂組成物は、無機充填材(E)の含有量を増加させても、流動性が悪化しにくく、かつ封止用樹脂組成物の線膨張係数を低くすることができる。
 無機充填材(E)は、シリカ(E1)を含有することが好ましく、シリカ(E1)の少なくとも一部がカップリング剤により表面処理されていることも好ましい。この場合、シリコーン樹脂(A1)にシリカ(E1)が馴染みやすくでき、そのため封止用樹脂組成物の分散性の向上に更に寄与することができる。カップリング剤は、例えばシランカップリング剤である。シランカップリング剤としては、例えばエポキシ基、アミノ基、(メタ)アクリロイル基、及びフェニル基からなる群から選択される少なくとも一種の官能基を有する化合物が挙げられる。シランカップリング剤は、フェニル基を有するシランカップリング剤であることが好ましい。すなわち、シリカ(E1)の少なくとも一部が、フェニル基を有するシランカップリング剤により表面処理されていることが好ましい。この場合、封止用樹脂組成物における、シリコーン樹脂(A1)にシリカ(E1)を特に馴染みやすくでき、封止用樹脂組成物の分散性を更に向上させることができる。
 無機充填材(E)がシリカ(E1)を含有する場合、シリカ(E1)は、第一のシリカフィラー(E11)と、第一のシリカフィラー(E11)とは平均粒径の異なる第二のシリカフィラー(E12)とを含むことが好ましい。本開示における「平均粒径」は、体積平均径である。体積平均径は、レーザー回折・散乱法で測定して得られる粒度分布から算出される。粒度分布は、例えばレーザー回折式粒度分布測定装置により測定でき、レーザー回折式粒度分布測定装置としては、例えば株式会社堀場製作所製のLA-960シリーズを挙げることができる。
 第一のシリカフィラー(E11)の平均粒径は、0.1μm以上1.5μm以下であることが好ましく、この場合の第一のシリカフィラー(E11)の粒度分布における標準偏差は、0.01以上1.0未満であることが好ましい。また、第二のシリカフィラー(E12)の平均粒径は、第一のシリカフィラー(E11)の平均粒径に対して10%以上50%以下であり、かつ第二のシリカフィラー(E12)の粒度分布における標準偏差が0.01以上1.0未満であることが好ましい。ここで、本開示における「粒度分布における標準偏差」とは、粒度分布の広狭を示す指標である。粒度分布における標準偏差により、粒子の粒径が揃っているか否かを判断できる。粒度分布における標準偏差は、次のようにして算出することができる。上記の平均粒径(体積平均径)と同様に、レーザー回折・散乱法で測定して得られる粒度分布において、各々の粒子の粒径のデータと、平均粒径とから標準偏差が算出できる。封止用樹脂組成物におけるシリカ(E1)のうち第一のシリカフィラー(E11)及び第二のシリカフィラー(E12)の各々におけるシリカ粒子は、粒度分布における標準偏差が0.01以上1,0未満であると、封止用樹脂組成物の粘度をより低めることができる。これにより、封止用樹脂組成物は、流動性を確保できる。このため、封止用樹脂組成物で、基板と半導体素子との間の隙間を封止するにあたって、より優れた成形性を達成可能である。
 第一のシリカフィラー(E11)の平均粒径は、0.1μm以上1.0μm以下であればより好ましい。また、第一のシリカフィラー(E11)の粒度分布における標準偏差が0.01以上0.6以下であれば好ましく、0.02以上0.40以下であればより好ましく、0.02以上0.36以下であれば更に好ましく、0.05以上0.36以下であれば特に好ましい。第二のシリカフィラー(E12)の平均粒径は、上記を満たすものであれば特に制限されないが、第二のシリカフィラー(E12)の平均粒径は、例えば0.01μm以上0.75μm以下とすることができる。第二のシリカフィラー(E12)の粒度分布における標準偏差が、0.01以上0.10未満であれば好ましく、0.02以上0.08以下であればより好ましく、0.03以上0.08以下であれば更に好ましく、0.04以上0.06以下であれば特に好ましい。
 第一のシリカフィラー(E11)、及び第二のシリカフィラー(E12)の各々は、いずれも湿式シリカであることが好ましい。湿式シリカとは、液体中で合成される非晶質のシリカであり、例えば湿式シリカは、沈降法、及びゾルゲル法からなる群から選択される少なくとも一種の方法で作製可能である。湿式シリカは、特に、ゾルゲル法で作製されることが好ましい。この場合、湿式シリカの粒子の平均粒径を0.1μm以上1.5μm以下といったように比較的小さく抑えることができ、かつ粒度分布のバラつき生じにくくすることができる。すなわち、この場合、第一のシリカフィラー(E11)及び第二のシリカフィラー(E12)の粒子の粒径を揃えることが容易にできる。なお、ゾルゲル法とは、コロイド等の微粒子が溶液中に分散したゾル状態から、流動性のなくなるゲル状態を経て固体物質を得る合成方法であり、合成方法は適宜の方法を採用すればよい。なお、本開示の第一のシリカフィラー(E11)がゾルゲル法で作製されていることは、適宜の第一のシリカフィラー(E11)の粒子を切断し、その断面を観察することで確認できる。具体的には、例えば、封止用樹脂組成物の硬化物を切断し、その切断面を電子顕微鏡等で観察し、切断面におけるシリカの粒径を測定することで、ゾルゲル法で作製されたものであると判断できる。第二のシリカフィラー(E12)、及び後述の第三のシリカフィラー(E13)がゾルゲル法で作製されていることも、第一のシリカフィラー(E11)と同様にして確認できる。
 シリカ(E1)は、第一のシリカフィラー(E11)及び第二のシリカフィラー(E12)のいずれとも平均粒径が異なる第三のシリカフィラー(E13)を更に含むことも好ましい。すなわち、封止用樹脂組成物は、第一のシリカフィラー(E11)と、第二のシリカフィラー(E12)と、第三のシリカフィラー(E13)とを含有することも好ましい。シリカ(E1)が第三のシリカフィラー(E13)を含有する場合、第三のシリカフィラー(E13)の平均粒径は、第二のシリカフィラー(E12)の平均粒径よりも小さければ、特に制限されない。第三のシリカフィラー(E13)の粒度分布における標準偏差は、0.01以上0.10未満であれば好ましく、0.02以上0.09以下であればより好ましく、0.03以上0.08以下であれば更に好ましく、0.04以上0.06以下であれば特に好ましい。封止用樹脂組成物が、第三のシリカフィラー(E13)を含有すると、封止用樹脂組成物は、特に流動性をより低めることができ、また封止用樹脂組成物の流動性を低めても、良好なチクソ性を有しうる。第三のシリカフィラー(E13)の質量割合は、シリカ(E1)全量に対して、5質量%以上40質量%以下であることが好ましい。シリカ(E1)全量に対する第三のシリカフィラー(E13)の質量割合が5質量%以上であれば、チクソ性をより良好にでき、40質量%以下であれば、良好な流動性を維持することができる。
 シリカ(E1)が第三のシリカフィラー(E13)を含む場合にあっては、第三のシリカ(E13)も、湿式シリカであることが好ましい。この場合、第三のシリカフィラー(E13)もゾルゲル法で作製された湿式シリカであることが好ましい。この場合、第一のシリカフィラー(E11)、第二のシリカフィラー(E12)、及び第三のシリカフィラー(E13)の各々が、粒径の揃ったシリカ粒子となるように調整しやすい。
 第一のシリカフィラー(E11)は、カップリング剤により表面処理されていてもよい。シリカフィラーの表面処理は、例えばゾルゲル法で作製された湿式シリカに、カップリング剤(例えばシランカップリング剤)を反応させることで可能である。第二のシリカフィラー(E12)及び第三のシリカフィラー(E13)も同様に、カップリング剤により表面処理されていてもよい。
 シリカ(E1)における第一のシリカフィラー(E11)と第二のシリカフィラー(E12)の質量比は、60:40~98:2の範囲内であれば好ましい。シリカ(E1)が第三のシリカフィラー(E13)を更に含む場合、第一のシリカフィラー(E11)と第二のシリカフィラー(E12)と第三のシリカフィラー(E13)質量比は、60:30:10~90:8:2の範囲内であれば好ましい。
 無機充填材(E)を含有する場合、封止用樹脂組成物全量に対する無機充填材(E)の含有量は、50質量%以上75質量%以下であることが好ましい。この場合、封止用樹脂組成物のCTEをより低めることが可能となる。本実施形態では、比較的無機充填材の割合を多くしても、封止用樹脂組成物の流動性を特に良好に維持できる。そのため、封止用樹脂組成物の隙間への未充填を生じにくくできる。無機充填材(E)の含有量は、50質量%以上70質量%以下であればより好ましく、55質量%以上65質量%以下であれば更に好ましい。
 無機充填材(E)は、本開示の効果を阻害しない限りにおいて、シリカ以外の充填材を含有してもよい。
 [その他の成分]
 封止用樹脂組成物は、本開示の効果を阻害しない限りにおいて、上記で説明した成分以外の成分を含有できる。例えば、封止用樹脂組成物は、上記で説明した以外の樹脂成分を含有してもよい。
 また、封止用樹脂組成物は、適宜の添加剤を含有できる。添加剤の例としては、例えば硬化剤、フラックス、粘度調整剤、表面調整剤、シランカップリング剤、消泡剤、レベリング剤、低応力剤、及び顔料等が挙げられる。
 例えば、封止用樹脂組成物がシランカップリング剤を含有することが好ましい。この場合、封止用樹脂組成物におけるシリコーン樹脂(A1)とシランカップリング剤との相溶性が向上し、封止用樹脂組成物の分散性をより高めやすい。また、封止用樹脂組成物がシリカ(E1)を含有する場合にも、封止用樹脂組成物の分散性をより高めやすい。シランカップリング剤は、適宜のカップリング剤を採用可能であるが、例えば2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、及び3-グリシドキシプロピルトリエトキシシラン等のエポキシシランカップリング剤であってもよい。
 封止用樹脂組成物は、有機溶剤を含まず、又は有機溶剤の含有割合が0.5質量%以下であることが好ましい。
 封止用樹脂組成物は、例えば上記成分を配合し、必要に応じて適宜の添加剤を加えて混合することで得られる。具体的には、封止用樹脂組成物は、例えば次の方法により調製できる。
 まず、上記で説明した封止用樹脂組成物に含まれうる成分を、同時に又は順次配合することで、混合物を得る。この混合物を、必要に応じて加熱処理や冷却処理を行いながら撹拌して混合する。
 次に、必要に応じて、この混合物に添加剤を加え、必要に応じて加熱処理や冷却処理を行いながら、再度撹拌して均一に分散されるまで混合する。これにより、封止用樹脂組成物を得ることができる。混合物の攪拌のためには、例えばディスパー、プラネタリーミキサー、ボールミル、3本ロール、及びビーズミルなどを、必要により適宜組み合わせて適用することができる。
 封止用樹脂組成物の25℃における粘度は、35Pa・s未満であることが好ましい。この場合、封止用樹脂組成物を成形するにあたって、ジェットディスペンスによる塗布作業性、及び吐出安定性が向上しうる。また、この場合、半導体チップ等の実装部品の下への良好な充填性を達成しうる。封止用樹脂組成物の25℃における粘度は、25Pa・s以下であればより好ましく、20Pa・s以下であれば更に好ましい。封止用樹脂組成物の25℃における粘度の下限は特に制限されないが、例えば2Pa・s以上である。
 封止用樹脂組成物は、例えば加熱することにより、硬化させることができる。加熱する際の条件、例えば加熱温度、加熱時間、及び最高加熱温度等は、硬化性成分(A)の種類、及び硬化剤等の種類に応じて適宜調整すればよい。
 封止用樹脂組成物の硬化物のガラス転移温度Tgは、80℃以上であることが好ましい。また、ガラス転移温度Tgは、180℃未満であることも好ましい。ガラス転移温度Tgが80℃以上であれば、封止用樹脂組成物の硬化物の耐熱性を有しうる。ガラス転移温度Tgは、90℃以上170℃以下であればより好ましい。ガラス転移温度は、例えばTMA(Thermomechanical Analysis)により測定可能である。
 封止用樹脂組成物の硬化物のガラス転移温度Tg以下における線膨張係数(CTE)は、20ppm/℃以上40ppm/℃以下であることが好ましく、30ppm/℃以下であればより好ましく、25ppm/℃以下であれば更に好ましい。この場合、封止用樹脂組成物及封止用樹脂組成物の硬化物において、加熱による反りを生じにくくできる。このため、封止用樹脂組成物の硬化物にクラックをより生じにくくできる。封止用樹脂組成物の硬化物の線膨張係数は、TMAにより測定で得られた結果のTgから、Tg以下の温度の寸法変化と、Tg以上の任意の温度での寸法変化とに基づく接線の傾きを算出することで得られる。
 封止用樹脂組成物の硬化物の25℃における貯蔵弾性率は、6.0GPa以上12.0GPa以下であることが好ましく、6.5GPa以上10GPa以下であればより好ましい。この場合、封止用樹脂組成物の硬化物の加熱による寸法変化が生じにくい。これにより、封止用樹脂組成物の硬化物にクラックをより生じにくくできる。封止用樹脂組成物の硬化物の貯蔵弾性率は、DMA装置により、JIS K6911に準拠して、測定することで得られる。
 封止用樹脂組成物の硬化物の25℃における破壊靭性K1cは、2.0MPa・m1/2以上であることが好ましい。この場合、封止用樹脂組成物の硬化物にクラックを更に生じにくくできる。これにより、封止用樹脂組成物の硬化物からなる封止材を備える半導体装置の信頼性を向上させることができる。硬化物の破壊靭性K1cは、2.5MPa・m1/2以上であればより好ましく、3.0MPa・m1/2以上であれば更に好ましい。なお、破壊靭性K1cは、JIS R1607に準拠して、測定可能である。具体的には、後掲の実施例で説明する方法で測定可能である。
 本実施形態の封止用樹脂組成物は、既に述べたとおりアンダーフィル材として好適に用いることができる。封止用樹脂組成物は、特にフリップチップ実装における後供給型のアンダーフィル材として特に好適に用いることができる。
 図1に、本実施形態の半導体装置1の例を示す。半導体装置1は、半導体チップ等の実装部品3を支持する基材2と、基材2にフェイスダウンで実装される実装部品3と、基材2と実装部品3との隙間を封止する封止材4とを備える。封止材4は、上記で説明した液状の封止用樹脂組成物の硬化物からなる。
 半導体装置1及びその製造方法について、具体的に説明する。
 半導体装置1は、導体配線21を備える基材2と、バンプ電極33を備え、バンプ電極33が導体配線に接合されることで基材2に実装されている半導体チップ等の実装部品3と、バンプ電極33を覆う封止材4とを備える。封止材4が、上記で説明した封止用樹脂組成物の硬化物である。
 基材2は、例えばマザー基板、パッケージ基板又はインターポーザー基板である。例えば基材2は、ガラスエポキシ製、ポリイミド製、ポリエステル製、セラミック製などの絶縁基板と、その表面上に形成された銅などの導体製の導体配線21とを備える。導体配線21は例えば電極パッドを備える。
 実装部品3は、例えば半導体チップである。半導体チップは、例えばBGA(ボール・グリッド・アレイ)、LGA(ランド・グリッド・アレイ)、又はCSP(チップ・サイズ・パッケージ)などの、フリップチップ型のチップである。半導体チップは、PoP(パッケージ・オン・パッケージ)型のチップであってもよい。
 実装部品3は、複数のバンプ電極33を備えていてもよい。バンプ電極33は、はんだを備える。例えばバンプ電極33は、図1に示すように、ピラー31と、ピラー31の先端に設けられた、はんだバンプ32とを備える。はんだバンプ32ははんだから作製され、このため、バンプ電極33ははんだを備える。ピラー31は例えば銅製である。
 バンプ電極33の備えるはんだ(例えばはんだバンプ32におけるはんだ)の融点は、特に制限されないが、例えば半導体チップ等の実装部品3を実装する際の実装温度(例えば220~260℃)以下で溶融可能な温度であればよい。また、はんだの組成は、特に制限されず、適宜の組成であってよいが、例えばSn-Ag系はんだ、及びSn-Ag-Cu系はんだとすることができる。なお、はんだを備えるバンプ電極33の構造は上記に限られず、例えばバンプ電極33は、球状のはんだバンプ32(はんだボール)のみを備えてもよい。すなわち、バンプ電極33はピラーを備えなくてもよい。
 図1に示す半導体装置1では、封止材4は、基材2と実装部品3との間の隙間の全体を埋めている。これにより、封止材4はバンプ電極33の全体を覆い、かつバンプ電極33と導体配線21との継ぎ目を覆っている。すなわち、この封止材4は、いわゆるアンダーフィルである。
 半導体装置1の製造方法について、一例をあげて説明するが、半導体装置1の製造方法は、以下に説明する方法に限られず、半導体装置1において、上記で説明した封止用樹脂組成物で、基材2と実装部品3との隙間を覆って封止することができればよい。
 まず、導体配線21を備える基材2と、バンプ電極33を備える実装部品3とを用意し、基材2上に実装部品3を配置し、かつ導体配線21上にバンプ電極33を配置する。
 続いて、封止用樹脂組成物を、バンプ電極33を覆うように配置し、封止用樹脂組成物及びバンプ電極33に加熱処理を施すことで、封止用樹脂組成物を硬化させて封止材4を作製し、かつバンプ電極33と導体配線21とを電気的に接続する。ここで、封止用樹脂組成物を配置するとは、固形状の封止用樹脂組成物を封止対象物(例えばバンプ電極33など)に配する場合に限らず、液状の封止用樹脂組成物を封止対象物に塗布すること、液状の封止用樹脂組成物を封止対象物の間の隙間に注入して封止対象物を覆うように配されることを含む。
 なお、上記の順序は、上記のとおりでなくてもよい。例えば基材2上に実装部品3を配置し、かつ導体配線21上にバンプ電極33を配置した後に、封止用樹脂組成物を、バンプ電極33を覆うように配置してもよい。逆に、封止用樹脂組成物を、バンプ電極33を覆うように配置した後に、基材2上に実装部品3を配置し、かつ導体配線21上にバンプ電極33を配置してもよい。また、製造工程中において、結果的に封止用樹脂組成物を、バンプ電極33を覆うように配置できるのであれば、封止用樹脂組成物をいかなる時期に、実装部品3及び基材2におけるいかなる位置に配置してもよい。
 具体的には、図1に示す封止材4を作製する場合、例えばまず、基材2上に封止用樹脂組成物を配置した後、基材2上に実装部品3を、基材2と実装部品3との間に封止用樹脂組成物が介在しかつ導体配線21上にバンプ電極33が配置されるように、配置する。これにより、封止用樹脂組成物を、バンプ電極33を覆うように配置する。また、まず、基材2上に実装部品3を、導体配線21上にバンプ電極33が配置されるように配置した後、基材2と実装部品3との間に封止用樹脂組成物を供給することで、基材2と実装部品3との間に、封止用樹脂組成物を介在させ、かつ封止用樹脂組成物を、バンプ電極33を覆うように配置してもよい。
 図1に示す封止材4を作製する場合、例えばまず実装部品3に、バンプ電極33を覆うように封止用樹脂組成物を配置する。続いて、基材2上に実装部品3を、基材2と実装部品3との間に封止用樹脂組成物が介在しかつ導体配線21上にバンプ電極33が配置されるように、配置する。これにより、封止用樹脂組成物を、バンプ電極33を覆うように配置する。
 基材2上に封止用樹脂組成物を配置し、又は実装部品3に封止用樹脂組成物を配置する場合は、例えばディスペンサーを用いる方法、スクリーン印刷法、インクジェット法又はディッピング法等で、封止用樹脂組成物を配置する。
 封止用樹脂組成物及びバンプ電極33の加熱処理は、例えばリフロー炉等の加熱炉を用いて行う。なお、リフロー炉以外の設備を使用した適宜の方法で加熱処理を行ってもよい。封止用樹脂組成物及びバンプ電極33に加熱処理を施すと、バンプ電極33におけるはんだが溶融することで、バンプ電極33と導体配線21とが電気的に接続され、かつ封止用樹脂組成物が硬化することで封止材4が作製される。これにより、半導体装置1が得られる。加熱処理の条件は、封止用樹脂組成物の組成に応じて、適宜設定すればよい。加熱処理において、最高加熱温度は、例えば220℃以上260℃以下であることが好ましい。なお、上記では、加熱処理の一例を説明したが、前記に限られず、最高加熱温度も、封止用樹脂組成物の組成等に応じて適宜設定すればよい。
 以下、本開示の具体的な実施例を提示する。ただし、本開示は実施例のみに制限されない。
 1.樹脂組成物の調製
 [実施例1~5及び比較例1~5]
 後掲の表1中に示す成分を、表1に示す配合割合(質量部)で、ミキサーに投入し、撹拌混合し、3本ロールを用いて、均一に分散させ、樹脂組成物を得た。表1に示す、成分の詳細は、以下のとおりである。
(エポキシ樹脂)
・エポキシ変性シリコーン樹脂1:モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製 品名 TSL9906、両末端がエポキシ変性されたシリコーン樹脂。・エポキシ変性シリコーン樹脂2:ADEKA株式会社製 品名EP-3400L、両末端がエポキシ変性されたシリコーン樹脂。
・ビスフェノール型エポキシ樹脂:ビスフェノールF型エポキシ樹脂(東都化成株式会社製 品名YDF8170。エポキシ当量175eq./g)。
・芳香族アミノエポキシ樹脂:jRR株式会社製 品名636。
(リン酸とリン酸ポリエステルとの混合物)
・リン酸とリン酸ポリエステルとの混合物:ビックケミー・ジャパン株式会社製 品名BYK-W 9010(組成:リン酸ポリエステル含有量90重量%以上100重量%未満、リン酸含有量1重量%以上10重量%未満)。
(硬化剤)
・アミン硬化剤:日本化薬株式会社製 品名 カヤバードA-A。アミン当量65eq./g。
(硬化助剤)
・キレート化合物1:川研ファインケミカル株式会社製 品名アルミキレートA(W)。金属キレート硬化助剤。アルミニウムトリスアセチルアセトネート。
・キレート化合物2:マツモトファインケミカルズ株式会社製 品名TC-100。チタニウムトリスアセチルアセトネート。
(無機充填材)
・シリカ1:ゾルゲル法により作製され、フェニル基を有するシランカップリング剤により表面処理されたシリカ(平均粒径1.0μm。粒度分布における標準偏差は0.04以上0.5以下である。)。
・シリカ2:ゾルゲル法により作製され、フェニル基を有するシランカップリング剤により表面処理されたシリカ(平均粒径0.3μm。粒度分布における標準偏差は0.04以上0.5以下である。)。
・シリカ3:ゾルゲル法により作製され、フェニル基を有するシランカップリング剤により表面処理されたシリカ(平均粒径0.1μm。粒度分布における標準偏差は0.04以上0.5以下である。)。
・シリカ4:ゾルゲル法により作製され、フェニルシランにより表面処理されたシリカ(平均粒径50nm、粒度分布における標準偏差は0.04以上0.5以下である。)。
・シリカ5:ゾルゲル法により作製され、フェニルシランにより表面処理されたシリカ(平均粒径10nm、粒度分布における標準偏差は0.04以上0.5以下である。)。
(添加剤)
・カップリング剤:エポキシシラン(シランカップリング剤。信越化学工業株式会社製 品名 KBM403)。
・着色剤:カーボンブラック(jER株式会社製 品名 MA100)。
 2.評価
 2.1.粘度
 上記1.で調製した樹脂組成物の粘度を、BM型粘度計(東機産業株式会社製 型番 TVB-10)を使用して、温度25℃、ロータNo.6 回転速度5rpmの条件で、測定した。得られた測定結果に基づき、以下の基準で評価した。
A:粘度が25Pa・s未満である。
B:粘度が25Pa・s以上35Pa・s以下である。
C:粘度が35Pa・以上である。
 2.2.チクソ指数
 上記2.1.と同様の方法で、25℃における粘度を測定した。続いて、回転速度5rpmを、約10分の1の回転速度5rpmに変更して、粘度を測定した。回転速度を変更する前(低速時)の粘度と、回転速度変更後(高速時)の粘度とから、粘度の変化率(低速時での粘度/高速時での粘度)を算出し、これをチクソ指数(TI:Thixotropic Index)とした。得られたチクソ指数に基づき、以下の基準で評価した。
A:TIは、0.7以上1.5未満である。
B:TIは、1.5以上2.5未満である。
C:TIは、2.5以上である。
 2.3.流動性
 2枚の平板状のガラス板を幅10μmの間隔(隙間)を空けて、加熱可能な台座(ステージ)上に配置し、ステージの温度を90℃に設定することで、2枚のガラス板を加熱した。ガラス板の温度が90℃に到達してから、10μmの隙間に、上記1.で調製した樹脂組成物を注入し、毛細管現象を利用して隙間を流動させた。樹脂組成物が、注入開始時点から30mmの距離を進むまでの時間を測定した。測定により得られた結果に基づき、以下の基準で評価した。
A:30mm進むまでの時間は、300秒未満である。
B:30mm進むまでの時間は、300秒以上500秒未満である。
C:30mm進むまでの時間は、500秒以上である。
 2.4.ガラス転移温度(DMA試験)
 上記1.で調製した樹脂組成物を、基材上に塗布し、加熱温度100℃、加熱時間2hの条件で加熱し、続いて更に昇温し、加熱温度150℃、加熱時間2hの条件で加熱させることで樹脂組成物を硬化させ、これにより、樹脂組成物の硬化物を得た。
 続いて、得られた硬化物を、動的粘弾性測定(DMA)装置(日立ハイテクサイエンス株式会社製 型番DMA7100)により、昇温速度5℃/minの条件で、室温-60℃から280℃まで測定することで得られた結果から、硬化物のガラス転移温度を得た。得られたガラス転移温度の数値(℃)を表1に示した。
 2.5.線膨張係数(TMA試験)
 上記2.4.と同様の条件で作製した樹脂組成物の硬化物に対し、熱機械分析(TMA)装置(日立ハイテクサイエンス株式会社製 型番TMA7000)装置により、荷重1g、昇温速度5℃/minの条件で、-60℃から280℃まで加熱して、寸法変化を測定することにより得られた結果から線膨張係数を算出し、以下の基準で評価した。
A:35ppm/℃未満である。
C:35ppm/℃以上である。
 2.6.弾性率(貯蔵弾性率)
 上記2.4.と同様の条件で作製した樹脂組成物の硬化物に対し、2.4と同様の条件で、DMA装置により、各温度での弾性率を測定した。得られた結果から、貯蔵弾性率を算出し、以下の基準で評価した。
A:6.5GPa以上12.0GPa未満である。
C:12.0GPa以上である。
 2.7.破壊靭性(K1c試験)
 上記2.4.と同様の条件で作製した樹脂組成物の硬化物から、試験測定用の試験片(長さL:50mm、幅W:10mm、厚さB:5mm)を作製し、試験片に亀裂長さa:4mmの予亀裂を入れた。JIS R1607(ファインセラミックスの室温破壊靭性試験方法)に準拠して、試験片に速度10mm/minで圧力を加えて、破断するまでの試験力を測定した。得られた測定結果から、下記式(1)及び(2)に基づき、K1c値を算出し、得られた数値を表1に示した。破壊靭性K1cは、値が大きいほどクラックに対する耐性が高いと評価できる。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 上記式(1)及び(2)中、Pα:試験片が破壊するまでの最大荷重[kgf]、S:3点曲げ支点間距離[mm]、B:試験片の厚さ[mm]、W:試験片の幅[mm]、a:予亀裂の長さ[mm]である。
Figure JPOXMLDOC01-appb-T000006
 1  半導体装置
 2  基材
 3  実装部品
 4  封止材

Claims (7)

  1.  エポキシ樹脂(A)と、
     リン酸(B)と
     リン酸ポリエステル(C)と、を含有し、
     前記エポキシ樹脂(A)は、1分子内に2つ以上のエポキシ基を有するシリコーン樹脂(A1)を含有する、
     封止用樹脂組成物。
  2.  前記エポキシ樹脂(A)は、ビスフェノールF型エポキシ樹脂(A2)と、芳香族アミノエポキシ樹脂(A3)とのうちの一方又は両方を更に含有する、
     請求項1に記載の封止用樹脂組成物。
  3.  硬化助剤(D)を更に含有し、
     前記硬化助剤(D)は、キレート化合物(D1)を含有する、
     請求項1又は2に記載の封止用樹脂組成物。
  4.  無機充填材(E)を更に含有する、
     請求項1から3のいずれか一項に記載の封止用樹脂組成物。
  5.  前記無機充填材(E)は、シリカ(E1)を含有し、
     前記シリカ(E1)の少なくとも一部はカップリング剤により表面処理されている、
     請求項4に記載の封止用樹脂組成物。
  6.  アンダーフィル材である、
     請求項1から5のいずれか一項に記載の封止用樹脂組成物。
  7.  基材と、
     前記基材に実装される実装部品と、
     前記基材と前記実装部品との間の隙間を封止する封止材と、を備え、
     前記封止材は、請求項1から6のいずれか一項に記載の封止用樹脂組成物の硬化物からなる、
     半導体装置。
PCT/JP2020/044927 2019-12-12 2020-12-02 封止用樹脂組成物、及び半導体装置 WO2021117582A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021563894A JPWO2021117582A1 (ja) 2019-12-12 2020-12-02
CN202080083820.5A CN114761459B (zh) 2019-12-12 2020-12-02 密封用树脂组合物及半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019224927 2019-12-12
JP2019-224927 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021117582A1 true WO2021117582A1 (ja) 2021-06-17

Family

ID=76330284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044927 WO2021117582A1 (ja) 2019-12-12 2020-12-02 封止用樹脂組成物、及び半導体装置

Country Status (3)

Country Link
JP (1) JPWO2021117582A1 (ja)
TW (1) TW202126780A (ja)
WO (1) WO2021117582A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287306A (ja) * 1993-03-31 1994-10-11 Toray Ind Inc エポキシ基含有オルガノポリシロキサン類の製造方法、樹脂添加剤および半導体封止用エポキシ樹脂組成物
JP2008291189A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 封止用の液状エポキシ樹脂組成物と封止半導体装置
JP2011111584A (ja) * 2009-11-30 2011-06-09 Nippon Kayaku Co Ltd エポキシ樹脂組成物、硬化性樹脂組成物
JP2011127011A (ja) * 2009-12-18 2011-06-30 Sekisui Chem Co Ltd 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012057006A (ja) * 2010-09-07 2012-03-22 Shin-Etsu Chemical Co Ltd エポキシ樹脂組成物、その製造方法、並びに、それを用いた半導体装置
JP2013057001A (ja) * 2011-09-08 2013-03-28 Mitsubishi Chemicals Corp 熱硬化性樹脂組成物、半導体デバイス用部材、及びそれを用いた半導体デバイス
JP2013185079A (ja) * 2012-03-08 2013-09-19 Nippon Steel & Sumikin Chemical Co Ltd エポキシシリコーン樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287306A (ja) * 1993-03-31 1994-10-11 Toray Ind Inc エポキシ基含有オルガノポリシロキサン類の製造方法、樹脂添加剤および半導体封止用エポキシ樹脂組成物
JP2008291189A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 封止用の液状エポキシ樹脂組成物と封止半導体装置
JP2011111584A (ja) * 2009-11-30 2011-06-09 Nippon Kayaku Co Ltd エポキシ樹脂組成物、硬化性樹脂組成物
JP2011127011A (ja) * 2009-12-18 2011-06-30 Sekisui Chem Co Ltd 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012057006A (ja) * 2010-09-07 2012-03-22 Shin-Etsu Chemical Co Ltd エポキシ樹脂組成物、その製造方法、並びに、それを用いた半導体装置
JP2013057001A (ja) * 2011-09-08 2013-03-28 Mitsubishi Chemicals Corp 熱硬化性樹脂組成物、半導体デバイス用部材、及びそれを用いた半導体デバイス
JP2013185079A (ja) * 2012-03-08 2013-09-19 Nippon Steel & Sumikin Chemical Co Ltd エポキシシリコーン樹脂組成物

Also Published As

Publication number Publication date
JPWO2021117582A1 (ja) 2021-06-17
CN114761459A (zh) 2022-07-15
TW202126780A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
TWI492339B (zh) A dam material composition for a bottom layer filler material for a multilayer semiconductor device, and a manufacturing method of a multilayer semiconductor device using the dam material composition
JP5354753B2 (ja) アンダーフィル材及び半導体装置
KR20120092505A (ko) 반도체-캡슐화 액상 에폭시 수지 조성물 및 반도체 장치
JP2011006618A (ja) 封止用液状樹脂組成物、フリップチップ実装体およびその製造方法
JP2008255178A (ja) 半導体封止用エポキシ樹脂組成物、半導体装置およびその製造方法
KR20070053626A (ko) 액상 에폭시 수지 조성물
JP4176619B2 (ja) フリップチップ実装用サイドフィル材及び半導体装置
JP2001055487A (ja) フリップチップ型半導体装置用封止材及びフリップチップ型半導体装置
JP3925803B2 (ja) フリップチップ実装用サイドフィル材及び半導体装置
WO2021117582A1 (ja) 封止用樹脂組成物、及び半導体装置
JP6046894B2 (ja) 液状封止材
JP5105099B2 (ja) 半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置
JP2012082281A (ja) 液状エポキシ樹脂組成物及び半導体装置
CN114761459B (zh) 密封用树脂组合物及半导体装置
WO2022019184A1 (ja) 電子デバイスの製造方法、及び電子デバイス
JP6388228B2 (ja) 半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置
JP2010144144A (ja) アンダーフィル用液状エポキシ樹脂組成物、及び半導体装置
JP5708666B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
WO2005080502A1 (ja) アンダーフィル用液状エポキシ樹脂組成物および同組成物を用いて封止した半導体装置
JP2006016431A (ja) 半導体封止用液状エポキシ樹脂組成物及びフリップチップ型半導体装置
JP5924443B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
WO2021079677A1 (ja) 封止用樹脂組成物、及び半導体装置
JP2013107993A (ja) 半導体封止用液状樹脂組成物とそれを用いた半導体装置
JP5929977B2 (ja) 液状エポキシ樹脂組成物及び電子部品装置
WO2022085532A1 (ja) 封止用樹脂組成物、及び電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899440

Country of ref document: EP

Kind code of ref document: A1