WO2014013970A1 - 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法 - Google Patents

半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2014013970A1
WO2014013970A1 PCT/JP2013/069252 JP2013069252W WO2014013970A1 WO 2014013970 A1 WO2014013970 A1 WO 2014013970A1 JP 2013069252 W JP2013069252 W JP 2013069252W WO 2014013970 A1 WO2014013970 A1 WO 2014013970A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
epoxy resin
resin composition
resin
viscosity
Prior art date
Application number
PCT/JP2013/069252
Other languages
English (en)
French (fr)
Inventor
友加里 河野
克司 菅
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to SG11201500275SA priority Critical patent/SG11201500275SA/en
Priority to US14/415,231 priority patent/US9963587B2/en
Priority to JP2014525816A priority patent/JP6218083B2/ja
Priority to KR1020157004205A priority patent/KR102039768B1/ko
Publication of WO2014013970A1 publication Critical patent/WO2014013970A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • C08G59/48Amides together with other curing agents with polycarboxylic acids, or with anhydrides, halides or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an epoxy resin composition for semiconductor encapsulation and a method for manufacturing a semiconductor device, and more specifically, an epoxy resin composition for encapsulation that can be particularly suitably applied to a resin-first flip chip mounting of a Cu post chip, and The present invention relates to a method for manufacturing a semiconductor device using a Cu post chip.
  • flip chip mounting As a method of mounting a semiconductor chip on a circuit board, flip chip mounting is increasing in response to the demand for further lighter and thinner packages.
  • flip chip mounting conventionally referred to as “resin-first mounting”, a sealing resin is first supplied onto a substrate, and then the chip is crimped to a circuit on the substrate to make an electrical connection, and then sealed. A method of curing the stop resin is performed.
  • a sealing resin having a latent thickening effect by blending acrylic polymer fine particles in a relatively small amount of 0.1 to 5 phr. is disclosed in Patent Document 1.
  • this sealing resin is a sealing agent adapted for a wire bonding type IC chip, and does not solve the above-mentioned problems.
  • the present invention is particularly suitable for resin post-flip type flip chip mounting of a Cu post chip, and provides a sealing epoxy resin composition capable of suppressing defects due to void generation and a method for manufacturing a semiconductor device using the Cu post chip. The purpose is to do.
  • the present invention relates to an epoxy resin (A), a curing agent (B), a curing accelerator (C) and 3 to 64 parts by weight of a volume average primary particle size of 0.2 to 10 ⁇ m with respect to 100 parts by weight of (A). It is the epoxy resin composition for semiconductor sealing for flip chip mounting containing the heating-type thickening resin particle (D) of these.
  • the present invention also includes a step (1) of supplying a liquid epoxy resin composition for semiconductor encapsulation to an electrode surface of a substrate having electrodes, and a step of increasing the viscosity of the resin composition by heating the substrate. (2) and the semiconductor chip on which the bumps are formed is filled into the resin composition with increased viscosity while being pressed and applied under pressure to the gap between the substrate and the semiconductor chip. It is also a method of manufacturing a semiconductor device formed by flip-chip mounting, characterized by having the step (3).
  • the epoxy resin composition for sealing of the present invention maintains a liquid state that can be supplied at room temperature and is heated by the above-described configuration, whereby the epoxy resin composition is thickened by the heated thickening resin particles.
  • the heating-type thickening resin particles are acrylic resin particles
  • the viscosity of the epoxy resin composition decreases as the temperature increases from room temperature, while the acrylic resin particles swell in the epoxy resin as the temperature rises. It starts and becomes a cause of viscosity increase.
  • the viscosity of the epoxy resin composition starts to increase, and the epoxy resin composition becomes highly viscous.
  • the epoxy resin composition has a viscosity profile up to curing, which can be cured while maintaining a high viscosity. Accordingly, the resin viscosity can be maintained at a certain level when the resin is spread by the pressure applied to the chip in the resin-first mounting.
  • the composition of the present invention solves the problems that have been manifested in the resin post-mounting mounting of Cu post chips, and in particular, realizes resin-first flip-chip mounting with good workability while suppressing defects due to the occurrence of voids. And can be used particularly preferably in a method of manufacturing a semiconductor device using a Cu post chip.
  • an epoxy resin generally used as a sealing resin can be applied.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, Naphthalene type epoxy resin, biphenyl type epoxy resin, glycidyl amine type epoxy resin, alicyclic epoxy resin, dicyclopentadiene type epoxy resin, polyether type epoxy resin, silicone modified epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more.
  • an epoxy resin that is solid at room temperature can be combined with an epoxy resin that is liquid at room temperature so as to be liquid at room temperature.
  • naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol AD type epoxy resin are preferable, and naphthalene type epoxy resin is more preferable in terms of moisture resistance.
  • the curing agent (B) a curing agent that can be used for an epoxy resin can be used.
  • an acid anhydride is preferable, for example, hexahydrophthalic anhydride, alkylhexahydrophthalic anhydride, alkyltetrahydroanhydride. Mention may be made of phthalic acid, trialkyltetrahydrophthalic anhydride, methyl nadic anhydride, methylnorbornane-2,3-dicarboxylic acid. These may be used alone or in combination of two or more. Of these, trialkyltetrahydrophthalic anhydride is preferred from the viewpoint of low outgassing.
  • the alkyl group of the trialkyltetrahydrophthalic anhydride is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. It is an alkyl group. Of the trialkyl groups, each alkyl group may be the same or different.
  • the amount of the curing agent (B) is such that the number of moles of the curing agent functional group is 0.6 to 1.2 times the number of moles of the epoxy group in the epoxy resin (A) in the composition. 0.7 to 1.0 times is more preferable.
  • the blending amount of the curing agent is less than the above range, curing may be poor, and when it is large, the curing agent may bleed.
  • a curing accelerator (C) is used to accelerate the reaction between the epoxy resin and the curing agent.
  • the curing accelerator (C) one that promotes the reaction between the epoxy resin (A) and the curing agent (B) can be used.
  • the curing agent (B) is an acid anhydride
  • imidazole is used.
  • examples thereof include a system-based curing accelerator, a phosphorus-based curing accelerator, and a urea-based curing accelerator. Of these, imidazole curing agents are preferred from the viewpoint of reactivity. These may be used alone or in combination of two or more.
  • the blending amount of the curing accelerator (C) varies depending on the type, but generally 3 to 15 parts by weight is preferable with respect to 100 parts by weight of the epoxy resin (A) from the viewpoint of curing temperature, and 5 to 10 parts by weight. Part is more preferred.
  • the curing accelerator (C) may be a microcapsule type curing accelerator in which a curing accelerator compound is encapsulated in a coating shell (ie, outer shell) substance.
  • a curing accelerator compound examples include Novacure HX-3088 and Novacure HX-3941 (both are trade names. Adducts of imidazole compounds and epoxy resins. Both are manufactured by Asahi Kasei Epoxy Corporation).
  • the blending amount is an amount converted to an effective curing accelerating compound amount.
  • the heating-type thickening resin particles (D) may be anything as long as they can swell in the epoxy resin composition by heating and can thicken the composition.
  • Vinyl resin, polyamide resin, acrylic resin particles, preferably acrylic resin particles having a volume average primary particle size of 0.2 to 10 ⁇ m, for example, can be used.
  • the particle size is 0.2 ⁇ m or more, the dispersibility to the epoxy resin is good, and when it is 10 ⁇ m or less, the connectivity between the chip and the substrate is good.
  • the thickness is preferably 0.5 to 3 ⁇ m.
  • the volume average primary particle size can be measured by diluting the acrylic resin particle emulsion with ion-exchanged water and using a laser diffraction / scattering particle size distribution analyzer (for example, LA-910W manufactured by Horiba, Ltd.).
  • a laser diffraction / scattering particle size distribution analyzer for example, LA-910W manufactured by Horiba, Ltd.
  • heating type thickening resin particles (D) examples include (meth) acrylates (eg, alkyl (eg, methyl, ethyl, propyl, butyl, octyl, etc.) (meth) acrylate, phenyl (meth) acrylate, etc.), functional Homogeneous monomers such as group-containing (meth) acrylates (eg, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate, etc.), acrylic acids (eg, (meth) acrylic acid, crotonic acid, itaconic acid, etc.) Or the acrylic resin particle which consists of a copolymer can be mentioned.
  • acrylates eg, alkyl (eg, methyl, ethyl, propyl, butyl, octyl, etc.
  • functional Homogeneous monomers such as group-containing (meth) acrylates (eg, 2-hydroxyeth
  • the acrylic resin particles may be particles having a core-shell structure.
  • Particles having a core-shell structure can be obtained, for example, by polymerizing shell particles in the presence of core particles, and the method is well known to those skilled in the art.
  • examples of the shell polymer include copolymers of monomers such as methyl (meth) acrylate, n-, i- or t-butyl (meth) acrylate and (meth) acrylic acid (for example, these components). Are contained in an amount of 55 to 79.5 mol%, 20 to 40 mol%, and 0.5 to 10 mol%, respectively.
  • examples of the core polymer include copolymers of monomers such as methyl (meth) acrylate and n-, i- or t-butyl (meth) acrylate (for example, these components are added in an amount of 20 to 70 mol% and 30 to 30 mol%, respectively). 80 mol%).
  • the weight ratio of the core polymer to the shell polymer can be 10/90 to 90/10.
  • the acrylic resin particles include those that swell in the epoxy resin composition by heating and those that swell and dissolve in the epoxy resin composition by heating, but those that swell and dissolve from the viewpoint of thickening are preferred.
  • the amount of the heating-type thickening resin particles (D) is preferably 3 to 64 parts by weight per 100 parts by weight of the epoxy resin from the viewpoint of the viscosity of the resin composition during heating. 6 to 50 parts by weight is more preferable.
  • an inorganic filler can be further blended.
  • the inorganic filler include inorganic particles such as silica filler (for example, fused silica and crystalline silica), quartz glass powder, calcium carbonate, and aluminum hydroxide. Of these, silica filler is preferable, and fused silica is more preferable.
  • the blending amount of the inorganic filler is preferably 30 to 67 parts by weight and more preferably 55 to 62 parts by weight with respect to 100 parts by weight of the entire resin composition from the viewpoint of the viscosity of the composition at the time of supply.
  • a silane coupling agent when using an inorganic filler, a silane coupling agent can be used.
  • the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3, 4-Epoxycyclohexyl) ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and the like. These can be used alone or in combination of two or more.
  • the compounding amount of the silane coupling agent is preferably 0.01 to 5 parts by weight, and more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the entire resin composition.
  • additives can be used as long as the object of the present invention is not impaired.
  • additives include an antifoaming agent, a leveling agent, a low stress agent, and a pigment.
  • composition of the present invention effectively suppresses foaming during heat-curing by mixing each component in a predetermined ratio, stirring for 60 to 120 minutes, and then defoaming under reduced pressure. Can do.
  • the composition of the present invention preferably has a thickening start temperature of 50 to 120 ° C. and a thickening start temperature of 60 to 100 ° C. under measurement conditions of a frequency of 1 Hz and a heating rate of 10 ° C./min. It is more preferable.
  • the viscosity increase starting temperature is a temperature at the minimum viscosity when the sealing resin starts to increase in viscosity only when the temperature rises when measured by the dynamic viscoelasticity measurement method using the rheometer under the above-described measurement conditions. This can be determined from the change in measured value of temperature versus viscosity.
  • the composition of the present invention preferably has a viscosity of 1 to 300 Pa ⁇ s in the range of 15 ° C. or higher and lower than 50 ° C. from the viewpoint of workability.
  • the viscosity can be adjusted by the blending amount of the heating type thickening resin particles (D) and the blending amount of the inorganic filler.
  • the curing temperature of the composition of the present invention can be adjusted by the type and blending amount of the curing agent and the curing accelerator. Specific curing conditions in flip chip mounting will be described in the following step (5).
  • the manufacturing method of the present invention includes a step (1) of supplying a liquid epoxy resin composition for encapsulating a semiconductor to an electrode surface of a substrate having electrodes, and heating the substrate to increase the viscosity of the resin composition. Step (2), and the semiconductor chip on which the bumps are formed is spread on the gap between the substrate and the semiconductor chip while applying pressure to the resin composition with increased viscosity while heating. And a step (3) of filling the semiconductor device by flip chip mounting.
  • the production method of the present invention can further include a step (4) of electrically connecting bumps to the electrode surface on the substrate, and a step (5) of heating and curing the resin composition. .
  • composition of the present invention can be suitably used.
  • a substrate is prepared by applying a predetermined solder resist pattern on a substrate on which a circuit is formed.
  • a liquid semiconductor-sealing epoxy resin composition preferably the composition of the present invention, is applied to the surface of the substrate on which the chip is disposed (that is, the electrode surface) by a printing method or a dispensing method (step ( 1)).
  • the resin composition is supplied to the substrate in a temperature range of 15 ° C. or higher and lower than 50 ° C.
  • the composition of the present invention is liquid, and preferably has a viscosity of 1 to 300 Pa ⁇ s.
  • the application amount is an amount necessary for sealing, and is a minimum amount that is not too much.
  • the substrate is heated to increase the viscosity of the resin composition (step (2)).
  • the substrate on which the epoxy resin composition is supplied to the electrode surface is heated by means such as a hot plate or an oven to increase the viscosity of the resin composition.
  • the heating temperature is 50 to 120 ° C. and the heating time is 1 to 30 minutes.
  • the viscosity of the epoxy resin composition having a high viscosity is desirably in the range of 10 to 4000 Pa ⁇ s. This viscosity refers to a viscosity of 1 Hz according to a dynamic viscoelasticity measurement method.
  • a chip having a Cu post is generally disposed at a predetermined position by a jig, and the resin composition is applied to the substrate while pressing and applying pressure to the substrate having the resin composition with increased viscosity under heating. And are spread and filled in the gap between the flip chip and the flip chip (step (3)).
  • the heating temperature it is desirable that the resin temperature at the time of pressing and adding pressure is 150 to 180 ° C.
  • the pressing speed for pressing the chip against the substrate is preferably 0.01 to 5 mm / s.
  • the pressurizing pressure condition is generally 1 to 15 g / post, preferably 3 to 10 g / post, and the heating time is generally 0.5 to 10 seconds, preferably 1 to 5 seconds. It is.
  • the temperature rise can be continued until the sealing resin is cured while maintaining a high viscosity.
  • the Cu post is disposed at the predetermined connection position on the substrate.
  • the solder provided at the tip of each is melted, and the Cu posts are electrically connected by fusion.
  • the step (4) is achieved by heating to a solder melting temperature or higher.
  • the melting temperature is generally 200 to 300 ° C. Therefore, for example, by raising the temperature to the solder melting temperature or higher in the step (3), the step (3) and the step (4) can be performed practically simultaneously.
  • step (5) the resin composition is cured by heating.
  • the heating temperature is, for example, 200 to 300 ° C. as the resin temperature, and the heating time is 0.5 to 10 seconds. Therefore, for example, if the step (5) is set to a solder melting temperature or higher, solder melting can be realized, and the step (4) and the step (5) can be performed practically simultaneously. Further, after-curing may be performed if desired.
  • the temperature and time conditions are preferably 120 to 180 ° C., more preferably 120 to 150 ° C. and 30 to 120 minutes.
  • step (4) can be performed after the step (5).
  • the semiconductor device of the present invention is not particularly limited, and examples thereof include an integrated circuit device used for electronic devices such as a mobile phone, a smartphone, a mobile device, and a laptop computer in which a Cu post chip is flip-chip mounted.
  • Viscosity stability The viscosity at 40 ° C. was measured over time by a rheometer (TA Instruments, AR-G2, hereinafter the same) and evaluated. Evaluation A: Viscosity is 1.5 times or less after 6 hours B: Viscosity is 1.5 times or less after 3 hours (5) Viscosity (25 ° C.) At 25 ° C., the viscosity was measured with an HBT rotary viscometer and the viscosity at 10 rpm was read. (6) Viscosity (after 80 minutes at 80 ° C) Using a rheometer, the viscosity after 10 minutes of reading at 80 ° C. was read.
  • Viscosity start temperature Using a rheometer, the temperature at which the viscosity of the sealing resin increased was measured when measured at a frequency of 1 Hz and a heating rate of 10 ° C./min. In addition, the thing whose viscosity increase was not seen even if it heated up to 120 degreeC was set to "no viscosity increase.”
  • Epoxy resin 1,6-bis (2,3-epoxypropoxy) naphthalene Curing agent: Trialkyltetrahydroxyphthalic anhydride acrylic rubber particles (1): F301 (trade name) manufactured by Ganz Kasei Co., Ltd. Acrylic resin having an average particle size of 2 ⁇ m Particle acrylic rubber particles (2): JF003 (trade name) manufactured by Mitsubishi Rayon Co., Ltd. Acrylic resin particles acrylic rubber particles having an average particle size of 1 ⁇ m (3): JF001 (trade name) manufactured by Mitsubishi Rayon Co., Ltd. acrylic resin particles acrylic having an average particle size of 1 ⁇ m Rubber particles (4): F320 (trade name) manufactured by Ganz Kasei Co., Ltd.
  • Acrylic resin particles with an average particle diameter of 1 ⁇ m Acrylic rubber particles (5): Metablene C-140A (trade name) manufactured by Mitsubishi Rayon Co., Ltd.
  • Silica filler Average particles Diameter 2.0 ⁇ m (spherical fused silica)
  • Silane coupling agent Epoxy silane curing accelerator: Imidazole-based curing acceleration
  • composition of the present invention was free of voids, which are necessary conditions for flip-chip mounting of Cu post chips, and realized properties such as excellent dispensing properties and connectivity.
  • composition of the comparative example did not show sufficient performance in terms of voids, dispensing properties, and connectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Wire Bonding (AREA)

Abstract

 Cuポストチップの樹脂先置き型フリップチップ実装に特に好適に適用でき、ボイド発生による欠陥を抑制できる封止用エポキシ樹脂組成物及びCuポストチップを用いた半導体装置の製造方法を提供する。本発明は、エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)及び前記(A)100重量部に対して3~64重量部の、体積平均一次粒径0.2~10μmの加熱型増粘樹脂粒子(D)を含有する、フリップチップ実装のための半導体封止用エポキシ樹脂組成物、該組成物を用いてCuポストチップの樹脂先置き型フリップチップ実装により半導体装置を製造する方法である。

Description

半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
 本発明は、半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法に関し、より詳細には、Cuポストチップの樹脂先置き型フリップチップ実装に特に好適に適用できる封止用エポキシ樹脂組成物及びCuポストチップを用いた半導体装置の製造方法に関する。
 半導体チップの回路基板への実装方法としては、パッケージの一層の軽薄短小化の要請に対応して、フリップチップ実装が増えている。フリップチップの実装においては、従来、「樹脂先置き型実装」といわれる、基板上に封止樹脂を先に供給した後、チップを基板上の回路に圧着し、電気的接続を行い、かつ封止樹脂の硬化を行う方法等が行われている。
 このフリップチップ実装においては、従来広く用いられていたAuスタッドを有するチップから、電気的特性に優れるCuポストを用いたチップへの移行が検討されている。Cuポストを用いたチップの基板においては、基板上の回路との接続をポストの先端部に設けたソルダーの融着により行うが、その際に、ソルダーが基板上の所定領域からはみ出して流動しないように、はみ出してはいけない領域に予めソルダーレジストパターンが塗布され、ポストとの接合部にはソルダーレジストが塗布されていないので、所定箇所にのみソルダーが乗るように工夫されている。従って、ソルダーレジストが塗布された領域と塗布されていない領域との境界が基板上に段差として存在している。この段差の存在が、樹脂先置き型フリップチップ実装においては、チップと基板とを押し付けてその隙間に封止樹脂を流動させ押し広げる際に、巻き込んだ空気がトラップされてボイドを発生させる原因となることが判明した。
 さらに、ソルダーのリフロー温度に加熱する必要があり、この加熱は従来のAuスタッドによる圧着工程よりも高温であるので、封止樹脂の粘度が低下して流動性が上がり、硬化するまでに位置ずれが発生するおそれがあるなどの問題も認識されている。
 半導体封止用エポキシ樹脂組成物は各種のものが知られており、例えば、アクリル重合体微粒子を比較的少量の0.1~5phrで配合して潜在性増粘効果を持たせた封止樹脂が特許文献1に開示されている。しかしながら、この封止樹脂はワイヤーボンディング型ICチップ向けに適合させた封止剤であり、上述の課題を解決するものではない。
特開2012-77129号公報
 本発明は、Cuポストチップの樹脂先置き型フリップチップ実装に特に好適に適用でき、ボイド発生による欠陥を抑制できる封止用エポキシ樹脂組成物及びCuポストチップを用いた半導体装置の製造方法を提供することを目的とする。
 本発明は、エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)及び前記(A)100重量部に対して3~64重量部の、体積平均一次粒径0.2~10μmの加熱型増粘樹脂粒子(D)を含有する、フリップチップ実装のための半導体封止用エポキシ樹脂組成物である。
 本発明はまた、電極を有する基板の電極面に、液状の半導体封止用エポキシ樹脂組成物を供給する工程(1)、前記基板を加熱することにより、前記樹脂組成物を高粘度化する工程(2)、及び、バンプを形成した半導体チップを前記高粘度化した樹脂組成物に、加熱下、押付加圧しつつ、前記樹脂組成物を前記基板と前記半導体チップとの間隙に押し広げて充填する工程(3)を有することを特徴とするフリップチップ実装してなる半導体装置の製造方法でもある。
 本発明の封止用エポキシ樹脂組成物は、上述の構成により、常温で供給可能な液状を保ち、加熱することで、加熱型増粘樹脂粒子によりエポキシ樹脂組成物が増粘する。例えば、加熱型増粘樹脂粒子がアクリル樹脂粒子である場合、常温から温度上昇に伴いエポキシ樹脂組成物の粘度が低下していき、一方で昇温に伴ってアクリル樹脂粒子がエポキシ樹脂に膨潤を開始し、粘度上昇要因となる。その結果、ある一定の温度に到達した際に、エポキシ樹脂組成物の粘度が上昇を開始し、エポキシ樹脂組成物は高粘度化する。その後、更なる昇温においても、エポキシ樹脂組成物は高粘度を維持したままで硬化させることができる、という硬化に至るまでの粘度プロファイルを持つ。従って、樹脂先置き型実装におけるチップの押付加圧による樹脂押し広げ時に、樹脂粘度をある程度高い状態に維持することができる。その結果、意外にも、トラップされたボイドが排除されるという効果を本発明者は見出した。
 本発明の組成物は、Cuポストチップの樹脂先置き型実装において顕在化した課題を解決し、とくに、ボイド発生による欠陥を抑制しつつ、作業性の良好な樹脂先置き型フリップチップ実装を実現でき、Cuポストチップを用いた半導体装置の製造方法に特に好適に使用可能である。
 本発明において、エポキシ樹脂(A)としては、封止用樹脂として一般に使用されているエポキシ樹脂を適用可能であり、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ポリエーテル型エポキシ樹脂、シリコーン変性エポキシ樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。例えば、常温で固体のエポキシ樹脂は常温で液状のエポキシ樹脂と組み合わせて常温で液状となるように配合することができる。これらのうち、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂が耐湿性の点でより好ましい。
 本発明において、硬化剤(B)としては、エポキシ樹脂に使用可能な硬化剤が使用できるが、なかでも酸無水物が好ましく、例えば、ヘキサヒドロ無水フタル酸、アルキルヘキサヒドロ無水フタル酸、アルキルテトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、無水メチルナジック酸、メチルノルボルナン-2,3-ジカルボン酸を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。これらのうち、低アウトガスの観点から、トリアルキルテトラヒドロ無水フタル酸が好ましい。トリアルキルテトラヒドロ無水フタル酸のアルキル基としては、好ましくは直鎖状または分岐状の炭素数1~10のアルキル基、より好ましくは炭素数1~6のアルキル基であり、さらに好ましくは1~4のアルキル基である。トリアルキル基のうちそれぞれのアルキル基は同一又は異なっていてもよい。
 本発明において、硬化剤(B)の配合量は、組成物中のエポキシ樹脂(A)中のエポキシ基のモル数に対して硬化剤官能基のモル数が0.6~1.2倍が好ましく、0.7~1.0倍がより好ましい。硬化剤の配合量が上述の範囲より少ないと硬化不良となるおそれがあり、多いと硬化剤がブリードするおそれがある。
 本発明において、エポキシ樹脂と硬化剤との反応を促進するために硬化促進剤(C)を用いる。硬化促進剤(C)としては、エポキシ樹脂(A)と硬化剤(B)との反応を促進するものを使用することができ、例えば、硬化剤(B)が酸無水物である場合、イミダゾール系硬化促進剤、リン系硬化促進剤、ウレア系硬化促進剤を挙げることができる。これらのうち反応性の観点からイミダゾール系硬化剤が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 硬化促進剤(C)の配合量は、その種類により異なるが、一般には、硬化温度の観点から、エポキシ樹脂(A)100重量部に対して、3~15重量部が好ましく、5~10重量部がより好ましい。
 上記硬化促進剤(C)は、硬化促進化合物を被覆シェル(すなわち外殻)物質に内包したマイクロカプセル型硬化促進剤であってもよい。このようなものとしては、例えば、ノバキュアHX-3088、ノバキュアHX-3941(いずれも商品名。イミダゾール系化合物とエポキシ樹脂とのアダクト。いずれも旭化成エポキシ社製。)を挙げることができる。本発明において、マイクロカプセル型硬化促進剤を使用した場合のその配合量は、有効硬化促進化合物量に換算した量である。
 本発明において、加熱型増粘樹脂粒子(D)としては、加熱によりエポキシ樹脂組成物中で膨潤等し、組成物を増粘させることができるものであれば良いが、具体的には、塩化ビニル樹脂、ポリアミド樹脂、アクリル樹脂粒子、好ましくは、例えば、体積平均一次粒径0.2~10μmのアクリル樹脂粒子を用いることができる。粒径が0.2μm以上であるとエポキシ樹脂への分散性が良好であり、10μm以下であるとチップと基板との接続性が良好である。好ましくは0.5~3μmである。なお、体積平均一次粒径は、アクリル樹脂粒子エマルションをイオン交換水で希釈し、レーザー回折散乱粒度分布測定装置(例えば堀場製作所製LA-910W)を用いて測定することができる。
 上記加熱型増粘樹脂粒子(D)としては、(メタ)アクリレート類(例えば、アルキル(例えば、メチル、エチル、プロピル、ブチル、オクチル等)(メタ)アクリレート、フェニル(メタ)アクリレート等)、官能基含有(メタ)アクリレート類(例えば、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等)、アクリル酸類(例えば、(メタ)アクリル酸、クロトン酸、イタコン酸等)等のモノマーのホモ又はコポリマーからなるアクリル樹脂粒子を挙げることができる。
 上記アクリル樹脂粒子としては、コアシェル構造を有する粒子であっても良い。コアシェル構造を有する粒子は、例えば、コア粒子の存在下にシェル粒子を重合することにより得ることができ、その手法は当業者によく知られている。
 この場合において、シェル重合体としては、例えば、メチル(メタ)アクリレート、n-、i-又はt-ブチル(メタ)アクリレート及び(メタ)アクリル酸等のモノマーの共重合体(例えば、これらの成分をそれぞれ55~79.5モル%、20~40モル%及び0.5~10モル%含有する。)を挙げることができる。コア重合体としては、例えば、メチル(メタ)アクリレート及びn-、i-又はt-ブチル(メタ)アクリレート等のモノマーの共重合体(例えば、これらの成分をそれぞれ20~70モル%及び30~80モル%含有する。)を挙げることができる。また、コア重合体とシェル重合体の重量比としては、10/90~90/10とすることができる。
 上記アクリル樹脂粒子は、加熱によりエポキシ樹脂組成物中で膨潤するもの、加熱によりエポキシ樹脂組成物中に膨潤・溶解するものなどがあるが、増粘性の観点から膨潤・溶解するもののほうが好ましい。
 本発明の組成物において、上記加熱型増粘樹脂粒子(D)の配合量としては、加熱時の樹脂組成物の粘度の観点から、エポキシ樹脂100重量部あたり、3~64重量部が好ましく、6~50重量部がより好ましい。
 本発明において、さらに、無機フィラーを配合することができる。上記無機フィラーとしては、例えば、シリカフィラー(例えば、溶融シリカ、結晶シリカ等)、石英ガラス粉末、炭酸カルシウム、水酸化アルミニウム等の無機粒子を挙げることができる。これらのうち、好ましくはシリカフィラーであり、溶融シリカがより好ましい。無機フィラーの配合量は、供給時の組成物の粘度の観点から、樹脂組成物全体100重量部に対して、30~67重量部が好ましく、55~62重量部がより好ましい。
 また、無機フィラーを使用する際に、シランカップリング剤を使用することができる。上記シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられ、これらは単独で使用できるほか、2種以上を組み合わせて使用することが出来る。シランカップリング剤の配合量は、樹脂組成物全体100重量部に対して、0.01~5重量部が好ましく、0.1~2重量部がより好ましい。
 本発明の組成物には、本発明の目的を阻害しないかぎり、その他の添加剤を使用することができる。このような添加剤としては、消泡剤、レベリング剤、低応力剤、顔料等が挙げられる。ただし、溶剤は使用しないことが好ましい。
 本発明の組成物は、通常、各成分を所定の比率で配合後、60~120分攪拌し、その後減圧にして脱泡してから用いることにより、加熱硬化中の発泡を効果的に抑えることができる。
 本発明の組成物は、測定条件が周波数1Hz、昇温速度10℃/分における組成物の増粘開始温度が50~120℃であることが好ましく、増粘開始温度が60~100℃であることがより好ましい。増粘開始温度は、レオメーターにより、上述の測定条件で動的粘弾性測定法で測定したときに、封止樹脂が昇温に伴ってはじめて粘度上昇に転じるときの最小粘度における温度である。これは温度対粘度の測定値の変化から求めることができる。
 本発明の組成物は、15℃以上、50℃未満の範囲における組成物の粘度が1~300Pa・sであることが作業性の観点から好ましい。前記粘度は、上記加熱型増粘樹脂粒子(D)の配合量と無機フィラーの配合量により調節することができる。
 本発明の組成物の硬化温度は、硬化剤及び硬化促進剤の種類や配合量により調節することができる。フリップチップ実装における具体的な硬化条件は、下述工程(5)にて説明する。
 本発明の製造方法は、電極を有する基板の電極面に、液状の半導体封止用エポキシ樹脂組成物を供給する工程(1)、前記基板を加熱することにより、前記樹脂組成物を高粘度化させる工程(2)、及び、バンプを形成した半導体チップを前記高粘度化した樹脂組成物に、加熱下、押付加圧しつつ、前記樹脂組成物を前記基板と前記半導体チップとの間隙に押し広げて充填する工程(3)を有する、フリップチップ実装してなる半導体装置の製造方法である。
 本発明の製造方法は、更に、前記基板上の電極面に、バンプを電気的に接続する工程(4)、及び、前記樹脂組成物を加熱して硬化させる工程(5)を有することができる。
 本発明の製造方法においては、本発明の組成物を好適に使用することができる。
 本発明の製造方法を以下に説明する。まず、回路を形成した基板上に所定のソルダーレジストパターンを塗布した基板を用意する。この基板上の、チップが配置される面(すなわち電極面。)に、液状の半導体封止用エポキシ樹脂組成物、好ましくは本発明の組成物を、印刷法やディスペンス法により塗布する(工程(1))。この場合において、樹脂組成物の塗布作業性を良好に確保するために、15℃以上、50℃未満の温度範囲において前記基板に前記樹脂組成物を供給する。この温度範囲では本発明の組成物は液状、好ましくは粘度が1~300Pa・sを維持している。塗布量は、封止するに必要な量であって、かつ、多すぎない必要最小量とする。
 その後、前記基板を加熱することにより、前記樹脂組成物の粘度を高粘度化させる(工程(2))。具体的には、電極面にエポキシ樹脂組成物が供給された基板を、ホットプレート、オーブンなどの手段により加熱し、樹脂組成物を高粘度化させる。加熱温度は50~120℃、加熱時間は1~30分とすることが望ましい。また高粘度化したエポキシ樹脂組成物の粘度は、10~4000Pa・sの範囲であることが望ましい。この粘度は動的粘弾性測定法による1Hzの粘度をいう。この工程(2)で封止樹脂粘度を高粘度にすることにより、のちの工程でトラップされたボイドを排除することが可能である。封止樹脂粘度が上記範囲よりも低い場合は、ボイドを排除することが困難である。また、上記範囲より高い場合は、バンプの接続が困難である。なお、この工程(2)では、エポキシ樹脂は実質的には硬化していない。
 その後、一般には治具により、Cuポストを有するチップが所定位置に配置され、前記高粘度化した樹脂組成物を有する基板にチップを、加熱下、押付加圧しつつ、前記樹脂組成物を前記基板と前記フリップチップとの間隙に押し広げて充填する(工程(3))。上記加熱温度としては、押付加圧時の樹脂温度が150~180℃となるようにすることが望ましい。またチップを基板に押付ける押付速度は0.01~5mm/sであることが望ましい。押付加圧条件としては、1~15g/ポストが一般的であり、好ましくは3~10g/ポストであり、加熱時間としては0.5~10秒が一般的であり、好ましくは1~5秒である。この工程(3)においては、好ましくは本発明の組成物を用いることにより、封止樹脂を高粘度に維持しつつ硬化に至るまで昇温を続けることができる。
 前記基板上の所定接続位置に、バンブ、例えば、Cuポストの先端にソルダー層を形成したCuバンプ、を電気的に接続する工程(4)においては、前記基板上の所定接続位置に、Cuポストの先端部に設けられたソルダーを溶融させ、Cuポストを融着によって電気的に接続する。前記工程(4)は、ソルダー溶融温度以上に加熱することにより達成される。上記溶融温度としては、200~300℃が一般的である。従って、例えば、上記工程(3)においてソルダー溶融温度以上に昇温することにより、前記工程(3)と前記工程(4)とを、事実上、同時に行うことも可能である。
 工程(5)においては、加熱して前記樹脂組成物を硬化させる。上記加熱温度としては、例えば、樹脂温度で200~300℃であり、加熱時間としては、0.5~10秒である。従って、例えば、上記工程(5)をソルダー溶融温度以上とすれば、ソルダー溶融を実現し、前記工程(4)と前記工程(5)とを、事実上、同時に行うことも可能である。さらに、所望により、アフターキュアをしてもよい。この温度、時間条件としては、120~180℃、より好ましくは120~150℃、30~120分が好ましい。
 上記工程(4)と工程(5)の順序は入れ替え可能であり、例えば工程(5)の後に工程(4)を行うことも可能である。
 本発明の半導体装置としては、特に限定されず、Cuポストチップをフリップチップ実装した、携帯電話、スマートフォン、モバイル機器、ラップトップコンピューター等の電子機器に用いられる集積回路装置等を挙げることができる。
 以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1~12及び比較例1~4
 表1及び表2に示す各成分及び配合量(重量部)でそれぞれ配合して室温で混合し、均一な液状組成物をそれぞれに調製した。
 得られた各組成物を使用して、以下の項目について、下記の方法で測定し、評価した。結果を表1及び表2に示した。
(1)ボイドの有無
基板上に各組成物を塗布量3mgとなるように25℃でディスペンスした。次に、基板をホットプレートで80℃、10分間加熱した後、当該基板とチップを圧接した。圧接条件は、押付加圧時の樹脂温度が160℃になるよう加熱下、押付速度0.3mm/秒、加圧5g/ポスト、3秒間で行った。この圧接したサンプルをピーク温度260℃、4秒間加熱し、半田溶融及び封止樹脂を硬化させて評価サンプルを作成した。超音波探索、平面研磨によりボイドの有無を観察し、評価した。使用パッケージ:MB50-010JY CR/WALTS社製。
評価
 ◎:封止樹脂中にボイドが見られない
 ○:封止樹脂中の一部にボイドが存在するが、バンプ間にまたがるボイドは存在しない
 ×:封止樹脂の全体にボイドが存在するか、またはバンプ間にまたがるボイドが存在する
(2)ディスペンス性
 武蔵社製金属ニードル20Gを使用して25℃で封止樹脂を吐出し、評価した。
評価
 ◎:3秒以内に4mg吐出可能
 ○:3~5秒以内に4mg吐出可能
 ×:4mg吐出するのに5秒超かかる
(3)接続性
 超音波探索、断面観察によりハンダ形状を調べ、評価した。使用パッケージ:MB50-010JY/WALTS社製。
評価
○:基板側とチップのバンプ側のハンダが接続している
×:基板側とチップのバンプ側のハンダが接続していない、もしくはハンダ接合部の形状がくびれている
(4)粘度安定性
 40℃における粘度を経時的にレオメーター(TAインスツルメント社製、AR-G2。以下同じ。)により測定し、評価した。
評価
 ◎:6時間後に粘度が1.5倍以下である
 ○:3時間後に粘度が1.5倍以下である
(5)粘度(25℃)
 25℃において、HBT回転式粘度計により測定し、10rpmでの粘度を読み取った。
(6)粘度(80℃、10分経過後)
 レオメーターにより、80℃に固定して10分後の粘度を読み取った。
(7)増粘開始温度
 レオメーターにより、周波数1Hz、昇温速度10℃/minで測定したときに封止樹脂が粘度上昇したときの温度を読み取った。なお、120℃まで昇温しても粘度上昇が見られなかったものは「増粘なし」とした。
 表中の用語の意味は以下のとおり。
エポキシ樹脂:1,6-ビス(2,3-エポキシプロポキシ)ナフタレン
硬化剤:トリアルキルテトラヒドロキシ無水フタル酸
アクリルゴム粒子(1):ガンツ化成社製F301(商品名)平均粒径2μmのアクリル樹脂粒子
アクリルゴム粒子(2):三菱レイヨン社製JF003(商品名)平均粒径1μmのアクリル樹脂粒子
アクリルゴム粒子(3):三菱レイヨン社製JF001(商品名)平均粒径1μmのアクリル樹脂粒子
アクリルゴム粒子(4):ガンツ化成社製F320(商品名)平均粒径1μmのアクリル樹脂粒子
アクリルゴム粒子(5):三菱レイヨン社製メタブレンC-140A(商品名)アクリル樹脂粒子
シリカフィラー:平均粒径2.0μm(球状溶融シリカ)
シランカップリング剤:エポキシシラン
硬化促進剤:イミダゾール系硬化促進
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記実施例から、本発明の組成物は、Cuポストチップのフリップチップ実装に必要な条件であるボイドが無く、ディスペンス性、接続性に優れる等の特性を実現していることが判った。一方、比較例の組成物は、ボイド、ディスペンス性、接続性において、充分な性能を示さなかった。

Claims (18)

  1. エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)及び前記(A)100重量部に対して3~64重量部の、体積平均一次粒径0.2~10μmの加熱型増粘樹脂粒子(D)を含有する、フリップチップ実装のための半導体封止用エポキシ樹脂組成物。
  2. 加熱型増粘樹脂粒子(D)は、アクリル樹脂粒子である請求項1記載の組成物。
  3. 加熱型増粘樹脂粒子(D)の含有量は、6~50重量部である請求項1又は2に記載の組成物。
  4. 硬化剤(B)は、酸無水物である請求項1~3のいずれかに記載の組成物。
  5. 硬化促進剤(C)をエポキシ樹脂(A)100重量部に対して3~15重量部含有する請求項1~4のいずれかに記載の組成物。
  6. さらに、樹脂組成物全体100重量部に対して、無機フィラーを30~67重量部含有する請求項1~5のいずれかに記載の組成物。
  7. 周波数1Hz、10℃/分の昇温速度における組成物の増粘開始温度が50~120℃である請求項1~6のいずれかに記載の組成物。
  8. 増粘開始温度が60~100℃である請求項7記載の組成物。
  9. 15℃以上、50℃未満の範囲における組成物の粘度が1~300Pa・sである請求項1~8のいずれかに記載の組成物。
  10. フリップチップは、Cuポストの先端にソルダー層を形成したCuバンプを有するフリップチップである請求項1~9のいずれかに記載の組成物。
  11. フリップチップ実装は、樹脂先置き型実装である請求項1~10のいずれかに記載の組成物。
  12. 電極を有する基板の電極面に、液状の半導体封止用エポキシ樹脂組成物を供給する工程(1)、前記基板を加熱することにより、前記樹脂組成物を高粘度化する工程(2)、及び、バンプを形成した半導体チップを前記高粘度化した樹脂組成物に、加熱下、押付加圧しつつ、前記樹脂組成物を前記基板と前記半導体チップとの間隙に押し広げて充填する工程(3)を有することを特徴とするフリップチップ実装してなる半導体装置の製造方法。
  13. 前記工程(1)において、前記樹脂組成物の供給時の温度が15℃以上、50℃未満であり、粘度が1~300Pa・sであり、前記工程(2)において、高粘度化したエポキシ樹脂組成物の粘度が10~4000Pa・sの範囲である請求項12記載の製造方法。
  14. 前記工程(2)において、加熱条件は、加熱温度50~120℃、加熱時間1~30分である請求項12又は13記載の製造方法。
  15. 前記工程(3)において、押付加圧時の樹脂温度が150~180℃となるよう加熱下、押付速度0.01~5mm/sで押付加圧する請求項12~14のいずれかに記載の製造方法。
  16. 更に、前記基板上の電極面に、バンプを電気的に接続する工程(4)、及び、前記樹脂組成物を加熱して硬化させる工程(5)を有する請求項12~15のいずれかに記載の製造方法。
  17. バンプは、Cuポストの先端にソルダー層を形成したCuバンプであり、電極を有する基板は、電極面以外がソルダーレジストで被膜された基板であって、前記工程(4)において、ソルダー溶融温度以上に加熱する請求項16記載の製造方法。
  18. 請求項1~11のいずれかに記載の組成物を半導体封止用エポキシ樹脂組成物として使用する請求項12~17のいずれかに記載の製造方法。
PCT/JP2013/069252 2012-07-19 2013-07-16 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法 WO2014013970A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201500275SA SG11201500275SA (en) 2012-07-19 2013-07-16 Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
US14/415,231 US9963587B2 (en) 2012-07-19 2013-07-16 Epoxy resin composition for semiconductor encapsulation and method for manufacturing semiconductor device
JP2014525816A JP6218083B2 (ja) 2012-07-19 2013-07-16 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
KR1020157004205A KR102039768B1 (ko) 2012-07-19 2013-07-16 반도체 봉지용 에폭시 수지 조성물 및 반도체 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012160143 2012-07-19
JP2012-160143 2012-07-19

Publications (1)

Publication Number Publication Date
WO2014013970A1 true WO2014013970A1 (ja) 2014-01-23

Family

ID=49948797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069252 WO2014013970A1 (ja) 2012-07-19 2013-07-16 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法

Country Status (6)

Country Link
US (1) US9963587B2 (ja)
JP (1) JP6218083B2 (ja)
KR (1) KR102039768B1 (ja)
SG (1) SG11201500275SA (ja)
TW (1) TWI600701B (ja)
WO (1) WO2014013970A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022592A (ja) * 2012-07-19 2014-02-03 Renesas Electronics Corp 半導体装置の製造方法
JPWO2017078039A1 (ja) * 2015-11-04 2018-02-15 リンテック株式会社 熱硬化性樹脂フィルム、第1保護膜形成用シート及び第1保護膜の形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105243A (ja) * 2003-07-18 2005-04-21 Shin Etsu Chem Co Ltd フリップチップ実装用サイドフィル材及び半導体装置
JP2009041019A (ja) * 2003-01-07 2009-02-26 Sekisui Chem Co Ltd 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP2009242685A (ja) * 2008-03-31 2009-10-22 Nagase Chemtex Corp 半導体封止用エポキシ樹脂組成物
WO2010090246A1 (ja) * 2009-02-05 2010-08-12 三菱レイヨン株式会社 ビニル重合体粉体、硬化性樹脂組成物及び硬化物
JP2011190395A (ja) * 2010-03-16 2011-09-29 Hitachi Chem Co Ltd 半導体封止充てん用エポキシ樹脂組成物、半導体装置、及びその製造方法
JP2012056979A (ja) * 2010-09-06 2012-03-22 Namics Corp エポキシ樹脂組成物
JP2012077129A (ja) * 2010-09-30 2012-04-19 Namics Corp 樹脂組成物、および、それを用いた封止材
JP2012089740A (ja) * 2010-10-21 2012-05-10 Fujitsu Ltd 半導体装置の製造方法及び接合方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075802A1 (en) * 1999-12-14 2004-04-22 Mitsui Chemicals, Inc. Sealant for liquid crystal display cell, composition for liquid crystal display cell sealant and liquid crystal display element
JP2001261931A (ja) * 2000-03-14 2001-09-26 Toshiba Chem Corp 液状封止用樹脂組成物
JP4790902B2 (ja) * 2000-11-20 2011-10-12 関西ペイント株式会社 水性塗料組成物
JP2003049050A (ja) * 2001-08-06 2003-02-21 Nagase Chemtex Corp プレゲル化剤を含有するエポキシ樹脂組成物
JP4238124B2 (ja) * 2003-01-07 2009-03-11 積水化学工業株式会社 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP2007197572A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd エポキシ樹脂組成物と電子部品の樹脂封止方法並びに樹脂封止電子部品
SG177684A1 (en) 2009-07-31 2012-03-29 Sumitomo Bakelite Co Liquid resin composition and semiconductor device formed using same
JP2012089750A (ja) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd 半導体封止充てん用熱硬化性樹脂組成物及び半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041019A (ja) * 2003-01-07 2009-02-26 Sekisui Chem Co Ltd 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP2005105243A (ja) * 2003-07-18 2005-04-21 Shin Etsu Chem Co Ltd フリップチップ実装用サイドフィル材及び半導体装置
JP2009242685A (ja) * 2008-03-31 2009-10-22 Nagase Chemtex Corp 半導体封止用エポキシ樹脂組成物
WO2010090246A1 (ja) * 2009-02-05 2010-08-12 三菱レイヨン株式会社 ビニル重合体粉体、硬化性樹脂組成物及び硬化物
JP2011190395A (ja) * 2010-03-16 2011-09-29 Hitachi Chem Co Ltd 半導体封止充てん用エポキシ樹脂組成物、半導体装置、及びその製造方法
JP2012056979A (ja) * 2010-09-06 2012-03-22 Namics Corp エポキシ樹脂組成物
JP2012077129A (ja) * 2010-09-30 2012-04-19 Namics Corp 樹脂組成物、および、それを用いた封止材
JP2012089740A (ja) * 2010-10-21 2012-05-10 Fujitsu Ltd 半導体装置の製造方法及び接合方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022592A (ja) * 2012-07-19 2014-02-03 Renesas Electronics Corp 半導体装置の製造方法
JPWO2017078039A1 (ja) * 2015-11-04 2018-02-15 リンテック株式会社 熱硬化性樹脂フィルム、第1保護膜形成用シート及び第1保護膜の形成方法
KR20180080206A (ko) * 2015-11-04 2018-07-11 린텍 가부시키가이샤 열경화성 수지 필름, 제1 보호막 형성용 시트 및 제1 보호막의 형성 방법
KR102534927B1 (ko) * 2015-11-04 2023-05-19 린텍 가부시키가이샤 열경화성 수지 필름, 제1 보호막 형성용 시트 및 제1 보호막의 형성 방법

Also Published As

Publication number Publication date
TW201410779A (zh) 2014-03-16
SG11201500275SA (en) 2015-04-29
KR20150038125A (ko) 2015-04-08
JPWO2014013970A1 (ja) 2016-06-30
KR102039768B1 (ko) 2019-11-01
JP6218083B2 (ja) 2017-10-25
TWI600701B (zh) 2017-10-01
US20150175800A1 (en) 2015-06-25
US9963587B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
JP5681432B2 (ja) エポキシ樹脂組成物及びそれを使用した半導体装置
JP2016219600A (ja) 半導体用ダイアタッチペースト及び半導体装置
JP4449325B2 (ja) 半導体用接着フィルム、半導体装置、及び半導体装置の製造方法。
JP6094886B2 (ja) 半導体装置の製造方法とそれに使用される半導体封止用アクリル樹脂組成物
JP5388341B2 (ja) アンダーフィル用液状樹脂組成物、フリップチップ実装体およびその製造方法
JP4931079B2 (ja) アンダーフィル用液状熱硬化性樹脂組成物とそれを用いた半導体装置
JP2006302834A (ja) ダイボンディングペースト
JP6218083B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置の製造方法
JP2006169395A (ja) アンダーフィル樹脂組成物
JP5593259B2 (ja) 液状エポキシ樹脂組成物
KR101035873B1 (ko) 고온 속경화형 접착필름 조성물 및 이를 이용한 접착필름
JP2003212963A (ja) 熱硬化性液状封止樹脂組成物及び半導体装置
JP2012056979A (ja) エポキシ樹脂組成物
JP6189148B2 (ja) エポキシ樹脂組成物および半導体装置
JP2006073811A (ja) ダイボンディングペースト
JP2010209266A (ja) 半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置
JP6472837B2 (ja) エポキシ樹脂組成物および半導体装置
JP5098175B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
WO2016059980A1 (ja) 液状エポキシ樹脂組成物
JP2013107993A (ja) 半導体封止用液状樹脂組成物とそれを用いた半導体装置
JP5723665B2 (ja) 先供給型液状半導体封止樹脂組成物
JP4858431B2 (ja) 半導体装置の製造方法
WO2021079677A1 (ja) 封止用樹脂組成物、及び半導体装置
JP2014094980A (ja) 液状エポキシ樹脂組成物及びこれを用いた半導体装置
JP5958799B2 (ja) 半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525816

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14415231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004205

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13819820

Country of ref document: EP

Kind code of ref document: A1