WO2016042667A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2016042667A1
WO2016042667A1 PCT/JP2014/074881 JP2014074881W WO2016042667A1 WO 2016042667 A1 WO2016042667 A1 WO 2016042667A1 JP 2014074881 W JP2014074881 W JP 2014074881W WO 2016042667 A1 WO2016042667 A1 WO 2016042667A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
tank
etching solution
solution
titanium
Prior art date
Application number
PCT/JP2014/074881
Other languages
English (en)
French (fr)
Inventor
信明 山中
大亮 近森
真一郎 香月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202210120071.XA priority Critical patent/CN114438494A/zh
Priority to US15/318,925 priority patent/US9881818B2/en
Priority to PCT/JP2014/074881 priority patent/WO2016042667A1/ja
Priority to DE112014006962.0T priority patent/DE112014006962T5/de
Priority to KR1020177007244A priority patent/KR101900631B1/ko
Priority to CN201480082015.5A priority patent/CN107075694A/zh
Priority to JP2016548517A priority patent/JP6545691B2/ja
Publication of WO2016042667A1 publication Critical patent/WO2016042667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/38Alkaline compositions for etching refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0495Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • Patent Documents 1 and 2 Conventionally, as shown in Patent Documents 1 and 2 below, various techniques for suppressing a change in etching rate are known for wet etching of a metal film.
  • wet etching of titanium film is carried out using ammonia perwater solution. Further, there is a technique for achieving a uniform concentration or a constant temperature by circulating an etching solution.
  • the ammonia perwater solution is circulated, the decomposition of hydrogen peroxide is promoted, so that the concentration of hydrogen peroxide decreases with time.
  • the etching rate strongly affects the concentration of hydrogen peroxide. For this reason, if the elapsed time after the preparation of the ammonia-hydrogen peroxide solution increases, the etching rate decreases, and there is a problem that the etching rate cannot be kept uniform.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device capable of maintaining a uniform etching rate over a long period of time.
  • the method for manufacturing a semiconductor device includes a preparation step of preparing a liquid in which titanium is preliminarily dissolved in an ammonia perwater solution before use as an etching solution, and the etching in a treatment tank after the preparation step.
  • a preparation step of preparing a liquid in which titanium is preliminarily dissolved in an ammonia perwater solution before use as an etching solution and the etching in a treatment tank after the preparation step.
  • the flow step of flowing the etching solution, and after starting the flow step by placing a semiconductor wafer provided with a resist film and a metal film in the processing tank, And a processing step of etching the metal film with an etching solution.
  • the etching rate can be kept uniform over a long period of time by suppressing the decomposition of hydrogen peroxide in the ammonia-aqueous solution.
  • FIG. 3 is a flowchart showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. It is a figure which shows the etching apparatus concerning embodiment of this invention. It is a figure which shows the etching apparatus concerning embodiment of this invention. It is a figure which shows the preparation process of the etching liquid concerning embodiment of this invention. It is a figure which shows the preparation process of the etching liquid concerning embodiment of this invention. It is a figure which shows the etching process concerning embodiment of this invention. It is a figure which shows the experimental result concerning the comparative example with respect to embodiment. It is a figure which shows the experimental result concerning embodiment of this invention. It is a figure which shows the experimental result concerning embodiment of this invention.
  • FIG. 1 is a flowchart showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • 2 and 3 are views showing a wet etching apparatus 50 according to the embodiment of the present invention.
  • the etching process shown in the flowchart in FIG. 1 is performed using the wet etching apparatus 50, and the titanium film 14 on the silicon carbide (SiC) wafer 10 shown in FIG. 6 is etched.
  • the wet etching apparatus 50 includes a processing tank 20, a first pipe 30, a circulation pump 32, a temperature controller 34, a second pipe 36, and a densitometer 38. .
  • An etching solution 29 is stored in the processing tank 20.
  • the first pipe 30 has one end and the other end connected to the processing tank 20, and is used for circulating the etching solution 29 therein.
  • the circulation pump 32 and the temperature controller 34 are provided in the middle of the first pipe 30.
  • the etchant 29 can be circulated through the first pipe 30 by driving the circulation pump 32.
  • the temperature controller 34 is provided in the middle of the first pipe 30. By flowing the etching solution 29 via the temperature controller 34, the temperature of the etching solution 29 can be adjusted.
  • One end of the second pipe 36 is connected to the outlet of the circulation pump 32, and the other end of the second pipe 36 is located above the processing tank 20.
  • the etchant 29 can be supplied as droplets 39 from the other end of the second pipe 36.
  • a densitometer 38 is provided in the middle of the second pipe 36.
  • the concentration of the circulating etching solution 29 can be known from the measured value of the densitometer 38.
  • the flow rate of the first pipe 30 may be several liters / minute
  • the flow rate of the second pipe 36 may be several cm 3 / minute.
  • FIG. 3 shows a cross section of the processing tank 20.
  • the processing tank 20 includes an inner tank 201 into which the SiC wafer 10 is to be placed, and an outer tank 202 provided so as to surround the inner tank 201.
  • the etching solution 29 overflowing from the inner tank 201 flows into the outer tank 202.
  • the circulation pump 32 sucks out the etching solution 29 in the outer tank 202 from one end of the first pipe 30 connected to the bottom surface of the outer tank 202.
  • the circulation pump 32 feeds the etching solution 29 into the inner tank 201 via the other end of the first pipe 30 connected to the bottom surface of the inner tank 201.
  • the etching solution 29 circulates in the treatment tank 20.
  • this invention is not restricted to the processing tank 20 of the 2 tank structure of FIG. 3, A 1 tank structure may be sufficient.
  • the etching solution 29 in the processing tank may be stirred using a known means for stirring the liquid.
  • an etching solution 29 is prepared in steps S100 and S102. Specifically, titanium is dissolved in advance in an ammonia perwater solution 22 before use for etching to prepare an etching solution 29.
  • step S100 the ammonia perwater solution 22 is prepared.
  • FIG. 4 is a diagram showing a preparation process of the etching solution 29 according to the embodiment of the present invention.
  • An ammonia aqueous solution 22 is produced by sequentially introducing the ammonia water 24, the hydrogen peroxide solution 26, and the pure water 28 in which titanium is not dissolved into the treatment tank 20. Since the concentration changes if prepared in advance, it is preferably added at the time of liquid preparation. Since the ammonia perwater solution 22 is used before etching, that is, unused, it does not contain a metal such as titanium.
  • FIG. 5 is a diagram showing a preparation process of the etching solution 29 according to the embodiment of the present invention.
  • a semiconductor wafer 44 in which a titanium film 42 is formed on a semiconductor substrate 40 such as silicon (Si) is introduced into the treatment tank 20, thereby dissolving the titanium film 42 in the ammonia overwater solution 22.
  • the semiconductor wafer 44 is for dissolving titanium in advance in the ammonia perwater solution 22. Therefore, unlike the wafer to be etched, the semiconductor wafer 44 is not provided with a resist for patterning the titanium film 42.
  • the present invention is not limited to the embodiment using the semiconductor wafer 44, and for example, titanium fine particles or the like may be introduced into the processing tank 20.
  • Etching solution 29 is completed by step S102.
  • step S104 the etching liquid 29 is circulated by driving the circulation pump 32 in the apparatus configuration shown in FIG.
  • the etching solution 29 in the processing bath 20 is circulated using the circulation pump 32 in order to make the concentration and temperature of the etching solution 29 in the processing bath 20 constant.
  • the etching uniformity is improved by circulating the etching solution 29. That is, by circulating the etching solution 29 in the processing bath 20 with the circulation pump 32, the concentration of the etching solution 29 in the processing bath 20 can be kept uniform.
  • the temperature controller 34 is attached to the processing tank 20 and the etching solution 29 is circulated so that the temperature of the etching solution 29 becomes constant, changes in the etching rate due to temperature changes can be suppressed.
  • the circulation of the hydrogen peroxide solution 22 facilitates the decomposition of hydrogen peroxide.
  • the first reason is that when a two-tank processing tank 20 is used as shown in FIG. 3, the ammonia superwater solution 22 overflows from the inner tank 201 to the outer tank 202 when the ammonia superwater solution 22 is circulated. As a result, the contact area between the ammonia overwater liquid 22 and the atmosphere increases.
  • the second reason is that oxygen dissolved in the ammonia superwater solution 22 escapes due to a cavitation effect caused by pressure fluctuation in the circulation pump 32.
  • the inventor of the present application has conducted intensive research and found that the decomposition of hydrogen peroxide in the ammonia-hydrogen peroxide solution can be suppressed by dissolving titanium in advance. This makes it possible to keep the etching rate constant over a long period of time.
  • the reason why the decomposition of hydrogen peroxide is suppressed when titanium is dissolved immediately after the preparation of the ammonia perwater solution is shown below.
  • hydrogen peroxide undergoes a reaction of the following formula 1 to generate hydroperoxyl radicals, that is, OOH. H 2 O 2 + OH ⁇ H 2 O + OOH (Formula 1)
  • the hydroperoxyl radical is considered to function to react with hydrogen peroxide and accelerate decomposition in an alkaline solution. It is considered that the reaction of the following formula 2 occurs and the decomposition of H 2 O 2 proceeds at an accelerated rate.
  • H 2 O 2 + OOH ⁇ O 2 + H 2 O + OH (Formula 2)
  • FIG. 6 is a diagram showing an etching process according to the embodiment of the present invention.
  • the SiC wafer 10 to be etched is obtained by laminating a titanium film 14 on a SiC substrate 12, laminating a resist film 16 on the titanium film 14, and patterning the resist film 16 into a desired shape.
  • FIG. 6 shows a state where the etching groove 15 is formed in the titanium film 14.
  • the titanium film 14 on the SiC wafer 10 is etched in step S106.
  • a metal film other than titanium may be etched using the etching solution 29.
  • a nickel film may be laminated on the SiC wafer 10 instead of the titanium film 14, and this nickel film may be etched in step S106.
  • the manufacturing method according to this embodiment is suitable for etching the titanium film 14. Since titanium and nickel are Schottky bonded to silicon carbide, the etching method according to this embodiment is preferably applied to form a Schottky barrier electrode layer on the SiC substrate 12.
  • FIG. 7 is a diagram illustrating an experimental result according to a comparative example with respect to the embodiment.
  • 8 and 9 are diagrams showing experimental results according to the embodiment of the present invention.
  • the NH 3 concentration is plotted with diamonds
  • the H 2 O 2 concentration is plotted with squares
  • the amount of titanium scraping when the SiC wafer 10 is immersed in the etching solution 29 for 4 minutes is plotted with triangles.
  • the scale on the left indicates the concentration [%]
  • the scale on the right indicates the amount of shaving [nm] of the titanium film.
  • FIG. 7 is a result of an experiment using an ammonia perwater solution that does not dissolve titanium as a comparative example, and is a diagram showing a change in concentration and a titanium scraping amount according to elapsed time.
  • Elapsed time is the elapsed time from the preparation of the ammonia overwater solution. In the region where the elapsed time is about 0 to 10 hours immediately after the start of the experiment, the H 2 O 2 concentration rapidly decreases to 10% or less. When the elapsed time is around 100 hours, the H 2 O 2 concentration decreases to around 1% to 0%. When the amount of titanium scraping was measured at an elapsed time of 100 hours, it was substantially zero nm.
  • FIG. 8 shows the relationship between the H 2 O 2 concentration and the etching rate of titanium. For each H 2 O 2 concentration, the amount of titanium scraping when the SiC wafer 10 is immersed in the etching solution 29 for 4 minutes is plotted. As shown in FIG. 8, the lower the H 2 O 2 concentration, the lower the titanium etching rate.
  • FIG. 9 shows the experimental results using the etching solution 29 of the present embodiment.
  • the etching rate can be kept uniform over a long period of time by suppressing the decomposition of hydrogen peroxide in the ammonia overwater solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 半導体装置の製造方法は、準備工程と、流動工程と、処理工程とを備える。準備工程は、エッチング使用前のアンモニア過水液に予めチタンを溶かした液体をエッチング液として準備する。流動工程は、前記準備工程の後に、前記処理槽の中での前記エッチング液の濃度を均一にするように、前記エッチング液の流動を行う。処理工程は、前記流動工程を開始した後に、金属膜を備えた半導体ウェハを前記処理槽内に入れることで、前記エッチング液で前記金属膜をエッチングする。前記金属膜がチタンであることが好ましく、前記エッチング液の温度を計測する計測手段を用いて前記処理工程中に前記エッチング液の温度を均一にすることが好ましい。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する。
 従来、下記の特許文献1、2に示すように、金属膜のウェットエッチングに関し、エッチングレートの変化を抑制する各種技術が知られている。
日本特開2002-241968号公報 日本特開2009-267115号公報
 半導体製造プロセスにおいて、アンモニア過水液を用いてチタン膜のウェットエッチングを実施している。また、エッチング液を循環させることで、濃度の均一化あるいは温度の一定化を図る技術がある。しかしながら、アンモニア過水液を循環させると過酸化水素の分解が促進されるため、経過時間とともに過酸化水素の濃度が低下してしまう。エッチングレートは過酸化水素の濃度に強く影響する。このためアンモニア過水液の作製後からの経過時間が増えるとエッチングレートが低下してしまい、エッチングレートを均一に保つことができないという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、長期間にわたってエッチングレートを均一に保つことができる半導体装置の製造方法を提供することを目的とする。
 本発明にかかる半導体装置の製造方法は、エッチング使用前のアンモニア過水液に予めチタンを溶かした液体をエッチング液として準備する準備工程と、前記準備工程の後に、処理槽の中での前記エッチング液の濃度を均一にするように、前記エッチング液の流動を行う流動工程と、前記流動工程を開始した後に、レジスト膜および金属膜を備えた半導体ウェハを前記処理槽内に入れることで、前記エッチング液で前記金属膜をエッチングする処理工程と、を備える。
 本発明によれば、アンモニア過水液において過酸化水素の分解を抑制することにより、長期間にわたってエッチングレートを均一に保つことができる。
本発明の実施の形態にかかる半導体装置の製造方法を示すフローチャートである。 本発明の実施の形態にかかるエッチング装置を示す図である。 本発明の実施の形態にかかるエッチング装置を示す図である。 本発明の実施の形態にかかるエッチング液の準備工程を示す図である。 本発明の実施の形態にかかるエッチング液の準備工程を示す図である。 本発明の実施の形態にかかるエッチング工程を示す図である。 実施の形態に対する比較例にかかる実験結果を示す図である。 本発明の実施の形態にかかる実験結果を示す図である。 本発明の実施の形態にかかる実験結果を示す図である。
 図1は、本発明の実施の形態にかかる半導体装置の製造方法を示すフローチャートである。図2および図3は、本発明の実施の形態にかかるウェットエッチング装置50を示す図である。本実施形態では、ウェットエッチング装置50を用いて図1にフローチャートに示すエッチング工程を実施し、図6に示す炭化珪素(SiC)ウェハ10上のチタン膜14をエッチングする。
 図2に示すように、ウェットエッチング装置50は、処理槽20と、第1配管30と、循環ポンプ32と、温度調節器34と、第2配管36と、濃度計38と、を備えている。処理槽20には、エッチング液29が貯留されている。第1配管30は、一端と他端がそれぞれ処理槽20に接続しており、その内部でエッチング液29を循環させるためのものである。循環ポンプ32および温度調節器34は、第1配管30の途中に設けられている。循環ポンプ32が駆動することで第1配管30を介してエッチング液29を循環させることができる。温度調節器34は、第1配管30の途中に設けられている。温度調節器34を経由してエッチング液29を流すことでエッチング液29の温度を調節することができる。第2配管36の一端が循環ポンプ32の出口に接続し、第2配管36の他端が処理槽20の上方に位置している。第2配管36の他端から、エッチング液29を液滴39として供給することができる。第2配管36の途中には、濃度計38が設けられている。濃度計38の計測値から循環中のエッチング液29の濃度を知ることができる。一例として、第1配管30の流量は数リットル/分としてもよく、第2配管36の流量は数cm/分としてもよい。
 処理槽20の具体的な構成としては、例えば図3に示すように複数の槽を有する処理槽を用いてもよい。図3には処理槽20の断面が示されている。処理槽20は、SiCウエハ10を入れるべき内槽201と、内槽201を囲うように設けられた外槽202と、を備える。内槽201から溢れたエッチング液29が外槽202に流入する。外槽202の底面に接続した第1配管30の一端から循環ポンプ32が外槽202のエッチング液29を吸い出す。循環ポンプ32は、内槽201の底面に接続した第1配管30の他端を経由して、内槽201へとエッチング液29を送り込む。これによりエッチング液29が処理槽20において循環する。なお、本発明は図3の2槽構造の処理槽20に限られず、1槽構造でもよい。また、第1配管30を用いて循環する以外にも、液体を撹拌するための公知の手段を用いて処理槽内のエッチング液29を撹拌してもよい。
 次に、図1のフローチャートの各工程を説明する。まず、ステップS100、S102により、エッチング液29を準備する。具体的には、エッチング使用前のアンモニア過水液22に予めチタンを溶かしてエッチング液29を準備する。
(ステップS100)
 まず、ステップS100において、アンモニア過水液22を調合する。図4は、本発明の実施の形態にかかるエッチング液29の準備工程を示す図である。チタンが溶かされていないアンモニア水24、過酸化水素水26、および純水28を、順番に処理槽20に投入することで、アンモニア過水液22を作製する。事前に調合しておくと濃度が変化するため、液作製時にそれぞれ投入することが好ましい。アンモニア過水液22はエッチング使用前すなわち未使用のものなので、チタンなどの金属が含まれていない。
(ステップS102)
 次に、ステップS102に進み、アンモニア過水液22にチタンと溶かす。図5は、本発明の実施の形態にかかるエッチング液29の準備工程を示す図である。図5では、一例として、シリコン(Si)などの半導体基板40上にチタン膜42を成膜した半導体ウェハ44を処理槽20内に投入することにより、アンモニア過水液22にチタン膜42を溶かす。半導体ウェハ44は、アンモニア過水液22に事前にチタンを溶かすためのものである。従って半導体ウェハ44には、エッチング処理対象のウェハとは異なりチタン膜42をパターニングするためのレジストが設けられていない。なお本発明は半導体ウェハ44を用いる実施形態に限られるものではなく、例えばチタン微粒子などを処理槽20に投入してもよい。ステップS102によりエッチング液29が完成する。
(ステップS104)
 次に、ステップS104において、図2に示す装置構成において循環ポンプ32を駆動させてエッチング液29を循環する。本実施形態では、好ましい形態として、処理槽20のエッチング液29の濃度および温度を一定にするために、循環ポンプ32を用いて処理槽20内のエッチング液29を循環させるものとする。エッチング液29を循環させることで、エッチング均一性を向上させる。すなわち、処理槽20内のエッチング液29を循環ポンプ32で循環させることにより、処理槽20内のエッチング液29の濃度を均一に保つことができる。また、処理槽20に温度調節器34を取り付けてエッチング液29の温度が一定になるようにエッチング液29の循環を行っているので、温度変化によるエッチング速度の変化を抑制することもできる。
 アンモニア過水液を循環させると過酸化水素の分解が促進されるため、経過時間とともに過酸化水素の濃度が低下してしまう。エッチングレートは過酸化水素の濃度に強く影響する。このためアンモニア過水液22の作製後からの経過時間が増えるとエッチングレートが低下してしまい、エッチングレートを均一に保つことができない。特に、以下の2点の理由から、アンモニア過水液22を循環させると過酸化水素の分解が促進されやすい。第1の理由は、図3のように2槽方式の処理槽20を用いると、アンモニア過水液22の循環時に内槽201から外槽202にアンモニア過水液22があふれる構造になっていることで、アンモニア過水液22と大気との接触面積が増えることである。第2の理由は、循環ポンプ32内の圧力変動によるキャビテーション効果により、アンモニア過水液22中に溶け込んでいる酸素が抜け出ることである。
 本願発明者は、鋭意研究を行ったところ、予めチタンを溶かしておくことでアンモニア過水液の過酸化水素の分解が抑制できることを見出した。これにより長期間にわたってエッチングレートを一定に保つ事が可能となる。アンモニア過水液の作製直後にチタンを溶かすと過酸化水素の分解が抑制される理由を以下に示す。過酸化水素はアルカリ性溶液中では、下記の式1の反応が起きてヒドロペルオキシルラジカルすなわちOOHを生成する。
  H+OH ⇔ HO+OOH  ・・・(式1)
 ヒドロペルオキシルラジカルは、アルカリ性溶液中では、過酸化水素と反応し分解を促進する働きをすると考えられる。下記式2の反応となり、Hの分解が加速度的に進行すると考えられる。
  H+OOH→O+HO+OH  ・・・(式2)
 アンモニア過水液にチタンを溶かすことにより、下記の式3の反応が生ずる。
  TiOOH+NH=NHOH/TiOH  ・・・(式3)
 ヒドロペルオキシルラジカルは、ヒドロキシルアミンを生成するのに優先的に消費される。ヒドロキシルアミンすなわちNHOHは、チタンの塩である。式3の反応があるため、式2に示すヒドロペルオキシルラジカルによる過酸化水素の分解反応を抑制することができる。アンモニア過水液22にチタンを溶かす量は、上記式2の反応を十分に抑制できるように実験的に定めればよい。
(ステップS106)
 次に、ステップS106において、SiCウェハ10を処理槽20に入れてエッチング液29に浸す。図6は、本発明の実施の形態にかかるエッチング工程を示す図である。エッチングを行うSiCウェハ10は、SiC基板12にチタン膜14を積層し、チタン膜14上にレジスト膜16を積層し、レジスト膜16を所望の形状にパターニングしたものである。図6では、チタン膜14にエッチング溝15が形成されている様子を示している。
 なお、本実施の形態では、ステップS106において、SiCウェハ10上のチタン膜14をエッチングした。しかしながら、本発明はこれに限られず、エッチング液29を用いてチタン以外の金属膜をエッチングしても良い。例えばSiCウェハ10上にチタン膜14の代わりにニッケル膜を積層し、このニッケル膜をステップS106でエッチングしても良い。ただし、汚染防止の観点からは、あらかじめ溶かしこんでおく金属とエッチングする金属膜が同じであることが好ましいので、本実施形態にかかる製造方法はチタン膜14のエッチングに適している。なお、チタンおよびニッケルは炭化珪素にショットキー接合するので、SiC基板12上にショットキーバリア電極層を形成するために本実施形態にかかるエッチング方法が好ましく適用される。
 以下、図7~9を用いて、本発明の実施の形態にかかる実験結果を説明する。図7は、実施の形態に対する比較例にかかる実験結果を示す図である。図8および図9は、本発明の実施の形態にかかる実験結果を示す図である。図7および図9では、NH濃度を菱形でプロットし、H濃度を四角でプロットし、SiCウェハ10を4分間エッチング液29に浸した場合のチタン削れ量を三角でプロットしている。図7および図9において、左側の目盛は濃度[%]を示し、右側の目盛はチタン膜の削れ量[nm]を示す。
 図7は、チタンを溶かさないアンモニア過水液を比較例として用いた実験結果であり、経過時間に応じた濃度推移およびチタン削れ量を示す図である。経過時間は、アンモニア過水液の調合後からの経過時間である。実験開始直後から経過時間が0~10時間程度の領域で、H濃度が10%以下に速やかに低下している。経過時間が100時間付近では、H濃度が1%~0%付近まで低下している。経過時間が100時間の段階でチタン削れ量を計測したところ、実質的にゼロnmであった。
 図8は、H濃度とチタンのエッチングレートとの関係を図示したものである。H濃度ごとに、SiCウェハ10を4分間エッチング液29に浸した場合のチタン削れ量をプロットしたものである。図8に示すように、H濃度が低いほどチタンのエッチングレートが低下する。
 図9は、本実施形態のエッチング液29を用いた実験結果である。図7とは対照的に、経過時間が100時間あるいはそれ以上になっても、H濃度の低下が極めて少なく、約12%で安定している。本実施形態では経過時間が160時間程度の段階でチタン膜14のエッチングを行ったところ、削れ量が約300nmであった。このように、本実施形態によれば、アンモニア過水液において過酸化水素の分解を抑制することにより、長期間にわたってエッチングレートを均一に保つことができる。
10 SiCウェハ、12 SiC基板、14、42 チタン膜、15 エッチング溝、16 レジスト膜、20 処理槽、22 アンモニア過水液、24 アンモニア水、26 過酸化水素水、28 純水、29 エッチング液、30 第1配管、32 循環ポンプ、34 温度調節器、36 第2配管、38 濃度計、39 液滴、40 半導体基板、44 半導体ウェハ、50 ウェットエッチング装置、201 内槽、202 外槽

Claims (5)

  1.  エッチング使用前のアンモニア過水液に予めチタンを溶かした液体をエッチング液として準備する準備工程と、
     前記準備工程の後に、処理槽の中での前記エッチング液の濃度を均一にするように、前記エッチング液の流動を行う流動工程と、
     前記流動工程を開始した後に、レジスト膜および金属膜を備えた半導体ウェハを前記処理槽内に入れることで、前記エッチング液で前記金属膜をエッチングする処理工程と、
     を備える半導体装置の製造方法。
  2.  前記金属膜がチタンで形成された請求項1に記載の半導体装置の製造方法。
  3.  温度調節器を経由して流れるように前記エッチング液を流動させることで前記エッチング液の温度を調節する請求項1に記載の半導体装置の製造方法。
  4.  前記処理槽が、前記エッチング液が貯留される第1槽と、前記第1槽から溢れた前記エッチング液が流入する第2槽と、前記第1槽と前記第2槽とを接続する流路と、を備え、
     前記流動工程は、前記流路を介して前記第2槽から前記第1槽へと前記エッチング液を循環させる請求項1に記載の半導体装置の製造方法。
  5.  前記半導体ウェハがSiCウェハであり、前記金属膜は前記SiCウェハにショットキー接合した請求項1に記載の半導体装置の製造方法。
PCT/JP2014/074881 2014-09-19 2014-09-19 半導体装置の製造方法 WO2016042667A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202210120071.XA CN114438494A (zh) 2014-09-19 2014-09-19 半导体装置的制造方法
US15/318,925 US9881818B2 (en) 2014-09-19 2014-09-19 Method for manufacturing semiconductor device
PCT/JP2014/074881 WO2016042667A1 (ja) 2014-09-19 2014-09-19 半導体装置の製造方法
DE112014006962.0T DE112014006962T5 (de) 2014-09-19 2014-09-19 Verfahren zum Herstellen einer Halbleitervorrichtung
KR1020177007244A KR101900631B1 (ko) 2014-09-19 2014-09-19 반도체 장치의 제조 방법
CN201480082015.5A CN107075694A (zh) 2014-09-19 2014-09-19 半导体装置的制造方法
JP2016548517A JP6545691B2 (ja) 2014-09-19 2014-09-19 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074881 WO2016042667A1 (ja) 2014-09-19 2014-09-19 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2016042667A1 true WO2016042667A1 (ja) 2016-03-24

Family

ID=55532730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074881 WO2016042667A1 (ja) 2014-09-19 2014-09-19 半導体装置の製造方法

Country Status (6)

Country Link
US (1) US9881818B2 (ja)
JP (1) JP6545691B2 (ja)
KR (1) KR101900631B1 (ja)
CN (2) CN114438494A (ja)
DE (1) DE112014006962T5 (ja)
WO (1) WO2016042667A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111659665B (zh) * 2020-05-29 2022-02-01 徐州鑫晶半导体科技有限公司 硅片的清洗方法及硅片的清洗设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166373A (ja) * 1993-12-15 1995-06-27 Tanaka Kikinzoku Kogyo Kk はんだバンプのバリヤメタル用エッチング液
JPH0942600A (ja) * 1995-08-02 1997-02-14 Hitachi Ltd 薬液供給装置
JPH09275098A (ja) * 1996-04-03 1997-10-21 Casio Comput Co Ltd エッチング方法
JP2004266207A (ja) * 2003-03-04 2004-09-24 Denso Corp 抵抗体を備えた半導体装置の製造方法
JP2006210778A (ja) * 2005-01-31 2006-08-10 Nec Electronics Corp 半導体装置の製造方法およびエッチング液
JP2014011342A (ja) * 2012-06-29 2014-01-20 Denso Corp 炭化珪素半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223595A (ja) * 1997-02-03 1998-08-21 Dainippon Screen Mfg Co Ltd 基板処理装置
US6399517B2 (en) * 1999-03-30 2002-06-04 Tokyo Electron Limited Etching method and etching apparatus
KR100396695B1 (ko) 2000-11-01 2003-09-02 엘지.필립스 엘시디 주식회사 에천트 및 이를 이용한 전자기기용 기판의 제조방법
JP3939630B2 (ja) * 2002-10-31 2007-07-04 エム・エフエスアイ株式会社 沸騰薬液の管理方法
JP2004214243A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 半導体ウェーハのエッチング方法及びエッチング装置
JP4471094B2 (ja) * 2004-05-11 2010-06-02 三菱瓦斯化学株式会社 チタンまたはチタン合金のエッチング液
US20060247803A1 (en) * 2005-03-29 2006-11-02 Kazushi Mori Control system, control method, process system, and computer readable storage medium and computer program
JP4978548B2 (ja) 2008-04-25 2012-07-18 三菱化学株式会社 エッチング方法及び半導体デバイス用基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166373A (ja) * 1993-12-15 1995-06-27 Tanaka Kikinzoku Kogyo Kk はんだバンプのバリヤメタル用エッチング液
JPH0942600A (ja) * 1995-08-02 1997-02-14 Hitachi Ltd 薬液供給装置
JPH09275098A (ja) * 1996-04-03 1997-10-21 Casio Comput Co Ltd エッチング方法
JP2004266207A (ja) * 2003-03-04 2004-09-24 Denso Corp 抵抗体を備えた半導体装置の製造方法
JP2006210778A (ja) * 2005-01-31 2006-08-10 Nec Electronics Corp 半導体装置の製造方法およびエッチング液
JP2014011342A (ja) * 2012-06-29 2014-01-20 Denso Corp 炭化珪素半導体装置

Also Published As

Publication number Publication date
JP6545691B2 (ja) 2019-07-17
KR20170042738A (ko) 2017-04-19
CN107075694A (zh) 2017-08-18
JPWO2016042667A1 (ja) 2017-06-01
DE112014006962T5 (de) 2017-06-01
US20170154798A1 (en) 2017-06-01
US9881818B2 (en) 2018-01-30
CN114438494A (zh) 2022-05-06
KR101900631B1 (ko) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6302708B2 (ja) ウェットエッチング装置
TWI731790B (zh) 用以處理氮化物結構而不生矽土沉積之製程與設備
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP6454605B2 (ja) 基板処理方法および基板処理装置
JP5917346B2 (ja) エッチング方法、およびエッチング装置
JPH0845886A (ja) 半導体ウエーハの洗浄液及びこれを用いた半導体ウエーハの洗浄方法
JP6193321B2 (ja) エッチング方法、物品の製造方法、及びエッチング装置
KR102006061B1 (ko) 기판 처리 장치 및 기판 처리 방법
TWI507522B (zh) 處理裝置、製造處理液之方法及製造電子裝置之方法
JP5911757B2 (ja) 基板処理方法、基板処理装置、および記録媒体
JP2010103379A (ja) ウェットエッチング方法及びウェットエッチング装置
WO2016042667A1 (ja) 半導体装置の製造方法
JPS59104132A (ja) 洗浄方法
JP6687784B2 (ja) ウェットエッチング装置
JP7186116B2 (ja) エッチング液およびエッチング方法
JP2022521267A (ja) 湿式化学によるSi3N4選択的除去の必要性
JP5659545B2 (ja) オゾン水供給システム及びシリコンウエハの湿式酸化処理システム
JP2001028361A (ja) 容器中の半導体ウェハを湿式化学処理するための方法
JP3216125B2 (ja) 薬液処理方法および薬液処理装置
JP2005213498A (ja) 洗浄液および洗浄方法
JP6881551B2 (ja) 過硫酸成分を含む硫酸溶液中の酸化剤濃度の低下抑制方法
JP2002237479A (ja) 半導体ウェハ上の粒子を除去する方法
JP2000133632A (ja) 多孔質体のエッチング方法及び多孔質体のエッチング装置
RU2537743C1 (ru) Способ предэпитаксиальной обработки поверхности германиевой подложки
JP2003115479A (ja) 半導体装置の製造方法およびウエット処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318925

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016548517

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177007244

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014006962

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901939

Country of ref document: EP

Kind code of ref document: A1