RU2537743C1 - Способ предэпитаксиальной обработки поверхности германиевой подложки - Google Patents

Способ предэпитаксиальной обработки поверхности германиевой подложки Download PDF

Info

Publication number
RU2537743C1
RU2537743C1 RU2013144287/28A RU2013144287A RU2537743C1 RU 2537743 C1 RU2537743 C1 RU 2537743C1 RU 2013144287/28 A RU2013144287/28 A RU 2013144287/28A RU 2013144287 A RU2013144287 A RU 2013144287A RU 2537743 C1 RU2537743 C1 RU 2537743C1
Authority
RU
Russia
Prior art keywords
substrate
germanium
substrates
solution
epitaxial
Prior art date
Application number
RU2013144287/28A
Other languages
English (en)
Inventor
Виктор Сергеевич Белоусов
Владимир Викторович Илларионов
Анастасия Анатольевна Лапшина
Надежда Никаноровна Спицына
Юрий Алексеевич Чеботарев
Анна Алексеевна Чеботарева
Original Assignee
Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ" filed Critical Закрытое Акционерное Общество "ТЕЛЕКОМ-СТВ"
Priority to RU2013144287/28A priority Critical patent/RU2537743C1/ru
Application granted granted Critical
Publication of RU2537743C1 publication Critical patent/RU2537743C1/ru

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

Изобретение относится к области полупроводниковой опто- и микроэлектроники и может быть использовано в электронной промышленности для создания электронных приборов и фотопреобразователей на основе полупроводниковых гетероструктур. В способе предэпитаксиальной обработки поверхности подложки из германия операцию удаления с поверхности подложки слоя естественного окисла германия и операцию очистки поверхности подложки от неорганических загрязнений осуществляют в одну стадию на установке гидромеханической отмывки с использованием раствора NH4OH:H2O2:H2O=1:1:40 в течение 2÷5 минут при температуре 19-23оС. Операцию пассивации поверхности подложки не проводят. Изобретение позволяет сократить число стадий обработки подложки при одновременном улучшении качества ее поверхности.

Description

Изобретение относится к области полупроводниковой опто- и микроэлектроники и может быть использовано в электронной промышленности для создания приборов на основе полупроводниковых гетероструктур, в том числе каскадных фотопреобразователей на основе системы GaAs/Ge.
Как известно, качество процесса эпитаксии при формировании гетероструктуры на основе системы GaAs/Ge во многом зависит от качества подготовки поверхности подложки германия.
В частности, наличие на поверхности германиевой подложки естественного слоя оксида германия и адсорбированных неорганических и органических примесей перед эпитаксиальным наращиванием приводит к существенному снижению выхода годных структур за счет ухудшения электрофизических характеристик структур.
С целью удаления слоя естественного окисла германия и адсорбированных неорганических и органических примесей используют различные методы очистки: сухие (ионное, газовое или плазмохимическое травление) и жидкостные (химическая обработка в органических, кислотных или аммиачно-перекисных растворах).
Известен способ подготовки полупроводниковых подложек, включающий механическое полирование и очистку поверхности с использованием ультразвука, химико-механическое полирование рабочей стороны подложек, после механического полирования и очистки поверхности на рабочей стороне подложек путем селективного или анизотропного химического травления на глубину нарушенного слоя формируют микрорельеф и обрабатывают подложки ультразвуком в течение 2,5÷3,0 час в деионизованной воде, а затем не позднее чем через сутки проводят химико-механическое полирование для удаления микрорельефа на рабочей стороне подложек [1].
К недостаткам способа следует отнести его длительность и невысокую эффективность использования при очистке подложек германия, обусловленную высокими скоростями химического травления германия.
Известен способ предэпитаксиальной обработки поверхности германиевой подложки, заключающийся в обезжиривании германиевой подложки в органическом растворителе: четыреххлористом углероде (CCl4), изопропиловом спирте (C3H6OH) или ацетоне (C3H6O), затем травлении в растворе состава HF:H2O2:H2O=1:1:5 в течение двух минут и последующей обработке разбавленной плавиковой кислотой (HF) для удаления поверхностного окисла германия [2].
К недостаткам данного способа следует отнести следующее:
- повышенная поверхность германиевой подложки, обусловленная высокой скоростью травления германия (более 1 мкм/мин) при малой вязкости травильного раствора;
- неполное удаление слоя окисла с поверхности германиевой подложки при использовании плавиковой кислоты;
- очищенная от окисной пленки поверхность подложки активно адсорбирует атомы водорода, который инициирует реакцию окисления, вследствие чего очищенная поверхность подложки вновь быстро покрывается окисной пленкой.
Известен способ предэпитаксиальной обработки поверхности германиевой подложки, заключающийся сначала в очистке германиевой подложки от органических загрязнений, а затем - в удалении естественного слоя окисла германия [3].
Очистка германиевой подложки от органических загрязнений осуществляется обработкой в течение 10 мин в метаноле (CH3OH), затем в дихлорметане (CH2Cl2), затем снова в метаноле (CH3OH).
Естественный слой окисла германия с поверхности подложки удаляли кратковременным (несколько минут) опусканием подложки в раствор плавиковой кислоты (HF) с концентрацией 2,5 мас.%, после чего следовало окисление германия в растворе перекиси водорода (H2O2) с концентрацией 30 мас.% в течение 30 секунд с образованием на поверхности оксидной пленки, а затем растворение оксида в растворе соляной кислоты (HCl) с концентрацией 35 мас.% в течение 30 секунд.
Процедура окисления-растворения повторяется три раза, на последнем этапе проводят пассивацию поверхности германиевой подложки, для чего подложку помещают на 1 минуту в водный раствор, содержащий гидроксид аммония (NH4OH) и перекись водорода (H2O2) в соотношении NH4OH:H2O2=1:2, где на поверхности германиевой подложки формировался технологический толстый слой оксида германия, защищающий подложку от примесей из атмосферы, который легко удаляется в эпитаксиальном реакторе газовым травлением.
Недостатком способа является большое количество стадий обработки (более 10-ти) и значительная модификация поверхности германиевой подложки вследствие высокой скорости травления на последнем этапе.
Наиболее близким по технической сущности и достигаемому результату является способ предэпитаксиальной обработки германиевой подложки, включающий удаление с поверхности подложки естественного окисла германия и очистку поверхности германия от неорганических загрязнений с последующей пассивацией поверхности германия при температуре 19÷23°C [4].
Данный способ предэпитаксиальной обработки полированных германиевых подложек осуществляют при температуре окружающей среды 19÷23°C в 3 стадии:
1-я стадия - удаление естественного оксида с поверхности германия погружением подложки в раствор соляной кислоты с концентрацией 30÷40 мас.% на 2÷4 минуты;
2-я стадия - очистка германия от неорганических примесей погружением подложки на 0,5÷1,5 минут в раствор, содержащий плавиковую кислоту (HF), перекись водорода (H2O2), винную кислоту (C4H6O6) и воду (H2O) при следующем их соотношении (на литр раствора):
плавиковая кислота (40 мас.%) 10÷30 мл
перекись водорода (30 мас.%) 200÷400 мл
винная кислота 36÷72 г
вода остальное
3-я стадия - пассивация поверхности подложки раствором соляной кислоты (HCl) с концентрацией 30÷40 мас.% в течение 2÷5 минут.
На 1-й стадии происходит удаление слоя естественного окисла германия с поверхности подложки. При этом происходит удаление крупных частиц примеси с поверхности.
На 2-й стадии происходит удаление оставшихся неорганических примесей, например, адсорбированных ионов железа (Fe), никеля (Ni), меди (Cu), а также углерода (C).
Поскольку плавиковая (HF) и винная (C4H6O6) кислоты являются хорошими комплексообразователями для ионов металлов, они их связывают в устойчивые комплексы и уносят с поверхности германиевой подложки. Перекись водорода (H2O2) создает на поверхности германиевой подложки тонкий слой окисла германия, который далее растворяется при помощи вышеуказанных комплексообразователей. В результате такого процесса происходит также удаление с поверхности германия крепкосвязанного адсорбированного углерода (C).
Выбранный температурный диапазон на всех трех стадиях обработки составляет 19÷23°C (технологический температурный диапазон «гермозоны») и обусловлен тем, что при температуре окружающей среды менее 19°C наблюдается торможение скорости реакций восстановления оксидов, травления и пассивации, а при температуре более 23°C снижается вязкость травителей, повышается скорость селективного травления германия, что приводит к неконтролируемой модификации поверхности подложки.
Качество обработанной подложки германия оценивают как визуально - по отсутствию дефектов (количеству светящихся точек и островков окисной пленки) на поверхности германиевой подложки, так и по данным рентгеноспектрального анализа при выборочном контроле.
Хотя по данному способу количество стадий обработки германиевой подложки удается снизить до трех, способ имеет один существенный недостаток: неконтролируемое селективное травление поверхности подложки при проведении процесса пассивации поверхности.
Поскольку пассивация очищенной поверхности подложки германия осуществляется окунанием подложки в травитель, подложка находится в статическом (неподвижном) положении, и процесс растворения полупроводникового материала проходит неравномерно по всей поверхности подложки. Это объясняется различной концентрацией травильного раствора на различных участках поверхности, неравномерным выделением теплоты на неровностях поверхности подложки, неравномерным подводом травителя к разным участкам подложки.
Задачей изобретения является упрощение процесса предэпитаксиальной обработки поверхности германиевой подложки за счет сокращения числа стадий обработки подложки при одновременном улучшении качества ее поверхности.
Это достигается тем, что в способе предэпитаксиальной обработки поверхности подложки из германия, включающем осуществляемые при температуре 19÷23°C операцию удаления с поверхности подложки слоя естественного окисла германия, операцию очистки поверхности подложки от неорганических загрязнений и операцию пассивации поверхности подложки после очистки, операцию удаления слоя естественного окисла и операцию очистки поверхности подложки от неорганических загрязнений осуществляют в одну стадию на установке гидромеханической отмывки с использованием раствора NH4OH:H2O2:H2O=1:1:40 в течение 2÷5 мин. Операцию пассивации поверхности подложки не проводят.
Сущность изобретения заключается в следующем. Как известно, гидромеханическая отмывка - это комплексный способ удаления микроскопических загрязнений с полированной поверхности пластин проточной деионизованной водой и мягкими вращающимися кистями или щетками из капрона или нейлона [5]. Наилучший результат получают при использовании кистей, изготовленных из беличьего меха. Крепление пластин осуществляется вакуумным присосом. Деионизованную воду подают на пластины под давлением 50÷200 кПа при расходе воды ~1 литр/мин.
Предварительно, чтобы ослабить связи загрязнений с поверхностью и облегчить из механическое удаление, пластины обрабатывают в кислотах или растворителях.
В предлагаемом способе при замене деионизованной воды химическим травителем (аммиачно-перекисным раствором состава NH4OH:H2O2:H2O=1:1:40) оказалось возможным совместить операции удаления окисла германия с поверхности подложки и операцию удаления перешедших в аммиачно-перекисный раствор загрязнений.
Состав используемого раствора (NH4OH:H2O2:H2O=1:1:40) и длительность обработки (2÷5 мин) установлены экспериментально из условий гарантированного удаления с поверхности подложки слоя естественного окисла германия и загрязняющих примесей при отсутствии процесса селективного травления подложки после удаления окисла.
Данный способ позволяет как минимум втрое уменьшить длительность предэпитаксиальной обработки подложек германия при одновременном улучшении качества ее поверхности.
В известных науке и технике решениях аналогичной задачи не обнаружено использование для предэпитаксиальной обработки поверхности германиевой подложки одностадийного процесса обработки на установке гидромеханической отмывки с использованием раствора NH4OH:H2O2:H2O=1:1:40 в течение 2÷5 мин.
Пример выполнения
Для формирования эпитаксиальных структур на основе GaAs/Ge были изготовлены полированные подложки германия ориентации (100) из слитков германия марки ГН0,03-0,06(001)⌀100 мм.
Процесс изготовления подложек осуществлялся следующим образом:
- резка слитка германия на подложки толщиной 420÷440 мкм;
- двухсторонняя шлифовка подложек на станке «Peter Wolters» с использованием шлифовального порошка PWA 15(«Fujimi») до толщины 360±10 мкм;
- травление шлифованных подложек в смеси 0,1 N раствора едкого натра (NaOH) и 30% раствора перекиси водорода (H2O2);
- подложки после шлифования протравливались до толщины 20÷25 мкм, после чего склеивались с кремниевыми пластинами-носителями толщиной 400 мкм с помощью водорастворимой клеящей мастики;
- наклеенные на пластины-носители подложки германия подвергались двухстадийному химико-механическму полированию, которое проводилось на станке 101М3.105.004 с использованием полировального материала «Ciegal 7355-000F» как на 1-й, так и на 2-й стадиях полирования, причем в конце 2-й стадии подавался раствор сульфаминовой кислоты (NH2SO3H) в качестве нейтрализатора. В качестве полирующей суспензии использовалась смесь двух компонентов: состава полирующего «Bindzil EB6020» и гипохлорита натрия (NaOCl), смешивание которых происходило непосредственно на полировальном столе. Перед процессом полирования пластины германия, наклеенные на кремниевые пластины-носители, были помещены в отверстия сепараторов, расположенных на металлических блоках;
- перед окончательной химотмывкой наклеенные на кремниевые пластины-носители подложки германия помещались в ванну с деионизованной водой, где происходило естественное разделение подложек и пластин-носителей за счет растворения клеящей мастики.
После полирования было проведено 2 этапа химической отмывки подложек в ультразвуковой ванне с использованием щелочного раствора едкого кали (KOH), а затем - водного раствора тринатрийфосфата (Na3PO4) и трилона «Б», после чего была проведена гидромеханическая отмывка подложек на кистемоечной машине также с использованием водного раствора тринатрийфосфата (Na3PO4) и трилона «Б».
В результате были получены полированные подложки германия ⌀100 мм ориентации (100) толщиной 300±10 мкм.
Непосредственно перед загрузкой в реактор эпитаксиальной установки подложки проходили предэпитаксиальную обработку по заявляемому способу: гидромеханическую отмывку с использованием раствора NH4OH:H2O2:H2O=1:1:40 в течение 2÷5 мин. Обработка осуществлялась с использованием беличьих кистей.
На указанных подложках проводилось наращивание слоя GaAs на установке «AIXTRON» методом газофазной эпитаксии из металлорганических соединений (МОСГФЭ). В качестве реагентов использовали триэтилгаллий Ga(C2H5)3 и арсин (AsH3), газом-носителем служил водород (H2).
Из полученных эпитаксиальных структур были изготовлены 3-переходные солнечные элементы (СЭ) GaAs/Ge.
Оценка качества поверхности и электрофизических характеристик полученных СЭ проводилась в сравнении с аналогичными СЭ GaAs/Ge фирмы «АХТ Inc.».
Качество поверхности выращенного слоя GaAs на подложках оценивалась по полученной методом рентгеновской дифрактометрии (XRD) полуширине кривой качания GaAs, величина которой составила около 25″, что соответсвовало уровню лучших зарубежных образцов (в частности, образцов GaAs/Ge фирмы «АХТ Inc.»).
Измеренная средняя эффективность СЭ, изготовленных на подложках по заявляемому методу, оказалась ~0,99%, средняя эффективность СЭ фирмы «АХТ Inc.» оказалась ~0,988%.
Полученные сравнительные результаты позволяют утверждать, что заявляемый способ обеспечивает высокое качество поверхности подложек германия при проведении одностадийной предэпитаксиальной обработки на установке гидромеханической отмывки с использованием раствора NH4OH:H2O2:H2O=1:1:40 без пассивации поверхрности подложки.
Источники информации
1. Патент РФ №2072585 от 27.01.1997 г.
2. S.K. Agarwal, R. Tyagi, M. Singh, R.K. Jain. «Effect of growth parameters on the MOVPE of GaAs/Ge for solar cell applications». - Solar Energy Materials & Solar Cells, Volume 59, (1999), p.1926.
3. H. Okumura, T. Akane, S. Matsumoto. «Carbon contamination free Ge (100) surface cleaning for МВЕ». - Applied Surface Science, Volume 125, Issue 1, (1998), pp.125÷128.
4. Патент РФ №2483387 от 14.12.2011 г. - прототип.
5. М. Шмаков, В. Паршин, А. Смирнов. «Очистка поверхности пластин и подложек». - Технологии в электронной промышленности, №5, (2008), с.76÷80.

Claims (1)

  1. Способ предэпитаксиальной обработки поверхности германиевой подложки, включающий осуществляемые при температуре 19÷23°C операцию удаления с поверхности подложки слоя естественного окисла германия, операцию очистки поверхности подложки от неорганических загрязнений, отличающийся тем, что операцию удаления слоя естественного окисла германия и операцию очистки поверхности подложки от неорганических загрязнений осуществляют в одну стадию гидромеханической отмывкой с использованием раствора NH4OH:H2O2:H2O=1:1:40 в течение 2÷5 мин.
RU2013144287/28A 2013-10-03 2013-10-03 Способ предэпитаксиальной обработки поверхности германиевой подложки RU2537743C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013144287/28A RU2537743C1 (ru) 2013-10-03 2013-10-03 Способ предэпитаксиальной обработки поверхности германиевой подложки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013144287/28A RU2537743C1 (ru) 2013-10-03 2013-10-03 Способ предэпитаксиальной обработки поверхности германиевой подложки

Publications (1)

Publication Number Publication Date
RU2537743C1 true RU2537743C1 (ru) 2015-01-10

Family

ID=53287862

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013144287/28A RU2537743C1 (ru) 2013-10-03 2013-10-03 Способ предэпитаксиальной обработки поверхности германиевой подложки

Country Status (1)

Country Link
RU (1) RU2537743C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072585C1 (ru) * 1994-02-08 1997-01-27 Научно-исследовательский институт измерительных систем Способ подготовки полупроводниковых подложек
US6927176B2 (en) * 2000-06-26 2005-08-09 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
US7232759B2 (en) * 2004-10-04 2007-06-19 Applied Materials, Inc. Ammonium hydroxide treatments for semiconductor substrates
US7344999B2 (en) * 2005-09-28 2008-03-18 Samsung Electronics Co., Ltd. Method for cleaning substrate having exposed silicon and silicon germanium layers and related method for fabricating semiconductor device
RU2483387C1 (ru) * 2011-12-14 2013-05-27 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ предэпитаксиальной обработки поверхности германиевой подложки

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072585C1 (ru) * 1994-02-08 1997-01-27 Научно-исследовательский институт измерительных систем Способ подготовки полупроводниковых подложек
US6927176B2 (en) * 2000-06-26 2005-08-09 Applied Materials, Inc. Cleaning method and solution for cleaning a wafer in a single wafer process
US7232759B2 (en) * 2004-10-04 2007-06-19 Applied Materials, Inc. Ammonium hydroxide treatments for semiconductor substrates
US7344999B2 (en) * 2005-09-28 2008-03-18 Samsung Electronics Co., Ltd. Method for cleaning substrate having exposed silicon and silicon germanium layers and related method for fabricating semiconductor device
RU2483387C1 (ru) * 2011-12-14 2013-05-27 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ предэпитаксиальной обработки поверхности германиевой подложки

Similar Documents

Publication Publication Date Title
TWI520203B (zh) 化合物半導體基板之檢查方法、化合物半導體基板、化合物半導體基板之表面處理方法及化合物半導體晶體之製造方法
US7432186B2 (en) Method of surface treating substrates and method of manufacturing III-V compound semiconductors
US8133815B2 (en) Method of polishing compound semiconductor substrate, compound semiconductor substrate, method of manufacturing compound semiconductor epitaxial substrate, and compound semiconductor epitaxial substrate
JP4889691B2 (ja) 洗浄溶液を用いて半導体ウェハを洗浄する方法
CN106605291B (zh) 氮化铝单结晶基板的洗净方法及层叠体
WO2011021691A1 (ja) エピタキシャルシリコンウェーハの製造方法
JP2007234952A (ja) 化合物半導体基板の表面処理方法、化合物半導体の製造方法、化合物半導体基板、および半導体ウエハ
JP2011042536A (ja) エピタキシャルシリコンウェーハの製造方法
CN113690128A (zh) 一种磷化铟晶片的清洗方法
JP5275585B2 (ja) エピタキシャルシリコンウェハの製造方法
US20120129344A1 (en) Process and apparatus for removal of contaminating material from substrates
RU2537743C1 (ru) Способ предэпитаксиальной обработки поверхности германиевой подложки
Zhang et al. Recent progress on critical cleaning of sapphire single-crystal substrates: A mini-review
WO2012001874A1 (ja) 太陽電池基板用半導体ウェーハの洗浄方法
JP4857738B2 (ja) 半導体ウエーハの洗浄方法および製造方法
RU2483387C1 (ru) Способ предэпитаксиальной обработки поверхности германиевой подложки
Kim et al. Adsorption of sodium dodecyl sulfate on cleaning of an N-polar GaN surface in an alkaline solution
JP2006228963A (ja) 半導体ウエハの製造方法
JPH07211688A (ja) 化合物半導体基板の製造方法
JP7131513B2 (ja) シリコン試料の前処理方法、シリコン試料の金属汚染評価方法、単結晶シリコンインゴット育成工程の評価方法、単結晶シリコンインゴットの製造方法およびシリコンウェーハの製造方法
JP2016056057A (ja) サファイア基板およびその製造方法
DE10212657A1 (de) Verfahren zur Reinigung einer Siliciumscheibe nach der Politur
Fano et al. Alkaline texturing
JP2011044606A (ja) エピタキシャルシリコンウェーハの製造方法
JP2010132472A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151004