WO2015151285A1 - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
WO2015151285A1
WO2015151285A1 PCT/JP2014/060009 JP2014060009W WO2015151285A1 WO 2015151285 A1 WO2015151285 A1 WO 2015151285A1 JP 2014060009 W JP2014060009 W JP 2014060009W WO 2015151285 A1 WO2015151285 A1 WO 2015151285A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
semiconductor element
semiconductor module
semiconductor
bonding
Prior art date
Application number
PCT/JP2014/060009
Other languages
English (en)
French (fr)
Inventor
昌和 谷
善行 出口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016511296A priority Critical patent/JP6272459B2/ja
Priority to PCT/JP2014/060009 priority patent/WO2015151285A1/ja
Priority to US15/126,609 priority patent/US9853009B2/en
Priority to CN201480077596.3A priority patent/CN106133896B/zh
Priority to EP18208036.6A priority patent/EP3477690B1/en
Priority to EP14888393.7A priority patent/EP3128541A4/en
Publication of WO2015151285A1 publication Critical patent/WO2015151285A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37025Plural core members
    • H01L2224/37028Side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/84201Compression bonding
    • H01L2224/84205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • H01L2224/8482Diffusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a semiconductor module using a conductive member which is an electric wiring part, and more particularly to a semiconductor module for realizing both increase in current capacity and improvement in reliability.
  • the semiconductor module composed of IGBT or MOS-FET that controls the switching of current is the main component of power conversion devices such as inverters and chargers. With the progress of electrification of vehicles, there is a demand for higher output of the power converter, and the current capacity of the semiconductor module tends to increase.
  • an electrode of a semiconductor element and a bus bar constituting a main terminal are directly joined (for example, see Patent Document 1).
  • the conventional bus bar disclosed in Patent Document 1 uses a metal plate (for example, a copper plate) having high conductivity.
  • a metal plate for example, a copper plate
  • a copper material corresponding to the current capacity is used for the bus bar.
  • the cross-sectional area increases and the rigidity is often increased.
  • the dimensional tolerances of the components in the semiconductor module cannot be absorbed, and residual stress is generated on the joint surface between the semiconductor element and the bus bar. This residual stress also causes problems such as peeling and chip cracks as described above, resulting in problems related to reliability.
  • the bus bar has a high electric resistance value of high frequency components, and there is a limit to increasing the current capacity.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a semiconductor module capable of achieving both an increase in current capacity of a semiconductor device and an improvement in reliability of the semiconductor module. To do.
  • a conductive member used for electrically connecting a semiconductor element disposed on a substrate or a bus bar to another electronic component is formed of a conductive member and a semiconductor element at a junction with the semiconductor element.
  • the thermal stress due to the difference in linear expansion coefficient is reduced, and a structure having flexibility that can absorb the dimensional tolerance of the connection target is provided.
  • a conductive member made of a fine metal wire, a conductive member made of a braided wire, or a conductive member laminated with sheet metal is used for the wiring of the semiconductor element.
  • the resistance value of the high-frequency component is reduced to increase the current capacity of the electrical wiring, while preventing problems caused by thermal stress due to the difference in linear expansion coefficient between the conductive member and the semiconductor element. Residual stresses caused by dimensional tolerances can be reduced. As a result, it is possible to obtain a semiconductor module capable of achieving both an increase in the current capacity of the semiconductor device and an improvement in the reliability of the semiconductor module.
  • FIG. 1 is a cross-sectional view of a semiconductor module according to Embodiment 1 of the present invention.
  • the semiconductor module 9 according to the first embodiment includes a semiconductor element 3 disposed on a substrate 1 (or a bus bar), a conductive member 2 constituting a main terminal, and a heat sink 7.
  • the conductive member 2 is bonded to the upper electrode 5-1 of the semiconductor element 3 and the terminal 8 of the electronic component that constitutes the switching circuit.
  • the conductive member 2 has a structure in which fine metal wires such as copper and aluminum having high conductivity are stranded. By adjusting the diameter and number of the stranded wires, it is possible to increase the current capacity of the electric wiring portion.
  • a joining method ultrasonic joining, solder joining, Ag sintering joining, joining with a conductive adhesive, diffusion joining, brazing, and other joining methods can be used.
  • the conductive member 2 having a stranded metal wire has flexibility, the conductive member 2 deforms following the thermal expansion of the semiconductor element 3. For this reason, no distortion occurs at the joint surface 4 between the conductive member 2 and the semiconductor element 3, and no thermal stress due to a difference in linear expansion coefficient between the conductive member 2 and the semiconductor element 3 occurs.
  • the conductive member 2 has flexibility. It is possible to absorb the dimensional tolerances. As a result, the residual stress in the joint surface 4 and the joint surface 10 can be eliminated.
  • the high frequency current flows near the surface of the conductive member 2 due to the skin effect. For this reason, the electrical resistance of the high frequency component tends to increase.
  • the electrically-conductive member 2 is comprised with the aggregate
  • a conductive member having a structure in which a thin metal wire having high conductivity is used is adopted.
  • a conductive member having flexibility and an increased surface area it is possible to apply a conductive member having flexibility and an increased surface area, to increase the current capacity in the electrical wiring portion, and to prevent separation of the joint portion due to thermal stress. Reliability can be improved.
  • Embodiment 2 FIG. In the first embodiment, the case where a structure in which a thin metal wire having high conductivity is used as the conductive member 2 for achieving the purpose of having flexibility and increasing the surface area has been described. On the other hand, in this Embodiment 2, the case where the electroconductive member of a structure different from Embodiment 1 is employ
  • the conductive member 2 according to the second embodiment employs a structure in which fine metal wires are knitted in a mesh shape (hereinafter, braided wire).
  • the cross-sectional shape of the conductive member 2 having such a structure is a plate shape, an elliptical shape, or a circular shape.
  • a conductive member having a structure in which fine metal wires are knitted in a mesh shape is employed.
  • a conductive member having flexibility and an increased surface area it is possible to apply a conductive member having flexibility and an increased surface area, to increase the current capacity in the electrical wiring portion, and to prevent separation of the joint portion due to thermal stress. Reliability can be improved.
  • Embodiment 3 In the first embodiment, the case where a structure in which a thin metal wire having high conductivity is used as the conductive member 2 for achieving the purpose of having flexibility and increasing the surface area has been described. Moreover, in previous Embodiment 2, the case where a braided wire was employ
  • the conductive member 2 according to the third embodiment is configured by laminating sheet metal, and employs a structure in which the conductive member 2 is bonded to the semiconductor element 3 together with the sheet metal layer.
  • the interlayer of the sheet metal is not fixed except for the joint surfaces 4 and 10. And the current capacity in electrical wiring can be increased by increasing the number of laminated sheet metals.
  • the sheet metal constituting the conductive member 2 has flexibility and can be deformed following the thermal expansion of the electrode 5-1 of the semiconductor element 3. For this reason, there is no distortion in the joint surface 4 and no thermal stress is generated. Therefore, even with such a structure, as in the first and second embodiments, it is possible to achieve both a large current capacity in the electrical wiring portion and prevention of peeling due to thermal stress.
  • a conductive member having a structure in which sheet metal is laminated is employed.
  • a conductive member having flexibility and an increased surface area it is possible to apply a conductive member having flexibility and an increased surface area, to increase the current capacity in the electrical wiring portion, and to prevent separation of the joint portion due to thermal stress. Reliability can be improved.
  • FIG. 2 is a cross-sectional view of the semiconductor module according to Embodiment 4 of the present invention.
  • the configuration of FIG. 2 is different in that it includes a cooling surface 6 (corresponding to a cooling surface structure). Therefore, this different configuration will be mainly described below.
  • the conductive member 2 in the fourth embodiment is connected to the upper electrode 5-1 of the semiconductor element 3, the cooling surface 6 of the conductive member 2, and the terminal 8 of the electronic component.
  • a conductive member in which the fine metal wire described in the first embodiment is a stranded wire
  • a conductive member in which the fine metal wire described in the second embodiment is knitted in a mesh shape
  • Any of the conductive members in which the described sheet metals are laminated can be applied.
  • the cooling surface 6 newly added in the fourth embodiment is insulated from the upper electrode 5-1 of the semiconductor element, and is joined to the substrate 1 or the heat sink 7 that is actively cooled. Yes.
  • the conductive member 2 can absorb the dimensional tolerance in the height direction of the semiconductor element 3 and the cooling surface 6. For this reason, no residual stress is generated during bonding.
  • the semiconductor element 3 can be cooled via the conductive member 2. Therefore, the heat dissipation area is increased, and the heat dissipation can be improved while suppressing the peeling of the conductive member 2 due to the residual stress.
  • the same effects as those of the first to third embodiments can be obtained. Furthermore, by adopting a configuration including a cooling surface, it is possible to realize a semiconductor module that can suppress the occurrence of residual stress and improve heat dissipation.
  • FIG. 3 is a cross-sectional view of the semiconductor module according to Embodiment 5 of the present invention.
  • the configuration of FIG. 3 includes two semiconductor elements 3 mounted on the substrate 1, and these two semiconductor elements 3 are each composed of one conductive member 2. Are different in that they are connected in common. Therefore, this different configuration will be mainly described below.
  • two or more semiconductor elements 3 are arranged on the substrate 1 (however, in FIG. 3, the case where there are two semiconductor elements 3 is illustrated), and the same conductive member 2 is used. Are used to electrically connect two or more semiconductor elements 3.
  • the bonding surface 4 between the conductive member 2 and the upper electrode 5-1 of each semiconductor element 3 is ultrasonically bonded.
  • the ultrasonic bonding apparatus generates frictional heat on the bonding surface by applying ultrasonic vibration to the conductive member 2 to bond the conductive member 2 and each semiconductor element 3.
  • the conductive member 2 includes a conductive member in which the fine metal wires described in the first embodiment are stranded, a conductive member in which the fine metal wires described in the second embodiment are knitted in a mesh shape, and the sheet metal described in the third embodiment. Any of the conductive members laminated can be applied. Further, although not shown in FIG. 3, the heat radiation property of the semiconductor element 3 is improved by providing the cooling surface 6 as described in FIG. Is also possible.
  • the same effects as in the first to fourth embodiments can be obtained by connecting a plurality of semiconductor elements using the conductive member of the present invention. .
  • the merit of the conductive member 2 according to the present invention in the case where ultrasonic bonding is employed for bonding the conductive member 2 and the bonding surface 4 (11) will be described based on comparison with the prior art.
  • a bus bar which is a metal plate is ultrasonically bonded to the electrode 5-1 of the semiconductor element 3
  • ultrasonic vibration in the in-plane direction of the bus bar is caused when the other semiconductor element is bonded. 3 is propagated to the bonding surface 11 between the electrode 5-3 and the bus bar, and peeling at the bonding surface 11 is a problem.
  • the conductive member 2 that swings the flexibility is used instead of the bus bar. Therefore, when the conductive member 2 is ultrasonically bonded to the electrode 5-1 of the semiconductor element 3, the ultrasonic vibration can be absorbed by the flexible conductive member 2. For this reason, peeling at the joint surface 11 between the electrode 5-3 of the semiconductor element 3 and the conductive member 2 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

 本発明に係る半導体モジュールは、基板もしくはバスバに配置された半導体素子を他の電子部品と電気的に接続させるために用いられる導電部材が、半導体素子との接合部における、導電部材と半導体素子との線膨張係数差による冷熱ストレスを低減し、接続対象の寸法公差を吸収できる柔軟性を有する構造を備えており、この結果、半導体装置の電流容量の増大と、半導体モジュールの信頼性向上の両立を図ることを実現している。

Description

半導体モジュール
 本発明は、電気配線部である導電部材を用いた半導体モジュールに関し、特に、電流容量の増大と信頼性向上の両立を実現するための半導体モジュールに関する。
 電流をスイッチング制御するIGBTあるいはMOS-FETから構成される半導体モジュールは、インバータ、充電器などの電力変換装置の主要構成部品である。車両の電動化が進む中で、電力変換装置の高出力化が求められており、半導体モジュールの電流容量は、増大する傾向にある。
 さらに、SiC等の半導体素子の進化に伴い、半導体素子は、200℃付近の高温環境下でも動作可能になってきている。しかしながら、その一方で、冷熱サイクル等における構造信頼性については、従来と比べて非常に厳しくなっている。したがって、半導体モジュールは、高出力化による電流容量増大と、高温環境で長期間に渡り正常動作できる信頼性確保の両立が求められる。
 大電流容量化のためには、通電部材の電気抵抗値の低減が必須である。さらに、低温から高温の環境において信頼性を確保するためには、半導体モジュール内部の構成部材の接合部における冷熱ストレスの低減、およびこの接合部における残留応力の低減、が必要不可欠である。
 そして、従来の半導体モジュールでは、電流容量を増大させるために、半導体素子の電極と主端子を構成するバスバを、直接接合しているものがある(例えば、特許文献1参照)。
特開2005-5593号公報
 しかしながら、従来技術には、以下のような課題がある。
 この特許文献1に開示された従来のバスバは、導電率が高い金属製のプレート(例えば、銅プレート)が使用されている。一般的に、バスバは、電流容量に応じた銅材を用いることになるが、大出力用となると、断面積が増大し、剛性となる場合が多い。
 しかしながら、この特許文献1における配線構造では、半導体素子とバスバとの熱膨張差が大きいため、それらの接合面において歪みが発生し、冷熱ストレスが発生する。その結果、半導体素子とバスバの接合面において、剥離やチップクラック等が発生するといった問題が生じる。
 また、半導体モジュールにおける構成部材の寸法公差を吸収できず、半導体素子とバスバの接合面に残留応力が発生する。この残留応力も、上述した剥離やチップクラック等の不具合の原因となり、信頼性に関する問題が生じる。また、バスバは、高周波成分の電気抵抗値が高く、大電流容量化には限界がある。
 本発明は、前記のような課題を解決するためになされたものであり、半導体装置の電流容量の増大と、半導体モジュールの信頼性向上の両立を図ることのできる半導体モジュールを得ることを目的とする。
 本発明に係る半導体モジュールは、基板もしくはバスバに配置された半導体素子を他の電子部品と電気的に接続させるために用いられる導電部材が、半導体素子との接合部における、導電部材と半導体素子との線膨張係数差による冷熱ストレスを低減し、接続対象の寸法公差を吸収できる柔軟性を有する構造を備えるものである。
 本発明によれば、半導体素子の配線に、金属細線をより線にした導電部材、編組線からなる導電部材、あるいは板金を積層した導電部材を使用している。この構成により、高周波成分の抵抗値を低減させて、電気配線の大電流容量化を図りつつ、導電部材と半導体素子との線膨張係数差による冷熱ストレスに起因した不具合を防止し、半導体モジュールの寸法公差が原因で発生する残留応力を低減することができる。この結果、半導体装置の電流容量の増大と、半導体モジュールの信頼性向上の両立を図ることのできる半導体モジュールを得ることができる。
本発明の実施の形態1における半導体モジュールの断面図である。 本発明の実施の形態4における半導体モジュールの断面図である。 本発明の実施の形態5における半導体モジュールの断面図である。
 以下、本発明の半導体モジュールの好適な実施の形態につき、図面を用いて説明する。なお、各図において同一または相当する部分に付いては、同一符号を付して説明する。
 実施の形態1.
 図1は、本発明の実施の形態1における半導体モジュールの断面図である。本実施の形態1における半導体モジュール9は、基板1(あるいはバスバ)に配置されている半導体素子3、主端子を構成する導電部材2、放熱板7から構成されている。導電部材2は、半導体素子3の上側電極5-1と、スイッチング回路を構成する電子部品の端子8とに接合されている。
 ここで、導電部材2は、導電率が高い銅、アルミニウム等の金属細線をより線にした構造となっている。そして、より線の直径、本数を調節することで、電気配線部の大電流容量化が可能となる。接合方法は、超音波接合、はんだ接合、Agシンター接合、導電接着剤による接合、拡散接合、ろう付けはもちろんのこと、その他の接合方法でも問題ない。
 本実施の形態1では、金属細線をより線とした導電部材2が柔軟性を有しているため、半導体素子3の熱膨張に追従して導電部材2が変形する。このため、導電部材2と半導体素子3との接合面4で歪みが発生せず、導電部材2と半導体素子3との線膨張係数差による冷熱ストレスが発生しない。
 さらに、図1に例示しているように、半導体素子3の上側電極5-1と電子部品の端子8の高さ方向に段差がある場合にも、導電部材2が柔軟性を有するため、段差の寸法公差を吸収することが可能となる。この結果、接合面4および接合面10における残留応力をなくすことができる。
 また、高周波電流は、表皮効果によって導電部材2の表面近くを流れる。このため、高周波成分の電気抵抗は、高くなる傾向にある。これに対して、本実施の形態1では、導電部材2が細線あるいは板金の集合体で構成されているため、従来のバスバと比べて表面積を増大させることが可能となる。この結果、高周波成分の電気抵抗を低減させることができ、大電流容量化が可能となる。
 以上のように、実施の形態1によれば、導電率が高い金属細線をより線にした構造の導電部材を採用している。この結果、柔軟性を有し、かつ表面積を増大させた導電部材を適用することができ、電気配線部における大電流容量化を図るとともに、冷熱ストレスによる接合部の剥離を防止し、半導体モジュールの信頼性向上を実現できる。
 実施の形態2.
 先の実施の形態1では、柔軟性を有し、かつ表面積を増大させる目的を達成するための導電部材2として、導電率が高い金属細線をより線にした構造を採用する場合について説明した。これに対して、本実施の形態2では、同様の目的を達成するために、実施の形態1とは異なる構造の導電性部材を採用する場合について説明する。
 本実施の形態2に係る導電部材2は、金属細線を網目状に編み込んだ構造(以下、編組線)を採用している。このような構造の導電部材2の断面形状は、板形状、楕円形状、円形状である。
 このような構造によっても、先の実施の形態1と同様に、柔軟性を有し、かつ表面積を増大させる目的を達成することができる。その結果、電気配線部における大電流容量化と、冷熱ストレスによる剥離の防止の両立を図ることが可能となる。
 以上のように、実施の形態2によれば、金属細線を網目状に編み込んだ構造の導電部材を採用している。この結果、柔軟性を有し、かつ表面積を増大させた導電部材を適用することができ、電気配線部における大電流容量化を図るとともに、冷熱ストレスによる接合部の剥離を防止し、半導体モジュールの信頼性向上を実現できる。
 実施の形態3.
 先の実施の形態1では、柔軟性を有し、かつ表面積を増大させる目的を達成するための導電部材2として、導電率が高い金属細線をより線にした構造を採用する場合について説明した。また、先の実施の形態2では、同様の目的を達成するための導電部材2として、編組線を採用する場合について説明した。これに対して、本実施の形態3では、同様の目的を達成するために、実施の形態1、2とは異なる構造の導電性部材を採用する場合について説明する。
 本実施の形態3に係る導電部材2は、板金を積層して構成されており、導電部材2が半導体素子3に対して板金の層間と併せて接合する構造を採用している。このような構造の導電部材2の板金同士は、接合面4、10を除いて、板金の層間が固定されていない。そして、板金の積層数を増やすことで、電気配線における電流容量を増大することができる。
 このような構造によって、導電部材2を構成する板金は、柔軟性を有し、半導体素子3の電極5-1の熱膨張に追従して変形することができる。このため、接合面4において歪みがなく、冷熱ストレスが発生しない。したがって、このような構造によっても、先の実施の形態1、2と同様に、電気配線部における大電流容量化と、冷熱ストレスによる剥離の防止の両立を図ること可能となる。
 以上のように、実施の形態3によれば、板金を積層した構造の導電部材を採用している。この結果、柔軟性を有し、かつ表面積を増大させた導電部材を適用することができ、電気配線部における大電流容量化を図るとともに、冷熱ストレスによる接合部の剥離を防止し、半導体モジュールの信頼性向上を実現できる。
 実施の形態4.
 本実施の形態4では、先の図1の構成に対して、残留応力の発生を抑制するとともに、放熱性を向上させることのできる構成をさらに備えている半導体モジュールについて説明する。図2は、本発明の実施の形態4における半導体モジュールの断面図である。先の実施の形態1における図1の構成と比較すると、図2の構成は、冷却面6(冷却面構造部に相当)を備えている点が異なっている。そこで、この異なる構成を中心に、以下に説明する。
 本実施の形態4における導電部材2は、半導体素子3の上側電極5-1と、導電部材2の冷却面6と、電子部品の端子8とに接続されている。ここで、導電部材2としては、実施の形態1で説明した金属細線をより線とした導電部材、実施の形態2で説明した金属細線を網目状に編み込んだ導電部材、そして実施の形態3で説明した板金を積層した導電部材のいずれも適用可能である。
 本実施の形態4で新たに追加された冷却面6は、半導体素子の上側電極5-1に対して絶縁されており、積極的に冷却されている基板1、または放熱板7に接合されている。このような構造を有することにより、導電部材2は、半導体素子3と冷却面6の高さ方向の寸法公差を吸収することができる。このため、接合時に残留応力が発生しない。
 さらに、冷却面6を備えることで、導電部材2を介して半導体素子3を冷却することができる。したがって、放熱面積が増大することとなり、残留応力による導電部材2の剥離を抑制したうえで、放熱性を向上させることができる。
 以上のように、実施の形態4によれば、先の実施の形態1~3と同様の効果を得ることができる。さらに、冷却面を備えた構成とすることで、残留応力の発生を抑制できるとともに、放熱性を向上させた半導体モジュールを実現できる。
 実施の形態5.
 本実施の形態5では、基板1上に半導体素子3が複数配置されている際に、同一の導電部材2を用いて接続する構成について説明する。図3は、本発明の実施の形態5における半導体モジュールの断面図である。先の実施の形態1における図1の構成と比較すると、図3の構成は、基板1上に2つの半導体素子3が搭載されており、それら2つの半導体素子3が、1本の導電部材2により、共通して接続されている点が異なっている。そこで、この異なる構成を中心に、以下に説明する。
 本実施の形態5における半導体モジュール9は、基板1に2個以上の半導体素子3が配置されており(ただし、図3では、半導体素子3が2個の場合を例示)、同一の導電部材2を用いて、2個以上の半導体素子3を電気的に接続している。
 また、導電部材2と、それぞれの半導体素子3の上側電極5-1との接合面4は、超音波接合されている。超音波接合装置は、導電部材2に対して超音波振動を与えることで、接合面において摩擦熱を発生させ、導電部材2とそれぞれの半導体素子3を接合する。
 導電部材2としては、実施の形態1で説明した金属細線をより線とした導電部材、実施の形態2で説明した金属細線を網目状に編み込んだ導電部材、そして実施の形態3で説明した板金を積層した導電部材のいずれも適用可能である。また、図3では図示されていないが、先の実施の形態4における図2で説明したような冷却面6を設けて導電部材2を接合させることで、半導体素子3の放熱性を向上させることも可能である。
 以上のように、実施の形態5によれば、本発明の導電部材を用いて、複数の半導体素子を接続することによっても、先の実施の形態1~4と同様の効果を得ることができる。
 なお、導電部材2と接合面4(11)との接合に、超音波接合を採用する場合における、本願発明に係る導電部材2のメリットについて、従来技術との比較に基づいて説明する。半導体素子3の電極5-1に対して、金属のプレートであるバスバを超音波接合する従来の半導体モジュールでは、接合する際に、バスバの面内方向における超音波振動が、もう一方の半導体素子3の電極5-3と、バスバとの接合面11に伝播し、接合面11における剥離が問題となっていた。
 これに対して、上述した実施の形態1~5に係る半導体モジュール9では、バスバの代わりに、柔軟性を揺する導電部材2が用いられている。従って、半導体素子3の電極5-1に対して導電部材2を超音波接合する際に、柔軟性を有する導電部材2によって超音波振動を吸収することができる。このため、半導体素子3の電極5-3と導電部材2との接合面11における剥離を防止することができる。

Claims (6)

  1.  基板もしくはバスバに配置された半導体素子を他の電子部品と電気的に接続させるために用いられる導電部材が、半導体素子との接合部における、導電部材と半導体素子との線膨張係数差による冷熱ストレスを低減し、接続対象の寸法公差を吸収できる柔軟性を有する構造を備える
     半導体モジュール。
  2.  請求項1に記載の半導体モジュールにおいて、
     前記導電部材は、金属線をより線にした構造を備える
     半導体モジュール。
  3.  請求項1に記載の半導体モジュールにおいて、
     前記導電部材は、金属細線を網目状に編み込んだ構造を備える
     半導体モジュール。
  4.  請求項1に記載の半導体モジュールにおいて、
     前記導電部材は、板金を積層した構造を備える
     半導体モジュール。
  5.  請求項1から4のいずれか1項に記載の半導体モジュールにおいて、
     前記基板もしくは前記バスバに配置されるとともに、前記半導体素子と絶縁されている冷却面構造部を有し、
     前記導電部材は、前記冷却面構造部を経由して前記半導体素子と他の電子部品とに電気的に接続されている
     半導体モジュール。
  6.  請求項1から5のいずれか1項に記載の半導体モジュールにおいて、
     前記導電部材は、前記半導体素子に対する接合方法として、超音波接合、はんだ接合、Agシンター接合、導電接着剤による接合、拡散接合、ろう付けによる接合のいずれかが用いられている
     半導体モジュール。
PCT/JP2014/060009 2014-04-04 2014-04-04 半導体モジュール WO2015151285A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016511296A JP6272459B2 (ja) 2014-04-04 2014-04-04 半導体モジュール
PCT/JP2014/060009 WO2015151285A1 (ja) 2014-04-04 2014-04-04 半導体モジュール
US15/126,609 US9853009B2 (en) 2014-04-04 2014-04-04 Semiconductor module having a conductor member for reducing thermal stress
CN201480077596.3A CN106133896B (zh) 2014-04-04 2014-04-04 半导体模块
EP18208036.6A EP3477690B1 (en) 2014-04-04 2014-04-04 Semiconductor module
EP14888393.7A EP3128541A4 (en) 2014-04-04 2014-04-04 Semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060009 WO2015151285A1 (ja) 2014-04-04 2014-04-04 半導体モジュール

Publications (1)

Publication Number Publication Date
WO2015151285A1 true WO2015151285A1 (ja) 2015-10-08

Family

ID=54239645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060009 WO2015151285A1 (ja) 2014-04-04 2014-04-04 半導体モジュール

Country Status (5)

Country Link
US (1) US9853009B2 (ja)
EP (2) EP3128541A4 (ja)
JP (1) JP6272459B2 (ja)
CN (1) CN106133896B (ja)
WO (1) WO2015151285A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021130290A1 (en) * 2019-12-28 2021-07-01 Danfoss Silicon Power Gmbh Power module with improved electrical characteristics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340985A (ja) * 1997-06-05 1998-12-22 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2005005593A (ja) * 2003-06-13 2005-01-06 Mitsubishi Electric Corp 半導体パワーモジュール
JP2013026445A (ja) * 2011-07-21 2013-02-04 Toyota Industries Corp 下部金属と上部金属との接続構造
JP2013251500A (ja) * 2012-06-04 2013-12-12 Renesas Electronics Corp 半導体装置及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3274926D1 (en) * 1981-05-12 1987-02-05 Lucas Ind Plc A multi-phase bridge arrangement
JP3292614B2 (ja) 1995-01-17 2002-06-17 東芝アイティー・コントロールシステム株式会社 パワーモジュール素子
TW448524B (en) * 1997-01-17 2001-08-01 Seiko Epson Corp Electronic component, semiconductor device, manufacturing method therefor, circuit board and electronic equipment
JP2001036001A (ja) * 1999-07-21 2001-02-09 Toyota Central Res & Dev Lab Inc 電力半導体モジュール
JP2004319740A (ja) 2003-04-16 2004-11-11 Fuji Electric Holdings Co Ltd パワー半導体装置およびその製造方法
JP2005093306A (ja) 2003-09-19 2005-04-07 Hmy Ltd 可撓性接続端子
DE102009020733B4 (de) * 2009-05-11 2011-12-08 Danfoss Silicon Power Gmbh Verfahren zur Kontaktsinterung von bandförmigen Kontaktelementen
JP2011204968A (ja) 2010-03-26 2011-10-13 Panasonic Corp 半導体装置及び半導体装置の製造方法
US8823175B2 (en) * 2012-05-15 2014-09-02 Infineon Technologies Ag Reliable area joints for power semiconductors
DE102012208251A1 (de) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Elektrische Kontaktierung für Halbleiter
CN105122446B (zh) * 2013-09-30 2019-07-19 富士电机株式会社 半导体装置、半导体装置的组装方法、半导体装置用部件以及单位模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340985A (ja) * 1997-06-05 1998-12-22 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2005005593A (ja) * 2003-06-13 2005-01-06 Mitsubishi Electric Corp 半導体パワーモジュール
JP2013026445A (ja) * 2011-07-21 2013-02-04 Toyota Industries Corp 下部金属と上部金属との接続構造
JP2013251500A (ja) * 2012-06-04 2013-12-12 Renesas Electronics Corp 半導体装置及びその製造方法

Also Published As

Publication number Publication date
EP3128541A4 (en) 2018-03-14
US9853009B2 (en) 2017-12-26
EP3128541A1 (en) 2017-02-08
CN106133896B (zh) 2018-12-04
EP3477690B1 (en) 2024-01-24
US20170084568A1 (en) 2017-03-23
CN106133896A (zh) 2016-11-16
JP6272459B2 (ja) 2018-01-31
EP3477690A1 (en) 2019-05-01
JPWO2015151285A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
US10763346B2 (en) Semiconductor device and power conversion apparatus
WO2015029511A1 (ja) 半導体装置およびその製造方法
JP2011216822A (ja) パワー半導体モジュール
JP4645406B2 (ja) 半導体装置
JP2007012831A (ja) パワー半導体装置
JP6261642B2 (ja) 電力半導体装置
JP2008042074A (ja) 半導体装置及び電力変換装置
JPWO2016152258A1 (ja) 半導体装置
JP6945418B2 (ja) 半導体装置および半導体装置の製造方法
JP4096741B2 (ja) 半導体装置
JP6407300B2 (ja) 半導体モジュールおよび半導体モジュール用の導電部材
JP6881304B2 (ja) 半導体装置及び半導体装置の製造方法
JP6272459B2 (ja) 半導体モジュール
WO2018020640A1 (ja) 半導体装置
JP5840102B2 (ja) 電力用半導体装置
JP5100674B2 (ja) インバータ装置
JP5992028B2 (ja) 回路基板
JP2014041876A (ja) 電力用半導体装置
JP6011410B2 (ja) 半導体装置用接合体、パワーモジュール用基板及びパワーモジュール
JP6274019B2 (ja) 半導体装置及びその製造方法
JP2015149363A (ja) 半導体モジュール
JP6477365B2 (ja) 半導体装置
JP5525856B2 (ja) 半導体モジュール
JP2020161676A (ja) パワー半導体装置
WO2015097766A1 (ja) 半導体装置および半導体製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511296

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014888393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014888393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15126609

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE