WO2015137414A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2015137414A1
WO2015137414A1 PCT/JP2015/057202 JP2015057202W WO2015137414A1 WO 2015137414 A1 WO2015137414 A1 WO 2015137414A1 JP 2015057202 W JP2015057202 W JP 2015057202W WO 2015137414 A1 WO2015137414 A1 WO 2015137414A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode pad
type side
side electrode
light emitting
type
Prior art date
Application number
PCT/JP2015/057202
Other languages
English (en)
French (fr)
Inventor
典雄 梅津
孝 松村
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167027921A priority Critical patent/KR102348352B1/ko
Priority to CN201580021604.7A priority patent/CN106233479B/zh
Publication of WO2015137414A1 publication Critical patent/WO2015137414A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/27312Continuous flow, e.g. using a microsyringe, a pump, a nozzle or extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • H01L2224/29007Layer connector smaller than the underlying bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/32105Disposition relative to the bonding area, e.g. bond pad the layer connector connecting bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention relates to a light emitting device in which a light emitting element such as a light emitting diode (LED) chip is flip-chip mounted on a substrate with an anisotropic conductive adhesive paste.
  • a light emitting element such as a light emitting diode (LED) chip is flip-chip mounted on a substrate with an anisotropic conductive adhesive paste.
  • a light-emitting element such as a light-emitting diode (LED) chip
  • a flip-chip method that can expect improvement in light extraction efficiency and heat dissipation characteristics is widely applied compared to an Au wire bonding method (patent) Reference 1).
  • a light emitting element such as an LED chip is usually formed into a semiconductor chip which is a light emitting element by forming a large number of light emitting elements on a large-diameter semiconductor wafer and then cut in a dicing process.
  • the isotropic conductive adhesive adheres to the side surface of the semiconductor chip, the semiconductor layer and the electrode are electrically connected by a lump of a large number of conductive particles, causing a short circuit failure.
  • the n-type side of the back surface of the chip body 131 of the light-emitting device 110 The anisotropic conductive adhesive paste 130 is applied to the n-type electrode pad 121 and the p-type electrode pad 122 on the surface of the substrate 120 on which the gold bumps Bp are formed, respectively.
  • Flip chip mounting is performed by thermocompression bonding.
  • the width L1 of the n-type side electrode pad 121 and the width L2 of the p-type side electrode pad 122 are configured to be larger than the width L0 of the chip body 131 in order to ensure conduction reliability, and the width of the protruding portion.
  • L1a, L2a, L1b, and L2b are about 30 ⁇ m or more and 50 ⁇ m or less.
  • the present condition is that the light-emitting device of the bumpless structure which solved simultaneously two problems, suppression of a short circuit and the improvement of a thermal radiation characteristic, is calculated
  • An object of the present invention is to solve the problems of the prior art, and a light emitting element is flip-chip mounted by bumpless using an anisotropic conductive adhesive paste on an electrode pad formed on a substrate.
  • a light-emitting device the two problems of suppressing short circuit and improving heat dissipation characteristics can be solved simultaneously.
  • the width of the electrode pad on the substrate is emitted.
  • the anisotropic conductive adhesive paste protruding from between the electrode pad on the substrate and the light emitting element has a light emitting element wider than the gap between the electrode pad and the light emitting element.
  • the present invention is a light-emitting device in which a light-emitting element having a semiconductor chip body is flip-chip mounted by bump pressing on an electrode pad formed on a substrate using an anisotropic conductive adhesive paste.
  • the width of the light emitting device is equal to or smaller than the width of the chip body.
  • the present invention is also a light emitting device, wherein the chip body is a light emitting diode chip.
  • the present invention is a light emitting device, wherein the width of the electrode pad is 80% or more and 100% or less when the width of the chip body is 100.
  • the present invention is a light emitting device, wherein the distance between the edge in the width direction of the electrode pad and the edge in the width direction of the chip body is 10 ⁇ m or more and 40 ⁇ m or less.
  • an anisotropic conductive adhesive paste containing conductive particles is disposed between a light emitting element and a mounting device, and the light emitting element is provided on the mounting device by the anisotropic conductive adhesive paste.
  • the mounting device includes a substrate, an n-type side electrode pad and a p-type side electrode pad disposed on the substrate, and the light emitting element has a quadrilateral planar shape.
  • the p-type side element electrode is electrically connected to the p-type region via the conductive particles
  • the n-type side element electrode is electrically connected to the n-type region via the conductive particles
  • the surface of the mold side electrode pad and the surface of the n type side electrode pad Is located above the surface of the substrate, and the p-type side electrode pad and the n-type side electrode pad are formed in a band shape having a constant width, and the tip of the p-type side electrode pad and the n-type side
  • the tip of the electrode pad is located in a region directly below the chip body, a portion opposite to the tip of the p-type side electrode pad, and a portion opposite to the tip of the n-type side electrode pad Is located outside the region directly below, and
  • the width of the n-type side electrode pad is set to a length equal to or shorter than a length of a second side of the chip body located immediately above the n-type side electrode pad.
  • the present invention is a light emitting device, wherein the width of the p-type side electrode pad is shorter than the length of the first side of the chip body located directly above the p-type side electrode pad, The width of the n-type side electrode pad is shorter than the length of the second side of the chip body located immediately above the n-type side electrode pad, and the p-type side electrode pad in the region directly below Between the light emitting element outside the n-type side electrode pad and the substrate, the anisotropic conductive adhesive paste protruding from between the light emitting element and the p-type side electrode pad, and the light emitting element And the anisotropic conductive adhesive paste protruding from between the n-type side electrode pads.
  • the present invention is a light emitting device, wherein the first side and the second side are arranged in parallel with the same length, and both ends of the first side are true of the p-type side electrode pad.
  • the light emitting device is positioned on the outer side, and both ends of the second side are positioned on the outer side directly above the n-type side electrode pad.
  • the width of the electrode pad is equal to the width of the light emitting element. It is configured to be the same or narrower. For this reason, generation
  • the top view of the light-emitting device of this invention 1A is a side view of the light emitting device of the present invention viewed from the direction A.
  • FIG. 3A is a side view of a conventional light emitting device viewed from the direction A.
  • FIG. 1A is a plan view of the light emitting device 100 of the present invention
  • FIG. 1B is a side view of the light emitting device 100 of the present invention viewed from the direction A of FIG. 1A.
  • the light emitting device 100 of the present invention is a light emitting device in which the light emitting element 10 is flip-chip mounted on the substrate 20 by bumpless.
  • the light emitting element 10 includes a chip body 31, an n-type side element electrode 11, and a p-type side element electrode 12, and the n-type side element electrode 11 and the p-type side element electrode 12 include the chip body. 31 is arranged.
  • n-type side electrode pad 21 and a p-type side electrode pad 22 are arranged on the substrate 20, and the mounting device 18 is formed by the substrate 20, the n-type side electrode pad 21, and the p-type side electrode pad 22. ing.
  • the n-type side element electrode 11 and the p-type side element electrode 12 are different from the n-type side electrode pad 21 and the p-type side electrode pad 22 of the mounting device 18 through the cured anisotropic conductive adhesive paste 30, respectively. Isotropically conductive connection.
  • the anisotropic conductive adhesive paste 30 contains conductive particles 36.
  • a stock solution a light-emitting element fixed to the mounting device 18 among the surfaces of the mounting device 18 After the undiluted solution is placed on the n-type side electrode pad 21 and the p-type side electrode pad 22 that are located directly behind 10, the n-type side element electrode 11 and the p-type side element electrode 12 of the light emitting element 10 are formed.
  • the formed surface is made to face the stock solution arranged on the substrate 20, the n-type side element electrode 11 of the light emitting element 10 is brought into contact with the stock solution on the n-type side electrode pad 21, and the p-type side device electrode 12 is made p-type.
  • the stock solution on the side electrode pad 22 is brought into contact.
  • FIG. 2A shows this state.
  • Reference numeral 28 indicates a stock solution.
  • Conductive particles 36 are dispersed in the adhesive component 29 of the stock solution 28.
  • the substrate 20 is placed on the table 51.
  • the symbol H 1 in FIG. The height of the bottom surface 38 of the chip body 31, which is the distance from to the bottom surface 38 of the chip body 31.
  • Symbols Wa and Wb are distances between the n-type side electrode pad 21 and the p-type side electrode pad 22 in the direction parallel to the substrate 20 from the edge of the chip body 31.
  • the n-type side element electrode 11 and the p-type side element electrode 12 are equal in thickness, and the n-type side electrode pad 21 and the p-type side electrode pad 22 are also equal in thickness.
  • the height H 1 includes the thickness P 1 between the n-type side electrode pad 21 and the p-type side electrode pad 22, the n-type side or p-type side electrode pad 21, 22, the n-type or p-type side element electrode 11, 12 is a total value of the thickness Q 1 of the stock solution 28 sandwiched between 12 and the thickness E 1 of the n-type side element electrode 11 and the p-type side element electrode 12.
  • the n-type side element electrode 11 and the p-type side element electrode 12 are formed by etching a conductive thin film formed on the surface of the chip body 31, and the n-type side element electrode 11 and the p-type side element electrode 12 are formed.
  • the thickness E 1 is smaller than the thickness P 1 between the n-type side electrode pad 21 and the p-type side electrode pad 22 and can be ignored in the distance calculation in the height direction.
  • the distance (H 1 -E 1 ) from the surface 39 of the mounting device 18 to the surface of the n-type side element electrode 11 or the p-type side element electrode 12 is the height from the surface 39 of the substrate 20 to the bottom surface 38 of the chip body 31. is the same value as the H 1.
  • the stock solution 28 is disposed on the n-type side element electrode 11 and the p-type side element electrode 12 of the light emitting element 10, and the n-type side electrode pad 21 is brought into contact with the stock solution 28 on the n-type side element electrode 11.
  • the p-type side electrode pad 22 may be brought into contact with the stock solution 28 on the p-type side element electrode 12.
  • the light emitting element 10 and the substrate 20 are pressed against each other.
  • the light emitting element 10 is pressed against the substrate 20 by the pressing member 52, and at that time, between the n-type side element electrode 11 and the n-type side electrode pad 21, and the p-type.
  • the n-type side element electrode 11 and the p-type side element electrode 12 are respectively connected to the n-type side electrode pad 21 and the p-type electrode. It approaches the side electrode pad 22.
  • the height H 2 at this time is lower than the height H 1 when the light emitting element 10 is placed, and the thickness Q 2 of the stock solution 28 on the n-type side electrode pad 21 and the p-type side electrode pad 22 is to decrease than the thickness Q 1.
  • the n-type side element electrode 11 is in contact with the n-type side electrode pad 21 through the conductive particles 36
  • the p-type side element electrode 12 is in contact with the p-type side electrode pad through the conductive particles 36. 22 is contacted.
  • the n-type side or p-type side element electrodes 11, 12 and the n-type side or p-type side electrode pads 21, 22 are connected via the conductive particles 36.
  • the thickness Q 3 of the stock solution 28 can be considered to be zero.
  • the height H 3 which is the distance between the light emitting element 10 and the substrate 20, is equal to the n-type side electrode pad 21 and the p-type. It becomes the thickness P 1 with the side electrode pad 22.
  • the adhesive component 29 of the stock solution 28 contains a thermosetting component, and the n-type side element electrode 11 and the p-type side element electrode 12 are connected via the conductive particles 36 to the n-type side electrode pad 21 and the p-type side electrode pad. 22, the light emitting element 10 and the substrate 20 are heated, and when the stock solution 28 is heated, a cured anisotropic conductive adhesive paste 30 is formed, and the light emitting element 10 and the substrate 20 are fixed to each other.
  • the light emitting device 100 in which the n-type side or p-type side element electrodes 11 and 12 and the n-type side or p-type side electrode pads 21 and 22 are electrically connected by the conductive particles 36 is obtained.
  • the chip body 31 is a semiconductor chip in which a semiconductor wafer having an N-type semiconductor region and a P-type semiconductor region provided therein is divided into a plurality of parts by cutting, and each chip body 31 includes an N-type semiconductor. A region and a P-type semiconductor region in contact with the N-type semiconductor region are provided, and a pn junction is formed.
  • the n-type side element electrode 11 on each chip body 31 is electrically connected to the N-type semiconductor region, and the p-type side element electrode 12 is electrically connected to the P-type semiconductor region.
  • the n-type side element electrode 11 is electrically connected to the n-type side electrode pad 21 via the conductive particles 36
  • the p-type side element electrode 12 is connected to the p-type side electrode pad 22 via the conductive particles 36.
  • the p-type side element electrode 12 and the n-type side element electrode 11 are interposed.
  • the pn junction is forward biased and a current flows through the pn junction, the vicinity of the pn junction emits light.
  • the substrate 20 is, for example, a plate-like resin
  • the n-type side electrode pad 21 and the p-type side electrode pad 22 are conductive films such as a metal film disposed on the surface of the substrate 20, and the n-type side electrode
  • the surface of the pad 21 and the surface of the p-type side electrode pad 22 are positioned higher than the surface of the substrate 20 by the film thickness P 1 of the n-type side electrode pad 21 and the p-type side electrode pad 22. Become.
  • the n-type side element electrode 11 is in contact with the n-type side electrode pad 21, and the p-type side element electrode 12 is in contact with the p-type side electrode pad 22. Since the film thickness P 1 of the n-type side electrode pad 21 and the p-type side electrode pad 22 is not zero, the surface 39 of the substrate 20 and the bottom surface 38 of the chip body 31 are separated by a height H 3 and the gap 13 is formed. In addition, a gap is also formed between the surface 39 of the substrate 20 and the surface of the n-type side element electrode 11 or the surface of the p-type side element electrode 12. That is, the surface of the light emitting element 10 and the surface 39 of the substrate 20 are separated from each other, and a gap is formed.
  • the value of the film thickness E 1 is The distance between the bottom surface 38 of the chip body 31 and the n-type side electrode pad 21 or the p-type side electrode pad 22 is smaller than the value of the film thickness P 1 of the n-type side electrode pad 21 and the p-type side electrode pad 22. Rather, the distance between the surface of the n-type side element electrode 11 or the surface of the p-type side element electrode 12 and the surface 39 of the substrate 20 is larger (FIG. 2C).
  • the n-type side electrode pad 121 and the p-type side electrode pad 122 protrude outside the outer periphery of the light emitting element 110.
  • the height H 4 from the surface 139 to the bottom surface 138 of the chip body 131 is smaller than the height H 3 of the present invention by the film thickness P 1 of the n-type side electrode pad 121 and the p-type side electrode pad 122. ing.
  • the stock solution 128 is pushed out from between the light emitting element 110 and the n-type or p-type side electrode pads 121 and 122 to the outside of the outer periphery of the light emitting element 110. Since the viscosity of the stock solution 128 is high, the stock solution 128 that is pushed out later on the stock solution 128 that has been pushed out rides on the stock solution 128 that has been pushed out first, and the pushed stock solution 128 is the chip body 131 of the light emitting element 110. When the adhesive component 129 is cured, the mass of the conductive particles 136 causes a short circuit.
  • the height H 3 is higher than the height H 4 of the light emitting device of the prior art, between the n-type side element electrode 11 and the n-type side electrode pad 21, and the p-type side element electrode 12 and the p-type.
  • the undiluted undiluted solution 28 from between the side electrode pads 22 is accommodated in the gap 13 so as not to rise on the side surface of the light emitting element 10.
  • the planar shape of the chip body 31 is a quadrangle whose four sides intersect at right angles. If two opposing sides of the four sides are taken as one set, the lengths of the two sets of sides are equal.
  • the n-type side electrode pad 21 is positioned directly below one side of the set of two sides
  • the p-type side electrode pad 22 is positioned directly below the other side. Accordingly, the n-type side electrode pad 21 and the p-type side electrode pad 22 enter a region directly below the chip body 31 from a position directly below the pair of two sides, and form a linear shape within the region directly below. It has come to extend to.
  • the p-type side electrode pad 22 and the n-type side electrode pad 21 are not located under the other two sides of the set.
  • the length in the direction perpendicular to the direction in which the n-type side electrode pad 21 extends is defined as the width L1 of the n-type side electrode pad 21, and the length in the direction perpendicular to the direction in which the p-type side electrode pad 22 extends.
  • the width L2 of the p-type side electrode pad 22, and the length of the side of the chip body 31 located directly above the n-type side electrode pad 21 or just above the p-type side electrode pad 22 is defined as the light emitting element width L0.
  • the width L1 of the n-type side electrode pad 21 and the width L2 of the p-type side electrode pad 22 are configured to be equal to or shorter than the width L0 of the chip body 31.
  • the anisotropic conductive adhesive paste 30 protruding from between the n-type side, p-type side electrode pads 21, 22 and the light emitting element 10 on the substrate 20 becomes the n-type side, p-type side electrode pads 21, 22. Since the gap 13 between the light emitting element 10 and the surface of the substrate 20 is wider than the gap between the light emitting element 10 and the light emitting element 10, it is possible to prevent a short circuit between the P layer and the N layer. Since it is flip-chip mounted with a press, the manufacturing cost can be reduced and the heat radiation efficiency can be improved (in other words, the thermal resistance can be reduced).
  • the A direction described above is a direction in which one of the n-type side electrode pad 21 and the p-type side electrode pad 22 extends inward from a position directly below the side of the chip body 31.
  • the width direction of the n-type side and p-type side electrode pads 21 and 22 in FIGS. 1A and 3A is a direction crossing the A direction.
  • the width directions of the n-type side and p-type side electrode pads 21 and 22 are in a plane parallel to the surface of the substrate 20 and perpendicular to the A direction.
  • the A direction in FIGS. 1A and 3A can be defined as a direction crossing the gap between the n-type side electrode pad 21 and the p-type side electrode pad 22.
  • the rectangular p-type side electrode pad 22 and the n-type side electrode pad 21 are formed on the substrate 20 at adjacent positions with a predetermined interval.
  • the width direction of the mold side and p-type side electrode pads 21 and 22 is a direction substantially orthogonal to the A direction, but the shape of the n-type side and p-type side electrode pads 21 and 22 is not rectangular but parallel four sides In the case of a shape such as a shape, trapezoid, or triangle, the width direction of the n-type side and p-type side electrode pads 21 and 22 is not necessarily a direction substantially orthogonal to the A direction, but an angle inclined with respect to the A direction. It may be the direction of crossing with
  • the widths L1 and L2 of the n-type side electrode pad 21 and the p-type side electrode pad 22 are configured to be shorter than the width L0 of the chip body 31, the heat dissipation characteristics tend to deteriorate.
  • the width L1 of the n-type side electrode pad 21 and the width L2 of the p-type side electrode pad 22 are preferably 80 or more and 100 or less, more preferably Is 90 or more and 99 or less.
  • the chip body 31 of the light-emitting element 10 is overhanging on one side or both sides of the n-type side electrode pad 21 and the p-type side electrode pad 22 in the width direction, but the overhang amount (L1a in FIG. 1A, L1b, L2a, L2b), that is, the distance between the edge in the width direction of the n-type and p-type side electrode pads 21 and 22 and the edge in the width direction of the chip body 31) is too small.
  • the amount of creeping of the conductive adhesive paste 30 tends to increase, it is preferably 0 or more and 120 ⁇ m or less, more preferably 5 ⁇ m or more and 80 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the width L1 of the n-type side electrode pad 21 and the width L2 of the p-type side electrode pad 22 are usually the same length, but may be different lengths. Further, the overhang amounts (L1a, L1b, L2a, L2b) may be the same length, but may be different from each other. Usually, it is preferable to set these overhang amounts to the same amount from the viewpoint of improving the accuracy of operations such as alignment during manufacturing and reducing the difficulty of operations.
  • the width L1 of the n-type side electrode pad 21 and the width L2 of the p-type side electrode pad 22 are equal to or shorter than the length of the side of the chip body 31 located directly above the n-type side electrode pad 21.
  • the length is equal to or shorter than the length of the side of the chip body 31 located directly above the p-type side electrode pad 22.
  • the tips of the n-type side electrode pad 21 and the p-type side electrode pad 22 are spaced apart from each other within a region directly below the chip body 31.
  • the width L1 of the n-type side electrode pad 21 and the width L2 of the p-type side electrode pad 22 are based on the length of the side of the chip body 31 located directly above the n-type side electrode pad 21. Is preferably shorter than the side length of the chip body 31 positioned directly above the p-type side electrode pad 22 and further directly above the width L1 of the n-type side electrode pad 21.
  • the side of the chip body 31 that is positioned protrudes on both sides of the width L1, and the side of the chip body 31 that is positioned directly above the width L2 of the p-type side electrode pad 22 protrudes on both sides of the width L2. It is desirable.
  • the n-type side electrode pad 21 and the p-type side electrode pad 22 are outside the tip part located in the region directly under the chip body 31 except for the part located directly under the side of the chip body 31.
  • a gap formed between the light emitting element 10 and the substrate 20 is disposed, and the distance between the substrate 20 and the light emitting element 10 is such that the light emitting element 10 and the n-type side electrode pad 21 or the p-type side electrode pad. than the distance between the 22, partial thickness P 1 of n-type-side electrode pad 21 or the p-type-side electrode pad 22, is longer.
  • the light emitting element 10 is pressed, the n-type side element electrode 11 is brought into contact with the n-type side electrode pad 21 via the conductive particles 36, and the p-type side element electrode 12 is contacted with the p-type side electrode via the conductive particles 36.
  • the stock solution 28 located between the light emitting element 10 and the n-type side electrode pad 21 and the stock solution 28 located between the light emitting element 10 and the p-type side electrode pad 22 are: When extruded from between the light emitting element 10 and the n-type side or p-type side electrode pads 21, 22, the pushed amount is accommodated in the gap 13 between the light emitting element 10 and the substrate 20. The stock solution 28 is prevented from rising around.
  • the components of the conventional light emitting device (except that the widths of the n-type side and p-type side electrode pads 21 and 22 are equal to or narrower than the width of the chip body 31).
  • the type of the conductive particles 36, the average particle size, etc.) can be the same.
  • an LED chip which is one of the components of the light emitting device 100 of the present invention
  • an LED chip an organic EL chip, an inorganic EL chip element, and the like
  • an LED chip can be preferably exemplified.
  • Examples 1-7 As an example in which an LED chip is flip-chip mounted on a substrate so as to be bumpless and the width of the electrode pad is equal to or narrower than the width of the light emitting element, the light emitting device having the structure shown in FIGS. It produced using the board
  • Table 1 it is described as ⁇ LD.
  • the value of ⁇ LD is 0 or a positive number.
  • Base material Alumina 0.6mm thickness
  • Electrode pad Copper 10 ⁇ m thickness
  • Electrode pad surface treatment Ni plating 3 ⁇ m thickness / Au 0.3 ⁇ m thickness
  • Comparative Examples 1 and 2 As a comparative example in which an LED chip is mounted on a substrate, a bump is formed on an electrode pad, and flip chip mounting is performed so that the width of the electrode pad is wider than the width of the light emitting element, a light emitting device having the structure shown in FIGS. A light emitting device was produced by repeating the same operation as in Example 1 using the same LED chip and anisotropic conductive adhesive paste as in Example 1 except that the following substrate was used.
  • Base material Alumina 0.6mm thickness
  • Electrode pad Copper 10 ⁇ m thickness
  • Au bump Diameter 80 ⁇ m, Height 15 ⁇ m
  • Number of Au bumps 3 for each electrode pad
  • Au bump pitch 500 ⁇ m
  • Base material Alumina 0.6mm thickness
  • Electrode pad Copper 10 ⁇ m thickness
  • Au bump Diameter 80 ⁇ m, Height 15 ⁇ m Number of Au bumps: 6 on each electrode pad
  • Au bump pitch 200 ⁇ m
  • Comparative Example 3 A light emitting device was produced in the same manner as in Comparative Example 1 except that a substrate on which electrode pad surface treatment was applied in the same manner as in Example 1 was used without forming Au bumps.
  • the short-circuit occurrence rate is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0%.
  • the thermal resistance value of each light emitting element was measured in accordance with “JE-DEC Standard, JESD51-14”, and the example or comparison when the thermal resistance value of Comparative Example 1 was used as a control.
  • the reduction rate (thermal resistance reduction rate) of the thermal resistance value of the light emitting element of the example was obtained.
  • the reduction rate is preferably 25% or more, more preferably 30% or more, and particularly preferably 35% or more.
  • the width of the electrode pad is reduced. It can be seen that when the width is equal to or narrower than the width of the light emitting element, the short circuit occurrence rate is 1% or less and the thermal resistance reduction rate is 20% or more. In particular, when the overhang amount with respect to the electrode pad of the substrate of the light emitting element is 10 ⁇ m or more and 40 ⁇ m or less, the short circuit occurrence rate is 0% and the thermal resistance reduction rate is 35% or more, which is preferable.
  • the width of the electrode pad is equal to the width of the light emitting element or It is narrower than that. For this reason, it is useful as a light emitting device in which the occurrence of a short circuit is suppressed and the heat dissipation characteristics are improved (thermal resistance is reduced).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Wire Bonding (AREA)

Abstract

 発光素子10が、基板20上に形成されたn型側、p型側電極パッド21、22に異方性導電接着ペースト30を用いてバンプレスでフリップチップ実装すべき発光装置100において、短絡の抑制と放熱効率の向上という二つの課題を同時に解決できるようにする。 発光素子10が、基板20上に形成されたn型側、p型側電極パッド21、22に異方性導電接着ペースト30を用いてバンプレスでフリップチップ実装された発光装置100において、n型側、p型側電極パッド21、22の幅を発光素子10の幅と同等またはそれよりも狭くする。

Description

発光装置
 本発明は、発光ダイオード(LED)チップ等の発光素子が、異方性導電接着ペーストで基板にフリップチップ実装された発光装置に関する。
 発光ダイオード(LED)チップ等の発光素子を基板に実装する場合、Auワイヤボンディング工法に比べ、光取り出し効率や放熱特性の向上を期待できるフリップチップ工法が広く適用されるようになっている(特許文献1)。ところで、LEDチップ等の発光素子は、通常、大口径の半導体ウエハに多数の発光素子を作り込んだ後にダイシング工程で切断され、発光素子である半導体チップにされており、導電粒子を含有する異方性導電接着剤が半導体チップの側面に付着すると、導電粒子が多数集まった塊により、半導体層と電極とが電気的に接続され、短絡不良が発生するという問題があった。
 このため、発光素子または基板にバンプを形成しておき、フリップチップ実装をすることで、短絡の発生を防止していた。具体的には、図3A(発光装置の平面図)、図3B(図3AのA方向から見た発光装置の側面図)に示すように、発光装置110のチップ本体131の裏面のn型側素子電極111とp型側素子電極112とをそれぞれ、金バンプBpが形成された基板120の表面のn型側電極パッド121とp型側電極パッド122とに、異方性導電接着ペースト130を介して熱圧着することでフリップチップ実装をおこなっている。この場合、n型側電極パッド121の幅L1とp型側電極パッド122の幅L2は、導通信頼性を確保するために、チップ本体131の幅L0より大きく構成し、しかも、はみ出し部分の幅L1a、L2a、L1b、L2bを30μm以上50μm以下程度とすることが一般的である。
特開2007-123613号公報
 しかしながら、図3Aのようにバンプを使用して構成した発光装置の場合、短絡を抑制できるものの、金バンプ形成コストが非常に高く、また、光と熱とを発する発光素子の発光層と基板との距離が離れるため、放熱特性が低下(換言すれば、熱抵抗が増大)するという問題があった。このため、発光装置をバンプレス構造とすることも考えられるが、金バンプ形成コストが不要となるという利点と放熱特性が向上するという利点とがあるものの、従前通り、短絡が発生することが懸念される。このように、短絡の抑制と放熱特性の向上という二つの課題を同時に解決した、バンプレス構造の発光装置が求められているのが現状である。
 本発明の目的は、従来技術の問題点を解決しようとするものであり、発光素子が、基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装されるべき発光装置において、短絡の抑制と放熱特性の向上という二つの課題を同時に解決できるようにすることである。
 本発明者らは、発光素子が、基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装された発光装置において、基板上の電極パッドの幅を、発光素子の幅と同等またはそれよりも狭くすることにより、基板上の電極パッドと発光素子との間からはみ出た異方性導電接着ペーストが、電極パッドと発光素子との間隙よりも広い発光素子と基板表面との間隙に保持されるので、P層とN層との間を短絡してしまうことを防ぐことができ、しかもバンプレスでフリップチップ実装されたものであるから製造コストを圧縮でき、且つ放熱特性を向上(熱抵抗を低減)させることができることを見出し、本発明を完成させるに至った。
 即ち、本発明は、半導体のチップ本体を有する発光素子が、基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装された発光装置であって、電極パッドの幅が、前記チップ本体の幅と同等またはそれよりも狭いことを特徴とする発光装置である。
 また、本発明は発光装置であって、前記チップ本体が発光ダイオードチップである発光装置である。
 また、本発明は発光装置であって、前記チップ本体の幅を100とした場合に、前記電極パッドの幅が80%以上100%以下である発光装置である。
 また、本発明は発光装置であって、前記電極パッドの幅方向のエッジと前記チップ本体の幅方向のエッジとの間隔が、10μm以上40μm以下である発光装置である。
 また、本発明は、発光素子と搭載装置との間に導電粒子を含有する異方性導電接着ペーストが配置され、前記異方性導電接着ペーストによって前記発光素子が前記搭載装置に設けられた発光装置であって、前記搭載装置は、基板と、前記基板上に配置されたn型側電極パッドとp型側電極パッドとを有し、前記発光素子は、平面形状が四辺形形状のチップ本体と、前記チップ本体に設けられたp型側素子電極とn型側素子電極とを有し、前記チップ本体の内部には、p型領域とn型領域が設けられ、pn接合が形成され、前記p型側素子電極は前記導電粒子を介して前記p型領域に電気的に接続され、前記n型側素子電極は前記導電粒子を介して前記n型領域に電気的に接続され、前記p型側電極パッドの表面と前記n型側電極パッドの表面とは、前記基板の表面の上方に位置し、前記p型側電極パッドと前記n型側電極パッドとは幅が一定値の帯状に形成され、前記p型側電極パッドの先端と前記n型側電極パッドの先端は前記チップ本体の真下である真下領域内に位置し、前記p型側電極パッドの先端とは反対側の部分と、前記n型側電極パッドの先端とは反対側の部分とは、前記真下領域の外側に位置し、前記p型側電極パッドの前記幅は、前記チップ本体の、前記p型側電極パッドの真上に位置する第一の辺の長さ以下の長さにされ、前記n型側電極パッドの前記幅は、前記チップ本体の、前記n型側電極パッドの真上に位置する第二の辺の長さ以下の長さにされた発光装置である。
 また、本発明は発光装置であって、前記p型側電極パッドの前記幅は、前記チップ本体の、前記p型側電極パッドの真上に位置する第一の辺の長さよりも短くされ、前記n型側電極パッドの前記幅は、前記チップ本体の、前記n型側電極パッドの真上に位置する第二の辺の長さよりも短くされ、前記真下領域内の前記p型側電極パッドと前記n型側電極パッドとの外側の前記発光素子と前記基板との間には、前記発光素子と前記p型側電極パッドの間からはみ出した前記異方性導電接着ペーストと、前記発光素子と前記n型側電極パッドの間からはみ出した前記異方性導電接着ペーストとが配置された発光装置である。
 また、本発明は発光装置であって、前記第一の辺と前記第二の辺とは同じ長さで平行に配置され、前記第一の辺の両端は、前記p型側電極パッドの真上の外側に位置し、前記第二の辺の両端は、前記n型側電極パッドの真上の外側に位置するようにされた発光装置である。
 発光素子が、基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装された本発明の発光装置によれば、電極パッドの幅が、発光素子の幅と同等またはそれよりも狭く構成されている。このため、短絡の発生を抑制し、しかも放熱特性の向上(熱抵抗の低減)を同時に実現することができる。
 また、異方性導電接着ペーストは発光素子の側面に付着しないので、発光素子の側面から放射される光の放出を妨害しない。
本発明の発光装置の平面図 図1AのA方向から見た本発明の発光装置の側面図 搭載基板上の異方性導電接着ペーストに発光素子を配置した状態を説明するための部分拡大断面図 発光素子を押圧しているときの状態を説明するための部分拡大断面図 p型側、n型側素子電極と、p型側、n型側基板電極とが導電粒子で電気的に接続された状態を説明するための部分拡大断面図 従来技術の発光装置の素子本体の側面に付着した異方性導電接着ペーストを説明するための拡大図 従来の発光装置の平面図 図3AのA方向から見た従来の発光装置の側面図
 以下、本発明の発光装置を図面を参照しつつ詳細に説明する。
 図1Aは、本発明の発光装置100の平面図であり、図1Bは、図1AのA方向から見た本発明の発光装置100の側面図である。本発明の発光装置100は、発光素子10が基板20上にバンプレスでフリップチップ実装された発光装置である。詳しくは、発光素子10は、チップ本体31と、n型側素子電極11と、p型側素子電極12とを有し、n型側素子電極11とp型側素子電極12とは、チップ本体31上に配置されている。
 基板20上には、n型側電極パッド21とp型側電極パッド22とが配置され、基板20と、n型側電極パッド21と、p型側電極パッド22とで搭載装置18が形成されている。n型側素子電極11とp型側素子電極12とはそれぞれ搭載装置18のn型側電極パッド21とp型側電極パッド22とに、硬化された異方性導電接着ペースト30を介して異方性導電接続されている。
 その発光装置100の製造工程を説明する。
 異方性導電接着ペースト30には導電粒子36が含有されており、未硬化の異方性導電接着ペーストを原液と呼ぶと、搭載装置18の表面のうち、搭載装置18に固定される発光素子10の真裏に位置するn型側電極パッド21上とp型側電極パッド22上とに、原液を配置した後、発光素子10のn型側素子電極11とp型側素子電極12とが形成された面を、基板20上に配置された原液と対面させ、発光素子10のn型側素子電極11をn型側電極パッド21上の原液に接触させ、p型側素子電極12をp型側電極パッド22上の原液に接触させる。
 図2Aはその状態を示し、符号28は原液を示しており、原液28の接着成分29には導電粒子36が分散されている。基板20は台51上に載せられている。
 ここで、原液28上に発光素子10を載せたときには、チップ本体31の底面と基板20の表面とは平行になっているものとすると、図2A中の符号H1は、基板20の表面39からのチップ本体31の底面38までの距離である、チップ本体31の底面38の高さを示している。符号Wa、Wbはn型側電極パッド21とp型側電極パッド22との、チップ本体31の縁からの基板20と平行な方向の距離である。
 n型側素子電極11とp型側素子電極12の厚さは等しく、また、n型側電極パッド21とp型側電極パッド22の厚さも等しくなっており、このチップ本体31の底面38の高さH1は、n型側電極パッド21とp型側電極パッド22との厚さP1と、n型側又はp型側電極パッド21,22とn型又はp型側素子電極11、12とに挟まれた原液28の厚さQ1と、n型側素子電極11とp型側素子電極12との厚さE1と、を合計した値である。
 n型側素子電極11とp型側素子電極12とは、チップ本体31の表面に形成された導電性薄膜をエッチングして形成しており、n型側素子電極11とp型側素子電極12との厚さE1は、n型側電極パッド21とp型側電極パッド22との厚さP1よりも薄くなっており、高さ方向の距離計算上無視することができるものとすると、搭載装置18の表面39からn型側素子電極11又はp型側素子電極12の表面までの距離(H1-E1)は、基板20の表面39からチップ本体31の底面38までの高さH1と同じ値である。
 なお、発光素子10のn型側素子電極11上とp型側素子電極12上とに原液28を配置し、n型側素子電極11上の原液28にn型側電極パッド21を接触させ、p型側素子電極12上の原液28にp型側電極パッド22を接触させてもよい。
 次いで、発光素子10と基板20とを互いに押圧する。ここでは、図2Bに示すように、発光素子10を、押圧部材52によって基板20に押圧しており、その際、n型側素子電極11とn型側電極パッド21との間と、p型側素子電極12とp型側電極パッド22との間とから、原液28が押し出されながら、n型側素子電極11とp型側素子電極12とは、それぞれn型側電極パッド21とp型側電極パッド22とに近づく。このときの高さH2は発光素子10を載せたときの高さH1より低くなり、n型側電極パッド21とp型側電極パッド22上の原液28の厚さQ2は、元の厚さQ1よりも減少する。
 そして、図2Cに示すように、n型側素子電極11は導電粒子36を介してn型側電極パッド21に接触し、p型側素子電極12は導電粒子36を介してp型側電極パッド22に接触する。
 このとき、導電粒子36の大きさは無視できるほど小さいので、n型側又はp型側素子電極11、12とn型側又はp型側電極パッド21、22とが導電粒子36を介して接続された場合は、直接接触された場合と同じであり、原液28の厚さQ3はゼロと考えることができる。n型側又はp型側素子電極11、12との厚さE1を無視すると、発光素子10と基板20との間の距離である高さH3は、n型側電極パッド21とp型側電極パッド22との厚さP1となる。
 原液28の接着成分29は熱硬化成分を含有しており、n型側素子電極11とp型側素子電極12とが、導電粒子36を介してn型側電極パッド21とp型側電極パッド22に接触した状態で、発光素子10と基板20とが加熱され、原液28が昇温すると、硬化した異方性導電接着ペースト30が形成され、発光素子10と基板20とが互いに固定され、導電粒子36によってn型側又はp型側素子電極11、12とn型側又はp型側電極パッド21、22とがそれぞれ電気的に接続された発光装置100が得られる。
 チップ本体31は、内部にN型半導体領域とP型半導体領域とが設けられた半導体ウェハが、切断によって複数個に分割された半導体チップであり、各チップ本体31の内部には、N型半導体領域と、N型半導体領域と接触したP型半導体領域とがそれぞれ設けられ、pn接合がそれぞれ形成されている。
 各チップ本体31上のn型側素子電極11はN型半導体領域に電気的に接続され、p型側素子電極12はP型半導体領域に電気的に接続されており、異方性導電接着ペースト30の硬化により、n型側素子電極11は導電粒子36を介してn型側電極パッド21に電気的に接続され、p型側素子電極12は導電粒子36を介してp型側電極パッド22に電気的に接続されているから、p型側電極パッド22とn型側電極パッド21との間に電圧が印加されると、p型側素子電極12とn型側素子電極11とを介して、P型半導体領域とN型半導体領域との間に電圧が印加され、pn接合が順バイアスされてpn接合に電流が流れると、pn接合付近が発光する。
 基板20は例えば板状の樹脂であり、n型側電極パッド21とp型側電極パッド22とは、基板20の表面上に配置された金属膜等の導電性膜であり、n型側電極パッド21の表面とp型側電極パッド22の表面とは、基板20の表面よりもn型側電極パッド21とp型側電極パッド22の膜厚P1だけ高い場所に位置していることになる。
 導電粒子36の大きさを無視した場合は、n型側素子電極11はn型側電極パッド21と接触し、p型側素子電極12はp型側電極パッド22と接触することになるが、n型側電極パッド21とp型側電極パッド22との膜厚P1はゼロではないため、基板20の表面39とチップ本体31の底面38とは高さH3だけ離間して隙間13が形成され、また、基板20の表面39とn型側素子電極11の表面又はp型側素子電極12の表面との間にも隙間が形成されるようになっている。即ち、発光素子10の表面と基板20の表面39とは離間しており、隙間が形成されている。
 上述したように、n型側素子電極11とp型側素子電極12とが、チップ本体31の表面上に配置された導電性薄膜、例えば金属薄膜の場合は、その膜厚E1の値は、n型側電極パッド21とp型側電極パッド22の膜厚P1の値よりも小さく、チップ本体31の底面38とn型側電極パッド21又はp型側電極パッド22との間の距離よりも、n型側素子電極11の表面又はp型側素子電極12の表面と基板20の表面39との間の距離の方が大きい(図2C)。
 それに対し、図2Dに示すように、従来技術の発光装置では、n型側電極パッド121とp型側電極パッド122とが、発光素子110の外周よりも外側にはみ出しており、搭載装置180の表面139からチップ本体131の底面138までの高さH4は、n型側電極パッド121とp型側電極パッド122の膜厚P1の分だけ、本発明の高さH3よりも小さくなっている。
 そして、高さH4は低いので、原液128は発光素子110とn型側又はp型側電極パッド121、122の間から発光素子110の外周よりも外側に向けて押し出される。
 原液128の粘性は高いため、押し出された原液128のうち、後から押し出された原液128は、先に押し出された原液128の上に乗り、押し出された原液128は発光素子110のチップ本体131の底面138よりも高く盛り上がり、チップ本体131の側面に付着すると、接着成分129を硬化させた後の導電粒子136の塊が短絡の原因となる。
 本願発明では、高さH3は従来技術の発光装置の高さH4よりも高く、n型側素子電極11とn型側電極パッド21との間と、p型側素子電極12とp型側電極パッド22との間とから、押し出された原液28は、隙間13に収容され、発光素子10の側面に盛り上がらないようになっている。
 チップ本体31の平面形状は四辺が直角に交叉する四角形であり、四辺のうち、対向した二個の辺を一組とすると、一組の二個の辺の長さは等しい。
 また、一組の二個の辺のうち、一方の辺の真下にはn型側電極パッド21が位置しており、他方の辺の真下にはp型側電極パッド22が位置しており、従って、n型側電極パッド21とp型側電極パッド22とは、一組の二個の辺の真下の位置から、チップ本体31の真下に位置する真下領域に入り、真下領域内で直線状に伸びるようになっている。
 他の組の二辺の下にはp型側電極パッド22とn型側電極パッド21は位置していない。
 ここで、n型側電極パッド21が伸びる方向とは直角な方向の長さを、n型側電極パッド21の幅L1とし、p型側電極パッド22が伸びる方向とは直角な方向の長さを、p型側電極パッド22の幅L2とし、チップ本体31の、n型側電極パッド21の真上又はp型側電極パッド22の真上に位置する辺の長さを発光素子幅L0とする。
 本発明の発光装置100においては、n型側電極パッド21の幅L1とp型側電極パッド22の幅L2を、チップ本体31の幅L0と同等またはそれよりも短く構成する。これにより、基板20上のn型側、p型側電極パッド21、22と発光素子10との間からはみ出た異方性導電接着ペースト30が、n型側、p型側電極パッド21、22と発光素子10との隙間よりも広い発光素子10と基板20の表面との隙間13に保持されるので、P層とN層との間を短絡させてしまうことを防ぐことができ、しかもバンプレスでフリップチップ実装されたものであるので製造コストを圧縮でき、且つ放熱効率を向上(換言すれば、熱抵抗を低減)させることができる。
 次に、上述したA方向は、n型側電極パッド21とp型側電極パッド22とのうち、いずれか一方が、チップ本体31の辺の真下の位置から内側に向かって伸びる方向である。
 ここで、図1A及び図3Aにおけるn型側、p型側電極パッド21、22の幅方向は、A方向を横切る方向である。換言すれば、n型側、p型側電極パッド21、22の幅方向は、基板20の表面とは平行な平面内で、A方向とは直角な方向である。
 従って、図1A及び図3AにおけるA方向とは、n型側電極パッド21とp型側電極パッド22との間の隙間を横切る方向である、と定義できる。なお、図1A及び図3Aでは、基板20上に、それぞれ矩形のp型側電極パッド22とn型側電極パッド21とを、所定の間隔を設けて隣接する位置に形成しているため、n型側、p型側電極パッド21、22の幅方向は、A方向に略直交する方向となっているが、n型側、p型側電極パッド21、22の形状が矩形ではなく、平行四辺形、台形、三角形等の形状である場合には、n型側、p型側電極パッド21、22の幅方向は、必ずしもA方向に略直交する方向ではなく、A方向に対して傾斜した角度を持って横切る方向であってもよい。
 また、n型側電極パッド21とp型側電極パッド22の幅L1、L2を、チップ本体31の幅L0よりも短く構成する程度としては、短かすぎると放熱特性が低下する傾向があるので、チップ本体31の幅L0の長さを100とした場合に、n型側電極パッド21の幅L1とp型側電極パッド22の幅L2の長さを、好ましくは80以上100以下、より好ましくは90以上99以下とする。
 この場合、n型側電極パッド21とp型側電極パッド22の幅方向片側もしくは両側に発光素子10のチップ本体31がオーバーハングしていることになるが、オーバーハング量(図1AのL1a、L1b、L2a、L2b)、即ち、n型側、p型側電極パッド21、22の幅方向のエッジとチップ本体31の幅方向のエッジとの間隔)は、小さくし過ぎると発光素子10側面の導電接着ペースト30の這い上がり量が増加する傾向があるので、好ましくは0以上120μm以下、より好ましくは5μm以上80μm以下、特に好ましくは10μm以上40μm以下である。
 なお、n型側電極パッド21の幅L1とp型側電極パッド22の幅L2とは、通常同じ長さであるが、異なる長さであってもよい。また、オーバーハング量(L1a、L1b、L2a、L2b)も互いに同じ長さであってもよいが、それぞれ互いに異なっていてもよい。通常、これらのオーバーハング量を互いに同じ量としておくことが、製造時の位置合わせ等の操作の精度を向上させ、また、操作の難易度を緩和する点から好ましい。
 n型側電極パッド21の幅L1とp型側電極パッド22の幅L2とは、上述したように、n型側電極パッド21の真上に位置するチップ本体31の辺の長さ以下の長さになるようにされ、また、p型側電極パッド22の真上に位置するチップ本体31の辺の長さ以下の長さになるようにされている。
 n型側電極パッド21とp型側電極パッド22との先端は、チップ本体31の真下に位置する真下領域内で、互いに離間して配置されている。
 ここでは、上述したように、n型側電極パッド21の幅L1とp型側電極パッド22の幅L2とは、n型側電極パッド21の真上に位置するチップ本体31の辺の長さよりも短くされ、また、p型側電極パッド22の真上に位置するチップ本体31の辺の長さよりも短くされていることが望ましく、更に、n型側電極パッド21の幅L1の真上に位置するチップ本体31の辺は、幅L1の両側にはみ出しており、また、p型側電極パッド22の幅L2の真上に位置するチップ本体31の辺は、幅L2の両側にはみ出していることが望ましい。
 この場合は、n型側電極パッド21とp型側電極パッド22との、チップ本体31の真下領域内に位置する先端部分の外側には、チップ本体31の辺の真下に位置する部分を除き、発光素子10と基板20との間に形成された隙間が配置されており、基板20と発光素子10との間の距離は、発光素子10とn型側電極パッド21又はp型側電極パッド22との間の距離よりも、n型側電極パッド21又はp型側電極パッド22の膜厚P1の分、長くなっている。
 従って、発光素子10が押圧されて、n型側素子電極11が導電粒子36を介してn型側電極パッド21に接触され、p型側素子電極12が導電粒子36を介してp型側電極パッド22に接触される際に、発光素子10とn型側電極パッド21との間に位置する原液28と、発光素子10とp型側電極パッド22との間に位置する原液28とは、発光素子10とn型側又はp型側電極パッド21,22との間から押し出されると、押し出された分は、発光素子10と基板20との間の隙間13に収容され、発光素子10の周囲で原液28が盛り上がることが無いようにされている。
 本発明の発光装置100においては、n型側、p型側電極パッド21、22の幅を、チップ本体31の幅と同等またはそれよりも狭く構成すること以外、従来の発光装置の構成要素(例えば、発光素子の種類・大きさ、その接続パッドの種類・大きさ、基板の種類・大きさ、その上の配線パターンの素材・厚さ、異方性導電接着ペーストの種類・粘度、含有されている導電粒子36の種類や平均粒径等)と同様の構成とすることができる。
 なお、本発明の発光装置100の構成要素の一つである発光素子10としては、LEDチップ、有機ELチップ、無機ELチップ素子等を挙げることができ、中でもLEDチップを好ましく挙げることができる。これらは、当然にバンプレスである。
 以下、本発明をより具体的な実施例により説明する。
  実施例1~7
 LEDチップを基板に、バンプレスで且つ電極パッドの幅が発光素子の幅と同等またはそれよりも狭くなるようにフリップチップ実装した例として、図1A~1Bに示す構造の発光装置を、以下の基板、LEDチップ、異方性導電接着ペーストを用いて作成した。具体的には、LED素子の中央部に対応する基板上に所定量の異方性導電接着ペーストをディスペンサーから供給し、その異方性導電接着ペーストにLEDチップを載置し、温度230℃、圧力3N/chip、30秒という条件で熱圧着することにより発光装置を作成した。
 なお、LED素子の幅方向のエッジから電極パッドの幅方向のエッジまでの幅(実施例の態様について換言すれば、電極パッドに対してLED素子のオーバーハングしている量(L1a=L1b=L2a=L2b))を表1に示す。表1では、ΔLDと記載しておく。実施例1~7においては、ΔLDの数値は0又は正の数となる。
<基板>
 ベース材質:アルミナ0.6mm厚
 電極パッド:銅10μm厚
 電極パッド表面処理:Niメッキ3μm厚/Au0.3μm厚
<LEDチップ>
 製品名:DA3547,Cree社製(米国Cree.Inc.)
 サイズ:350μm×470μm×155μmt
<異方性導電接着ペースト>
 製品名: SLP-04,デクセリアルズ(株)製
  比較例1~2
 LEDチップを基板に、電極パッドにバンプが形成され且つ電極パッドの幅が発光素子の幅よりも広くなるようにフリップチップ実装した比較例として、図3A~図3Bに示す構造の発光装置を、以下の基板を使用すること以外、実施例1の場合と同様のLEDチップ、異方性導電接着ペーストを用い、実施例1と同様の操作を繰り返すことにより発光装置を作成した。
<比較例1で使用した基材>
 ベース材質:アルミナ0.6mm厚
 電極パッド:銅10μm厚
 Auバンプ:直径80μm、高さ15μm
 Auバンプ数:各電極パッドに3個
 Auバンプピッチ:500μm
<比較例2で使用した基材>
 ベース材質:アルミナ0.6mm厚
 電極パッド:銅10μm厚
 Auバンプ:直径80μm、高さ15μm
 Auバンプ数:各電極パッドに6個
 Auバンプピッチ:200μm
 なお、LED素子の幅方向のエッジから電極パッドの幅方向のエッジまでの幅(換言すれば、LED素子の幅方向から電極パッドがはみ出した量(L1a=L1b=L2a=L2b))を表1に示す。表1ではΔLDと記載する。比較例1及び2並びに以下の比較例3では、ΔLDの数値は、必ず負の数となる。
  比較例3
 基板として、Auバンプを形成せずに、電極パッド表面処理を実施例1と同様に施した基板を使用すること以外、比較例1と同様に発光装置を作成した。
(評価)
 実施例並びに比較例で作成した発光素子について、「短絡不良」と「放熱特性」とを以下に説明するように試験評価した。得られた結果を表1に示す。
<短絡不良>
 各実施例及び各比較例の発光素子をそれぞれ100個作成し、P極側とN極側との間で短絡が生じているか否かをテスター(カーブトレーサー TCT-2004、國洋電機工業(株))を用いて確認し、短絡が生じた発光素子の割合(短絡発生率)を求めた。短絡発生率は、1%以下であることが好ましく、0.5%以下がより好ましく、0%であることが特に好ましい。
<放熱特性>
 放熱特性を評価するために、各発光素子の熱抵抗値を「JE-DEC スタンダード、JESD51-14」に準拠して測定し、比較例1の熱抵抗値を対照としたときの実施例または比較例の発光素子の熱抵抗値の減少率(熱抵抗減少率)を求めた。減少率は、好ましくは25%以上、より好ましくは30%以上、特に好ましくは35%以上である。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、LEDチップを基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装することにより発光装置を作成した場合に、電極パッドの幅を発光素子の幅と同等またはそれよりも狭くすると、短絡発生率が1%以下となり且つ熱抵抗減少率が20%以上となることことが分かる。特に、発光素子の基板の電極パッドに対するオーバーハング量を10μm以上40μm以下とすると、短絡発生率は0%であり且つ熱抵抗減少率は35%以上になり、好ましい。
 一方、バンプを設けた基板を使用した比較例1、2の発光装置の場合、短絡不良は改善されるが、放熱特性は改善されないことが分かる。比較例3の発光装置の場合には、放熱特性は改善されるが、短絡不良が1%を超えてしまうことがわかる。
 発光素子が、基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装された本発明の発光装置は、電極パッドの幅が、発光素子の幅と同等またはそれよりも狭く構成されている。このため、短絡の発生が抑制され、しかも放熱特性が向上(熱抵抗の低減)した発光装置として有用である。
 100 発光装置
 10 発光素子
 11 n型側素子電極
 12 p型側素子電極
 20 基板
 21 n型側電極パッド
 22 p型側電極パッド
 30 異方性導電接着ペースト
 31 チップ本体
 Bp 金バンプ
 L0 発光素子の幅
 L1 n型側電極パッドの幅
 L2 p型側電極パッドの幅
 

Claims (7)

  1.  半導体のチップ本体を有する発光素子が、基板上に形成された電極パッドに異方性導電接着ペーストを用いてバンプレスでフリップチップ実装された発光装置であって、
     電極パッドの幅が、前記チップ本体の幅と同等またはそれよりも狭いことを特徴とする発光装置。
  2.  前記チップ本体が発光ダイオードチップである請求項1記載の発光装置。
  3.  前記チップ本体の幅を100とした場合に、前記電極パッドの幅が80%以上100%以下である請求項1または2記載の発光装置。
  4.  前記電極パッドの幅方向のエッジと前記チップ本体の幅方向のエッジとの間隔が、10μm以上40μm以下である請求項1または2記載の発光装置。
  5.  発光素子と搭載装置との間に導電粒子を含有する異方性導電接着ペーストが配置され、前記異方性導電接着ペーストによって前記発光素子が前記搭載装置に設けられた発光装置であって、
     前記搭載装置は、
     基板と、
     前記基板上に配置されたn型側電極パッドとp型側電極パッドとを有し、
     前記発光素子は、平面形状が四辺形形状のチップ本体と、
     前記チップ本体に設けられたp型側素子電極とn型側素子電極とを有し、
     前記チップ本体の内部には、p型領域とn型領域が設けられ、pn接合が形成され、
     前記p型側素子電極は前記導電粒子を介して前記p型領域に電気的に接続され、前記n型側素子電極は前記導電粒子を介して前記n型領域に電気的に接続され、
     前記p型側電極パッドの表面と前記n型側電極パッドの表面とは、前記基板の表面の上方に位置し、
     前記p型側電極パッドと前記n型側電極パッドとは幅が一定値の帯状に形成され、
     前記p型側電極パッドの先端と前記n型側電極パッドの先端は前記チップ本体の真下である真下領域内に位置し、前記p型側電極パッドの先端とは反対側の部分と、前記n型側電極パッドの先端とは反対側の部分とは、前記真下領域の外側に位置し、
     前記p型側電極パッドの前記幅は、前記チップ本体の、前記p型側電極パッドの真上に位置する第一の辺の長さ以下の長さにされ、
     前記n型側電極パッドの前記幅は、前記チップ本体の、前記n型側電極パッドの真上に位置する第二の辺の長さ以下の長さにされた発光装置。
  6.  前記p型側電極パッドの前記幅は、前記チップ本体の、前記p型側電極パッドの真上に位置する第一の辺の長さよりも短くされ、
     前記n型側電極パッドの前記幅は、前記チップ本体の、前記n型側電極パッドの真上に位置する第二の辺の長さよりも短くされ、
     前記真下領域内の前記p型側電極パッドと前記n型側電極パッドとの外側の前記発光素子と前記基板との間には、前記発光素子と前記p型側電極パッドの間からはみ出した前記異方性導電接着ペーストと、前記発光素子と前記n型側電極パッドの間からはみ出した前記異方性導電接着ペーストとが配置された請求項5記載の発光装置。
  7.  前記第一の辺と前記第二の辺とは同じ長さで平行に配置され、前記第一の辺の両端は、前記p型側電極パッドの真上の外側に位置し、
     前記第二の辺の両端は、前記n型側電極パッドの真上の外側に位置するようにされた請求項6記載の発光装置。 
PCT/JP2015/057202 2014-03-12 2015-03-11 発光装置 WO2015137414A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167027921A KR102348352B1 (ko) 2014-03-12 2015-03-11 발광 장치
CN201580021604.7A CN106233479B (zh) 2014-03-12 2015-03-11 发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014048750 2014-03-12
JP2014-048750 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015137414A1 true WO2015137414A1 (ja) 2015-09-17

Family

ID=54071853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057202 WO2015137414A1 (ja) 2014-03-12 2015-03-11 発光装置

Country Status (5)

Country Link
JP (1) JP2015188078A (ja)
KR (1) KR102348352B1 (ja)
CN (1) CN106233479B (ja)
TW (1) TWI669837B (ja)
WO (1) WO2015137414A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170880B (zh) * 2017-07-14 2019-09-27 上海天马微电子有限公司 发光单元及显示装置
JP6942589B2 (ja) * 2017-09-27 2021-09-29 旭化成株式会社 半導体発光装置および紫外線発光モジュール
CN111179750A (zh) * 2019-12-12 2020-05-19 武汉华星光电技术有限公司 显示面板的结构和其制作方法
TWI773538B (zh) * 2021-09-24 2022-08-01 友達光電股份有限公司 自發光裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168235A (ja) * 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
JP2004039983A (ja) * 2002-07-05 2004-02-05 Rohm Co Ltd 半導体発光装置
JP2007049045A (ja) * 2005-08-11 2007-02-22 Rohm Co Ltd 半導体発光素子およびこれを備えた半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951937B2 (ja) 2005-10-28 2012-06-13 日亜化学工業株式会社 発光装置
JP5880025B2 (ja) * 2011-12-26 2016-03-08 日亜化学工業株式会社 発光装置
US8877561B2 (en) * 2012-06-07 2014-11-04 Cooledge Lighting Inc. Methods of fabricating wafer-level flip chip device packages

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168235A (ja) * 1997-12-05 1999-06-22 Toyoda Gosei Co Ltd 発光ダイオード
JP2004039983A (ja) * 2002-07-05 2004-02-05 Rohm Co Ltd 半導体発光装置
JP2007049045A (ja) * 2005-08-11 2007-02-22 Rohm Co Ltd 半導体発光素子およびこれを備えた半導体装置

Also Published As

Publication number Publication date
TWI669837B (zh) 2019-08-21
CN106233479B (zh) 2019-11-22
TW201603335A (zh) 2016-01-16
KR20160132917A (ko) 2016-11-21
CN106233479A (zh) 2016-12-14
JP2015188078A (ja) 2015-10-29
KR102348352B1 (ko) 2022-01-10

Similar Documents

Publication Publication Date Title
WO2015137414A1 (ja) 発光装置
TWI453948B (zh) The structure of the press - fit type flip - chip light emitting element and its making method
TWI709221B (zh) 多層基板及其製造方法、及各向異性導電膜
US20210091031A1 (en) Semiconductor structure and manufacturing method thereof
JP2013197209A (ja) 半導体装置及びその製造方法
TWI430717B (zh) 基板結構、半導體裝置陣列及其半導體裝置
TW201528459A (zh) 晶片的封裝結構及其製造方法
WO2015076281A1 (ja) 発光装置、発光装置製造方法
JP6147061B2 (ja) フリップチップ型半導体発光素子、半導体装置及びその製造方法
TWI550918B (zh) 發光二極體模組及其製造方法
JP2012178400A (ja) Ledランプ
WO2015141342A1 (ja) 異方性導電接着剤
JP2015185685A (ja) 発光装置の製造方法及び照明装置
JP2018116960A (ja) 電力用半導体装置
JP2012204589A (ja) 半導体デバイスウエーハの接合方法
JP2013120898A (ja) 半導体デバイスおよびその製造方法
TWI509678B (zh) 平面式半導體元件及其製作方法
JP7022510B2 (ja) 半導体発光装置および半導体発光装置の製造方法
JP2000101141A (ja) 半導体発光素子及びその製造方法
TWM580798U (zh) Light-emitting diode carrier board pre-equipped with conductive bumps
TW201836176A (zh) 覆晶式led導熱構造
TW201611347A (zh) 覆晶式發光二極體封裝結構
TWI566442B (zh) 發光晶片模組、發光二極體以及發光晶片模組的製造方法
TW202025441A (zh) 預設有導電凸塊的發光二極體載板
TWI600096B (zh) Circuit component packaging method and its products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167027921

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15761930

Country of ref document: EP

Kind code of ref document: A1