WO2015064772A1 - カーボンナノチューブ - Google Patents

カーボンナノチューブ Download PDF

Info

Publication number
WO2015064772A1
WO2015064772A1 PCT/JP2014/079655 JP2014079655W WO2015064772A1 WO 2015064772 A1 WO2015064772 A1 WO 2015064772A1 JP 2014079655 W JP2014079655 W JP 2014079655W WO 2015064772 A1 WO2015064772 A1 WO 2015064772A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
catalyst
gas
plot
surface area
Prior art date
Application number
PCT/JP2014/079655
Other languages
English (en)
French (fr)
Inventor
広和 高井
貢 上島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP14858707.4A priority Critical patent/EP3064472B1/en
Priority to US15/030,975 priority patent/US9776873B2/en
Priority to JP2015545339A priority patent/JP6048591B2/ja
Priority to KR1020167010442A priority patent/KR101710603B1/ko
Priority to CN201480057892.7A priority patent/CN105658573A/zh
Publication of WO2015064772A1 publication Critical patent/WO2015064772A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes

Definitions

  • the present invention relates to a carbon nanotube.
  • Carbon nanotubes are one-dimensional nanomaterials composed of only carbon atoms, having a diameter of 0.4 to 50 nm and a length of approximately 1 to several 100 ⁇ m.
  • the chemical structure is expressed by rolling and joining graphite layers, and a single-walled carbon nanotube is a single-walled carbon nanotube.
  • Patent Document 1 describes a CNT having an open end. Such CNTs have a larger specific surface area than CNTs that do not have open ends.
  • Patent Document 2 describes a technique for increasing the specific surface area of single-walled CNTs by performing an opening process in which holes are formed in the tips and side walls of single-walled CNTs by oxidation.
  • CNT has a large specific surface area in order to exhibit properties such as substance and energy retention, energy transfer, and energy dispersibility, but from the viewpoint of fully exploiting the potential properties of CNT.
  • the possibility of utilizing the inside of the CNT is high.
  • Patent Document 2 requires an opening process such as an oxidation process for the synthesized aligned CNT aggregate, which takes a lot of work. Therefore, there is a need for a CNT that does not require an opening process such as an oxidation process and that can effectively utilize the interior as it is synthesized.
  • an object of the present invention is to provide a carbon nanotube that can be used effectively without being subjected to an opening treatment while being synthesized.
  • the increase in the opening of CNT can be grasped by the increase in the internal specific surface area.
  • the present inventors diligently studied to achieve the above object, and in a method for supplying a source gas to a catalyst and growing CNTs by a chemical vapor deposition method (hereinafter also referred to as “CVD method”), a specific method is used. By applying the conditions, it was found that a CNT having a large number of side wall openings with a large ratio of the internal specific surface area to the total specific surface area, the tip not opened, and without performing an opening treatment after growth was obtained. It was.
  • a continuous CNT manufacturing apparatus in which units for performing a formation process, a growth process, and a cooling process are connected on a catalyst base material in which a catalyst is formed on a base material having an area of 400 cm 2 or more by a wet process. It was important to use and grow CNTs.
  • the gist configuration of the present invention completed based on the above findings is as follows.
  • One of the major features of the carbon nanotube of the present invention is that the t-plot obtained from the adsorption isotherm shows an upwardly convex shape without being subjected to opening treatment.
  • the bending point of the t plot is preferably in the range of 0.2 ⁇ t (nm) ⁇ 1.5.
  • the total specific surface area S1 and the internal specific surface area S2 obtained from the t plot satisfy 0.05 ⁇ S2 / S1 ⁇ 0.30.
  • the average outer diameter is preferably 2 to 5 nm.
  • the inside of the carbon nanotube of the present invention can be used effectively without being subjected to the opening treatment.
  • FIG. 2 is a TEM image of the CNT of Example 1. It is a schematic diagram which shows the structure of the CNT manufacturing apparatus used for the comparative example. It is a graph which shows t plot of a comparative example. It is a TEM image of CNT of a comparative example.
  • the CNTs of the present invention can be produced by a method in which a raw material gas is supplied to a substrate having a catalyst layer on the surface (hereinafter referred to as “catalyst substrate”), and the CNTs are grown on the catalyst layer by a CVD method. .
  • a large number of CNTs are oriented in a direction substantially perpendicular to the catalyst substrate to form an aggregate.
  • this is called “CNT aligned aggregate”.
  • An object obtained by collectively separating the aligned CNT aggregates from the catalyst substrate is referred to as “CNT” in this specification.
  • the CNT of the present invention is not subjected to opening treatment, and one of the major features is that the t plot obtained from the adsorption isotherm shows a convex shape upward.
  • the t plot is obtained based on data measured by the nitrogen gas adsorption method.
  • Adsorption is a phenomenon in which gas molecules are removed from the gas phase to the solid surface, and is classified into physical adsorption and chemical adsorption based on the cause.
  • physical adsorption is used. If the adsorption temperature is constant, the number of nitrogen gas molecules adsorbed on the CNT increases as the pressure increases.
  • the horizontal axis is the relative pressure (ratio of adsorption equilibrium pressure P and saturated vapor pressure P0), and the vertical axis is the nitrogen gas adsorption amount, which is called the “isothermal line”.
  • the case of measurement is called “adsorption isotherm”, and the case of measuring the nitrogen gas adsorption amount while reducing the pressure is called “desorption isotherm”.
  • the t plot is obtained by converting the relative pressure to the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm measured by the nitrogen gas adsorption method. That is, the average thickness t of the nitrogen gas adsorption layer is plotted against the relative pressure P / P0, and the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from the known standard isotherm to perform the above conversion. To obtain a CNT t-plot (t-plot method by de Boer et al.).
  • a typical t plot of a sample (not limited to CNT) having pores on the surface is shown in FIG.
  • the growth of the nitrogen gas adsorption layer is classified into the following stages (1) to (3). That is, (1) Monomolecular adsorption layer formation process with nitrogen molecules on the entire surface (2) Polymolecular adsorption layer formation and capillary condensation filling process inside the pores (3) Apparent filling of the pores with nitrogen It is possible to observe the process of forming a multi-molecular adsorption layer on a non-porous surface. The slope of the t plot changes due to the processes (1) to (3).
  • FIG. 3 is a t plot of the CNT of the present invention. As shown therein, in the region where the average thickness t of the nitrogen gas adsorption layer is small, the plot is located on a straight line passing through the origin, whereas t When becomes larger, the plot becomes a position shifted downward from the straight line, and shows an upwardly convex shape.
  • the shape of the t plot shows that the ratio of the internal specific surface area to the total specific surface area of the CNT is large, and a large number of openings are formed on the side wall of the CNT.
  • CNTs having such a t-plot shape could be obtained conventionally by performing cleavage treatment such as oxidation after synthesis.
  • the CNT of the present invention is characterized in that it exhibits a t-plot shape as described above in a state where no opening treatment is performed.
  • the CNT of the present invention may include a part of the CNT having an opening at the tip, which is generated at the time of manufacture.
  • the CNT of the present invention has a bending point in the range of 0.2 ⁇ t (nm) ⁇ 1.5 in the t plot.
  • the bending point is preferably in the range of 0.45 ⁇ t (nm) ⁇ 1.5, and more preferably in the range of 0.55 ⁇ t (nm) ⁇ 1.0.
  • the pore diameter of the opening on the side wall of the CNT is appropriate, accessibility to the inside of the CNT such as a substance is increased, and the retention of the substance and energy is improved. It is.
  • the intersection of the approximate straight line A at the stage (1) and the approximate straight line B at the stage (3) is defined as a “bend point position”.
  • the CNT of the present invention has a large ratio of the internal specific surface area to the total specific surface area, but the ratio of the total specific surface area S1 and the internal specific surface area S2 (S2 / S1) is 0.05 ⁇ S2 / It is preferable to satisfy S1 ⁇ 0.30.
  • S2 / S1 was about 0.04 at the maximum.
  • S2 / S1 can be set to 0.05 or more in a state where no opening treatment is performed.
  • 0.30 is appropriate as an upper limit when production efficiency is considered.
  • S1 is preferably 600 to 1800 m 2 / g, and preferably 800 to 1500 m. More preferably, it is 2 / g. If S1 is 600 m ⁇ 2 > / g or more, it is excellent in the holding
  • S2 is 30 m ⁇ 2 > / g or more, it is excellent in the holding
  • an appropriate upper limit of S2 is 540 m 2 / g.
  • the total specific surface area S1 and the internal specific surface area S2 of the CNT of the present invention can be obtained from the t plot.
  • the processes (1) and (3) are almost straight lines.
  • the total specific surface area S1 is obtained from the slope of the straight line in (1), and (3).
  • the external specific surface area S3 can be obtained from the slope of the straight line.
  • the internal specific surface area S2 can be calculated by subtracting the external specific surface area S3 from the total specific surface area S1.
  • the average outer diameter of the CNT of the present invention is preferably 2 to 5 nm.
  • An average outer diameter of 2 to 5 nm is preferable because the total specific surface area S1 can be increased.
  • the “average outer diameter of CNT” is defined as an arithmetic average value obtained by measuring the outer diameter of 50 arbitrary CNTs using a transmission electron microscope.
  • the outer diameter of the CNT is preferably distributed within a range of 1 to 10 nm.
  • the ratio of the G band peak intensity to the D band peak intensity in the Raman spectrum is preferably 1 or more, preferably 50 or less, and preferably 10 or less. Is more preferable. By being 10 or less, it has shown that there are many amorphous parts originating in opening being formed in a side wall.
  • the G / D ratio is an index generally used for evaluating the quality of CNTs.
  • the G band is a vibration mode derived from a hexagonal lattice structure of graphite, which is a cylindrical surface of CNT
  • the D band is a vibration mode derived from an amorphous part.
  • the CNT of the present invention is usually obtained as an aligned CNT aggregate at the time of production, but the height (length) at the time of production is preferably 100 to 5000 ⁇ m.
  • the carbon purity of the CNT of the present invention is preferably 98% by mass or more, more preferably 99% by mass or more, and still more preferably 99.9% by mass or more, without performing purification treatment.
  • the purification treatment is not performed, the carbon purity immediately after the growth becomes the purity of the final product. If desired, a purification treatment may be performed. Carbon purity can be determined by elemental analysis using fluorescent X-rays.
  • the CNT of the present invention can be obtained by appropriately setting various conditions in the CVD method. Particularly important conditions are (1) growing CNTs on a substrate having an area of 400 cm 2 or more, (2) forming a catalyst on the substrate by a wet process, (3) formation process, growth process. And using a continuous CNT manufacturing apparatus in which units for performing cooling processes are connected is required. Details will be described below.
  • the base material used for the catalyst base material is, for example, a flat plate-like member, and is preferably one that can maintain the shape even at a high temperature of 500 ° C. or higher.
  • metals such as iron, nickel, chromium, molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, germanium, and antimony And alloys and oxides containing these metals, or non-metals such as silicon, quartz, glass, mica, graphite, and diamond, and ceramics.
  • the metal material is preferable because it is low in cost and easy to process as compared with silicon and ceramic, and in particular, Fe-Cr (iron-chromium) alloy, Fe-Ni (iron-nickel) alloy, Fe-Cr-Ni ( An iron-chromium-nickel alloy or the like is preferred.
  • the thickness of the substrate is not particularly limited, and for example, a thin film having a thickness of about several ⁇ m to a thickness of about several cm can be used. Preferably, it is 0.05 mm or more and 3 mm or less.
  • the shape of the substrate is not particularly limited, but can be rectangular or square. In the case of a square, the length of one piece is 20 cm or more, preferably 50 cm or more.
  • a catalyst layer is formed on the base material (when the carburization prevention layer is provided on the base material, on the carburization prevention layer).
  • the catalyst may be any as long as it can produce CNTs, and examples thereof include iron, nickel, cobalt, molybdenum, and chlorides and alloys thereof. These may be combined with aluminum, alumina, titania, titanium nitride, or silicon oxide, or may be layered.
  • an iron-molybdenum thin film, an alumina-iron thin film, an alumina-cobalt thin film, an alumina-iron-molybdenum thin film, an aluminum-iron thin film, an aluminum-iron-molybdenum thin film, and the like can be exemplified.
  • the amount of the catalyst may be within a range in which CNT can be produced, for example.
  • the film thickness is preferably 0.1 nm or more and 100 nm or less, and more preferably 0.5 nm or more and 5 nm or less. 0.8 nm or more and 2 nm or less is particularly preferable.
  • the wet process includes a step of applying a coating agent obtained by dissolving a metal organic compound and / or metal salt containing an element serving as a catalyst in an organic solvent, and then a step of heating. You may add the stabilizer for suppressing the condensation polymerization reaction of a metal organic compound and a metal salt to a coating agent.
  • any method such as spray coating, brush coating, spin coating, dip coating or the like may be used, but dip coating is preferred from the viewpoint of productivity and film thickness control.
  • the heating temperature is preferably about 50 ° C. or higher and 400 ° C. or lower, and more preferably 350 ° C. or lower.
  • the heating time is preferably 5 minutes or more and 20 minutes or less, and more preferably 15 minutes or less.
  • the catalyst layer is baked and the film thickness is reduced.
  • the catalyst fine particles in the catalyst layer become easy to move, the CNT diameter changes and the frequency of bending increase, the number of defects (pores) increases, and a CNT having a large internal specific surface area is obtained. Therefore, it is preferable to suppress the decrease in the thickness of the catalyst layer before the growth process as much as possible.
  • the iron thin film is formed after the alumina film is formed.
  • Examples of the metal organic compound for forming the alumina thin film include aluminum trimethoxide, aluminum triethoxide, aluminum tri-n-propoxide, aluminum tri-i-propoxide, aluminum tri-n-butoxide, aluminum trimethoxide. And aluminum alkoxides such as -sec-butoxide and aluminum tri-tert-butoxide.
  • Other examples of the metal organic compound containing aluminum include a complex such as tris (acetylacetonato) aluminum (III).
  • Examples of the metal salt for forming the alumina thin film include aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum bromide, aluminum iodide, aluminum lactate, basic aluminum chloride, basic aluminum nitrate and the like. Among these, it is preferable to use aluminum alkoxide. These can be used alone or as a mixture.
  • Examples of the metal organic compound for forming the iron thin film include iron pentacarbonyl, ferrocene, acetylacetone iron (II), acetylacetone iron (III), trifluoroacetylacetone iron (II), trifluoroacetylacetone iron (III) and the like. Can be mentioned.
  • Examples of the metal salt for forming the iron thin film include iron sulfate, iron nitrate, iron phosphate, iron chloride, iron bromide and other inorganic acid iron, iron acetate, iron oxalate, iron citrate, iron lactate, etc. And organic acid iron. Among these, it is preferable to use organic acid iron. These can be used alone or as a mixture.
  • the stabilizer is preferably at least one selected from the group consisting of ⁇ -diketones and alkanolamines.
  • ⁇ -diketones include acetylacetone, methyl acetoacetate, ethyl acetoacetate, benzoylacetone, dibenzoylmethane, benzoyltrifluoroacetone, furoylacetone, and trifluoroacetylacetone, and acetylacetone and ethyl acetoacetate are particularly preferable. .
  • alkanolamines include monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N, N-dimethylaminoethanol, diisopropanolamine, and triisopropanolamine.
  • a secondary alkanolamine is preferred.
  • organic solvent various organic solvents such as alcohols, glycols, ketones, ethers, esters, hydrocarbons and the like can be used, but alcohols or glycols are used because of the good solubility of metal organic compounds and metal salts. Is preferred. These organic solvents may be used alone or in combination of two or more.
  • alcohol methanol, ethanol, isopropyl alcohol, and the like are preferable in terms of handling properties and storage stability.
  • the formation step is a step of heating at least one of the catalyst and the reducing gas while setting the environment surrounding the catalyst as the reducing gas environment.
  • the formation step at least one of the effects of reducing the catalyst, promoting the atomization of the catalyst as a state suitable for the growth of CNT, and improving the activity of the catalyst appears.
  • the catalyst is an alumina-iron thin film
  • the iron catalyst is reduced into fine particles, and a large number of nanometer-sized iron fine particles are formed on the alumina layer.
  • the catalyst is in a state suitable for the production of the aligned CNT aggregate. Even if this step is omitted, CNTs can be produced.
  • the production amount and quality of the aligned CNT aggregate can be dramatically improved.
  • a gas capable of producing CNTs may be used.
  • hydrogen gas, ammonia, water vapor, and a mixed gas thereof can be applied.
  • a mixed gas obtained by mixing hydrogen gas with an inert gas such as helium gas, argon gas, or nitrogen gas may be used.
  • the reducing gas may be used in the formation process or may be used as appropriate in the growth process.
  • the temperature of the catalyst and / or reducing gas in the formation step is preferably 400 ° C. or higher and 1100 ° C. or lower.
  • the time for the formation step is preferably 3 minutes to 20 minutes, and more preferably 3 minutes to 10 minutes. Thereby, it can suppress that baking of a catalyst layer advances during a formation process, and a film thickness reduces.
  • the growth step is a step of growing an aligned CNT aggregate on the catalyst by setting the surrounding environment of the catalyst as a raw material gas environment and heating at least one of the catalyst and the raw material gas. From the viewpoint of growing CNTs with a uniform density, it is preferable to heat at least the raw material gas.
  • the heating temperature is preferably 400 ° C to 1100 ° C.
  • a raw material gas, an inert gas, and optionally a reducing gas and / or a catalyst activation material are introduced into a CNT growth furnace containing a catalyst base material.
  • a gaseous substance containing a carbon source at the growth temperature is used.
  • hydrocarbons such as methane, ethane, ethylene, propane, butane, pentane, hexane, heptane, propylene, and acetylene are preferable.
  • a lower alcohol such as methanol and ethanol
  • an oxygen-containing compound having a low carbon number such as acetone and carbon monoxide may be used. Mixtures of these can also be used.
  • the source gas may be diluted with an inert gas.
  • the inert gas may be any gas that is inert at the temperature at which the CNT grows and does not react with the growing CNT, and preferably does not reduce the activity of the catalyst.
  • noble gases such as helium, argon, neon and krypton; nitrogen; hydrogen; and a mixed gas thereof can be exemplified.
  • a catalyst activator may be added.
  • the catalyst activator used here is generally a substance containing oxygen, and is preferably a substance that does not significantly damage the CNT at the growth temperature.
  • low carbon number oxygen-containing compounds such as water, oxygen, ozone, acid gas, nitric oxide, carbon monoxide, and carbon dioxide; alcohols such as ethanol and methanol; ethers such as tetrahydrofuran; ketones such as acetone Aldehydes; esters; as well as mixtures thereof are useful.
  • water, oxygen, carbon dioxide, carbon monoxide, and ethers are preferable, and water is particularly preferable.
  • the volume concentration of the catalyst activator is not particularly limited, but a trace amount is preferable.
  • a trace amount is preferable.
  • it is 10 to 10,000 ppm, preferably 50 to 1000 ppm in the gas introduced into the furnace.
  • the pressure in the reactor and the processing time in the growth process may be appropriately set in consideration of other conditions.
  • the pressure may be 10 2 to 10 7 Pa and the processing time may be about 1 to 60 minutes. it can.
  • the cooling step is a step of cooling the aligned CNT aggregate, the catalyst, and the base material under a cooling gas after the growth step. Since the aligned CNT aggregate, the catalyst, and the substrate after the growth step are in a high temperature state, they may be oxidized when placed in an oxygen-existing environment. In order to prevent this, the aligned CNT aggregate, the catalyst, and the substrate are cooled to, for example, 400 ° C. or lower, more preferably 200 ° C. or lower, in a cooling gas environment. As the cooling gas, an inert gas is preferable, and nitrogen is particularly preferable from the viewpoint of safety and cost.
  • peeling process As a method of peeling single-walled CNTs from a substrate, there are methods of physically, chemically or mechanically peeling from the substrate, for example, a method of peeling using an electric field, a magnetic field, centrifugal force, or surface tension; For example, a method of directly peeling from a substrate; a method of peeling from a substrate using pressure or heat, and the like can be used.
  • a simple peeling method there is a method of picking and peeling directly from a substrate with tweezers. More preferably, a thin blade such as a cutter blade can be used to cut off the substrate.
  • a vacuum pump and a vacuum cleaner to suck and peel off the substrate.
  • the catalyst remains on the base material, and it becomes possible to newly grow vertically aligned single-walled CNTs using the catalyst.
  • a CNT manufacturing apparatus 100 for manufacturing the CNT of the present invention is schematically shown in FIG. As shown in FIG. 2, the manufacturing apparatus 100 includes an inlet purge unit 1, a formation unit 2, a growth unit 3, a cooling unit 4, an outlet purge unit 5, a transport unit 6, connection units 7, 8 and 9, and gas mixing prevention means. 11, 12, 13.
  • the inlet purge unit 1 is a set of devices for preventing outside air from entering the furnace from the inlet of the catalyst base 10. It has a function of replacing the surrounding environment of the catalyst substrate 10 conveyed into the manufacturing apparatus 100 with an inert purge gas such as nitrogen. Specifically, it has a chamber for holding the purge gas, an injection unit for injecting the purge gas, and the like.
  • the formation unit 2 is a set of devices for realizing the formation process. Specifically, it includes a formation furnace 2A for holding the reducing gas, a reducing gas injection unit 2B for injecting the reducing gas, and a heater 2C for heating at least one of the catalyst and the reducing gas.
  • the growth unit 3 is a set of apparatuses for realizing a growth process. Specifically, a growth furnace 3A, a raw material gas injection unit 3B for injecting a raw material gas onto the catalyst base 10, and a heater 3C for heating at least one of the catalyst and the raw material gas are included. An exhaust port 3 ⁇ / b> D is provided at the top of the growth unit 3.
  • the cooling unit 4 is a set of devices that realizes a cooling process for cooling the catalyst base 10 on which the aligned CNT aggregate has grown. Specifically, the cooling furnace 4A for holding the cooling gas, in the case of the water-cooled type, the water-cooled cooling pipe 4C disposed so as to surround the space in the cooling furnace, and in the case of the air-cooled type, the cooling gas is injected into the cooling furnace. It has the cooling gas injection part 4B.
  • the outlet purge unit 5 is a set of devices for preventing outside air from being mixed into the furnace from the outlet of the catalyst base 10. It has a function to make the surrounding environment of the catalyst substrate 10 an inert purge gas environment such as nitrogen. Specifically, it has a chamber for holding the purge gas, an injection unit for injecting the purge gas, and the like.
  • the transport unit 6 is a set of apparatuses for transporting the catalyst base 10 into the furnace of the manufacturing apparatus. Specifically, a mesh belt 6A in a belt conveyor system, a belt driving unit 6B using an electric motor with a speed reducer, and the like are included.
  • the substrate conveyance speed by the mesh belt 6A is preferably 300 mm / min or more. By being 300 mm / min or more, it is possible to suppress the substrate from being rapidly heated in the formation process, and the catalyst layer from being baked during the formation process, thereby reducing the film thickness.
  • connection portions 7, 8, and 9 are a set of devices that spatially connect the furnace space of each unit. Specifically, a furnace or a chamber that can block the ambient environment of the catalyst base 10 and the outside air and allow the catalyst base 10 to pass from unit to unit can be used.
  • the gas mixing prevention means 11, 12, 13 are a set of devices for preventing gas from being mixed with each other between adjacent furnaces (formation furnace 2A, growth furnace 3A, cooling furnace 4A) in the manufacturing apparatus 100. Yes, installed in the connecting parts 7, 8, 9.
  • the gas mixture preventing means 11, 12, and 13 are mainly injected by seal gas injection portions 11B, 12B, and 13B for injecting a seal gas such as nitrogen along the opening surfaces of the inlet and outlet of the catalyst base 10 in each furnace. Exhaust portions 11A, 12A, and 13A for exhausting the sealed gas to the outside are provided.
  • the catalyst base 10 placed on the mesh belt 6A is transported from the apparatus inlet to the furnace of the inlet purge unit 1, and after being treated in each furnace, from the outlet purge unit 5 through the apparatus outlet. It is transported outside the device.
  • the present inventors consider the reason why the CNT of the present invention can be obtained by the above production method as follows. That is, it is presumed that the operation of the present invention relates to the gas amount Vs supplied during the formation process with respect to the amount of the substrate present in the formation unit.
  • the operation of the present invention relates to the gas amount Vs supplied during the formation process with respect to the amount of the substrate present in the formation unit.
  • Vs 1 sLm / cm 2 .
  • Total specific surface area S1, internal specific surface area S2> The nitrogen gas adsorption isotherm of the CNT that was not subjected to the opening treatment after synthesis was measured by the method described above, and a t plot was obtained. Based on this t plot, the total specific surface area S1 and the internal specific surface area S2 were calculated by the method described above.
  • Arithmetic mean roughness Ra was measured with a laser microscope (VK-9700 manufactured by KEYENCE) at an objective magnification of 50 times.
  • Example 1 (Base material) A flat plate of Fe—Cr alloy SUS430 (manufactured by JFE Steel Co., Ltd., Cr: 18% by mass) having a length of 500 mm ⁇ width of 500 mm and a thickness of 0.6 mm was prepared. When the surface roughness at a plurality of locations was measured using a laser microscope, the arithmetic average roughness Ra was approximately 0.063 ⁇ m.
  • a catalyst was formed on the above substrate by the following method. First, 1.9 g of aluminum tri-sec-butoxide was dissolved in 100 mL (78 g) of 2-propanol, and 0.9 g of triisopropanolamine was added and dissolved as a stabilizer to prepare a coating agent for forming an alumina film.
  • the above-mentioned coating agent for forming an alumina film was applied onto the substrate in an environment of room temperature of 25 ° C. and relative humidity of 50%. As the coating conditions, the substrate was immersed, held for 20 seconds, pulled up at a lifting speed of 10 mm / second, and then air-dried for 5 minutes. Next, it heated for 15 minutes in 300 degreeC air environment, Then, it cooled to room temperature. Thereby, an alumina film having a film thickness of 40 nm was formed on the substrate.
  • an iron film coating agent was applied on a substrate on which an alumina film was formed in an environment at room temperature of 25 ° C. and a relative humidity of 50%. As the coating conditions, the substrate was immersed, held for 20 seconds, pulled up at a lifting speed of 3 mm / second, and then air-dried for 5 minutes. Next, in an air environment at 100 ° C., the mixture was heated for 15 minutes and then cooled to room temperature. Thereby, a catalyst generation film having a film thickness of 3 nm was formed.
  • CNT synthesis An aligned CNT aggregate was manufactured by continuously performing a process including a formation process and a growth process using a continuous manufacturing apparatus as shown in FIG.
  • the catalyst base described above was placed on the mesh belt of the production apparatus, and the transport speed of the mesh belt was kept constant (360 mm / min) to produce an aligned CNT aggregate on the base material.
  • the conditions of each part of the manufacturing apparatus were set as follows.
  • FIG. 3 shows a t plot of CNTs obtained by peeling the obtained aligned CNT aggregate from the substrate.
  • Table 3 shows the total specific surface area S1, the internal specific surface area S2, S2 / S1, the inflection point t, and the average outer diameter.
  • the TEM image of CNT peeled from the base material is shown in FIG. In FIG. 4, many locations where the side walls of the CNT are opened were observed. Other characteristics were a G / D ratio of 3.0, an outer diameter distribution of 1 to 9 nm, and a carbon purity of 99.9%.
  • Example 2 The aligned CNT aggregate obtained in Example 1 was peeled from the substrate using a resin blade. Next, after spraying sodium carbonate powder (manufactured by Wako Pure Chemical Industries, Ltd.) on the surface of the base material and wiping with a non-woven cloth soaked in water, the base material surface is wiped off with a sponge soaked in water, Washed with water. Catalyst formation and CNT production were carried out in the same manner as in Example 1 except that the cleaning substrate thus obtained was used.
  • sodium carbonate powder manufactured by Wako Pure Chemical Industries, Ltd.
  • Comparative Example 1 As a base material, a flat plate of Fe-Cr alloy SUS430 (manufactured by JFE Steel Corporation, Cr 18%) having a length of 40 mm x a width of 40 mm and a thickness of 0.6 mm was used. When the surface roughness was measured using a laser microscope, the arithmetic average roughness Ra ⁇ 0.063 ⁇ m.
  • a silicon dioxide film (carburization prevention layer) having a thickness of 100 nm was formed on both the front and back surfaces of the substrate using a sputtering apparatus.
  • an aluminum oxide film having a thickness of 10 nm and an iron film having a thickness of 1.0 nm were formed on the surface only by using a sputtering apparatus.
  • the aligned CNT aggregate was manufactured by sequentially performing a formation process and a growth process with a batch type manufacturing apparatus 200 as shown in FIG.
  • the apparatus 200 includes a reaction furnace 202 made of quartz, a heater 204 made of a resistance heating coil provided so as to surround the reaction furnace 202, and one end of the reaction furnace 202 to supply a reducing gas and a raw material gas. It includes a gas supply port 206 connected, an exhaust port 208 connected to the other end of the reaction furnace 202, and a holder 210 made of quartz for fixing the substrate. Further, although not shown, a control device including a flow rate control valve and a pressure control valve is provided at an appropriate place in order to control the flow rates of the reducing gas and the raw material gas.
  • Table 2 The manufacturing conditions are shown in Table 2.
  • FIG. 6 shows a t plot of CNTs obtained by peeling the obtained aligned CNT aggregate from the substrate.
  • the t plot was a straight line passing through the origin.
  • the evaluation results of the obtained CNT are summarized in Table 3.
  • the TEM image of CNT peeled from the base material is shown in FIG. In FIG. 7, a state in which the side wall of the CNT is open was not seen.
  • Other characteristics were a G / D ratio of 4.5 and a carbon purity of 99.9%.
  • the units that perform the formation process, the growth process, and the cooling process were connected by the catalyst base material in which the catalyst was formed by the wet process on the base material having an area of 400 cm 2 or more.
  • the CNT of Comparative Example 1 uses a batch-type CNT manufacturing apparatus with a catalyst base formed by a dry process on a base having an area of less than 400 cm 2.
  • the CNTs of Examples 1 and 2 have a larger ratio of the internal specific surface area S2 to the total specific surface area S1 than the CNT of Comparative Example 1, and the tip remains unopened. It can be seen that it has a large number of openings on the side walls.
  • the inside of the carbon nanotube of the present invention can be used effectively without being subjected to the opening treatment. Therefore, the carbon nanotube of the present invention is excellent in substance and energy retention, energy transmission, and energy dispersibility.

Abstract

 本発明の目的は、開口処理を行わずとも合成したままで内部を有効に活用できるカーボンナノチューブを提供することである。本発明のカーボンナノチューブは、開口処理されておらず、吸着等温線から得られるtプロットが上に凸な形状を示すことを特徴とする。

Description

カーボンナノチューブ
 本発明は、カーボンナノチューブに関する。
 カーボンナノチューブ(以下、「CNT」とも称する。)は炭素原子のみからなり、直径が0.4~50nm、長さがおよそ1~数100μmの一次元性のナノ材料である。その化学構造はグラファイト層を丸めてつなぎ合わせたもので表され、層の数が1枚だけのものを単層カーボンナノチューブという。
 単層CNTは、比較的大きい比表面積を有することから、物質やエネルギーの貯蔵体、分離膜、電極材料として幅広い応用が期待されている。特許文献1には、先端が開口しているCNTが記載されている。このようなCNTは、先端が開口していないCNTに比べて、比表面積が大きい。
 また、特許文献2には、酸化によって単層CNTの先端や側壁に穴をあける開口処理を行うことによって、単層CNTの比表面積を増大させる技術が記載されている。
特開2007− 84431号公報 特開2011−207758号公報
 CNTの内部には原子・分子レベルの制限された空間が存在しており、当該空間には、物質を貯蔵等することができる。CNTが、物質やエネルギーの保持性、エネルギー伝達性、およびエネルギー分散性といった諸特性を発揮する上で比表面積が大きいことは重要な要素であるが、CNTの潜在的特性を充分に引き出す観点からは、比表面積が大きいことに加え、CNT内部の活用可能性が高いことが望まれる。
 CNT内部を活用可能にする方法としては、CNTの先端を開口させる方法と、CNTの側壁を開口させる方法とが挙げられる。しかしながら、特許文献1のように、CNTの先端が開口しているだけでは、CNT内部を有効に活用するには不充分であった。一方、特許文献2の技術では、側壁に細孔を形成することによって、上記物質やエネルギーの保持性等を改善している。側壁の開口は、先端の開口と異なり、CNTにランダムに多数存在させることができるため、物質等のCNT内部へのアクセシビリティーを高めることになり、CNT内部の活用可能性を向上させるのに好ましい。しかしながら、特許文献2の技術では、合成したCNT配向集合体に対して酸化処理等の開口処理が必要であり、多くの手間がかかる。よって、酸化処理等の開口処理が不要で、合成したままの状態で内部を有効に活用できるCNTが求められている。
 そこで本発明は、上記課題に鑑み、開口処理を行わずとも合成したままで内部を有効に活用できるカーボンナノチューブを提供することを目的とする。
 CNTの開口の増加は、内部比表面積の増加によって捉えることができる。上記目的を達成すべく本発明者らが鋭意検討したところ、原料ガスを触媒に供給し、化学気相成長法(以下、「CVD法」とも称する。)によってCNTを成長させる方法において、特定の条件を適用することによって、成長後に開口処理を行わずとも、全比表面積に対する内部比表面積の割合が大きく、先端は未開口のまま、側壁の開口を多数有するCNTが得られることが見出された。具体的には、面積が400cm以上の基材にウェットプロセスで触媒を形成した触媒基材上に、フォーメーション工程、成長工程、および冷却工程をそれぞれ行うユニットを連結した連続式のCNT製造装置を用いて、CNTを成長させることが重要であった。
 上記知見に基づき完成した本発明の要旨構成は以下のとおりである。
 本発明のカーボンナノチューブは、開口処理されておらず、吸着等温線から得られるtプロットが上に凸な形状を示すことを大きな特徴の1つとする。
 本発明において、前記tプロットの屈曲点が0.2≦t(nm)≦1.5の範囲にあることが好ましい。
 本発明において、前記tプロットから得られる全比表面積S1および内部比表面積S2が、0.05≦S2/S1≦0.30を満たすことが好ましい。
 本発明において、平均外径が2~5nmであることが好ましい。
 本発明のカーボンナノチューブは、開口処理を行わずとも合成したままで内部を有効に活用できる。
表面に細孔を有する試料のtプロットの一例を示すグラフである。 本発明に適用可能なCNT製造装置の構成の一例を示す模式図である。 実施例1のtプロットを示すグラフである。 実施例1のCNTのTEM画像である。 比較例に用いたCNT製造装置の構成を示す模式図である。 比較例のtプロットを示すグラフである。 比較例のCNTのTEM画像である。
 以下、図面を参照しつつ本発明のCNTの実施形態を説明する。本発明のCNTは、触媒層を表面に有する基材(以下、「触媒基材」という。)に原料ガスを供給し、CVD法によって触媒層上にCNTを成長させる方法により製造することができる。この方法では、触媒層上には多数のCNTが触媒基材に略垂直な方向に配向して集合体を形成する。本明細書において、これを「CNT配向集合体」という。そして、このCNT配向集合体をまとめて触媒基材から剥離して得られた物体を、本明細書において「CNT」と称する。
 本発明のCNTは、開口処理されておらず、吸着等温線から得られるtプロットが上に凸な形状を示すことを大きな特徴の1つとする。当該tプロットは、窒素ガス吸着法により測定されたデータに基づいて得られる。
 吸着とは、ガス分子が気相から固体表面に取り去られる現象であり、その原因から、物理吸着と化学吸着に分類される。窒素ガス吸着法では、物理吸着を利用する。吸着温度が一定であれば、CNTに吸着する窒素ガス分子の数は、圧力が大きいほど多くなる。横軸に相対圧(吸着平衡状態の圧力Pと飽和蒸気圧P0の比)、縦軸に窒素ガス吸着量をプロットしたものを「等温線」といい、圧力を増加させながら窒素ガス吸着量を測定した場合を「吸着等温線」、圧力を減少させながら窒素ガス吸着量を測定した場合を「脱着等温線」という。
 前記tプロットは、窒素ガス吸着法により測定された吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得られる。すなわち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、CNTのtプロットが得られる(de Boerらによるt−プロット法)。
 表面に細孔を有する試料(CNTに限らない。)の典型的なtプロットを図1に示す。この場合、窒素ガス吸着層の成長は、次の(1)~(3)の段階に分類される。すなわち、
(1)全表面への窒素分子による単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程を観測することができる。この(1)~(3)の過程によってtプロットの傾きに変化が生じる。
 図3は、本発明のCNTのtプロットであるが、そこに示されるように、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となり、上に凸な形状を示す。かかるtプロットの形状は、CNTの全比表面積に対する内部比表面積の割合が大きく、CNTの側壁に多数の開口が形成されていることを示している。このようなtプロットの形状を示すCNTは、合成後に酸化処理等の開囗処理を行えば従来も得ることができた。しかし、本発明のCNTは、開口処理を行っていない状態で、上記のようなtプロット形状を示す点が特徴である。なお、本発明のCNTには、その製造時に生じた、先端が開口したCNTが一部含まれていてもよい。
 本発明のCNTは、tプロットにおいて、その屈曲点が、通常、0.2≦t(nm)≦1.5の範囲にある。当該屈曲点は、0.45≦t(nm)≦1.5の範囲にあることが好ましく、0.55≦t(nm)≦1.0の範囲にあることがより好ましい。tプロットの屈曲点の位置が上記範囲であると、CNTの側壁の開口の孔径が適度であり、物質等のCNT内部へのアクセシビリティーが高まり、物質やエネルギーの保持性等が向上するので好適である。なお、図1を参照して、t−プロットにおいて、(1)の段階の近似直線Aと、(3)の段階の近似直線Bとの交点を「屈曲点の位置」とする。
 本発明のCNTは、前記の通り、全比表面積に対する内部比表面積の割合が大きいものであるが、全比表面積S1および内部比表面積S2の比(S2/S1)としては0.05≦S2/S1≦0.30を満たすのが好ましい。開口処理をしていない従来のCNTの場合、S2/S1は最大で0.04程度であった。しかし、本発明のCNTでは、開口処理をしていない状態で、S2/S1を0.05以上にすることができる。また、S2/S1は大きいほど好ましいが、生産効率を考慮すると上限としては0.30が適度である。
 本発明のCNTの全比表面積S1および内部比表面積S2は、上記の関係を充足すれば特に限定されないが、個別には、S1は、600~1800m/gであることが好ましく、800~1500m/gであることが更に好ましい。S1が600m/g以上であれば、物質やエネルギーの保持性等に優れ好適である。また、生産効率を考慮するとS1の上限としては1800m/gが適度である。一方、S2は、30~540m/gであることが好ましい。S2が30m/g以上であれば、物質やエネルギーの保持性等に優れ好適である。また、生産効率を考慮するとS2の上限としては540m/gが適度である。
 本発明のCNTの全比表面積S1および内部比表面積S2は、そのtプロットから求めることができる。上述の図1に示すtプロットにより説明すると、(1)及び(3)の過程ではそれぞれほぼ直線であるが、まず、(1)での直線の傾きから全比表面積S1を、(3)での直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
 上記した、本発明のCNTの、吸着等温線の測定、tプロットの作成、およびtプロット解析に基づく全比表面積S1と内部比表面積S2の算出は、例えば、市販の測定装置である「BELSORP(登録商標)−mini」〔日本ベル(株)製〕を用いて行うことができる。
 本発明のCNTの平均外径は2~5nmであることが好ましい。平均外径が2~5nmであれば、全比表面積S1を大きくできるので好適である。なお、本発明において、「CNTの平均外径」は、透過型電子顕微鏡を用いて任意のCNT50本の外径を測定し、それらの算術平均値と定義する。また、CNTの外径は1~10nmの範囲内に分布することが好ましい。
 また、本発明のCNTは、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が1以上であることが好ましく、50以下であることが好ましく、10以下であることがより好ましい。10以下であることにより、側壁に開口が形成されることに由来する非晶箇所が多く存在していることを示している。G/D比とはCNTの品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定されるCNTのラマンスペクトルには、Gバンド(1600cm−1付近)とDバンド(1350cm−1付近)と呼ばれる振動モードが観測される。GバンドはCNTの円筒面であるグラファイトの六方格子構造由来の振動モードであり、Dバンドは非晶箇所に由来する振動モードである。GバンドとDバンドのピーク強度比(G/D比)が高いものほど、結晶性の高いCNTと評価できる。
 本発明のCNTは、通常、その製造時にCNT配向集合体として得られるが、製造時における高さ(長さ)が100~5000μmであることが好ましい。
 本発明のCNTの炭素純度は、精製処理を行わなくても、好ましくは98質量%以上、より好ましくは99質量%以上、さらに好ましくは99.9質量%以上である。精製処理を行わない場合には、成長直後での炭素純度が最終品の純度となる。所望により、精製処理を行ってもよい。なお、炭素純度は、蛍光X線を用いた元素分析により求めることができる。
 次に、本発明のCNTの製造方法を説明する。本発明のCNTは、CVD法において種々の条件を適宜設定することにより得ることができる。特に重要な条件として、(1)面積が400cm以上の基材上にCNTを成長させること、(2)基材上に、ウェットプロセスで触媒を形成すること、(3)フォーメーション工程、成長工程、および冷却工程をそれぞれ行うユニットを連結した連続式のCNT製造装置を用いること、の3点が少なくとも必要である。以下、詳細に説明する。
 (基材)
 触媒基材に用いる基材は、例えば平板状の部材であり、500℃以上の高温でも形状を維持できるものが好ましい。具体的には、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ゲルマニウム、及びアンチモンなどの金属、並びにこれらの金属を含む合金及び酸化物、又はシリコン、石英、ガラス、マイカ、グラファイト、及びダイヤモンドなどの非金属、並びにセラミックなどが挙げられる。金属材料はシリコン及びセラミックと比較して、低コスト且つ加工が容易であるから好ましく、特に、Fe−Cr(鉄−クロム)合金、Fe−Ni(鉄−ニッケル)合金、Fe−Cr−Ni(鉄−クロム−ニッケル)合金などは好適である。
 基材の厚さに特に制限はなく、例えば数μm程度の薄膜から数cm程度までのものを用いることができる。好ましくは、0.05mm以上3mm以下である。
 本発明のCNTを得る観点から、基材の面積は400cm以上とすること、好ましくは2500cm以上とすることが重要である。基材の形状は特に限定されないが、長方形または正方形とすることができる。正方形の場合は、一片の長さは20cm以上、好ましくは50cm以上とする。
 (触媒)
 触媒基材において、基材上(基材上に浸炭防止層を備える場合には当該浸炭防止層の上)には、触媒層が形成されている。触媒としては、CNTの製造が可能であればよく、例えば、鉄、ニッケル、コバルト、モリブデン、並びに、これらの塩化物及び合金が挙げられる。これらが、さらにアルミニウム、アルミナ、チタニア、窒化チタン、酸化シリコンと複合化、あるいは層状になっていてもよい。例えば、鉄−モリブデン薄膜、アルミナ−鉄薄膜、アルミナ−コバルト薄膜、及びアルミナ−鉄−モリブデン薄膜、アルミニウム−鉄薄膜、アルミニウム−鉄−モリブデン薄膜などを例示することができる。触媒の存在量としては、例えば、CNTの製造が可能な範囲であればよく、鉄を用いる場合、製膜厚さは、0.1nm以上100nm以下が好ましく、0.5nm以上5nm以下がさらに好ましく、0.8nm以上2nm以下が特に好ましい。
 本発明のCNTを得る観点から、基材表面への触媒層の形成はウェットプロセスによることが重要である。ウェットプロセスは、触媒となる元素を含んだ金属有機化合物および/または金属塩を有機溶剤に溶解したコーティング剤を基材上へ塗布する工程と、その後加熱する工程から成る。コーティング剤には金属有機化合物及び金属塩の縮合重合反応を抑制するための安定剤を添加してもよい。
 塗布工程としては、スプレー、ハケ塗り等により塗布する方法、スピンコーティング、ディップコーティング等、いずれの方法を用いてもよいが、生産性および膜厚制御の観点からディップコーティングが好ましい。
 塗布工程の後に加熱工程を行なうことが好ましい。加熱することで金属有機化合物及び金属塩の加水分解及び縮重合反応が開始され、金属水酸化物及び/又は金属酸化物を含む硬化皮膜が基材表面に形成される。加熱温度はおよそ50℃以上400℃以下が好ましく、350℃以下がより好ましい。加熱時間は5分以上20分以下が好ましく、15分以下がより好ましい。加熱温度及び加熱時間が上記範囲であれば、触媒層の膜厚の減少を抑えることができる。
 後述するCNTの成長工程中は、触媒層の焼成が進行して膜厚が減少すると推測される。その結果、触媒層中の触媒微粒子が動きやすい状態となり、CNTの直径の変化、折れ曲がりの頻度が増加し、欠陥(細孔)が多くなり、内部比表面積の大きいCNTが得られる。よって、成長工程より前の段階での触媒層の膜厚減少は極力抑えることが好ましい。
 例えば、触媒としてアルミナ−鉄薄膜を形成する場合、アルミナ膜を形成した後に鉄薄膜を形成する。
 アルミナ薄膜を形成するための金属有機化合物としては、例えば、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリ−n−プロポキシド、アルミニウムトリ−i−プロポキシド、アルミニウムトリ−n−ブトキシド、アルミニウムトリ−sec−ブトキシド、アルミニウムトリ−tert−ブトキシド等のアルミニウムアルコキシドが挙げられる。アルミニウムを含む金属有機化合物としては他に、トリス(アセチルアセトナト)アルミニウム(III)などの錯体が挙げられる。アルミナ薄膜を形成するための金属塩としては、例えば、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、臭化アルミニウム、よう化アルミニウム、乳酸アルミニウム、塩基性塩化アルミニウム、塩基性硝酸アルミニウム等が挙げられる。これらのなかでも、アルミニウムアルコキシドを用いることが好ましい。これらは、単独あるいは混合物として用いることができる。
 鉄薄膜を形成するための金属有機化合物としては、例えば、鉄ペンタカルボニル、フェロセン、アセチルアセトン鉄(II)、アセチルアセトン鉄(III)、トリフルオロアセチルアセトン鉄(II)、トリフルオロアセチルアセトン鉄(III)等が挙げられる。鉄薄膜を形成するための金属塩としては、例えば、硫酸鉄、硝酸鉄、リン酸鉄、塩化鉄、臭化鉄等の無機酸鉄、酢酸鉄、シュウ酸鉄、クエン酸鉄、乳酸鉄等の有機酸鉄等が挙げられる。これらのなかでも、有機酸鉄を用いることが好ましい。これらは、単独あるいは混合物として用いることができる。
 安定剤としては、β−ジケトン類及びアルカノールアミン類からなる群より選ばれる少なくとも一つであることが好ましい。β−ジケトン類ではアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、ベンゾイルアセトン、ジベンゾイルメタン、ベンゾイルトリフルオルアセトン、フロイルアセトンおよびトリフルオルアセチルアセトンなどがあるが、特にアセチルアセトン、アセト酢酸エチルを用いることが好ましい。アルカノールアミン類ではモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N,N−ジメチルアミノエタノール、ジイソプロパノールアミン、トリイソプロパノールアミンなどがあるが、第2級又は第3級アルカノールアミンであることが好ましい。
 有機溶剤としては、アルコール、グリコール、ケトン、エーテル、エステル類、炭化水素類等の種々の有機溶剤が使用できるが、金属有機化合物及び金属塩の溶解性が良いことから、アルコール又はグリコールを用いることが好ましい。これらの有機溶剤は単独で用いてもよいし、2種類以上を混合して用いてもよい。アルコールとしては、メタノール、エタノール、イソプロピルアルコールなどが、取り扱い性、保存安定性といった点で好ましい。
 (フォーメーション工程)
 成長工程の前にフォーメーション工程を行なうことが好ましい。フォーメーション工程とは、触媒の周囲環境を還元ガス環境とすると共に、触媒及び還元ガスの少なくとも一方を加熱する工程である。この工程により、触媒の還元、CNTの成長に適合した状態としての触媒の微粒子化促進、触媒の活性向上の少なくとも一つの効果が現れる。例えば、触媒がアルミナ−鉄薄膜である場合、鉄触媒は還元されて微粒子化し、アルミナ層上にナノメートルサイズの鉄微粒子が多数形成される。これにより触媒はCNT配向集合体の製造に好適な状態となる。この工程を省略してもCNTを製造することは可能であるが、この工程を行なうことでCNT配向集合体の製造量及び品質を飛躍的に向上させることができる。
 還元性を有するガス(還元ガス)としては、CNTの製造が可能なものを用いればよく、例えば水素ガス、アンモニア、水蒸気及びそれらの混合ガスを適用することができる。また、水素ガスをヘリウムガス、アルゴンガス、窒素ガスなどの不活性ガスと混合した混合ガスでもよい。還元ガスは、フォーメーション工程で用いてもよく、適宜成長工程に用いてもよい。
 フォーメーション工程における触媒及び/又は還元ガスの温度は、好ましくは400℃以上1100℃以下である。またフォーメーション工程の時間は、3分以上20分以下が好ましく、3分以上10分以下がより好ましい。これにより、フォーメーション工程中に触媒層の焼成が進行して膜厚が減少するのを抑えることができる。
 (成長工程)
 成長工程とは、触媒の周囲環境を原料ガス環境とすると共に、触媒及び原料ガスの少なくとも一方を加熱することにより、触媒上にCNT配向集合体を成長させる工程である。均一な密度でCNTを成長させる観点からは、少なくとも原料ガスを加熱することが好ましい。加熱の温度は、400℃~1100℃が好ましい。成長工程では、触媒基材を収容するCNT成長炉内に、原料ガス、不活性ガス、随意に還元ガス及び/又は触媒賦活物質を導入して行う。
 なお、CNTの製造効率を高める観点からは、還元ガス及び原料ガスをガスシャワーによって触媒基材上の触媒に供給するのが好ましい。
 <原料ガス>
 原料ガスとしては、成長温度において炭素源を含むガス状物質が用いられる。なかでもメタン、エタン、エチレン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、プロピレン、及びアセチレンなどの炭化水素が好適である。この他にも、メタノール、エタノールなどの低級アルコール、アセトン、一酸化炭素などの低炭素数の含酸素化合物でもよい。これらの混合物も使用可能である。
 <不活性ガス>
 原料ガスは不活性ガスで希釈されてもよい。不活性ガスとしては、CNTが成長する温度で不活性であり、且つ成長するCNTと反応しないガスであればよく、触媒の活性を低下させないものが好ましい。例えば、ヘリウム、アルゴン、ネオン及びクリプトンなどの希ガス;窒素;水素;並びにこれらの混合ガスを例示できる。
 <触媒賦活物質>
 CNTの成長工程において、触媒賦活物質を添加してもよい。触媒賦活物質の添加によって、CNTの生産効率や純度をより一層改善することができる。ここで用いる触媒賦活物質としては、一般には酸素を含む物質であり、成長温度でCNTに多大なダメージを与えない物質であることが好ましい。例えば、水、酸素、オゾン、酸性ガス、酸化窒素、一酸化炭素、及び二酸化炭素などの低炭素数の含酸素化合物;エタノール、メタノールなどのアルコール類;テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;アルデヒド類;エステル類;並びにこれらの混合物が有効である。この中でも、水、酸素、二酸化炭素、一酸化炭素、およびエーテル類が好ましく、特に水が好適である。
 触媒賦活物質の体積濃度は、特に限定されないが微量が好ましく、例えば水の場合、炉内への導入ガスにおいて、10~10000ppm、好ましくは50~1000ppmとする。
 <その他の条件>
 成長工程における反応炉内の圧力、処理時間は、他の条件を考慮して適宜設定すればよいが、例えば、圧力は10~10Pa、処理時間は1~60分程度をすることができる。
 (冷却工程)
 冷却工程とは、成長工程後にCNT配向集合体、触媒、基材を冷却ガス下に冷却する工程である。成長工程後のCNT配向集合体、触媒、基材は高温状態にあるため、酸素存在環境下に置かれると酸化してしまうおそれがある。それを防ぐために冷却ガス環境下でCNT配向集合体、触媒、基材を例えば400℃以下、さらに好ましくは200℃以下に冷却する。冷却ガスとしては不活性ガスが好ましく、特に安全性、コストなどの点から窒素であることが好ましい。
 (剥離工程)
 単層CNTを基材から剥離する方法としては、物理的、化学的あるいは機械的に基材上から剥離する方法があり、たとえば電場、磁場、遠心力、表面張力を用いて剥離する方法;機械的に直接、基材より剥ぎ取る方法;圧力、熱を用いて基材より剥離する方法などが使用可能である。簡単な剥離法としては、ピンセットで直接基材より、つまみ、剥離させる方法がある。より好適には、カッターブレードなどの薄い刃物を使用して基材より切り離すこともできる。またさらには、真空ポンプ、掃除機を用い、基材上より吸引し、剥ぎ取ることも可能である。また、剥離後、触媒は基材上に残余し、新たにそれを利用して垂直配向した単層CNTを成長させることが可能となる。
 (製造装置)
 本発明のCNTを製造するためのCNT製造装置100を図2に模式的に示す。図2に示すように、製造装置100は、入口パージ部1、フォーメーションユニット2、成長ユニット3、冷却ユニット4、出口パージ部5、搬送ユニット6、接続部7,8,9、ガス混入防止手段11,12,13を有する。
 〔入口パージ部1〕
 入口パージ部1は、触媒基材10の入口から炉内へ外気が混入することを防止するための装置一式である。製造装置100内に搬送された触媒基材10の周囲環境を窒素などの不活性パージガスで置換する機能を有する。具体的には、パージガスを保持するためのチャンバ、パージガスを噴射するための噴射部などを有する。
 〔フォーメーションユニット2〕
 フォーメーションユニット2は、フォーメーション工程を実現するための装置一式である。具体的には、還元ガスを保持するためのフォーメーション炉2A、還元ガスを噴射するための還元ガス噴射部2B、並びに触媒及び還元ガスの少なくとも一方を加熱するためのヒーター2Cなどを有する。
 〔成長ユニット3〕
 成長ユニット3は、成長工程を実現するための装置一式である。具体的には、成長炉3A、原料ガスを触媒基材10上に噴射するための原料ガス噴射部3B、並びに触媒及び原料ガスの少なくとも一方を加熱するためのヒーター3Cを含んでいる。成長ユニット3の上部には排気口3Dが設けられている。
 〔冷却ユニット4〕
 冷却ユニット4は、CNT配向集合体が成長した触媒基材10を冷却する冷却工程を実現する装置一式である。具体的には、冷却ガスを保持するための冷却炉4A、水冷式の場合は冷却炉内空間を囲むように配置した水冷冷却管4C、空冷式の場合は冷却炉内に冷却ガスを噴射する冷却ガス噴射部4Bを有する。
 〔出口パージ部5〕
 出口パージ部5は、触媒基材10の出口から炉内へ外気が混入することを防止するための装置一式である。触媒基材10の周囲環境を窒素などの不活性パージガス環境にする機能を有する。具体的には、パージガスを保持するためのチャンバ、パージガスを噴射するための噴射部などを有する。
 〔搬送ユニット6〕
 搬送ユニット6は、製造装置の炉内に触媒基材10を搬送するための装置一式である。具体的には、ベルトコンベア方式におけるメッシュベルト6A、減速機付き電動モータを用いたベルト駆動部6Bなどを有する。メッシュベルト6Aによる基板の搬送速度は、300mm/min以上とするのが好ましい。300mm/min以上であることにより、フォーメーション工程で基板が速やかに加熱され、フォーメーション工程中に触媒層の焼成が進行して膜厚が減少するのを抑えることができる。
 〔接続部7,8,9〕
 接続部7、8、9は、各ユニットの炉内空間を空間的に接続する装置一式である。具体的には、触媒基材10の周囲環境と外気を遮断し、触媒基材10をユニットからユニットへ通過させることができる炉又はチャンバなどが挙げられる。
 〔ガス混入防止手段11,12,13〕
 ガス混入防止手段11,12,13は、製造装置100内の隣接する炉(フォーメーション炉2A、成長炉3A、冷却炉4A)間でガス同士が相互に混入することを防止するための装置一式であり、接続部7,8,9に設置される。ガス混入防止手段11,12,13は、各炉における触媒基材10の入口及び出口の開口面に沿って窒素等のシールガスを噴出するシールガス噴射部11B,12B,13Bと、主に噴射されたシールガスを外部に排気する排気部11A,12A,13Aとを、それぞれ有する。
 メッシュベルト6Aに載置された触媒基材10は装置入口から入口パージ部1の炉内へと搬送され、以降、各炉内で処理を受けた後、出口パージ部5から装置出口を介して装置外部に搬送される。
 (本発明における作用)
 上記のような製造方法で本発明のCNTが得られる理由を、本発明者らは以下のように考えている。すなわち、本発明の作用は、フォーメーションユニット内に存在する基材の量に対するフォーメーション工程中に供給するガス量Vsが関係していると推測される。図5のようなバッチ式の小型製造装置では、例えば1cmの基材を積載し、1sLmのガスを供給することから、Vs=1sLm/cmとなる。一方、図2のような大型の連続式製造装置では、例えば15000cmの基材を積載し、150sLmのガスを供給することから、Vs=0.01sLm/cmとなり、前者と比較して1/100程度となる。触媒微粒子が生成されるガス雰囲気の違いから、触媒微粒子の生成状態が異なり、品質の異なるCNTが合成されるものと推測される。
 また、ウェットプロセスで形成した触媒を用いることにより、触媒微粒子が動きやすい状態となり、欠陥(細孔)の多いCNTが得られると推測される。また、CNTの平均外径が2~5nmと大きく、直径分布が広いことから、CNTが蜜にパッキングされておらず、折れ曲がりの多いCNTが得られるものと推測される。
 以下に実施例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。初めに、本実施例における評価方法を説明する。
 <全比表面積S1、内部比表面積S2>
 既述の方法で、合成後に開口処理をしていないCNTの窒素ガス吸着等温線を測定し、tプロットを得た。このtプロットに基づき、既述の方法で全比表面積S1、内部比表面積S2を算出した。
 <G/D比>
 CNT配向集合体を試料とし、顕微レーザラマンシステム(サーモフィッシャーサイエンティフィック(株)製NicoletAlmega XR)を用い、基材中心部付近のCNTを測定した。
 <平均外径および炭素純度>
 既述の方法で測定・算出した。
 <算術平均粗さ>
 算術平均粗さRaは、レーザ顕微鏡(キーエンス製VK−9700)を用いて、対物倍率50倍で測定した。
 〔実施例1〕
 (基材)
 縦500mm×横500mm、厚さ0.6mmのFe−Cr合金SUS430(JFEスチール株式会社製、Cr:18質量%)の平板を用意した。レーザ顕微鏡を用いて複数個所の表面粗さを測定したところ、算術平均粗さRa≒0.063μmであった。
 (触媒の形成)
 上記の基材上に以下のような方法で触媒を形成した。まず、アルミニウムトリ−sec−ブトキシド1.9gを2−プロパノール100mL(78g)に溶解させ、安定剤としてトリイソプロパノールアミン0.9gを加えて溶解させて、アルミナ膜形成用コーティング剤を作製した。ディップコーティングにより、室温25℃、相対湿度50%の環境下で基材上に上述のアルミナ膜形成用コーティング剤を塗布した。塗布条件としては、基材を浸漬後、20秒間保持して、10mm/秒の引き上げ速度で基材を引き上げた後、5分間風乾した。次に、300℃の空気環境下で15分間加熱した後、室温まで冷却した。これにより、基材上に膜厚40nmのアルミナ膜を形成した。
 続いて、酢酸鉄174mgを2−プロパノール100mLに溶解させ、安定剤としてトリイソプロパノールアミン190mgを加えて溶解させて、鉄膜コーティング剤を作製した。ディップコーティングにより、室温25℃、相対湿度50%の環境下で、アルミナ膜が成膜された基材上に鉄膜コーティング剤を塗布した。塗布条件としては、基材を浸漬後、20秒間保持して、3mm/秒の引き上げ速度で基材を引き上げた後、5分間風乾した。次に、100℃の空気環境下で、15分加熱した後、室温まで冷却した。これにより、膜厚3nmの触媒生成膜を形成した。
 (CNT合成)
 図2に示すような連続式製造装置で、フォーメーション工程と成長工程を含む工程を連続的に行なうことでCNT配向集合体を製造した。前述の触媒基材を製造装置のメッシュベルト上に載置し、メッシュベルトの搬送速度を一定(360mm/min)にして、基材上にCNT配向集合体を製造した。製造装置の各部の条件は以下のように設定した。
Figure JPOXMLDOC01-appb-T000001
 (評価結果)
 得られたCNT配向集合体を基材上から剥離して得られたCNTのtプロットを図3に示す。図3から明らかなように、tプロットは、t=0.6nm付近で上に凸な形状で屈曲していた。全比表面積S1、内部比表面積S2、S2/S1、屈曲点のt、および平均外径を表3に示す。また、基材上から剥離したCNTのTEM画像を図4に示す。図4では、CNTの側壁が開口されている箇所が多数観察された。他の特性は、G/D比3.0、外径分布1~9nm、炭素純度99.9%であった。
 〔実施例2〕
 実施例1で得られたCNT配向集合体を、樹脂製のブレードを用いて基材から剥離した。次に、その基材の表面に炭酸ナトリウムの粉末(和光純薬工業社製)を散布し、水を含ませた不織布で拭き取った後、さらに水を含ませたスポンジで基材表面を拭き取り、水洗浄した。こうして得られた洗浄基材を用いたこと以外は、実施例1と同様にして、触媒形成とCNT製造を実施した。
 得られたCNT配向集合体の評価結果を表3にまとめた。他の特性は、G/D比4.0、外径分布1~8nm、炭素純度99.9%であった。
 〔比較例1〕
 基材として、縦40mm×横40mm、厚さ0.6mmのFe−Cr合金SUS430(JFEスチール株式会社製、Cr18%)の平板を使用した。レーザ顕微鏡を用いて表面粗さを測定したところ、算術平均粗さRa≒0.063μmであった。
 この基材の表裏両面に、スパッタリング装置を用いて厚さ100nmの二酸化ケイ素膜(浸炭防止層)を製膜した。次いで、表面のみにスパッタリング装置を用いて、厚さ10nmの酸化アルミニウム膜および1.0nmの鉄膜を製膜した。
 図5に示すようなバッチ式製造装置200でフォーメーション工程と成長工程とを順次行うことでCNT配向集合体を製造した。この装置200は、石英からなる反応炉202と、反応炉202を外囲するように設けられた抵抗発熱コイルからなる加熱器204と、還元ガス及び原料ガスを供給すべく反応炉202の一端に接続されたガス供給口206と、反応炉202の他端に接続された排気口208と、基材を固定する石英からなるホルダー210とを含み構成される。さらに図示していないが、還元ガス及び原料ガスの流量を制御するため、流量制御弁及び圧力制御弁などを含む制御装置を適所に付設してなる。製造条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 得られたCNT配向集合体を基材上から剥離して得られたCNTのtプロットを図6に示した。図6から明らかなように、tプロットは、原点を通る直線状であった。得られたCNTの評価結果を表3にまとめた。また、基材上から剥離したCNTのTEM画像を図7に示す。図7では、CNTの側壁が開口している様子は見られなかった。他の特性は、G/D比4.5、炭素純度99.9%であった。
Figure JPOXMLDOC01-appb-T000003
 上記の通り、実施例1と2のCNTは、面積が400cm以上の基材にウェットプロセスで触媒を形成した触媒基材により、フォーメーション工程、成長工程、および冷却工程をそれぞれ行うユニットを連結した連続式のCNT製造装置を用いて製造し、一方、比較例1のCNTは、面積が400cm未満の基材にドライプロセスで触媒を形成した触媒基材により、バッチ式のCNT製造装置を用いて製造した。表3より、実施例1と2のCNTは、比較例1のCNTと比較して、開口処理を行わずとも、全比表面積S1に対する内部比表面積S2の割合が大きく、先端は未開口のまま、側壁の開口を多数有するものであることが分かる。
 本発明のカーボンナノチューブは、開口処理を行わずとも合成したままで内部を有効に活用できる。よって、本発明のカーボンナノチューブは、物質やエネルギーの保持性、エネルギー伝達性、およびエネルギー分散性に優れている。
 100 CNT製造装置
 1 入り口パージ部
 2 フォーメーションユニット
 3 成長ユニット
 4 冷却ユニット
 5 出口パージ部
 6 搬送ユニット
 7,8,9 接続部
 10 触媒基材
 11,12,13 ガス混入防止手段

Claims (4)

  1.  開口処理されておらず、吸着等温線から得られるtプロットが上に凸な形状を示すことを特徴とするカーボンナノチューブ。
  2.  前記tプロットの屈曲点が0.2≦t(nm)≦1.5の範囲にある請求項1に記載のカーボンナノチューブ。
  3.  前記tプロットから得られる全比表面積S1および内部比表面積S2が、0.05≦S2/S1≦0.30を満たす請求項1または2に記載のカーボンナノチューブ。
  4.  平均外径が2~5nmである請求項1~3のいずれか1項に記載のカーボンナノチューブ。
PCT/JP2014/079655 2013-10-31 2014-10-31 カーボンナノチューブ WO2015064772A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14858707.4A EP3064472B1 (en) 2013-10-31 2014-10-31 Carbon nanotubes
US15/030,975 US9776873B2 (en) 2013-10-31 2014-10-31 Carbon nanotubes
JP2015545339A JP6048591B2 (ja) 2013-10-31 2014-10-31 カーボンナノチューブ
KR1020167010442A KR101710603B1 (ko) 2013-10-31 2014-10-31 카본 나노튜브
CN201480057892.7A CN105658573A (zh) 2013-10-31 2014-10-31 碳纳米管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013227439 2013-10-31
JP2013-227439 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064772A1 true WO2015064772A1 (ja) 2015-05-07

Family

ID=53004361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079655 WO2015064772A1 (ja) 2013-10-31 2014-10-31 カーボンナノチューブ

Country Status (6)

Country Link
US (1) US9776873B2 (ja)
EP (1) EP3064472B1 (ja)
JP (1) JP6048591B2 (ja)
KR (1) KR101710603B1 (ja)
CN (1) CN105658573A (ja)
WO (1) WO2015064772A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189873A1 (ja) * 2015-05-27 2016-12-01 日本ゼオン株式会社 炭素膜およびその製造方法、ならびに、繊維状炭素ナノ構造体分散液およびその製造方法
WO2017104772A1 (ja) * 2015-12-17 2017-06-22 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
WO2017104769A1 (ja) * 2015-12-17 2017-06-22 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
JP2017118073A (ja) * 2015-12-25 2017-06-29 日本ゼオン株式会社 電磁波吸収材料
JP2017114756A (ja) * 2015-12-25 2017-06-29 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液および炭素ナノ構造体膜の製造方法
JP2017119586A (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液及びその製造方法、炭素膜の製造方法並びに炭素膜
WO2017115708A1 (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
WO2017115707A1 (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 ナノ構造体分散液入り容器、ナノ構造体分散液の貯蔵方法および輸送方法、並びに、ナノ構造体分散液を用いた複合材料用組成物および集合体の製造方法
JP2017130446A (ja) * 2016-01-15 2017-07-27 新日鐵住金株式会社 触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び固体高分子形燃料電池
WO2017170579A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 炭素ナノ構造体集合物の製造方法及び炭素ナノ構造体集合物
US20180044498A1 (en) * 2015-02-27 2018-02-15 Zeon Corporation Silicone rubber composition and vulcanized product
WO2018051925A1 (ja) * 2016-09-16 2018-03-22 日本ゼオン株式会社 複合体およびリチウムイオン二次電池用負極、並びに複合体の製造方法
WO2018168346A1 (ja) * 2017-03-16 2018-09-20 日本ゼオン株式会社 表面処理された炭素ナノ構造体の製造方法
JPWO2017110096A1 (ja) * 2015-12-25 2018-10-11 日本ゼオン株式会社 電磁波吸収材料及び電磁波吸収体
EP3315576A4 (en) * 2015-06-26 2018-12-05 Zeon Corporation Composition for gas seal member, and gas seal member
JPWO2017170524A1 (ja) * 2016-03-29 2019-02-07 日本ゼオン株式会社 太陽電池用電極およびその製造方法、並びに太陽電池
WO2019124026A1 (ja) * 2017-12-19 2019-06-27 日本ゼオン株式会社 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の評価方法および表面改質繊維状炭素ナノ構造体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6784441B2 (ja) * 2017-02-14 2020-11-11 矢崎総業株式会社 電線及びこれを用いたワイヤーハーネス
US20230050182A1 (en) * 2020-01-31 2023-02-16 Zeon Corporation Photoelectric conversion element and method of producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084431A (ja) 2005-09-23 2007-04-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi カーボンナノチューブの成長方法
JP2011207758A (ja) 2008-12-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体
JP2012250862A (ja) * 2011-05-31 2012-12-20 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法及び製造装置
JP2013173639A (ja) * 2012-02-24 2013-09-05 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法
JP2013193916A (ja) * 2012-03-19 2013-09-30 Nippon Zeon Co Ltd カーボンナノチューブ造粒物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080020248A1 (en) 2002-05-03 2008-01-24 Ion America Corporation Hydrocarbon gas carbon nanotube storage media
WO2011108492A1 (ja) 2010-03-01 2011-09-09 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
JP5622101B2 (ja) * 2010-12-15 2014-11-12 日本ゼオン株式会社 カーボンナノチューブ配向集合体の製造方法
JP5622278B2 (ja) 2011-03-31 2014-11-12 日本ゼオン株式会社 カーボンナノチューブ配向集合体製造用基材、カーボンナノチューブ配向集合体の製造方法、及びカーボンナノチューブ配向集合体製造用基材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084431A (ja) 2005-09-23 2007-04-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi カーボンナノチューブの成長方法
JP2011207758A (ja) 2008-12-30 2011-10-20 National Institute Of Advanced Industrial Science & Technology 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体
JP2012250862A (ja) * 2011-05-31 2012-12-20 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法及び製造装置
JP2013173639A (ja) * 2012-02-24 2013-09-05 Nippon Zeon Co Ltd カーボンナノチューブ配向集合体の製造方法
JP2013193916A (ja) * 2012-03-19 2013-09-30 Nippon Zeon Co Ltd カーボンナノチューブ造粒物の製造方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10839976B2 (en) * 2015-02-27 2020-11-17 Zeon Corporation Silicone rubber composition and vulcanized product
US20180044498A1 (en) * 2015-02-27 2018-02-15 Zeon Corporation Silicone rubber composition and vulcanized product
JPWO2016189873A1 (ja) * 2015-05-27 2018-03-08 日本ゼオン株式会社 炭素膜およびその製造方法、ならびに、繊維状炭素ナノ構造体分散液およびその製造方法
CN107614425B (zh) * 2015-05-27 2021-07-30 日本瑞翁株式会社 碳膜及其制造方法、以及纤维状碳纳米结构体分散液及其制造方法
WO2016189873A1 (ja) * 2015-05-27 2016-12-01 日本ゼオン株式会社 炭素膜およびその製造方法、ならびに、繊維状炭素ナノ構造体分散液およびその製造方法
US10611640B2 (en) 2015-05-27 2020-04-07 Zeon Corporation Carbon film and method of producing same, and fibrous carbon nanostructure dispersion liquid and method of producing same
CN107614425A (zh) * 2015-05-27 2018-01-19 日本瑞翁株式会社 碳膜及其制造方法、以及纤维状碳纳米结构体分散液及其制造方法
EP3315576A4 (en) * 2015-06-26 2018-12-05 Zeon Corporation Composition for gas seal member, and gas seal member
WO2017104772A1 (ja) * 2015-12-17 2017-06-22 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
WO2017104769A1 (ja) * 2015-12-17 2017-06-22 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
CN108430918B (zh) * 2015-12-17 2022-04-08 日本瑞翁株式会社 纤维状碳纳米结构体分散液
US11326063B2 (en) 2015-12-17 2022-05-10 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
US10710881B2 (en) 2015-12-17 2020-07-14 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
TWI763647B (zh) * 2015-12-17 2022-05-11 日商日本瑞翁股份有限公司 纖維狀碳奈米構造體分散液
JPWO2017104769A1 (ja) * 2015-12-17 2018-10-04 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
JPWO2017104772A1 (ja) * 2015-12-17 2018-10-04 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
JP2017118073A (ja) * 2015-12-25 2017-06-29 日本ゼオン株式会社 電磁波吸収材料
JPWO2017110096A1 (ja) * 2015-12-25 2018-10-11 日本ゼオン株式会社 電磁波吸収材料及び電磁波吸収体
JP2017114756A (ja) * 2015-12-25 2017-06-29 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液および炭素ナノ構造体膜の製造方法
JPWO2017115707A1 (ja) * 2015-12-28 2018-10-18 日本ゼオン株式会社 ナノ構造体分散液入り容器、ナノ構造体分散液の貯蔵方法および輸送方法、並びに、ナノ構造体分散液を用いた複合材料用組成物および集合体の製造方法
US10752506B2 (en) 2015-12-28 2020-08-25 Zeon Corporation Nanostructure dispersion liquid-containing container, method of storing and method of transporting nanostructure dispersion liquid, and methods of producing composite material composition and aggregate using nanostructure dispersion liquid
JP2017119586A (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液及びその製造方法、炭素膜の製造方法並びに炭素膜
WO2017115708A1 (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
WO2017115707A1 (ja) * 2015-12-28 2017-07-06 日本ゼオン株式会社 ナノ構造体分散液入り容器、ナノ構造体分散液の貯蔵方法および輸送方法、並びに、ナノ構造体分散液を用いた複合材料用組成物および集合体の製造方法
JPWO2017115708A1 (ja) * 2015-12-28 2018-10-18 日本ゼオン株式会社 繊維状炭素ナノ構造体分散液
US10995223B2 (en) 2015-12-28 2021-05-04 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
JP2017130446A (ja) * 2016-01-15 2017-07-27 新日鐵住金株式会社 触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び固体高分子形燃料電池
JPWO2017170524A1 (ja) * 2016-03-29 2019-02-07 日本ゼオン株式会社 太陽電池用電極およびその製造方法、並びに太陽電池
WO2017170579A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 炭素ナノ構造体集合物の製造方法及び炭素ナノ構造体集合物
EP3438046A4 (en) * 2016-03-31 2019-12-18 Zeon Corporation METHOD FOR PRODUCING A CARBON NANOSTRUCTURE AGGREGATE AND CARBON NANOSTRUCTURE AGGREGATE
WO2018051925A1 (ja) * 2016-09-16 2018-03-22 日本ゼオン株式会社 複合体およびリチウムイオン二次電池用負極、並びに複合体の製造方法
JPWO2018051925A1 (ja) * 2016-09-16 2019-06-27 日本ゼオン株式会社 複合体およびリチウムイオン二次電池用負極、並びに複合体の製造方法
WO2018168346A1 (ja) * 2017-03-16 2018-09-20 日本ゼオン株式会社 表面処理された炭素ナノ構造体の製造方法
JPWO2018168346A1 (ja) * 2017-03-16 2020-01-16 日本ゼオン株式会社 表面処理された炭素ナノ構造体の製造方法
JP7131543B2 (ja) 2017-03-16 2022-09-06 日本ゼオン株式会社 表面処理された炭素ナノ構造体の製造方法
JPWO2019124026A1 (ja) * 2017-12-19 2021-01-21 日本ゼオン株式会社 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の評価方法および表面改質繊維状炭素ナノ構造体の製造方法
WO2019124026A1 (ja) * 2017-12-19 2019-06-27 日本ゼオン株式会社 繊維状炭素ナノ構造体、繊維状炭素ナノ構造体の評価方法および表面改質繊維状炭素ナノ構造体の製造方法
US11358866B2 (en) 2017-12-19 2022-06-14 Zeon Corporation Fibrous carbon nanostructure, method of evaluating fibrous carbon nanostructure, and method of producing surface-modified fibrous carbon nanostructure

Also Published As

Publication number Publication date
JPWO2015064772A1 (ja) 2017-03-09
EP3064472B1 (en) 2021-02-17
EP3064472A1 (en) 2016-09-07
KR101710603B1 (ko) 2017-02-27
EP3064472A4 (en) 2016-12-28
CN105658573A (zh) 2016-06-08
US20160251225A1 (en) 2016-09-01
JP6048591B2 (ja) 2016-12-21
KR20160070084A (ko) 2016-06-17
US9776873B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
JP6048591B2 (ja) カーボンナノチューブ
US9045344B2 (en) Method for producing aligned carbon nanotube aggregate
JP6428613B2 (ja) カーボンナノチューブの製造方法
JP5622278B2 (ja) カーボンナノチューブ配向集合体製造用基材、カーボンナノチューブ配向集合体の製造方法、及びカーボンナノチューブ配向集合体製造用基材の製造方法
JP6079539B2 (ja) 炭素ナノ構造体の製造方法
US20080279752A1 (en) Method for producing a single-wall carbon nanotube
WO2017170579A1 (ja) 炭素ナノ構造体集合物の製造方法及び炭素ナノ構造体集合物
JPWO2012165514A1 (ja) カーボンナノチューブ配向集合体の製造装置及び製造方法
JP4977982B2 (ja) 線状炭素材料の製造方法及び機能デバイスの製造方法
JP6623512B2 (ja) 炭素ナノ構造体集合物およびその製造方法
JP2006298684A (ja) 炭素系一次元材料およびその合成方法ならびに炭素系一次元材料合成用触媒およびその合成方法ならびに電子素子およびその製造方法
JP6847412B2 (ja) カーボンナノチューブ集合体製造用触媒基材とカーボンナノチューブ集合体の製造方法
JP6476759B2 (ja) カーボンナノチューブ配向集合体の製造方法
JP6519485B2 (ja) カーボンナノチューブ、カーボンナノチューブ集合体およびカーボンナノチューブ集合体の製造方法
JP6762005B2 (ja) カーボンナノチューブ集合体の製造方法
JP6171805B2 (ja) 炭素ナノ構造体の製造方法
JP6458594B2 (ja) カーボンナノチューブを含む炭素ナノ構造体の製造方法
JP6950939B2 (ja) カーボンナノチューブ集合体合成用触媒担持体及びカーボンナノチューブ集合体合成用部材
WO2016072096A1 (ja) 炭素ナノ構造体集合物およびその製造方法
JP6673339B2 (ja) カーボンナノチューブを含む炭素ナノ構造体の製造方法
JP2016088814A (ja) グラフェンナノテープ、炭素ナノ構造体集合物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010442

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014858707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15030975

Country of ref document: US

Ref document number: 2014858707

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015545339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE