WO2014175097A1 - 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層 - Google Patents

触媒およびその製造方法ならびに当該触媒を用いる電極触媒層 Download PDF

Info

Publication number
WO2014175097A1
WO2014175097A1 PCT/JP2014/060634 JP2014060634W WO2014175097A1 WO 2014175097 A1 WO2014175097 A1 WO 2014175097A1 JP 2014060634 W JP2014060634 W JP 2014060634W WO 2014175097 A1 WO2014175097 A1 WO 2014175097A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
carrier
layer
mesopores
Prior art date
Application number
PCT/JP2014/060634
Other languages
English (en)
French (fr)
Inventor
大間 敦史
健 秋月
義隆 小野
徹也 眞塩
耕一 松谷
Original Assignee
日産自動車株式会社
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 田中貴金属工業株式会社 filed Critical 日産自動車株式会社
Priority to CN201480022909.5A priority Critical patent/CN105142779A/zh
Priority to US14/786,056 priority patent/US10573901B2/en
Priority to EP14787852.4A priority patent/EP2990104B1/en
Priority to CA2910237A priority patent/CA2910237C/en
Priority to JP2015513683A priority patent/JPWO2014175097A1/ja
Publication of WO2014175097A1 publication Critical patent/WO2014175097A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a catalyst, particularly an electrode catalyst used in a fuel cell (PEFC), a method for producing the same, and an electrode catalyst layer using the catalyst.
  • PEFC fuel cell
  • a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
  • Patent Document 1 discloses an electrode catalyst in which catalyst metal particles are supported on a conductive support, in which the average particle diameter of the catalyst metal particles is larger than the average pore diameter of the fine pores of the conductive support. It is described that this configuration prevents the catalyst particles from entering the micropores of the carrier, improves the ratio of the catalyst particles used at the three-phase interface, and improves the utilization efficiency of expensive noble metals.
  • the catalyst of Patent Document 1 has a problem in that catalytic metal particles are detached under mechanical stress, and a part of the added platinum is not used effectively, and the catalytic activity is lowered.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a catalyst having high catalytic activity.
  • Another object of the present invention is to provide an electrode catalyst layer, a membrane electrode assembly and a fuel cell which are excellent in power generation performance.
  • the catalyst of the present invention (also referred to herein as “electrode catalyst”) comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier.
  • the catalyst satisfies the following configurations (a) to (c): (A) the catalyst support has holes having a radius of less than 1 nm (primary holes) and holes having a radius of 1 nm or more (primary holes); (B) The surface area formed by pores having a radius of less than 1 nm is not less than the surface area formed by pores having a radius of 1 nm or more; and (c) The average particle diameter of the catalyst metal is 2.8 nm or more. It is.
  • the catalyst metal can be stored in a relatively large hole, and the catalyst metal can be prevented from being detached under the mechanical stress of the catalyst metal in which the relatively small hole is stored. it can. As a result, the reaction activity of the catalyst can be improved.
  • pores having a radius of less than 1 nm are also referred to as “micropores”.
  • holes having a radius of 1 nm or more are also referred to as “meso holes”.
  • the catalyst metal particles are present on the outer surface of the conductive support or at the entrance of the micropores, in the process of manufacturing the electrode (catalyst layer), shear force, centrifugal force, etc. It has been found that the catalytic metal particles are detached from the support surface when subjected to various mechanical stresses.
  • the inventors of the present invention have found that the mechanical surface area of the catalyst support is not less than the surface area formed of mesopores and the average particle diameter of the catalyst metal is not less than 2.8 nm. It has been found that desorption of the catalyst metal from the support can be suppressed and prevented even under stress. The reason why the above effect can be achieved is unknown, but is estimated as follows.
  • this invention is not limited by the following estimation. That is, according to the above (b), there are many micropores in which the pore size of the catalyst carrier is smaller than the particle size of the catalyst metal. Further, most of the catalyst metal exists not in the catalyst support surface but in the mesopores. For this reason, the catalyst metal existing in the mesopores is removed from the system (from the catalyst support) even when subjected to various mechanical stresses (for example, shearing force or centrifugal force) during catalyst transportation or electrode production. It becomes difficult to release.
  • the catalyst metal outside the system under mechanical stress (from the catalyst support) Suppress and prevent detachment more effectively. Therefore, the catalyst can be used more effectively.
  • the catalyst since the micropores exist in a large volume, the catalyst can be used more effectively, that is, the catalytic activity can be improved.
  • the reaction gas can be transported to the surface of the catalytic metal existing in the mesopores via the micropores (paths), the gas transport resistance is small. Therefore, the catalyst of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer using the catalyst of this invention are excellent in electric power generation performance.
  • X to Y indicating a range means “X or more and Y or less”, “weight” and “mass”, “weight%” and “mass%”, “part by weight” and “weight part”. “Part by mass” is treated as a synonym. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • a fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
  • MEA membrane electrode assembly
  • the fuel cell of the present invention is excellent in durability and can exhibit high power generation performance.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first includes a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA membrane electrode assembly
  • the MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be positioned at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2, or between the PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with the MEA 10. Thereby, the electrical connection with MEA10 is ensured.
  • a recess (space between the separator and the MEA generated due to the concavo-convex shape of the separator) viewed from the MEA side of the separator (5a, 5c) is a gas for circulating gas during operation of the PEFC 1 Functions as a flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) serves as a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell is used.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized. For this reason, the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property.
  • FIG. 2 is a schematic sectional explanatory view showing the shape and structure of a catalyst according to an embodiment of the present invention.
  • the catalyst 20 of the present invention includes a catalyst carrier 23 and a catalyst metal 22 supported on the catalyst carrier 23. Further, the catalyst 20 has pores (micropores) 25 having a radius of less than 1 nm and pores (mesopores) 24 having a radius of 1 nm or more.
  • the micropores 25 and the mesopores 24 are formed by an assembly of a plurality of carriers 23. Further, the catalytic metal 22 is carried inside the mesopores 24.
  • substantially all of the catalyst metal 22 is supported inside the mesopores 24.
  • substantially all catalytic metals is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity. “Substantially all catalyst metals” are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
  • micropores 25 and the mesopores 24 are formed in the catalyst 20 by the assembly of the plurality of carriers 23, but the present invention is not limited to the above embodiment.
  • desired micropores 25 and mesopores 24 may be formed in one carrier 23.
  • catalyst metal is supported in the mesopores can be confirmed by a decrease in the volume of the mesopores before and after the catalyst metal is supported on the support.
  • the support has micropores and mesopores, and each pore has a constant volume.
  • the catalytic metal is supported inside the micropores”.
  • the catalyst metal is supported more in the mesopores than in the micropores (that is, the decrease value of the mesopore volume before and after the support> the decrease value of the micropore volume before and after the support). This is because gas transport resistance can be reduced and a sufficient path for gas transport can be secured.
  • the decrease value of the mesopore volume before and after supporting the catalyst metal is preferably 0.02 cc / g or more. More preferably, it is ⁇ 0.21 cc / g.
  • the catalyst support has a surface area formed by vacancies (micropores) having a radius of less than 1 nm greater than or equal to a surface area formed by vacancies (mesopores) having a radius of 1 nm or more (that is, surface area formed by micropores ⁇
  • the relationship of surface area formed by mesopores is satisfied. Due to the presence of many micropores in this way, the catalytic metal present in the mesopores is not affected by various mechanical stresses (for example, shearing force or centrifugal force) during catalyst transportation or electrode manufacturing. Suppresses / prevents detachment to the outside (from the catalyst carrier).
  • the carrier is preferably 50 to 2000 m 2 / g, and more preferably 200 to 2000 m 2 / g. If there is such a surface area difference, desorption of the catalyst metal under mechanical stress can be more effectively suppressed / prevented.
  • a sufficient pore volume of the micropores can be secured, a sufficient gas transportation path can be secured. Therefore, a gas such as oxygen can be efficiently transported to the catalyst metal in the mesopores, that is, the gas transport resistance can be reduced.
  • the pore distribution of the catalyst carrier is not particularly limited as long as it satisfies the relationship between the surface areas formed by the micropores and mesopores.
  • the surface area formed by pores (micropores) having a radius of less than 1 nm [surface area of micropores of carrier per 1 g of carrier (m 2 / g carrier)] is not particularly limited, but is 200 to 2500 m 2 / g.
  • a carrier is preferred.
  • the surface area formed by the micropores is particularly preferably 500 to 2500 m 2 / g carrier.
  • Such a void volume can more effectively suppress / prevent desorption of the catalytic metal under mechanical stress.
  • sufficient micropores for gas transportation can be secured, and the gas transportation resistance is small.
  • the catalyst of the present invention can exhibit high catalytic activity, that is, promote the catalytic reaction. it can. Moreover, electrolyte (ionomer) and liquid (for example, water) cannot penetrate into the micropores, and only gas is selectively passed (gas transport resistance can be reduced).
  • a surface area formed by pores (micropores) having a radius of less than 1 nm is also simply referred to as “surface area by micropores”.
  • the surface area formed by pores (mesopores) having a radius of 1 nm or more [mesopore surface area of carrier per 1 g of carrier (m 2 / g carrier)] is particularly less than the surface area formed by micropores.
  • the surface area formed by mesopores is particularly preferably 150 to 1000 m 2 / g carrier.
  • Such a void volume can more effectively suppress / prevent desorption of the catalytic metal under mechanical stress.
  • a large amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented).
  • the activity of the catalytic metal can be utilized more effectively.
  • the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the micropores act as a gas transport path, and water can form a three-phase interface more significantly, thereby improving the catalytic activity.
  • the surface area formed by pores (mesopores) having a radius of 1 nm or more is also simply referred to as “surface area by mesopores”.
  • the pore volume of the pores (micropores) having a radius of less than 1 nm of the catalyst carrier is not particularly limited, but is preferably 0.1 cc / g or more. More preferably, the pore volume of the micropores is 0.3 to 3 cc / g carrier, and particularly preferably 0.4 to 2 cc / g carrier. Such a void volume can more effectively suppress / prevent desorption of the catalytic metal under mechanical stress. In addition, sufficient micropores for gas transportation can be secured, and the gas transportation resistance is small.
  • the catalyst of the present invention can exhibit high catalytic activity, that is, promote the catalytic reaction. it can. Moreover, electrolyte (ionomer) and liquid (for example, water) cannot penetrate into the micropores, and only gas is selectively passed (gas transport resistance can be reduced).
  • electrolyte (ionomer) and liquid for example, water
  • the pore volume of the pores (mesopores) having a radius of 1 nm or more of the catalyst carrier is not particularly limited, but is 0.4 cc / g carrier or more, more preferably 0.4 to 3 cc / g carrier, particularly preferably. Is preferably 0.4 to 2 cc / g carrier. If the pore volume is in the range as described above, desorption of the catalytic metal under mechanical stress can be more effectively suppressed / prevented. In addition, a large amount of catalyst metal can be stored (supported) in the mesopores, and the electrolyte and catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented).
  • the activity of the catalytic metal can be utilized more effectively.
  • the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the micropores act as a gas transport path, and water can form a three-phase interface more significantly, thereby improving the catalytic activity.
  • the void volume of holes having a radius of 1 nm or more is also simply referred to as “mesopore void volume”.
  • the BET specific surface area of the catalyst support [the BET specific surface area of the catalyst per 1 g of support (m 2 / g support)] is not particularly limited, but is 1000 m 2 / g support or more, more preferably 1000 to 3000 m 2 / g support. Particularly preferred is a carrier of 1100 to 1800 m 2 / g.
  • the pores of the catalyst carrier are preferably composed only of micropores and mesopores. In this case, the BET specific surface area of the catalyst support is the sum of the surface areas formed by the micropores and mesopores.
  • the specific surface area is as described above, sufficient mesopores and micropores can be secured, so that more catalysts can be accommodated in the mesopores while securing sufficient micropores (lower gas transport resistance) for gas transport.
  • Metal can be stored (supported).
  • the electrolyte and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively.
  • the presence of many micropores and mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the balance between the dispersibility of the catalyst component on the catalyst carrier and the effective utilization rate of the catalyst component can be appropriately controlled.
  • the micropores act as a gas transport path, and water can form a three-phase interface more significantly, thereby improving the catalytic activity.
  • surface area (m 2 / g carrier)” and “BET specific surface area (m 2 / g carrier)” are measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of a sample (catalyst powder or catalyst carrier) is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used.
  • a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the weight of Teflon (registered trademark) (base material) of the same area from the total weight is used as the sample weight.
  • the BET specific surface area is measured under the following measurement conditions. By creating a BET plot from the relative pressure (P / P0) range of about 0.00 to 0.45 on the adsorption side of the adsorption / desorption isotherm, the surface area and BET specific surface area are calculated from the slope and intercept. .
  • the micropore pore radius (nm) means the pore radius measured by the nitrogen adsorption method (MP method).
  • mode radius (nm) of pore distribution of micropores means a pore radius at a point where a peak value (maximum frequency) is obtained in a differential pore distribution curve obtained by a nitrogen adsorption method (MP method).
  • the lower limit of the pore radius of the micropore is a lower limit value measurable by the nitrogen adsorption method, that is, 0.42 nm or more.
  • the radius (nm) of mesopores means the radius of the pores measured by the nitrogen adsorption method (DH method).
  • mode radius (nm) of pore distribution of mesopores means a pore radius at a point where a peak value (maximum frequency) is obtained in a differential pore distribution curve obtained by a nitrogen adsorption method (DH method).
  • the upper limit of the pore radius of the mesopores is not particularly limited, but is 10 nm or less, preferably 5 nm or less.
  • the pore volume of micropores means the total volume of micropores with a radius of less than 1 nm present in the catalyst, and is expressed as the volume per gram of support (cc / g support).
  • the “micropore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (MP method).
  • pore volume of mesopores means the total volume of mesopores having a radius of 1 nm or more present in the catalyst, and is represented by the volume per gram of support (cc / g support).
  • the “mesopore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
  • the “differential pore distribution” is a distribution curve in which the pore diameter is plotted on the horizontal axis and the pore volume corresponding to the pore diameter in the catalyst is plotted on the vertical axis. That is, the differential pore volume when the pore volume of the catalyst obtained by the nitrogen adsorption method (MP method in the case of micropores; DH method in the case of mesopores) is V and the pore diameter is D. A value (dV / d (logD)) obtained by dividing dV by the logarithmic difference d (logD) of the hole diameter is obtained. A differential pore distribution curve is obtained by plotting this dV / d (logD) against the average pore diameter of each section.
  • the differential hole volume dV refers to an increase in the hole volume between measurement points.
  • the method of measuring the micropore radius and pore volume by the nitrogen adsorption method is not particularly limited.
  • “Science of adsorption” (2nd edition, co-authored by Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe) , Maruzen Co., Ltd.
  • “Fuel cell analysis method” (Yoshio Takasu, Yuu Yoshitake, Tatsumi Ishihara, edited by Chemistry), R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci., A method described in known literature such as 26, ⁇ ⁇ 45 (1968) can be employed.
  • the radius and the pore volume of the micropore by the nitrogen adsorption method are R.RSh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci., 26, 45 (1968). ) Is a value measured by the method described in (1).
  • the method for measuring the mesopore radius and pore volume by the nitrogen adsorption method is also not particularly limited.
  • the method described in well-known literatures such as) can be employed.
  • the mesopore radius and pore volume by nitrogen adsorption method are described in D. Dollion, G. R. Heal: J. Appl. Chem., 14, 109 (1964). The value measured by the method.
  • the method for producing a catalyst having a specific pore distribution as described above is not particularly limited, but it is usually important that the pore distribution (micropores and mesopores) of the support is as described above. is there.
  • a method for producing a carrier having micropores and mesopores as shown in FIG. 2 and satisfying the relationship of the surface areas formed by the micropores and mesopores as described above The method described in publications such as 6,398,858 is preferably used.
  • International Publication No. 2009/2009 / A method described in a gazette such as pamphlet No. 075264 (US Patent Application Publication No. 2011-058308) is preferably used.
  • the material of the carrier is sufficient to form pores (primary pores) having the above-described pore volume or mode diameter inside the carrier and to carry the catalyst component in a dispersed state inside the mesopores.
  • the main component is carbon.
  • Specific examples include carbon particles made of carbon black (Ketjen black, oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.), activated carbon, and the like.
  • the main component is carbon means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. It may be included. “Substantially consists of carbon atoms” means that contamination of impurities of about 2 to 3% by weight or less can be allowed.
  • carbon black since it is easy to form a desired pore region inside the support, it is desirable to use carbon black, and particularly preferably Black Pearls (registered trademark) 2000 is used.
  • porous metals such as Sn (tin) and Ti (titanium), and conductive metal oxides can also be used as carriers.
  • the average primary particle size of the carrier is preferably 10 to 100 nm. If it is such a range, even if it is a case where the said void
  • the value of the “average particle diameter of the carrier” is observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM) unless otherwise specified. The value calculated as the average value of the particle diameter of the particles shall be adopted.
  • the “particle diameter” means the maximum distance among the distances between any two points on the particle outline.
  • the catalyst has the pore distribution of micropores and mesopores (the surface area difference between micropores and mesopores) as described above, the above-described granular porous carrier is not necessarily used. There is no need to use.
  • examples of the carrier include a non-porous conductive carrier, a non-woven fabric made of carbon fibers constituting a gas diffusion layer, carbon paper, and carbon cloth.
  • the catalyst can be supported on these non-porous conductive carriers, or directly attached to a non-woven fabric made of carbon fibers, carbon paper, carbon cloth, etc. constituting the gas diffusion layer of the membrane electrode assembly. It is.
  • the catalytic metal that can be used in the present invention has a function of catalyzing an electrochemical reaction.
  • the catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner.
  • metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
  • the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy.
  • a catalytic metal can exhibit high activity.
  • the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
  • the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above.
  • the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both.
  • the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst metal are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • As the shape for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
  • the average particle diameter of the catalyst metal (catalyst metal particles) is not particularly limited, but is preferably 4.1 nm or more, more preferably 4.1 to 30 nm, and particularly preferably 4.1 to 10 nm. . If the average particle diameter of the catalyst metal is 4.1 nm or more, the activity and stability of the catalyst metal can be further improved.
  • the catalyst metal is supported relatively firmly in the mesopores, and the detachment of the catalyst metal under mechanical stress can be more effectively suppressed / prevented. Further, contact with the electrolyte in the catalyst layer is more effectively suppressed / prevented. Further, the micropores remain without being clogged with the catalyst metal, and the gas transport path can be secured better, and the gas transport resistance can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently.
  • the catalyst metal can be supported inside the mesopores of the support by a simple method, and the electrolyte coverage of the catalyst metal can be reduced.
  • the “average particle diameter of catalytic metal particles” in the present invention is examined by a crystallite diameter determined from a half-value width of a diffraction peak of a catalytic metal component in X-ray diffraction (XRD) or a transmission electron microscope (TEM). It can be measured as an average value of the particle diameter of the catalyst metal particles.
  • XRD X-ray diffraction
  • TEM transmission electron microscope
  • the “average particle diameter of the catalyst metal particles” is an average value of the particle diameters of the catalyst components examined from a transmission electron microscope image for a statistically significant number (for example, at least 203 samples).
  • the catalyst content (mg / cm 2 ) per unit catalyst application area is not particularly limited as long as sufficient catalyst dispersion and power generation performance can be obtained. For example, 0.01 to 1 mg / Cm 2 .
  • the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
  • the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
  • the lower limit is not particularly limited as long as power generation performance is obtained, and is, for example, 0.01 mg / cm 2 or more. More preferably, the platinum content is 0.02 to 0.4 mg / cm 2 .
  • the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
  • inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “catalyst (platinum) content per unit catalyst application area (mg / cm 2 )”.
  • ICP inductively coupled plasma emission spectroscopy
  • a person skilled in the art can easily carry out a method of making the desired “catalyst (platinum) content per unit catalyst coating area (mg / cm 2 )”, and control the slurry composition (catalyst concentration) and coating amount. You can adjust the amount.
  • the amount of the catalyst supported on the carrier (sometimes referred to as the loading ratio) is preferably 10 to 80% by weight, more preferably 20 to 70% by weight, based on the total amount of the catalyst carrier (that is, the carrier and the catalyst). % Is good. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
  • the method for producing the catalyst of the present invention is not particularly limited as long as it satisfies the above configurations (a) to (c).
  • a method of increasing the particle size of the catalyst metal by performing a heat treatment after depositing the catalyst metal on the surface of the catalyst carrier is preferable.
  • the heat treatment is performed after the precipitation to increase the particle shape of the catalyst metal. For this reason, a catalyst metal having a large particle diameter can be supported inside the pores (particularly mesopores) of the catalyst carrier.
  • the present invention includes (i) a step of depositing a catalyst metal on the surface of the catalyst support (precipitation step), and (ii) a step of performing a heat treatment after the deposition step to increase the particle size of the catalyst metal (heat treatment). And a process for producing the catalyst of the present invention.
  • this invention is not limited to the following form.
  • (I) Deposition step In this step, a catalyst metal is deposited on the surface of the catalyst carrier.
  • This step is a known method. For example, a method in which the catalyst support is immersed in a catalyst metal precursor solution and then reduced is preferably used.
  • the precursor of the catalyst metal is not particularly limited and is appropriately selected depending on the type of the catalyst metal used.
  • Specific examples include chlorides, nitrates, sulfates, chlorides, acetates and amine compounds of catalyst metals such as platinum. More specifically, platinum chloride (hexachloroplatinic acid hexahydrate), chlorides such as palladium chloride, rhodium chloride, ruthenium chloride, nitrates such as palladium nitrate, rhodium nitrate, iridium nitrate, palladium sulfate, rhodium sulfate, etc.
  • platinum chloride hexachloroplatinic acid hexahydrate
  • chlorides such as palladium chloride, rhodium chloride, ruthenium chloride, nitrates such as palladium nitrate, rhodium nitrate, iridium nitrate, palladium sulf
  • Preferred examples include acetates such as sulfates and rhodium acetate, and ammine compounds such as dinitrodiammine platinum nitrate and dinitrodiammine palladium.
  • the solvent used for the preparation of the catalyst metal precursor solution is not particularly limited as long as it can dissolve the catalyst metal precursor, and is appropriately selected depending on the type of the catalyst metal precursor used. Specifically, water, an acid, an alkali, an organic solvent, etc. are mentioned.
  • the concentration of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight in terms of metal. .
  • the reducing agent examples include hydrogen, hydrazine, sodium borohydride, sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, formaldehyde, methanol, ethanol, ethylene, carbon monoxide and the like. . Note that a gaseous substance at room temperature such as hydrogen can be supplied by bubbling.
  • the amount of the reducing agent is not particularly limited as long as the catalyst metal precursor can be reduced to the catalyst metal, and known amounts can be similarly applied.
  • the deposition conditions are not particularly limited as long as the catalyst metal can be deposited on the catalyst support.
  • the precipitation temperature is preferably near the boiling point of the solvent, more preferably from room temperature to 100 ° C.
  • the deposition time is preferably 1 to 10 hours, more preferably 2 to 8 hours. In addition, you may perform the said precipitation process, stirring and mixing if necessary.
  • the precursor of the catalyst metal is reduced to the catalyst metal, and the catalyst metal is deposited (supported) on the catalyst carrier.
  • Heat treatment step In this step, heat treatment is performed after the deposition step (i) to increase the particle size of the catalyst metal.
  • the heat treatment conditions are not particularly limited as long as the particle diameter of the catalyst metal can be increased.
  • the heat treatment temperature is preferably 300 to 1200 ° C., more preferably 500 to 1150 ° C., and particularly preferably 700 to 1000 ° C.
  • the heat treatment time is preferably 0.02 to 3 hours, more preferably 0.1 to 2 hours, and particularly preferably 0.2 to 1.5 hours. Note that the heat treatment step may be performed in a hydrogen atmosphere.
  • the catalyst metal to increase in particle size at the catalyst support (especially within the mesopores of the catalyst support). For this reason, it becomes difficult for catalyst metal particles to be detached from the system (from the catalyst carrier).
  • the presence of micropores near the surface of the catalyst carrier than the catalyst metal more effectively suppresses / prevents larger catalyst metal particles from detaching from the catalyst carrier even under mechanical stress. . Therefore, the catalyst can be used more effectively.
  • the catalyst of the present invention can reduce gas transport resistance and exhibit high catalytic activity, that is, promote catalytic reaction. Therefore, the catalyst of the present invention can be suitably used for an electrode catalyst layer for a fuel cell. That is, this invention also provides the electrode catalyst layer for fuel cells containing the catalyst and electrode catalyst of this invention. With this configuration, even when subjected to mechanical stress when the electrode catalyst layer is mixed with the electrolyte, the catalyst metal is effectively suppressed / prevented from detaching from the catalyst carrier to the outside of the system (particularly from the mesopores). The For this reason, the effective utilization factor of the catalyst in the catalyst layer can be improved. Moreover, since it becomes difficult for catalyst metals to aggregate regarding deterioration of a catalyst metal, the increase in a surface area is suppressed. For this reason, durability of a catalyst metal can be improved.
  • FIG. 4 is a schematic diagram showing the relationship between the catalyst and the electrolyte in the catalyst layer according to one embodiment of the present invention. Specifically, FIG. 4 is a schematic diagram showing the relationship between the catalyst and the electrolyte when the catalyst of FIG. 2 is mixed with the electrolyte.
  • FIG. 5 is a schematic diagram showing the relationship between the catalyst and the electrolyte in the catalyst layer according to another embodiment of the present invention. Specifically, FIG. 5 is a schematic diagram showing the relationship between the catalyst and the electrolyte when the catalyst of FIG. 3 is mixed with the electrolyte.
  • the catalyst is covered with the electrolyte 26.
  • the electrolyte 26 is in the mesopores 24 (and also in the micropores 25) of the catalyst (support 23). Does not invade.
  • the catalyst metal 22 on the surface of the carrier 23 is in contact with the electrolyte 26, but the catalyst metal 22 supported in the mesopores 24 is not in contact with the electrolyte 26.
  • the catalytic metal in the mesopores forms a three-phase interface between oxygen gas and water in a non-contact state with the electrolyte, thereby ensuring a reaction active area of the catalytic metal.
  • the catalyst of the present invention may be present in either the cathode catalyst layer or the anode catalyst layer, but is preferably used in the cathode catalyst layer. As described above, the catalyst of the present invention can effectively use the catalyst by forming a three-phase interface with water without contacting the electrolyte, but water is formed in the cathode catalyst layer. .
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of this embodiment preferably has an EW of 1500 g / eq.
  • the following polymer electrolyte is contained, More preferably, it is 1200 g / eq.
  • the following polymer electrolyte is included, and particularly preferably 1000 g / eq.
  • the following polymer electrolytes are included.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / eq”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow channel is 90% or less, that is, the polymer electrolyte having the lowest EW is 900 g / eq. The following is desirable. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the flow path length. It is desirable to use it in the range area.
  • the catalyst layer of this embodiment may include a liquid proton conductive material that can connect the catalyst and the polymer electrolyte in a proton conductive state between the catalyst and the polymer electrolyte.
  • a liquid proton conductive material By introducing a liquid proton conductive material, a proton transport path through the liquid proton conductive material is secured between the catalyst and the polymer electrolyte, and protons necessary for power generation are efficiently transported to the catalyst surface. Is possible. Thereby, since the utilization efficiency of a catalyst improves, it becomes possible to reduce the usage-amount of a catalyst, maintaining electric power generation performance.
  • the liquid proton conductive material only needs to be interposed between the catalyst and the polymer electrolyte, and the pores (secondary pores) between the porous carriers in the catalyst layer and the pores (micropores) in the porous carrier. Or mesopores: primary vacancies).
  • the liquid proton conductive material is not particularly limited as long as it has ion conductivity and can exhibit a function of forming a proton transport path between the catalyst and the polymer electrolyte.
  • Specific examples include water, protic ionic liquid, aqueous perchloric acid solution, aqueous nitric acid solution, aqueous formic acid solution, and aqueous acetic acid solution.
  • the liquid proton conductive material When water is used as the liquid proton conductive material, water as the liquid proton conductive material is introduced into the catalyst layer by moistening the catalyst layer with a small amount of liquid water or humidified gas before starting power generation. Can do. Moreover, the water produced by the electrochemical reaction during the operation of the fuel cell can be used as the liquid proton conductive material. Therefore, it is not always necessary to hold the liquid proton conductive material when the fuel cell is in operation.
  • the surface distance between the catalyst and the electrolyte is preferably 0.28 nm or more, which is the diameter of oxygen ions constituting water molecules.
  • water liquid proton conductive material
  • the polymer electrolyte liquid conductive material holding part
  • a material other than water such as an ionic liquid
  • An ionic liquid may be added when applying to the layer substrate.
  • the total area of the catalyst in contact with the polymer electrolyte is smaller than the total area of the catalyst exposed to the liquid conductive material holding part.
  • these areas are compared, for example, with the capacity of the electric double layer formed at the catalyst-polymer electrolyte interface and the catalyst-liquid proton conducting material interface in a state where the liquid conducting material holding portion is filled with the liquid proton conducting material.
  • This can be done by seeking a relationship.
  • the electric double layer capacity formed at the catalyst-electrolyte interface is the electric double layer capacity formed at the catalyst-liquid proton conducting material interface. If it is smaller, the contact area of the catalyst with the electrolyte is smaller than the area exposed to the liquid conductive material holding part.
  • the measurement method of the electric double layer capacity formed at the catalyst-electrolyte interface and the catalyst-liquid proton conducting material interface in other words, the contact area between the catalyst and electrolyte and between the catalyst and the liquid proton conducting material ( A method for determining the relationship between the contact area of the catalyst with the electrolyte and the exposed area of the liquid conductive material holding portion will be described.
  • Catalyst-Polymer electrolyte (CS) (2) Catalyst-Liquid proton conductive material (CL) (3) Porous carrier-polymer electrolyte (Cr-S) (4) Porous carrier-liquid proton conducting material (Cr-L)
  • CS Catalyst-Polymer electrolyte
  • CL Catalyst-Liquid proton conductive material
  • Cr-S Porous carrier-polymer electrolyte
  • Cr-L Porous carrier-liquid proton conducting material
  • Electric double layer capacitor since that is directly proportional to the area of the electrochemically active surface, Cdl C-S (catalytic - electric double layer capacity of the polymer electrolyte interface) and Cdl C-L (catalytic - What is necessary is just to obtain
  • the contribution of the four types of interfaces to the electric double layer capacity (Cdl) can be separated as follows.
  • the electric double layer capacity is measured under a high humidification condition such as 100% RH and a low humidification condition such as 10% RH or less.
  • examples of the measurement method of the electric double layer capacitance include cyclic voltammetry and electrochemical impedance spectroscopy. From these comparisons, it is possible to separate the contribution of the liquid proton conducting material (in this case “water”), that is, the above (2) and (4).
  • the catalyst when the catalyst is deactivated, for example, when Pt is used as the catalyst, the catalyst is deactivated by supplying CO gas to the electrode to be measured and adsorbing CO on the Pt surface.
  • the contribution to the multilayer capacity can be separated.
  • the electric double layer capacity under high and low humidification conditions is measured by the same method as described above, and the contribution of the catalyst, that is, the above (1) and (2) is separated from these comparisons. be able to.
  • the measured value (A) in the highly humidified state is the electric double layer capacity formed at all interfaces of the above (1) to (4)
  • the measured value (B) in the low humidified state is the above (1) and (3).
  • the measured value (C) in the catalyst deactivation / highly humidified state is the electric double layer capacity formed at the interface of the above (3) and (4)
  • the measured value (D) in the catalyst deactivated / lowly humidified state is the above. It becomes an electric double layer capacity formed at the interface of (3).
  • the difference between A and C is the electric double layer capacity formed at the interface of (1) and (2)
  • the difference between B and D is the electric double layer capacity formed at the interface of (1).
  • (AC)-(BD) the electric double layer capacity formed at the interface of (2) can be obtained.
  • the contact area of the catalyst with the polymer electrolyte and the exposed area of the conductive material holding part can be obtained by, for example, TEM (transmission electron microscope) tomography.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer.
  • the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • a carrier also referred to as “porous carrier” or “conductive porous carrier” in this specification
  • a carrier is prepared. Specifically, it may be produced as described in the method for producing the carrier.
  • a specific pore distribution (having micropores and mesopores, and the pore volume of the micropores is 0.3 cc / g or more and / or the mode radius of the pore distribution of the micropores is 0.1.
  • Voids having a size of 3 nm or more and less than 1 nm can be formed in the support.
  • the catalyst is supported on the porous carrier to obtain catalyst powder.
  • the catalyst can be supported on the porous carrier by a known method.
  • known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle (microemulsion method) can be used.
  • a catalyst ink containing catalyst powder, polymer electrolyte, and solvent is prepared.
  • the solvent is not particularly limited, and ordinary solvents used for forming the catalyst layer can be used in the same manner. Specifically, water such as tap water, pure water, ion exchange water, distilled water, cyclohexanol, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, etc. And lower alcohols having 1 to 4 carbon atoms, propylene glycol, benzene, toluene, xylene and the like. Besides these, butyl acetate alcohol, dimethyl ether, ethylene glycol, and the like may be used as a solvent. These solvents may be used alone or in the form of a mixture of two or more.
  • the amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte.
  • the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
  • additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent
  • these additives may be added to the catalyst ink.
  • the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention.
  • the amount of the additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
  • a catalyst ink is applied to the surface of the substrate.
  • the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
  • a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied.
  • the obtained laminate can be used for the production of the membrane electrode assembly as it is.
  • a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate.
  • PTFE polytetrafluoroethylene
  • the coating layer (film) of the catalyst ink is dried at room temperature to 150 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
  • a fuel cell membrane electrode assembly comprising the fuel cell electrode catalyst layer. That is, the solid polymer electrolyte membrane 2, the cathode catalyst layer disposed on one side of the electrolyte membrane, the anode catalyst layer disposed on the other side of the electrolyte membrane, the electrolyte membrane 2 and the anode catalyst layer.
  • a fuel cell membrane electrode assembly having 3a and a pair of gas diffusion layers (4a, 4c) sandwiching the cathode catalyst layer 3c.
  • at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
  • the cathode catalyst layer may be the catalyst layer of the embodiment described above.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • a fuel cell having the membrane electrode assembly of the above form there is provided a fuel cell having the membrane electrode assembly of the above form. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
  • the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
  • the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
  • the solid polymer electrolyte membrane 2 has a function of selectively permeating protons generated in the anode catalyst layer 3a during operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer has a carbon particle layer (microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent agent on the catalyst layer side of the substrate. You may have.
  • MPL microporous layer
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used.
  • a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or a microporous layer side (a microporous layer is attached to the gas diffusion layer).
  • two gas diffusion electrodes are prepared by applying a catalyst layer on one side of the base material layer in advance and drying, and hot pressing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane.
  • the application and joining conditions such as hot press are appropriately determined depending on the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type). Adjust it.
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • Example 1 Black peers (registered trademark) 2000 (manufactured by Cabot) (carrier A) was used as the carrier.
  • the carrier A is prepared by the method described in US Pat. No. 6,398,858.
  • the pore characteristics of the carrier A are as follows:
  • the pore volume, surface area and average pore radius of the micropores are 0.494 cc / g, 1042 m 2 / g and 0.47 nm, respectively;
  • the pore volume, surface area and average pore radius of the mesopores are 1.616 cc / g, 649 m 2 / g and 5 nm, respectively;
  • BET specific surface area is 1444 m 2 / g.
  • platinum (Pt) having an average particle diameter of 3.8 nm was supported on the carrier A so that the supporting rate was 30% by weight, and catalyst powder A was obtained. That is, 46 g of carrier A was immersed in 1000 g (platinum content: 46 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by weight, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A. The catalyst powder having a loading rate of 30% by weight was obtained by filtration and drying. Thereafter, in a hydrogen atmosphere, the temperature was maintained at 900 ° C. for 1 hour to obtain catalyst powder A.
  • the pore volume of micropores and mesopores before and after catalyst metal loading was measured.
  • the decrease value of the volume of the mesopores and micropores before and after loading exceeded 0, and the decrease value of the volume of the mesopores before and after loading was larger than the decrease value of the volume of the micropores before and after loading.
  • Example 2 In Example 1, a catalyst powder B was obtained in the same manner as in Example 1 except that platinum (Pt) having an average particle diameter of 3.9 nm was used as the catalyst metal.
  • platinum (Pt) having an average particle diameter of 3.9 nm was used as the catalyst metal.
  • the pore volume of micropores and mesopores before and after catalyst metal loading was measured. As a result, the decrease value of the volume of the mesopores and micropores before and after loading exceeded 0, and the decrease value of the volume of the mesopores before and after loading was larger than the decrease value of the volume of the micropores before and after loading.
  • Example 3 Using the carrier A prepared in Synthesis Example 1 above, a platinum-cobalt alloy having an average particle size of 4.1 nm as a catalyst metal was supported so as to have a support ratio of 30% by weight to obtain catalyst powder C. That is, a metal salt solution obtained by dissolving 5 g of carrier A in a predetermined amount of Pt dinitrodiamine nitric acid solution (Pt (NO 2 ) 2 (NH 3 ) 2 ) and cobalt chloride (CoCl 2 ⁇ 6H 2 O) in 100 mL of ion-exchanged water. And stirred with a magnetic stirrer.
  • Pt dinitrodiamine nitric acid solution Pt (NO 2 ) 2 (NH 3 ) 2
  • cobalt chloride CoCl 2 ⁇ 6H 2 O
  • Example 1 a comparative catalyst powder D was obtained in the same manner as in Example 1 except that platinum (Pt) having an average particle diameter of 2.7 nm was used as the catalyst metal.
  • Comparative Example 2 Comparative catalyst powder was obtained in the same manner as in Example 1 except that platinum (Pt) having an average particle diameter of 4.5 nm was used as the catalyst metal, and support B was used instead of support A. E was obtained.
  • Ketjen Black EC300J manufactured by Lion Corporation
  • the pore characteristics of the carrier B are as follows: The pore volume and surface area of the micropores are 0.286 cc / g and 475 m 2 / g, respectively; The pore volume, surface area and average pore radius of the mesopores are 0.637 cc / g, 489 m 2 / g and 2.6 nm, respectively; BET specific surface area is 796 m 2 / g.
  • the average pore radius of the carrier B could not be measured because the pore size distribution was disturbed.
  • Example 3 a comparative catalyst powder F was obtained in the same manner as in Example 3 except that the support C was used instead of the support A.
  • acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.
  • the pore characteristics of the carrier C are as follows: The pore volume and surface area of the micropores are 0.215 cc / g and 321 m 2 / g, respectively; The pore volume, surface area and average pore radius of the mesopores are respectively 0.757 cc / g, 538 m 2 / g and 2.8 nm; The BET specific surface area is 715 m 2 / g.
  • the average pore radius of the carrier C could not be measured because the pore size distribution was disturbed.
  • the carrier C is prepared by the method described in JP-A-2009-35598.
  • Table 1 summarizes the micropore pore volume, surface area and average pore radius, mesopore pore volume, surface area and average pore radius, and BET specific surface area of carriers A to C.
  • Nifion registered trademark
  • D2020, EW 1100 g / mol, manufactured by DuPont
  • Ketjen black (particle size: 30 to 60 nm) is used as a carrier, and platinum (Pt) with an average particle size of 2.5 nm is supported on the catalyst metal so that the loading ratio is 50% by weight as catalyst metal.
  • a normal propyl alcohol solution 50%) was added as a solvent so that the solid content (Pt +
  • a gasket manufactured by Teijin Dupont, Teonex, thickness: 25 ⁇ m (adhesive layer: 10 ⁇ m)
  • the catalyst ink was applied to a size of 5 cm ⁇ 2 cm by spray coating on the exposed portion of one side of the polymer electrolyte membrane.
  • the catalyst ink was dried by keeping the stage for spray coating at 60 ° C. for 1 minute, and an electrode catalyst layer was obtained.
  • the amount of platinum supported at this time is 0.15 mg / cm 2 .
  • spray coating and heat treatment were performed on the electrolyte membrane to form an anode catalyst layer, thereby obtaining a membrane electrode assembly (1) (MEA (1)) of this example.
  • Example 5 In Example 4, instead of the catalyst powder A, the same operation as in Example 4 was performed except that the catalyst powder B obtained in Example 2 was used, and the membrane electrode assembly (2) (MEA (2)) was made.
  • Example 6 In Example 4, instead of the catalyst powder A, the same operation as in Example 4 was performed except that the catalyst powder C obtained in Example 3 was used, and a membrane electrode assembly (3) (MEA (3)) was made.
  • MEA (3) membrane electrode assembly (3)
  • Comparative Example 4 In Example 4, the same operation as in Example 4 was performed except that the comparative catalyst powder D obtained in Comparative Example 1 was used instead of the catalyst powder A, and a comparative membrane electrode assembly (1) (Comparative MEA ( 1)) was produced.
  • Comparative Example 5 In Example 4, instead of the catalyst powder A, the same operation as in Example 4 was performed except that the comparative catalyst powder E obtained in Comparative Example 2 was used, and a comparative membrane electrode assembly (2) (Comparative MEA ( 2)) was produced.
  • Example 4 instead of the catalyst powder A, the same operation as in Example 4 was performed except that the comparative catalyst powder F obtained in Comparative Example 3 was used, and a comparative membrane electrode assembly (3) (Comparative MEA ( 3)) was produced.
  • FIG. 6 shows that MEA (1) to (2) using the catalyst of the present invention is superior in catalytic activity (oxygen reduction activity) as compared with comparative MEA (1) to (2).
  • FIG. 7 it was found that MEA (3) using the catalyst of the present invention was superior in catalytic activity (oxygen reduction activity) as compared with comparative MEA (3).
  • PEFC Polymer electrolyte fuel cell
  • Solid polymer electrolyte membrane 3 ... Catalyst layer, 3a ... anode catalyst layer, 3c ... cathode catalyst layer, 4a ... anode gas diffusion layer, 4c ... cathode gas diffusion layer, 5, ... Separator, 5a ... anode separator, 5c ... cathode separator, 6a ... anode gas flow path, 6c ... cathode gas flow path, 7: Refrigerant flow path, 10 ... Membrane electrode assembly (MEA), 20 ... Catalyst, 22 ... catalytic metal, 23 ... carrier, 24 ... Mesopores, 25 ... Micropores, 26. Electrolyte.
  • MEA Membrane electrode assembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

【課題】高い触媒活性を有する触媒を提供する。 【解決手段】触媒担体および前記触媒担体に担持される触媒金属からなる触媒であって、前記触媒担体は半径が1nm未満の空孔および半径1nm以上の空孔を有し、前記半径が1nm未満の空孔で形成される表面積は、前記半径1nm以上の空孔で形成される表面積以上であり、かつ前記触媒金属の平均粒子径が2.8nm以上であることを特徴とする触媒。

Description

触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
 本発明は、触媒、特に燃料電池(PEFC)に用いられる電極触媒、およびその製造方法ならびに当該触媒を用いる電極触媒層に関するものである。
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
 このような固体高分子形燃料電池には、一般的に、白金(Pt)やPt合金に代表される高価な金属触媒が用いられており、このような燃料電池の高価格要因となっている。このため、貴金属触媒の使用量を低減して、燃料電池の低コスト化が可能な技術の開発が求められている。
 例えば、特許文献1には、導電性担体に触媒金属粒子が担持される電極触媒において、触媒金属粒子の平均粒径が導電性担体の微細孔の平均孔径より大きい電極触媒が開示される。当該構成により、触媒粒子が担体の微細孔内に入り込まないようにし、三相界面に使用される触媒粒子の割合を向上して、高価な貴金属の利用効率を向上できることが記載される。
特開2007-250274号公報(米国特許出願公開第2009/0047559号明細書)
 しかしながら、特許文献1の触媒は、機械的ストレス下で触媒金属粒子が脱離して、投入した白金の一部が有効に使われず、触媒活性が低下するという問題があった。
 したがって、本発明は、上記事情を鑑みてなされたものであり、高い触媒活性を有する触媒を提供することを目的とする。
 本発明の他の目的は、発電性能に優れる電極触媒層、膜電極接合体及び燃料電池を提供することである。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、特定の空孔分布を有する触媒担体に特定サイズの触媒粒子を担持させることによって上記課題を解決することを見出し、本発明を完成するに到った。
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。 本発明の一実施形態に係る触媒の形状・構造を示す概略断面説明図である。 本発明の他の実施形態に係る触媒の形状・構造を示す概略断面説明図である。 本発明の一実施形態に係る触媒層における触媒および電解質の関係を示す模式図である。 本発明の他の実施形態に係る触媒層における触媒および電解質の関係を示す模式図である。 実施例4~5及び比較例4~5のMEAの酸素還元(ORR)活性を示すグラフである。 実施例6及び比較例6のMEAの酸素還元(ORR)活性を示すグラフである。
 本発明の触媒(本明細書中では、「電極触媒」とも称する)は、触媒担体および前記触媒担体に担持される触媒金属からなる。ここで、触媒は、下記構成(a)~(c)を満たす:
(a)前記触媒担体は半径が1nm未満の空孔(一次空孔)および半径1nm以上の空孔(一次空孔)を有する;
(b)前記半径が1nm未満の空孔で形成される表面積は、前記半径1nm以上の空孔で形成される表面積以上である;および
(c)前記触媒金属の平均粒子径が2.8nm以上である。
 上記構成を有する触媒によれば、触媒金属を比較的大きな空孔に収納し、かつ比較的小さい空孔が収納された触媒金属の機械的ストレス下での触媒金属の脱離を防止することができる。その結果、触媒の反応活性を向上できる。なお、本明細書中では、半径が1nm未満の空孔を「ミクロ孔」とも称する。また、本明細書中では、半径1nm以上の空孔を「メソ孔」とも称する。
 本発明者らは、上記特許文献1の触媒では、触媒金属粒子が導電性担体の外表面または微細孔の入り口に存在するため、電極(触媒層)製造過程で、せん断力や遠心力等の様々な機械的ストレスを受けると、触媒金属粒子が担体表面から脱離することを見出した。これに対して、本発明者らは、触媒担体のミクロ孔で形成される表面積をメソ孔で形成される表面積以上としかつ触媒金属の平均粒径を2.8nm以上とすることによって、機械的ストレス下であっても触媒金属の担体からの脱離を抑制、防止できることを見出した。上記効果が達成しうる理由は不明であるが、以下のように推測される。なお、本発明は、下記推測によって限定されない。すなわち、上記(b)によると、触媒担体の孔径が触媒金属の粒径よりも小さいミクロ孔が多く存在する。また、触媒金属の多くは、触媒担体表面ではなく、メソ孔内部に存在する。このため、触媒の輸送時や電極製造時など様々な機械的ストレス(例えば、せん断力や遠心力)を受けても、メソ孔内に存在する触媒金属は、系外に(触媒担体から)脱離しにくくなる。また、触媒金属より触媒担体表面付近に存在するミクロ孔は、サイズ(空孔半径)が触媒金属より有意に小さいため、上記機械的ストレス下での触媒金属の系外への(触媒担体からの)脱離をより効果的に抑制・防止する。ゆえに、触媒をより有効に利用できる。
 加えて、本発明者らは、触媒が電解質と接触しない場合であっても、ガス(例えば、酸素)及び水との三相界面を形成することによって触媒を有効に利用でき、むしろ接触させない方が有効利用できることを見出した。このため、上記(c)触媒金属を電解質が進入できないメソ孔内部に担持する構成をとることによって、触媒活性を向上できる。
 一方、触媒金属を電解質が進入できないメソ孔内部に担持する場合には、酸素等のガスの輸送距離が増大してガス輸送性が低下するため、十分な触媒活性を引き出せずに、高負荷条件では触媒性能が低下してしまう。これに対して、上記(b)ミクロ孔の空孔容積を十分確保することによって、メソ孔内の触媒に酸素等のガスを効率よく輸送できる、すなわち、ガス輸送抵抗を低減できる。ゆえに、当該構成により、ガス(例えば、酸素)がミクロ孔内を通過して(ガス輸送性が向上して)、ガスを効率よく、触媒と接触させることもできる。
 したがって、本発明によると、ミクロ孔が大容積で存在するため、触媒をより有効に活用することができる、すなわち、触媒活性を向上できる。また、本発明によると、メソ孔に存在する触媒金属の表面に反応ガスを当該ミクロ孔(パス)を介して輸送できるため、ガス輸送抵抗が小さい。ゆえに、本発明の触媒は、高い触媒活性を発揮できる、すなわち、触媒反応を促進できる。このため、本発明の触媒を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能に優れる。
 以下、適宜図面を参照しながら、本発明の触媒の一実施形態、並びにこれを使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態について、図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」及び「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 [燃料電池]
 燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本発明の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
 PEFC1において、MEA10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA10と接触している。これにより、MEA10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。
 以下、本発明の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。
 [触媒(電極触媒)]
 図2は、本発明の一実施形態に係る触媒の形状・構造を示す概略断面説明図である。図2に示されるように、本発明の触媒20は、触媒担体23および前記触媒担体23に担持される触媒金属22からなる。また、触媒20は、半径が1nm未満の空孔(ミクロ孔)25および半径1nm以上の空孔(メソ孔)24を有する。ここで、ミクロ孔25及びメソ孔24は、複数の担体23の集合により形成される。また、触媒金属22は、メソ孔24の内部に担持される。また、触媒金属22は、少なくとも一部がメソ孔24の内部に担持されていればよく、一部が担体23表面にされていてもよい。しかし、触媒層での電解質と触媒金属の接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。
 また、上記図2では、複数の担体23の集合により、触媒20にミクロ孔25及びメソ孔24が形成されるが、本発明は、上記形態に限定されない。例えば、図3に示されるように、一つの担体23中に所望のミクロ孔25及びメソ孔24が形成されていてもよい。
 本明細書において、「触媒金属がメソ孔の内部に担持される」ことは、担体への触媒金属の担持前後のメソ孔の容積の減少によって確認できる。詳細には、担体は、ミクロ孔およびメソ孔を有し、各空孔はそれぞれ一定の容積を有しているが、触媒金属がこれらの空孔に担持されると、各空孔の容積は減少する。したがって、触媒金属担持前の触媒(担体)のメソ孔の容積と触媒金属担持後の触媒(担体)のメソ孔の容積の差[=(担持前の容積)-(担持後の容積)]が0を超える場合には、「触媒金属がメソ孔の内部に担持される」こととなる。同様にして、触媒金属担持前の触媒(担体)のミクロ孔の容積と触媒金属担持後の触媒(担体)のミクロ孔の容積の差[=(担持前の容積)-(担持後の容積)]が0を超える場合には、「触媒金属がミクロ孔の内部に担持される」こととなる。好ましくは、触媒金属が、ミクロ孔よりメソ孔に多く担持される(即ち、担持前後のメソ孔の容積の減少値>担持前後のミクロ孔の容積の減少値)。これにより、ガス輸送抵抗を低減し、ガス輸送のためのパスを十分確保できるからである。ガス輸送抵抗の低減、ガス輸送のためのパスの確保などを考慮すると、上記触媒金属担持前後のメソ孔の空孔容積の減少値が0.02cc/g以上であることが好ましく、0.02~0.21cc/gであることがより好ましい。
 触媒担体は、半径が1nm未満の空孔(ミクロ孔)で形成される表面積が、前記半径1nm以上の空孔(メソ孔)で形成される表面積以上(即ち、ミクロ孔で形成される表面積≧メソ孔で形成される表面積)である関係を満たす。このようにミクロ孔が多く存在することにより、触媒の輸送時や電極製造時など様々な機械的ストレス(例えば、せん断力や遠心力)を受けても、メソ孔内に存在する触媒金属が系外に(触媒担体から)脱離するのを抑制・防止する。ここで、ミクロ孔で形成される表面積とメソ孔で形成される表面積との差[=(ミクロ孔で形成される表面積)-(メソ孔で形成される表面積)]は、特に制限されないが、好ましくは50~2000m/g担体であり、より好ましくは200~2000m/g担体である。このような表面積差があれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ミクロ孔の空孔容積を十分確保できるため、ガスの輸送パスを十分確保できる。ゆえに、メソ孔内の触媒金属に酸素等のガスを効率よく輸送できる、すなわち、ガス輸送抵抗を低減できる。
 触媒担体の空孔分布は、上記ミクロ孔及びメソ孔で形成される表面積の関係を満たすものであれば特に制限されない。
 例えば、半径が1nm未満の空孔(ミクロ孔)で形成される表面積[担体1gあたりの担体のミクロ孔の表面積(m/g担体)]は、特に制限されないが、200~2500m/g担体であることが好ましい。より好ましくは、ミクロ孔で形成される表面積は、500~2500m/g担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明の触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、ミクロ孔内には電解質(アイオノマ)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。なお、本明細書では、半径が1nm未満の空孔(ミクロ孔)で形成される表面積を単に「ミクロ孔による表面積」とも称する。
 また、半径1nm以上の空孔(メソ孔)で形成される表面積[担体1gあたりの担体のメソ孔の表面積(m/g担体)]は、ミクロ孔で形成される表面積以下であれば特に制限されない。メソ孔で形成される表面積は、150~1000m/g担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。なお、本明細書では、半径が1nm以上の空孔(メソ孔)で形成される表面積を単に「メソ孔による表面積」とも称する。
 触媒担体の半径1nm未満の空孔(ミクロ孔)の空孔容積は、特に制限されないが、0.1cc/g担体以上であることが好ましい。より好ましくは、ミクロ孔の空孔容積は、0.3~3cc/g担体であり、0.4~2cc/g担体であることが特に好ましい。このような空孔容積であれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明の触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、ミクロ孔内には電解質(アイオノマ)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。なお、本明細書では、半径1nm未満の空孔の空孔容積を単に「ミクロ孔の空孔容積」とも称する。
 また、触媒担体の半径1nm以上の空孔(メソ孔)の空孔容積は、特に制限されないが、0.4cc/g担体以上、より好ましくは0.4~3cc/g担体であり、特に好ましくは0.4~2cc/g担体であることが好ましい。空孔容積が上記したような範囲にあれば、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。なお、本明細書では、半径1nm以上の空孔の空孔容積を単に「メソ孔の空孔容積」とも称する。
 触媒担体のBET比表面積[担体1gあたりの触媒のBET比表面積(m/g担体)]は、特に制限されないが、1000m/g担体以上、より好ましくは1000~3000m/g担体であり、特に好ましくは1100~1800m/g担体であることが好ましい。なお、触媒担体の空孔は、ミクロ孔及びメソ孔のみから構成されることが好ましい。この場合には、触媒担体のBET比表面積は、ミクロ孔及びメソ孔で形成される表面積の和となる。上記したような比表面積であれば、十分なメソ孔及びミクロ孔を確保できるため、ガス輸送を行うのに十分なミクロ孔(より低いガス輸送抵抗)を確保しつつ、メソ孔により多くの触媒金属を格納(担持)できる。また、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのミクロ孔及びメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。また、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著な形成して、触媒活性をより向上できる。
 なお、本明細書において、「表面積(m/g担体)」および「BET比表面積(m/g担体)」は、窒素吸着法により測定される。詳細には、試料(触媒粉末または触媒担体) 約0.04~0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、島津製作所株式会社製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全重量から、同面積のテフロン(登録商標)(基材)重量を差し引いた塗布層の正味の重量約0.03~0.04gを試料重量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片から表面積及びBET比表面積を算出する。
Figure JPOXMLDOC01-appb-C000001
 「ミクロ孔の空孔の半径(nm)」は、窒素吸着法(MP法)により測定される空孔の半径を意味する。また、「ミクロ孔の空孔分布のモード半径(nm)」は、窒素吸着法(MP法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、ミクロ孔の空孔半径の下限は、窒素吸着法により測定可能な下限値、すなわち、0.42nm以上である。同様にして、「メソ孔の空孔の半径(nm)」は、窒素吸着法(DH法)により測定される空孔の半径を意味する。また、「メソ孔の空孔分布のモード半径(nm)」は、窒素吸着法(DH法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、メソ孔の空孔半径の上限は、特に制限されないが、10nm以下であり、好ましくは5nm以下である。
 「ミクロ孔の空孔容積」は、触媒に存在する半径1nm未満のミクロ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「ミクロ孔の空孔容積(cc/g担体)」は、窒素吸着法(MP法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。同様にして、「メソ孔の空孔容積」は、触媒に存在する半径1nm以上のメソ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「メソ孔の空孔容積(cc/g担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。
 「微分細孔分布」とは、細孔径を横軸に、触媒中のその細孔径に相当する細孔容積を縦軸にプロットした分布曲線である。すなわち、窒素吸着法(ミクロ孔の場合にはMP法;メソ孔の場合にはDH法)により得られる触媒の空孔容積をVとし、空孔直径をDとした際の、差分空孔容積dVを空孔直径の対数差分d(logD)で割った値(dV/d(logD))を求める。そして、このdV/d(logD)を各区分の平均空孔直径に対してプロットすることにより微分細孔分布曲線が得られる。差分空孔容積dVとは、測定ポイント間の空孔容積の増加分をいう。
 ここで、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積の測定方法は、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)、「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、R. Sh. Mikhail, S. Brunauer, E. E. Bodor  J.Colloid Interface Sci.,26, 45(1968)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積は、R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci.,26, 45(1968)に記載される方法によって、測定された値である。
 また、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積の測定方法もまた、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)や「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積は、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964) に記載される方法によって、測定された値である。
 上記したような特定の空孔分布を有する触媒の製造方法は、特に制限されないが、通常、担体の空孔分布(ミクロ孔及びメソ孔)を上記したような空孔分布とすることが重要である。具体的には、図2に記載されるようなミクロ孔及びメソ孔を有し、かつミクロ孔及びメソ孔で形成される表面積の関係を上記のように満たす担体の製造方法としては、米国第6,398,858号公報などの公報に記載される方法が好ましく使用される。また、図3に記載されるようなミクロ孔及びメソ孔を有し、かつミクロ孔及びメソ孔で形成される表面積の関係を上記のように満たす担体の製造方法としては、国際公開第2009/075264号パンフレット(米国特許出願公開第2011/058308号明細書)などの公報に記載される方法が好ましく使用される。
 担体の材質は、上述した空孔容積またはモード径を有する空孔(一次空孔)を担体の内部に形成することができ、かつ、触媒成分をメソ孔内部に分散状態で担持させるのに充分な比表面積と充分な電子伝導性とを有するものであれば特に制限されない。好ましくは、主成分がカーボンである。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラック、など)、活性炭などからなるカーボン粒子が挙げられる。「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2~3重量%程度以下の不純物の混入が許容されうることを意味する。
 より好ましくは、担体内部に所望の空孔領域を形成し易いことから、カーボンブラックを使用することが望ましく、特に好ましくは、Black Pearls(登録商標) 2000を使用する。
 上記カーボン材料の他、Sn(錫)やTi(チタン)などの多孔質金属、さらには導電性金属酸化物なども担体として使用可能である。
 担体の平均一次粒径は10~100nmであることが好ましい。かような範囲であれば、担体に上記空孔構造を設けた場合であっても機械的強度が維持され、かつ、触媒層を適切な範囲で制御することができる。「担体の平均粒径」の値としては、特に言及のない限り、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。また、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味するものとする。
 なお、本発明においては、触媒内に上記したようなミクロ孔及びメソ孔の空孔分布(ミクロ孔及びメソ孔の表面積差)を有するものである限り、必ずしも上記したような粒状の多孔質担体を用いる必要はない。
 すなわち、担体として、非多孔質の導電性担体やガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなども挙げられる。このとき、触媒をこれら非多孔質の導電性担体に担持したり、膜電極接合体のガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなどに直接付着させたりすることも可能である。
 本発明で使用できる触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
 触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。この際、触媒金属(触媒金属粒子)の平均粒径は、特に制限されないが、4.1nm以上、より好ましくは4.1~30nm以下、特に好ましくは4.1~10nm以下であることが好ましい。触媒金属の平均粒径が4.1nm以上であれば、触媒金属の活性及び安定性をより向上できる。また、触媒金属がメソ孔内に比較的強固に担持され、機械的ストレス下での触媒金属の脱離をより有効に抑制・防止できる。また、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、ミクロ孔が触媒金属で塞がれずに残存し、ガスの輸送パスがより良好に確保されて、ガス輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、担体のメソ孔内部に触媒金属を簡便な方法で担持することができ、触媒金属の電解質被覆率を低減することができる。なお、本発明における「触媒金属粒子の平均粒径」は、X線回折(XRD)における触媒金属成分の回折ピークの半値幅より求められる結晶子径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子径の平均値として測定されうる。本明細書では、「触媒金属粒子の平均粒径」は、統計上有意な数(例えば、少なくとも203個)のサンプルについて透過型電子顕微鏡像より調べられる触媒成分の粒子径の平均値である。
 本形態において、単位触媒塗布面積当たりの触媒含有量(mg/cm)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、0.01~1mg/cmである。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されず、例えば、0.01mg/cm以上である。より好ましくは、当該白金含有量は0.02~0.4mg/cmである。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。
 なお、本明細書において、「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒(白金)含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。
 また、担体における触媒の担持量(担持率とも称する場合がある)は、触媒担持体(つまり、担体および触媒)の全量に対して、好ましくは10~80重量%、より好ましくは20~70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。
 [触媒の製造方法]
 本発明の触媒の製造方法は、上記(a)~(c)の構成を満たすものであれば特に制限されない。好ましくは、触媒担体の表面に触媒金属を析出させた後、熱処理を行い、触媒金属の粒径を増大させる方法が好ましい。上記方法は、析出後に熱処理を施して触媒金属の粒形を増大させる。このため、触媒担体の空孔(特にメソ孔)内部に粒子径の大きな触媒金属を担持することができる。すなわち、本発明は、(i)触媒担体の表面に触媒金属を析出させる工程(析出工程)、および(ii)前記析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる工程(熱処理工程)を含む本発明の触媒の製造方法をも提供する。以下、上記方法を説明するが、本発明は、下記形態に限定されない。
 (i)析出工程
 本工程では、触媒担体の表面に触媒金属を析出させる。本工程は、既知の方法であり、例えば、触媒金属の前駆体溶液に、触媒担体を浸漬した後、還元する方法が好ましく使用される。
 ここで、触媒金属の前駆体としては、特に制限されず、使用される触媒金属の種類によって適宜選択される。具体的には、上記白金等の触媒金属の塩化物、硝酸塩、硫酸塩、塩化物、酢酸塩およびアミン化合物などが例示できる。より具体的には、塩化白金(ヘキサクロロ白金酸六水和物)、塩化パラジウム、塩化ロジウム、塩化ルテニウムなどの塩化物、硝酸パラジウム、硝酸ロジウム、硝酸イリジウムなどの硝酸塩、硫酸パラジウム、硫酸ロジウムなどの硫酸塩、酢酸ロジウムなどの酢酸塩、ジニトロジアンミン白金硝酸、ジニトロジアンミンパラジウムなどのアンミン化合物などが好ましく、例示される。また、触媒金属の前駆体溶液の調製に使用される溶媒は、触媒金属の前駆体を溶解できるものであれば特に制限されず、使用される触媒金属の前駆体の種類によって適宜選択される。具体的には、水、酸、アルカリ、有機溶媒などが挙げられる。触媒金属の前駆体溶液中の触媒金属の前駆体の濃度は、特に制限されないが、金属換算で0.1~50重量%であることが好ましく、より好ましくは0.5~20重量%である。触媒金属の前駆体溶液に触媒担体を浸漬する際は、担体内部まで溶液が浸漬されやすいように減圧処理を行うことが好ましい。
 還元剤としては、水素、ヒドラジン、ホウ素化水素ナトリウム、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L-アスコルビン酸、水素化ホウ素ナトリウム、ホルムアルデヒド、メタノール、エタノール、エチレン、一酸化炭素等が挙げられる。なお、水素などの常温でガス状の物質は、バブリングで供給することもできる。還元剤の量は、上記触媒金属の前駆体を触媒金属に還元できる量であれば特に制限されず、公知の量を同様にして適用できる。
 析出条件は、触媒金属が触媒担体に析出できる条件であれば特に制限されない。例えば、析出温度は、溶媒の沸点付近の温度、より好ましくは室温~100℃であることが好ましい。また、析出時間は、1~10時間、より好ましくは2~8時間であることが好ましい。なお、上記析出工程は、必要であれば、撹拌・混合しながら行ってもよい。
 これにより、触媒金属の前駆体が触媒金属に還元されて、触媒金属が触媒担体に析出(担持)する。
 (ii)熱処理工程
 本工程では、上記(i)析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる。
 熱処理条件は、触媒金属の粒径が増大できる条件であれば特に制限されない。例えば、熱処理温度は、300~1200℃、より好ましくは500~1150℃、特に好ましくは700~1000℃であることが好ましい。また、熱処理時間は、0.02~3時間、より好ましくは0.1~2時間、特に好ましくは0.2~1.5時間であることが好ましい。なお、熱処理工程は、水素雰囲気で行われてもよい。
 これにより、触媒金属は、触媒担体で(特に触媒担体のメソ孔内で)粒径を増大させる。このため、触媒金属粒子は、系外に(触媒担体から)脱離しにくくなる。また、触媒金属より触媒担体表面付近に存在するミクロ孔が存在することにより、機械的ストレス下であってもより大きな触媒金属粒子が触媒担体から脱離することをより効果的に抑制・防止する。ゆえに、触媒をより有効に利用できる。
 [触媒層]
 上述したように、本発明の触媒は、ガス輸送抵抗を低減し、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。したがって、本発明の触媒は、燃料電池用の電極触媒層に好適に使用できる。すなわち、本発明は、本発明の触媒および電極触媒を含む、燃料電池用電極触媒層をも提供する。当該構成により、電解質と混ぜて電極触媒層を作製する際の機械的ストレスを受けても、触媒金属が触媒担体から系外に(特にメソ孔から)脱離するのが有効に抑制・防止される。このため、触媒層での触媒の有効利用率を向上できる。また、触媒金属の劣化に関し、触媒金属同士が凝集しにくくなるため、表面積の増大が抑制される。このため触媒金属の耐久性を向上できる。
 図4は、本発明の一実施形態に係る触媒層における触媒および電解質の関係を示す模式図である。詳細には、図4は、図2の触媒を電解質と混合した場合の触媒および電解質の関係を示す模式図である。また、図5は、本発明の他の実施形態に係る触媒層における触媒および電解質の関係を示す模式図である。詳細には、図5は、図3の触媒を電解質と混合した場合の触媒および電解質の関係を示す模式図である。
 図4及び5に示されるように、本発明の触媒層内では、触媒は電解質26で被覆されているが、電解質26は、触媒(担体23)のメソ孔24(さらにはミクロ孔25)内には侵入しない。このため、担体23表面の触媒金属22は電解質26と接触するが、メソ孔24内部に担持された触媒金属22は電解質26と非接触状態である。メソ孔内の触媒金属が、電解質と非接触状態で酸素ガスと水との三相界面を形成することにより、触媒金属の反応活性面積を確保できる。
 本発明の触媒は、カソード触媒層またはアノード触媒層のいずれに存在してもいてもよいが、カソード触媒層で使用されることが好ましい。上述したように、本発明の触媒は、電解質と接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。
 電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/eq.以下の高分子電解質を含み、より好ましくは1200g/eq.以下の高分子電解質を含み、特に好ましくは1000g/eq.以下の高分子電解質を含む。
 一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600g/eq.以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/eq」の単位で表される。
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/eq.以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
 さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
 本形態の触媒層は、触媒と高分子電解質との間に、触媒と高分子電解質とをプロトン伝導可能な状態に連結しうる液体プロトン伝導材を含んでもよい。液体プロトン伝導材が導入されることによって、触媒と高分子電解質との間に、液体プロトン伝導材を介したプロトン輸送経路が確保され、発電に必要なプロトンを効率的に触媒表面へ輸送することが可能となる。これにより、触媒の利用効率が向上するため、発電性能を維持しながら触媒の使用量を低減することが可能となる。この液体プロトン伝導材は触媒と高分子電解質との間に介在していればよく、触媒層内の多孔質担体間の空孔(二次空孔)や多孔質担体内の空孔(ミクロ孔またはメソ孔:一次空孔)内に配置されうる。
 液体プロトン伝導材としては、イオン伝導性を有し、触媒と高分子電解質と間のプロトン輸送経路を形成する機能を発揮しうる限り、特に限定されることはない。具体的には水、プロトン性イオン液体、過塩素酸水溶液、硝酸水溶液、ギ酸水溶液、酢酸水溶液などを挙げることができる。
 液体プロトン伝導材として水を使用する場合には、発電を開始する前に少量の液水か加湿ガスにより触媒層を湿らせることによって、触媒層内に液体プロトン伝導材としての水を導入することができる。また、燃料電池の作動時における電気化学反応によって生じた生成水を液体プロトン伝導材として利用することもできる。したがって、燃料電池の運転開始の状態においては、必ずしも液体プロトン伝導材が保持されている必要はない。例えば、触媒と電解質との表面距離を、水分子を構成する酸素イオン径である0.28nm以上とすることが望ましい。このような距離を保持することによって、触媒と高分子電解質との非接触状態を保持しながら、触媒と高分子電解質の間(液体伝導材保持部)に水(液体プロトン伝導材)を介入させることができ、両者間の水によるプロトン輸送経路が確保されることになる。
 イオン性液体など、水以外のものを液体プロトン伝導材として使用する場合には、触媒インク作製時に、イオン性液体と高分子電解質と触媒とを溶液中に分散させることが望ましいが、触媒を触媒層基材に塗布する際にイオン性液体を添加してもよい。
 本発明の触媒では、触媒の高分子電解質と接触している総面積が、この触媒が液体伝導材保持部に露出している総面積よりも小さいものとなっている。
 これら面積の比較は、例えば、上記液体伝導材保持部に液体プロトン伝導材を満たした状態で、触媒-高分子電解質界面と触媒-液体プロトン伝導材界面に形成される電気二重層の容量の大小関係を求めることによって行うことができる。すなわち、電気二重層容量は、電気化学的に有効な界面の面積に比例するため、触媒-電解質界面に形成される電気二重層容量が触媒-液体プロトン伝導材界面に形成される電気二重層容量より小さければ、触媒の電解質との接触面積が液体伝導材保持部への露出面積よりも小さいことになる。
 ここで、触媒-電解質界面、触媒-液体プロトン伝導材界面にそれぞれ形成される電気二重層容量の測定方法、言い換えると、触媒-電解質間及び触媒-液体プロトン伝導材間の接触面積の大小関係(触媒の電解質との接触面積と液体伝導材保持部への露出面積の大小関係の判定方法)について説明する。
 すなわち、本形態の触媒層においては、
 (1)触媒-高分子電解質(C-S)
 (2)触媒-液体プロトン伝導材(C-L)
 (3)多孔質担体-高分子電解質(Cr-S)
 (4)多孔質担体-液体プロトン伝導材(Cr-L)
の4種の界面が電気二重層容量(Cdl)として寄与し得る。
 電気二重層容量は、上記したように、電気化学的に有効な界面の面積に正比例するため、CdlC-S(触媒-高分子電解質界面の電気二重層容量)及びCdlC-L(触媒-液体プロトン伝導材界面の電気二重層容量)を求めればよい。そして、電気二重層容量(Cdl)に対する上記4種の界面の寄与については、以下のようにして分離することができる。
 まず、例えば100%RHのような高加湿条件、及び10%RH以下のような低加湿条件下において、電気二重層容量をそれぞれ計測する。なお、電気二重層容量の計測手法としては、サイクリックボルタンメトリーや電気化学インピーダンス分光法などを挙げることができる。これらの比較から、液体プロトン伝導材(この場合は「水」)の寄与、すなわち、上記(2)及び(4)を分離することができる。
 さらに触媒を失活させること、例えば、Ptを触媒として用いた場合には、測定対象の電極にCOガスを供給してCOをPt表面上に吸着させることによる触媒の失活によって、その電気二重層容量への寄与を分離することができる。このような状態で、前述のように高加湿及び低加湿条件における電気二重層容量を同様の手法で計測し、これらの比較から、触媒の寄与、つまり上記(1)及び(2)を分離することができる。
 以上により、上記(1)~(4)全ての寄与を分離することができ、触媒と高分子電解質及び液体プロトン伝導材両界面に形成される電気二重層容量を求めることができる。
 すなわち、高加湿状態における測定値(A)が上記(1)~(4)の全界面に形成される電気二重層容量、低加湿状態における測定値(B)が上記(1)及び(3)の界面に形成される電気二重層容量になる。また、触媒失活・高加湿状態における測定値(C)が上記(3)及び(4)の界面に形成される電気二重層容量、触媒失活・低加湿状態における測定値(D)が上記(3)の界面に形成される電気二重層容量になる。
 したがって、AとCの差が(1)及び(2)の界面に形成される電気二重層容量、BとDの差が(1)の界面に形成される電気二重層容量ということになる。そして、これら値の差、(A-C)-(B-D)を算出すれば、(2)の界面に形成される電気二重層容量を求めることができる。なお、触媒の高分子電解質との接触面積や、伝導材保持部への露出面積については、上記の他には、例えば、TEM(透過型電子顕微鏡)トモグラフィなどによっても求めることができる。
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
 触媒層の(乾燥膜厚)厚みは、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記厚みは、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層及びアノード触媒層の厚みは、同じであってもあるいは異なってもよい。
 (触媒層の製造方法)
 以下、触媒層を製造するための好ましい実施形態を記載するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
 まず、担体(本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備する。具体的には、上記担体の製造方法で説明したように、作製すればよい。これにより、特定の空孔分布(ミクロ孔及びメソ孔を有し、かつミクロ孔の空孔容積が0.3cc/g担体以上であるおよび/またはミクロ孔の空孔分布のモード半径が0.3nm以上1nm未満である)を有する空孔が担体内に形成できる。
 次いで、多孔質担体に触媒を担持させて、触媒粉末とする。多孔質担体への触媒の担持は公知の方法で行うことができる。例えば、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。
 続いて、触媒粉末、高分子電解質、および溶剤を含む触媒インクを作製する。溶剤としては、特に制限されず、触媒層を形成するのに使用される通常の溶媒が同様にして使用できる。具体的には、水道水、純水、イオン交換水、蒸留水等の水、シクロヘキサノール、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、及びtert-ブタノール等の炭素数1~4の低級アルコール、プロピレングリコール、ベンゼン、トルエン、キシレンなどが挙げられる。これらの他にも、酢酸ブチルアルコール、ジメチルエーテル、エチレングリコール、などが溶媒として用いられてもよい。これらの溶剤は、1種を単独で使用してもあるいは2種以上の混合液の状態で使用してもよい。
 触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。
 なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5~20重量%である。
 次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
 この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。
 最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温~150℃で、1~60分間、乾燥する。これにより、触媒層が形成される。
 (膜電極接合体)
 本発明のさらなる実施形態によれば、上記燃料電池用電極触媒層を含む、燃料電池用膜電極接合体が提供される。すなわち、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3a及び前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。
 ただし、プロトン伝導性の向上および反応ガス(特にO)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
 本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。
 以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC1の構成要素について説明する。ただし、本発明は触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。
 (電解質膜)
 電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。
 (ガス拡散層)
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 (膜電極接合体の製造方法)
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層の微多孔質層側(微多孔質層を含まない場合には、基材層の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パ-フルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
 (セパレータ)
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
 上述したPEFCや膜電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れる。
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 実施例1
 本実施例では、担体として、Black pearls(登録商標) 2000(Cabot社製)(担体A)を使用した。なお、当該担体Aは、米国特許第6,398,858号に記載の方法によって調製される。
 また、担体Aの空孔特性は、下記のとおりである:
 ミクロ孔の空孔容積、表面積及び平均空孔半径が、それぞれ、0.494cc/g、1042m/g及び0.47nm;
 メソ孔の空孔容積、表面積及び平均空孔半径が、それぞれ、1.616cc/g、649m/g及び5nm;
 BET比表面積が、1444m/g。
 上記担体Aを用い、これに触媒金属として平均粒径3.8nmの白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6重量%のジニトロジアンミン白金硝酸溶液を1000g(白金含有量:46g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させた。そして、濾過、乾燥することにより、担持率が30重量%の触媒粉末を得た。その後、水素雰囲気において、温度900℃に1時間保持し、触媒粉末Aを得た。なお、触媒粉末Aについて、触媒金属担持前後のミクロ孔及びメソ孔の空孔容積を測定した。その結果、担持前後のメソ孔及びミクロ孔の容積の減少値は0を超え、かつ担持前後のメソ孔の容積の減少値が担持前後のミクロ孔の容積の減少値より大きかった。
 実施例2
 実施例1において、触媒金属として平均粒径3.9nmの白金(Pt)を使用した以外は、実施例1と同様の操作を行い、触媒粉末Bを得た。なお、触媒粉末Bについて、触媒金属担持前後のミクロ孔及びメソ孔の空孔容積を測定した。その結果、担持前後のメソ孔及びミクロ孔の容積の減少値は0を超え、かつ担持前後のメソ孔の容積の減少値が担持前後のミクロ孔の容積の減少値より大きかった。
 実施例3
 上記合成例1で作製した担体Aを用い、これに触媒金属として平均粒径4.1nmの白金-コバルト合金を担持率が30重量%となるように担持させて、触媒粉末Cを得た。すなわち、担体A5gを、所定量のPtジニトロジアミン硝酸溶液(Pt(NO(NH)及び塩化コバルト(CoCl・6HO)をイオン交換水100mLに溶解させた金属塩溶液に浸漬し、マグネティックスターラーにて攪拌した。次に、この溶液に濃度1重量%の水素化ホウ素ナトリウム(SBH)溶液500mLを滴下・攪拌して還元処理し、担体Aに白金及びコバルトを担持した。その後、白金及びコバルトを担持した担体Aを、ろ過・洗浄・乾燥し、水素気流下900℃にて30分間、熱処理することによって合金化させた。なお、触媒粉末Cについて、触媒金属担持前後のミクロ孔及びメソ孔の空孔容積を測定した。その結果、担持前後のメソ孔及びミクロ孔の容積の減少値は0を超え、かつ担持前後のメソ孔の容積の減少値が担持前後のミクロ孔の容積の減少値より大きかった。
 比較例1
 実施例1において、触媒金属として平均粒径2.7nmの白金(Pt)を使用した以外は、実施例1と同様の操作を行い、比較触媒粉末Dを得た。
 比較例2
 実施例1において、触媒金属として平均粒径4.5nmの白金(Pt)を使用し、担体Aの代わりに、担体Bを使用した以外は、実施例1と同様の操作を行い、比較触媒粉末Eを得た。なお、担体Bとして、ケッチェンブラックEC300J(ライオン株式会社製)を使用し、担体Bの空孔特性は、下記のとおりである:
 ミクロ孔の空孔容積及び表面積が、それぞれ、0.286cc/g及び475m/g;
 メソ孔の空孔容積、表面積及び平均空孔半径がそれぞれ0.637cc/g、489m/g及び2.6nm;
 BET比表面積が、796m/g。ここで、担体Bの平均空孔半径は、空孔径分布が乱れていたため、測定できなかった。
 比較例3
 実施例3において、担体Aの代わりに、担体Cを使用した以外は、実施例3と同様の操作を行い、比較触媒粉末Fを得た。なお、担体Cとして、アセチレンブラック(電気化学工業社製)を使用し、担体Cの空孔特性は、下記のとおりである:
 ミクロ孔の空孔容積及び表面積が、それぞれ、0.215cc/g及び321m/g;
 メソ孔の空孔容積、表面積及び平均空孔半径が、それぞれ、0.757cc/g、538m/g及び2.8nm;
 BET比表面積は、715m/g。ここで、担体Cの平均空孔半径は、空孔径分布が乱れていたため、測定できなかった。
 また、担体Cは、特開2009-35598号公報に記載の方法によって調製される。
 下記表1に、担体A~Cのミクロ孔の空孔容積、表面積及び平均空孔半径、メソ孔の空孔容積、表面積及び平均空孔半径、ならびにBET比表面積を要約する。
Figure JPOXMLDOC01-appb-T000002
 実施例4
 実施例1で作製した触媒粉末Aと、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマーの重量比が0.9となるよう混合した。さらに、溶媒としてノルマルプロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマー)が7重量%となるよう添加して、カソード触媒インクを調製した。
 担体として、ケッチェンブラック(粒径:30~60nm)を用い、これに触媒金属として平均粒径2.5nmの白金(Pt)を担持率が50重量%となるように担持させて、触媒粉末を得た。この触媒粉末と、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1100g/mol、DuPont社製)とをカーボン担体とアイオノマーの重量比が0.9となるよう混合した。さらに、溶媒としてノルマルプロピルアルコール溶液(50%)を固形分率(Pt+カーボン担体+アイオノマー)が7%となるよう添加して、アノード触媒インクを調製した。
 次に、高分子電解質膜(Dupont社製、NAFION NR211、厚み:25μm)の両面の周囲にガスケット(帝人Dupont社製、テオネックス、厚み:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の片面の露出部に触媒インクをスプレー塗布法により、5cm×2cmのサイズに塗布した。スプレー塗布を行うステージを60℃に1分間保つことで触媒インクを乾燥し、電極触媒層を得た。このときの白金担持量は0.15mg/cmである。次に、カソード触媒層と同様に電解質膜上にスプレー塗布および熱処理を行うことでアノード触媒層を形成し、本例の膜電極接合体(1)(MEA(1))を得た。
 実施例5
 実施例4において、触媒粉末Aの代わりに、実施例2で得た触媒粉末Bを使用する以外は、実施例4と同様の操作を行い、膜電極接合体(2)(MEA(2))を作製した。
 実施例6
 実施例4において、触媒粉末Aの代わりに、実施例3で得た触媒粉末Cを使用する以外は、実施例4と同様の操作を行い、膜電極接合体(3)(MEA(3))を作製した。
 比較例4
 実施例4において、触媒粉末Aの代わりに、比較例1で得た比較触媒粉末Dを使用する以外は、実施例4と同様の操作を行い、比較膜電極接合体(1)(比較MEA(1))を作製した。
 比較例5
 実施例4において、触媒粉末Aの代わりに、比較例2で得た比較触媒粉末Eを使用する以外は、実施例4と同様の操作を行い、比較膜電極接合体(2)(比較MEA(2))を作製した。
 比較例6
 実施例4において、触媒粉末Aの代わりに、比較例3で得た比較触媒粉末Fを使用する以外は、実施例4と同様の操作を行い、比較膜電極接合体(3)(比較MEA(3))を作製した。
 実験1:酸素還元(ORR)活性の評価
 上記実施例4~6で作製された膜電極接合体(1)~(3)および比較例4~6で作製された比較膜電極接合体(1)~(3)について、下記評価条件下、0.7V時の白金表面積当たり発電電流(μA/cm(Pt))を測定し、酸素還元活性評価を行った。上記操作にて、実施例6のMEA(3)については、電圧を0.7Vから0.9Vに変更した以外は、同様の操作を繰り返して、表面積当たり発電電流(μA/cm(Pt))を測定し、酸素還元活性評価を行った。
 結果を図6及び図7に示す。なお、図7において、電圧を0.7Vで行った実施例6のMEA(3)の酸素還元活性は四角(◆)で、電圧を0.9Vで行った実施例6のMEA(3)の酸素還元活性は四角(■)で、それぞれ、示す。
Figure JPOXMLDOC01-appb-C000003
 図6から、本発明の触媒を使用したMEA(1)~(2)は、比較MEA(1)~(2)に比して、触媒活性(酸素還元活性)に優れることが分かった。同様にして、図7から、本発明の触媒を使用したMEA(3)は、比較MEA(3)に比して、触媒活性(酸素還元活性)に優れることが分かった。これらの結果は、メソ孔及びミクロ孔により、触媒金属の脱離が抑制・防止され、さらに熱処理による触媒金属の粒径の増大により、白金または白金合金の粒成長(凝集)が抑制され、有効表面積(ECA)の低下が抑制されたためであると、推測される。
 さらに、本出願は、2013年4月25日に出願された日本特許出願番号2013-092906号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
  1…固体高分子形燃料電池(PEFC)、
  2…固体高分子電解質膜、
  3…触媒層、
  3a…アノード触媒層、
  3c…カソード触媒層、
  4a…アノードガス拡散層、
  4c…カソードガス拡散層、
  5、…セパレータ、
  5a…アノードセパレータ、
  5c…カソードセパレータ、
  6a…アノードガス流路、
  6c…カソードガス流路、
  7…冷媒流路、
  10…膜電極接合体(MEA)、
  20…触媒、
  22…触媒金属、
  23…担体、
  24…メソ孔、
  25…ミクロ孔、
  26…電解質。

Claims (6)

  1.  触媒担体および前記触媒担体に担持される触媒金属からなる触媒であって、
     前記触媒担体は半径が1nm未満の空孔および半径1nm以上の空孔を有し、
     前記半径が1nm未満の空孔で形成される表面積は、前記半径1nm以上の空孔で形成される表面積以上であり、かつ
     前記触媒金属の平均粒子径が2.8nm以上であることを特徴とする触媒。
  2.  前記触媒担体のBET比表面積が、1000m/g担体以上である、請求項1に記載の触媒。
  3.  前記触媒金属は、白金であるまたは白金と白金以外の金属成分を含む、請求項1または2に記載の触媒。
  4.  前記触媒金属の平均粒径が4.1nm以上である、請求項1~3のいずれか1項に記載の触媒。
  5.  触媒担体の表面に触媒金属を析出させる工程、および前記析出工程後に、熱処理を行い、前記触媒金属の粒径を増大させる工程を含む請求項1~4のいずれか1項に記載の触媒の製造方法。
  6.  請求項1~4のいずれか1項に記載の触媒および電解質を含む、燃料電池用電極触媒層。
PCT/JP2014/060634 2013-04-25 2014-04-14 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層 WO2014175097A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480022909.5A CN105142779A (zh) 2013-04-25 2014-04-14 催化剂及其制造方法以及使用该催化剂的电极催化剂层
US14/786,056 US10573901B2 (en) 2013-04-25 2014-04-14 Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
EP14787852.4A EP2990104B1 (en) 2013-04-25 2014-04-14 Catalyst, method for producing same, and electrode catalyst layer using said catalyst
CA2910237A CA2910237C (en) 2013-04-25 2014-04-14 Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
JP2015513683A JPWO2014175097A1 (ja) 2013-04-25 2014-04-14 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092906 2013-04-25
JP2013-092906 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014175097A1 true WO2014175097A1 (ja) 2014-10-30

Family

ID=51791676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060634 WO2014175097A1 (ja) 2013-04-25 2014-04-14 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層

Country Status (6)

Country Link
US (1) US10573901B2 (ja)
EP (1) EP2990104B1 (ja)
JP (2) JPWO2014175097A1 (ja)
CN (1) CN105142779A (ja)
CA (1) CA2910237C (ja)
WO (1) WO2014175097A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152447A1 (ja) * 2015-03-26 2016-09-29 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒
WO2017042919A1 (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
WO2019198447A1 (ja) * 2018-04-12 2019-10-17 パナソニックIpマネジメント株式会社 パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法
JP2020202056A (ja) * 2019-06-07 2020-12-17 株式会社豊田中央研究所 電極触媒

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175097A1 (ja) 2013-04-25 2014-10-30 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
EP2990116B1 (en) 2013-04-25 2018-06-06 Nissan Motor Co., Ltd Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
CA2966137C (en) 2014-10-29 2024-01-23 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
CA3021498C (en) * 2016-04-19 2019-12-17 Nissan Motor Co., Ltd. High activity alloy-based electrode catalyst, and membrane electrode assembly and fuel cell using high activity alloy-based electrode catalyst
WO2018038986A1 (en) 2016-08-25 2018-03-01 Proton Energy Systems, Inc. Membrane electrode assembly and method of making the same
JP6969996B2 (ja) 2016-12-09 2021-11-24 トヨタ自動車株式会社 燃料電池用電極触媒及びその製造方法
WO2018104775A2 (en) * 2016-12-09 2018-06-14 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell, method of producing the same, and fuel cell
CN106784555B (zh) * 2016-12-29 2019-04-09 桂林电器科学研究院有限公司 一种耐高温复合微孔隔膜及其制备方法
JP6635976B2 (ja) * 2017-04-28 2020-01-29 株式会社キャタラー 燃料電池用電極触媒及びその製造方法
WO2019177060A1 (ja) * 2018-03-16 2019-09-19 株式会社キャタラー 燃料電池用電極触媒及びそれを用いた燃料電池
US11271219B2 (en) 2018-05-15 2022-03-08 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly and fuel cell stack
US20230231148A1 (en) * 2020-03-23 2023-07-20 N.E. Chemcat Corporation Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode junction, and fuel cell stack
KR102592198B1 (ko) * 2020-05-28 2023-10-19 코오롱인더스트리 주식회사 연료전지용 혼합 촉매, 그 제조방법, 그것을 이용한 전극 형성방법, 및 그것을 포함하는 막-전극 어셈블리
JP7464553B2 (ja) 2021-03-04 2024-04-09 トヨタ自動車株式会社 電極触媒

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150639A (ja) * 1984-08-14 1986-03-12 Nissan Motor Co Ltd メタノ−ル改質用触媒
JPH05345130A (ja) * 1991-04-11 1993-12-27 Kenji Hashimoto 炭素系形状選択性触媒及びその製造方法
US6398858B1 (en) 1999-03-05 2002-06-04 Cabot Corporation Process for preparing colored pigments
JP2004051397A (ja) * 2002-07-17 2004-02-19 Japan Fine Ceramics Center 非晶質シリカ多孔質材料及びその製造方法並びに分子ふるい膜、触媒担体及び吸着剤
JP2007123108A (ja) * 2005-10-28 2007-05-17 Catalysts & Chem Ind Co Ltd 白金コロイド担持カーボンおよびその製造方法
WO2007055411A1 (ja) * 2005-11-14 2007-05-18 Cataler Corporation 燃料電池用触媒、燃料電池用電極、及びこれを備えた固体高分子型燃料電池
JP2007250274A (ja) 2006-03-14 2007-09-27 Cataler Corp 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
JP2008004541A (ja) * 2006-05-25 2008-01-10 Nissan Motor Co Ltd 電極材料
JP2009035598A (ja) 2007-07-31 2009-02-19 Denki Kagaku Kogyo Kk アセチレンブラック、その製造方法及び用途
WO2009075264A1 (ja) 2007-12-12 2009-06-18 Nippon Steel Chemical Co., Ltd. 金属内包樹状炭素ナノ構造物、炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、炭素ナノ構造体の作製方法、及びキャパシタ

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3407320B2 (ja) 1992-12-25 2003-05-19 松下電器産業株式会社 固体高分子型燃料電池
JPH09257687A (ja) 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池の貴金属触媒の反応比表面積と利用率測定法および固体高分子型燃料電池用電極の触媒層
US6277513B1 (en) * 1999-04-12 2001-08-21 General Motors Corporation Layered electrode for electrochemical cells
JP4472109B2 (ja) 1999-09-21 2010-06-02 旭化成ケミカルズ株式会社 カルボン酸水添用触媒
JP2001300324A (ja) 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd 複合触媒とその製造方法およびその複合触媒を使用した燃料電池用電極の製造方法
DE10112585A1 (de) 2000-03-15 2001-10-31 Japan Storage Battery Co Ltd Composit-Katalysator für eine Brennstoffzelle vom festen Polymer-Elektrolyt-Typ und Verfahren zu seiner Herstellung
US6551960B1 (en) * 2000-06-19 2003-04-22 Canon Kabushiki Kaisha Preparation of supported nano-sized catalyst particles via a polyol process
WO2002003489A1 (en) * 2000-07-03 2002-01-10 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte fuel cell
US8591855B2 (en) * 2000-08-09 2013-11-26 British American Tobacco (Investments) Limited Porous carbons
EP1254711A1 (de) * 2001-05-05 2002-11-06 OMG AG & Co. KG Edelmetallhaltiger Trägerkatalysator und Verfahren zu seiner Herstellung
CA2410139A1 (en) 2001-10-30 2003-04-30 N.E. Chemcat Corporation Carbon black, electrocatalyst carrier formed from carbon black, and electrocatalyst and electrochemical device using carrier
JP4300014B2 (ja) 2001-10-30 2009-07-22 エヌ・イーケムキャット株式会社 カーボンブラック、該カーボンブラックからなる電極触媒用担体、並びに該担体を用いる電極触媒および電気化学的装置
US6686308B2 (en) * 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
JP4239489B2 (ja) 2002-06-25 2009-03-18 東洋紡績株式会社 活性炭担体、触媒担持活性炭およびそれらの製造方法
JP4555897B2 (ja) 2002-12-26 2010-10-06 地方独立行政法人 大阪市立工業研究所 金属を含有する活性炭の製造方法
KR100474854B1 (ko) 2003-02-13 2005-03-10 삼성에스디아이 주식회사 탄소 분자체 및 그 제조 방법
US7432221B2 (en) 2003-06-03 2008-10-07 Korea Institute Of Energy Research Electrocatalyst for fuel cells using support body resistant to carbon monoxide poisoning
EP1643573B1 (en) 2003-06-24 2012-01-11 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell and method for producing same
JP2005108746A (ja) 2003-10-01 2005-04-21 Internatl Business Mach Corp <Ibm> 有機エレクトロ・ルミネッセンス素子および有機エレクトロ・ルミネッセンス素子の製造方法
JP4620341B2 (ja) 2003-10-31 2011-01-26 株式会社日鉄技術情報センター 燃料電池用電極触媒
JP2005235688A (ja) 2004-02-23 2005-09-02 Cataler Corp 燃料電池用担持触媒、その製造方法及び燃料電池
JP4759507B2 (ja) 2004-02-26 2011-08-31 シャープ株式会社 燃料電池用電極触媒,これを用いた燃料電池
US7871955B2 (en) 2004-04-09 2011-01-18 Basf Fuel Cell Gmbh Platinum catalysts from in situ formed platinum dioxide
KR100919326B1 (ko) 2004-04-22 2009-09-25 신닛뽄세이테쯔 카부시키카이샤 연료 전지 및 연료 전지용 가스 확산 전극
JP4511911B2 (ja) 2004-11-30 2010-07-28 新日本製鐵株式会社 固体高分子型燃料電池用電極
JP4533108B2 (ja) 2004-11-25 2010-09-01 新日本製鐵株式会社 固体高分子形燃料電池用電極
US20050282061A1 (en) 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
US7282466B2 (en) * 2004-10-04 2007-10-16 The United States Of America As Represented By The Secretary Of The Navy Sulfur-functionalized carbon nanoarchitectures as porous, high-surface-area supports for precious metal catalysts
US7713910B2 (en) * 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP2006134630A (ja) 2004-11-04 2006-05-25 Honda Motor Co Ltd 固体高分子型燃料電池の電極構造体
EP1852180A4 (en) * 2005-02-21 2010-10-13 Nissan Motor ELECTRODE CATALYST AND METHOD FOR MANUFACTURING THE SAME
JP4993867B2 (ja) 2005-03-07 2012-08-08 ダイハツ工業株式会社 燃料電池
KR100751350B1 (ko) * 2005-11-29 2007-08-22 삼성에스디아이 주식회사 헤테로원자 함유 중형 다공성 탄소, 그 제조방법 및 이를이용한 연료전지
JP2007220384A (ja) 2006-02-15 2007-08-30 Toyota Motor Corp 触媒担体、燃料電池用電極触媒、燃料電池用電極及び燃料電池セル並びに燃料電池
JP2007335338A (ja) * 2006-06-19 2007-12-27 Toyota Motor Corp 燃料電池用電極触媒の製造方法、燃料電池用電極触媒、及びこれを備えた固体高分子型燃料電池
CA2668887C (en) 2006-11-08 2015-02-24 Peter Pfeifer High surface area carbon and process for its production
US20080182745A1 (en) 2007-01-30 2008-07-31 More Energy Ltd. Supported platinum and palladium catalysts and preparation method thereof
JPWO2008093731A1 (ja) * 2007-02-01 2010-05-20 独立行政法人産業技術総合研究所 燃料電池用電極触媒およびこれを用いた燃料電池
JP5121290B2 (ja) 2007-04-17 2013-01-16 新日鐵住金株式会社 固体高分子形燃料電池電極用触媒
KR101473319B1 (ko) * 2007-10-16 2014-12-16 삼성에스디아이 주식회사 복합 중형 다공성 탄소, 그 제조방법 및 이를 이용한연료전지
JP5386977B2 (ja) 2008-06-06 2014-01-15 東洋紡株式会社 金属錯体複合体を用いた燃料電池用触媒、並びに膜電極接合体、燃料電池、及び酸化還元触媒
JP2010208887A (ja) 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
CA2764768C (en) 2009-06-10 2014-05-06 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cell
US20120100461A1 (en) * 2009-06-26 2012-04-26 Nissan Motor Co., Ltd. Hydrophilic porous layer for fuel cells, gas diffusion electrode and manufacturing method thereof, and membrane electrode assembly
JP5488132B2 (ja) 2009-11-04 2014-05-14 株式会社エクォス・リサーチ 燃料電池用触媒層及び膜電極接合体
WO2011112992A1 (en) 2010-03-12 2011-09-15 Energ2, Inc. Mesoporous carbon materials comprising bifunctional catalysts
WO2012053303A1 (ja) 2010-10-22 2012-04-26 日産自動車株式会社 固体高分子型燃料電池用電極触媒
JP4880064B1 (ja) 2010-12-08 2012-02-22 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及びその製造方法
JP5482690B2 (ja) 2011-02-24 2014-05-07 トヨタ自動車株式会社 燃料電池用電極材料の製造方法および燃料電池
JP5877494B2 (ja) 2011-08-25 2016-03-08 日産自動車株式会社 燃料電池用電極触媒層、燃料電池用電極、燃料電池用膜電極接合体及び燃料電池
JP5810860B2 (ja) 2011-11-17 2015-11-11 日産自動車株式会社 燃料電池用電極触媒層
JP5823285B2 (ja) 2011-12-22 2015-11-25 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
CN105073260B (zh) 2013-02-21 2018-04-06 新日铁住金化学株式会社 催化剂载体用碳材料
CA2910242C (en) 2013-04-25 2019-01-22 Nissan Motor Co., Ltd. Catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst
WO2014175097A1 (ja) 2013-04-25 2014-10-30 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
EP2990116B1 (en) 2013-04-25 2018-06-06 Nissan Motor Co., Ltd Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
JP6113837B2 (ja) * 2013-04-25 2017-04-12 日産自動車株式会社 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
US20160064744A1 (en) 2013-04-25 2016-03-03 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer for fuel cell having the catalyst
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
CA2966137C (en) 2014-10-29 2024-01-23 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150639A (ja) * 1984-08-14 1986-03-12 Nissan Motor Co Ltd メタノ−ル改質用触媒
JPH05345130A (ja) * 1991-04-11 1993-12-27 Kenji Hashimoto 炭素系形状選択性触媒及びその製造方法
US6398858B1 (en) 1999-03-05 2002-06-04 Cabot Corporation Process for preparing colored pigments
JP2004051397A (ja) * 2002-07-17 2004-02-19 Japan Fine Ceramics Center 非晶質シリカ多孔質材料及びその製造方法並びに分子ふるい膜、触媒担体及び吸着剤
JP2007123108A (ja) * 2005-10-28 2007-05-17 Catalysts & Chem Ind Co Ltd 白金コロイド担持カーボンおよびその製造方法
WO2007055411A1 (ja) * 2005-11-14 2007-05-18 Cataler Corporation 燃料電池用触媒、燃料電池用電極、及びこれを備えた固体高分子型燃料電池
JP2007250274A (ja) 2006-03-14 2007-09-27 Cataler Corp 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
US20090047559A1 (en) 2006-03-14 2009-02-19 Tomoaki Terada Fuel cell electrode catalyst with improved noble metal utilization efficiency, method for manufacturing the same, and solid polymer fuel cell comprising the same
JP2008004541A (ja) * 2006-05-25 2008-01-10 Nissan Motor Co Ltd 電極材料
JP2009035598A (ja) 2007-07-31 2009-02-19 Denki Kagaku Kogyo Kk アセチレンブラック、その製造方法及び用途
WO2009075264A1 (ja) 2007-12-12 2009-06-18 Nippon Steel Chemical Co., Ltd. 金属内包樹状炭素ナノ構造物、炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、炭素ナノ構造体の作製方法、及びキャパシタ
US20110058308A1 (en) 2007-12-12 2011-03-10 Nobuyuki Nishi Metal Encapsulated Dendritic Carbon Nanostructure, Carbon Nanostructure, Process for Producing Metal Encapsulated Dendritic Carbon Nanostructure, Process for Producing Carbon Nanostructure, and Capacitor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. DOLLION; G. R. HEAL, J. APPL. CHEM., vol. 14, 1964, pages 109
KONDO SEIICHI; ISHIKAWA TATSUO; ABE IKUO: "Fuel Cell Analysis Method, 2nd ed.", MARUZEN CO., LTD., article "Science of Adsorption"
R. SH. MIKHAIL; S. BRUNAUER; E. E. BODOR, J. COLLOID INTERFACE SCI., vol. 26, 1968, pages 45
See also references of EP2990104A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152447A1 (ja) * 2015-03-26 2016-09-29 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒
CN107210449A (zh) * 2015-03-26 2017-09-26 新日铁住金株式会社 固体高分子型燃料电池用载体碳材料以及催化剂
JPWO2016152447A1 (ja) * 2015-03-26 2018-01-25 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒
CN107210449B (zh) * 2015-03-26 2020-08-14 日铁化学材料株式会社 固体高分子型燃料电池用载体碳材料以及催化剂
WO2017042919A1 (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
CN108028390A (zh) * 2015-09-09 2018-05-11 日产自动车株式会社 燃料电池用电极催化剂层及其制造方法、以及使用该催化剂层的膜电极接合体、燃料电池及车辆
JPWO2017042919A1 (ja) * 2015-09-09 2018-07-19 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
WO2019198447A1 (ja) * 2018-04-12 2019-10-17 パナソニックIpマネジメント株式会社 パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法
JP2019186200A (ja) * 2018-04-12 2019-10-24 パナソニックIpマネジメント株式会社 パラメータ決定方法および細孔内のガスまたはイオンの輸送性を求めるシミュレーション方法
CN110679020A (zh) * 2018-04-12 2020-01-10 松下知识产权经营株式会社 参数决定方法和求得细孔内的气体或离子的输送性的模拟方法
JP2020202056A (ja) * 2019-06-07 2020-12-17 株式会社豊田中央研究所 電極触媒
JP7152987B2 (ja) 2019-06-07 2022-10-13 株式会社豊田中央研究所 電極触媒

Also Published As

Publication number Publication date
CA2910237A1 (en) 2014-10-30
JPWO2014175097A1 (ja) 2017-02-23
CN105142779A (zh) 2015-12-09
EP2990104A1 (en) 2016-03-02
EP2990104B1 (en) 2019-10-16
JP2017212217A (ja) 2017-11-30
US10573901B2 (en) 2020-02-25
US20160072134A1 (en) 2016-03-10
CA2910237C (en) 2019-01-15
EP2990104A4 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5998277B2 (ja) 燃料電池用触媒、およびこれを含む燃料電池用電極触媒層
JP6461805B2 (ja) 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP6156490B2 (ja) 燃料電池用電極触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
WO2014175097A1 (ja) 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
JP5998275B2 (ja) 燃料電池用触媒ならびに当該燃料電池用触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6113837B2 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6113836B2 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6008044B2 (ja) 燃料電池用触媒ならびに当該燃料電池用触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6276870B2 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP5998276B2 (ja) 触媒の製造方法ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6327681B2 (ja) 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池
WO2017183475A1 (ja) 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池
JP6323818B2 (ja) 燃料電池用電極触媒、燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
WO2016067878A1 (ja) 燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
JP2016091605A (ja) 燃料電池用電極触媒層の製造方法
JP6183120B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP2017021909A (ja) 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP6191368B2 (ja) 燃料電池用膜電極接合体および燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022909.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513683

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14786056

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2910237

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014787852

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE