WO2016067878A1 - 燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池 - Google Patents

燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池 Download PDF

Info

Publication number
WO2016067878A1
WO2016067878A1 PCT/JP2015/078614 JP2015078614W WO2016067878A1 WO 2016067878 A1 WO2016067878 A1 WO 2016067878A1 JP 2015078614 W JP2015078614 W JP 2015078614W WO 2016067878 A1 WO2016067878 A1 WO 2016067878A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
gas
electrolyte
fuel cell
Prior art date
Application number
PCT/JP2015/078614
Other languages
English (en)
French (fr)
Inventor
大 井殿
大間 敦史
高橋 真一
徹也 眞塩
哲史 堀部
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP15855794.2A priority Critical patent/EP3214679B1/en
Priority to US15/522,023 priority patent/US10367218B2/en
Priority to CA2966176A priority patent/CA2966176C/en
Priority to CN201580058462.1A priority patent/CN107210447B/zh
Priority to JP2016556475A priority patent/JP6339220B2/ja
Publication of WO2016067878A1 publication Critical patent/WO2016067878A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode catalyst layer for a fuel cell, a manufacturing method thereof, a membrane electrode assembly using the catalyst layer, and a fuel cell.
  • a solid polymer fuel cell using a proton conductive solid polymer membrane operates at a lower temperature than other types of fuel cells such as a solid oxide fuel cell and a molten carbonate fuel cell. For this reason, the polymer electrolyte fuel cell is expected as a stationary power source or a power source for a moving body such as an automobile, and its practical use has been started.
  • Patent Document 1 discloses an electrode catalyst in which catalyst metal particles are supported on a conductive support, in which the average particle diameter of the catalyst metal particles is larger than the average pore diameter of the fine pores of the conductive support. According to Patent Document 1, the structure prevents the catalyst metal particles from entering the micropores of the carrier, improves the ratio of the catalyst metal particles used at the three-phase interface, and improves the utilization efficiency of expensive noble metals. It is described that it can be done.
  • the electrocatalyst layer using the catalyst of Patent Document 1 has a problem that the catalyst and catalytic metal particles are brought into contact with each other and the catalytic activity is lowered.
  • the catalyst metal is supported in fine pores in which the electrolyte inside the carrier cannot enter so that the electrolyte and the catalyst metal particles do not come into contact with each other, the transport distance of a gas such as oxygen increases and the gas transport performance decreases. . For this reason, there has been a problem that the catalyst performance deteriorates under high load conditions without extracting sufficient catalyst activity.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an electrode catalyst layer excellent in gas transportability.
  • Another object of the present invention is to provide an electrode catalyst layer having excellent catalytic activity.
  • Still another object of the present invention is to provide a membrane electrode assembly and a fuel cell excellent in power generation performance.
  • the present inventors solved the above problem by supplying a reactive gas (especially O 2 ) directly to the catalyst metal partially without using an electrolyte. As a result, the present invention has been completed.
  • the time change of gas adsorption amount (A) and gas adsorption amount (B) at the time of gas adsorption amount measurement is shown typically.
  • the fuel cell electrode catalyst layer of the present invention (also referred to herein as “electrode catalyst layer” or “catalyst layer”) includes a catalyst carrier and a catalyst comprising a catalyst metal supported on the catalyst carrier and an electrolyte.
  • the specific surface area of the catalyst metal that the gas can reach without passing through the electrolyte is 50% or more with respect to the total specific surface area of the catalyst metal, and the catalyst metal and the reaction gas directly without passing through the electrolyte. Arrange for contact.
  • the specific surface area of the catalytic metal that can be reached by the reaction gas without passing through the electrolyte is adjusted to an appropriate range, and the reaction gas (especially O 2 ) is directly supplied without passing through the electrolyte.
  • the transportation path to be secured can be secured, and the gas transportability can be improved. As a result, a catalyst layer having excellent catalytic activity can be provided.
  • “/ g carrier” means “per gram of carrier”.
  • “/ g catalyst metal” means “per gram of catalyst metal”.
  • the electrolyte and the catalyst particles are considerably in contact with each other on the conductive support in order to ensure a sufficient three-phase interface in which the reaction gas, the catalyst metal, and the electrolyte (electrolyte polymer) are present simultaneously.
  • the present inventors have a high gas transport resistance because most of the reaction gas (especially O 2 ) is transported to the catalyst metal via the electrolyte, and sufficient reaction gas reaches the catalyst metal. It was not possible, and it was found that the catalyst cannot exhibit sufficient activity.
  • a catalyst can be effectively used by forming a three-phase interface (reaction site) with a reaction gas, a catalyst metal, and water.
  • the reaction gas especially O 2
  • the reaction gas can be transported to the catalyst metal more quickly and more efficiently by reducing the gas transport resistance by supplying the reaction gas directly to the catalyst metal without passing through the electrolyte at a certain ratio or more.
  • the catalytic metal can use the reaction gas more effectively, and the catalytic activity can be improved, that is, the catalytic reaction can be promoted. Further, the above effect can be effectively exhibited even under high load conditions.
  • the membrane electrode assembly and fuel cell having the catalyst layer of the present invention exhibit high current-voltage (iV) characteristics (suppress voltage drop at a high current density) and are excellent in power generation performance.
  • iV current-voltage
  • the said mechanism is estimation and this invention is not limited by the said estimation.
  • the catalyst layer of the present invention is excellent in gas transportability and can quickly and efficiently transport the reaction gas to the catalyst metal. Therefore, the catalyst layer of the present invention can exhibit high catalytic activity, that is, can promote catalytic reaction. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer of this invention are excellent in electric power generation performance. Therefore, the present invention also provides a membrane electrode assembly and a fuel cell having the catalyst layer of the present invention.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • a fuel cell includes a membrane electrode assembly (MEA), a pair of separators including an anode side separator having a fuel gas flow path through which fuel gas flows and a cathode side separator having an oxidant gas flow path through which oxidant gas flows.
  • MEA membrane electrode assembly
  • the fuel cell of this embodiment is excellent in durability and can exhibit high power generation performance.
  • FIG. 1 is a schematic diagram showing a basic configuration of a polymer electrolyte fuel cell (PEFC) 1 according to an embodiment of the present invention.
  • the PEFC 1 first has a solid polymer electrolyte membrane 2 and a pair of catalyst layers (an anode catalyst layer 3a and a cathode catalyst layer 3c) that sandwich the membrane.
  • the laminate (CCM) of the solid polymer electrolyte membrane 2 and the catalyst layers (3a, 3c) is further sandwiched between a pair of gas diffusion layers (GDL) (anode gas diffusion layer 4a and cathode gas diffusion layer 4c).
  • GDL gas diffusion layers
  • the polymer electrolyte membrane 2, the pair of catalyst layers (3a, 3c), and the pair of gas diffusion layers (4a, 4c) constitute a membrane electrode assembly (MEA) 10 in a stacked state.
  • MEA 10 is further sandwiched between a pair of separators (anode separator 5a and cathode separator 5c).
  • the separators (5 a, 5 c) are illustrated so as to be located at both ends of the illustrated MEA 10.
  • the separator is generally used as a separator for an adjacent PEFC (not shown).
  • the MEAs are sequentially stacked via the separator to form a stack.
  • a gas seal portion is disposed between the separator (5a, 5c) and the solid polymer electrolyte membrane 2 or between PEFC 1 and another adjacent PEFC.
  • the separators (5a, 5c) are obtained, for example, by forming a concavo-convex shape as shown in FIG. 1 by subjecting a thin plate having a thickness of 0.5 mm or less to a press treatment.
  • the convex part seen from the MEA side of the separator (5a, 5c) is in contact with MEA 10. Thereby, the electrical connection with MEA 10 is ensured.
  • a recess (space between the separator and the MEA generated due to the uneven shape of the separator) seen from the MEA side of the separator (5a, 5c) is used for circulating gas during operation of PEFC 1. Functions as a gas flow path.
  • a fuel gas for example, hydrogen
  • an oxidant gas for example, air
  • the recess viewed from the side opposite to the MEA side of the separator (5a, 5c) is a refrigerant flow path 7 for circulating a refrigerant (for example, water) for cooling the PEFC during operation of the PEFC 1.
  • a refrigerant for example, water
  • the separator is usually provided with a manifold (not shown). This manifold functions as a connection means for connecting cells when a stack is formed. With such a configuration, the mechanical strength of the fuel cell stack can be ensured.
  • the separators (5a, 5c) are formed in an uneven shape.
  • the separator is not limited to such a concavo-convex shape, and may be any form such as a flat plate shape and a partially concavo-convex shape as long as the functions of the gas flow path and the refrigerant flow path can be exhibited. Also good.
  • the fuel cell having the MEA of the present invention as described above exhibits excellent power generation performance.
  • the type of the fuel cell is not particularly limited.
  • the polymer electrolyte fuel cell has been described as an example.
  • an alkaline fuel cell and a direct methanol fuel cell are used.
  • a micro fuel cell is used.
  • a polymer electrolyte fuel cell (PEFC) is preferable because it is small and can achieve high density and high output.
  • the fuel cell is useful as a stationary power source in addition to a power source for a moving body such as a vehicle in which a mounting space is limited.
  • the fuel used when operating the fuel cell is not particularly limited.
  • hydrogen, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, secondary butanol, tertiary butanol, dimethyl ether, diethyl ether, ethylene glycol, diethylene glycol and the like can be used.
  • hydrogen and methanol are preferably used in that high output is possible.
  • the application application of the fuel cell is not particularly limited, but it is preferably applied to a vehicle.
  • the electrolyte membrane-electrode assembly of the present invention is excellent in power generation performance and durability, and can be downsized.
  • the fuel cell of this invention is especially advantageous when this fuel cell is applied to a vehicle from the point of in-vehicle property. Therefore, the present invention provides a vehicle having the fuel cell of the present invention.
  • the electrode catalyst layer (catalyst layer) of the present invention includes a catalyst comprising a catalyst carrier and a catalyst metal supported on the catalyst carrier, and an electrolyte. Further, in the present invention, the catalyst metal can be reached without passing through the electrolyte so that the specific surface area of the catalyst metal that can reach the gas without passing through the electrolyte is 50% or more with respect to the total specific surface area of the catalyst metal. Arrange it so that it can be in direct contact with the reaction gas. By exposing the catalyst metal at such a ratio without being coated with the electrolyte, the gas transport resistance can be reduced, and the reaction gas (especially O 2 ) can be directly supplied to the catalyst metal without passing through the electrolyte.
  • the transport time of the reaction gas (particularly O 2 ) to the catalyst metal is shortened.
  • the catalytic metal can use the reaction gas more rapidly. Therefore, the catalyst layer of the present invention can use the catalyst more effectively to improve the catalytic activity, that is, promote the catalytic reaction.
  • the ratio of the specific surface area of the catalyst metal that the gas can reach without passing through the electrolyte to the total specific surface area of the catalyst metal is also simply referred to as “catalyst metal exposure rate”.
  • the electrode catalyst layer of the present invention directly contacts the catalytic metal with the reaction gas without passing through the electrolyte at a specific catalytic metal exposure rate (the catalyst is partially covered with the specific catalytic metal exposure rate by the electrolyte).
  • the coating form of the catalyst with the electrolyte is not particularly limited.
  • the portion where the catalyst is coated with the electrolyte is one place (a form where the entire surface of the catalyst is covered with less than 50% of the catalyst and no electrolyte is present in the remaining portion), or Even if it is divided into a plurality of locations (even if the surface of the catalyst with less than 50% electrolyte is divided into a plurality of portions and the electrolyte does not exist in the remaining portions), any shape may be used. .
  • the catalyst aggregate may be coated with an electrolyte.
  • the relationship between the electrolyte and the catalyst metal is not particularly limited as long as the catalyst metal exposure rate is 50% or more.
  • the catalytic metal may or may not be present in the portion where the catalyst is coated with the electrolyte.
  • the catalyst preferably has pores (mesopores) having a radius of 1 nm or more.
  • the electrolyte covers the catalyst so as to cover the mesopore opening (inlet) or exposes the mesopore opening (inlet) (does not cover the hole opening with the electrolyte).
  • the catalyst may be coated as described above.
  • the catalyst has mesopores, it is preferable that at least a part of the catalyst metal is supported (stored) inside the pores of the mesopores.
  • the reaction gas is directly supplied to the catalyst metal supported inside the pore without passing through the electrolyte.
  • the transport resistance of the reaction gas to the catalyst metal inside the pores is further reduced, and the reaction gas (especially O 2 ) can be transported to the catalyst more quickly and more efficiently, making the catalytic reaction more effective. Can promote. For this reason, the form which does not coat
  • the ratio of the specific surface area of the catalyst metal (catalyst metal exposure rate) that the gas can reach without passing through the electrolyte to the total specific surface area of the catalyst metal is 50% or more, but 55% or more, 60 %, 65% or more, 80% or more, 90% or more, 93% or more, and 95% or more are preferred.
  • the coating of the catalytic metal with the electrolyte is reduced, and the reaction gas (especially O 2 ) is supplied more quickly and more efficiently directly through the catalytic metal without passing through the electrolyte, and the gas transportability Can be improved more.
  • the catalyst metal exposure rate is 80% or more, the improvement in gas transportability is particularly remarkable.
  • an electrode catalyst layer for a fuel cell wherein a specific surface area of the catalyst metal that can reach a gas without passing through an electrolyte is 80% or more with respect to a total specific surface area of the catalyst metal.
  • the upper limit of the ratio of the specific surface area of the catalyst metal (catalyst metal exposure rate) that the gas can reach without passing through the electrolyte is preferably as high as possible and is 100%.
  • the “catalyst metal that can reach the gas without passing through the electrolyte” is also referred to as “catalyst metal exposed on the catalyst carrier”.
  • the specific surface area of the catalyst metal that the gas can reach without passing through the electrolyte relative to the total specific surface area of the catalyst metal is expressed as “the ratio of the catalyst metal exposed on the catalyst support to the specific surface area (A) of the entire catalyst metal”. Also referred to as “surface area (B) ratio” or “catalyst metal exposure rate”.
  • noble metals such as platinum conventionally used as catalyst metals adsorb certain gases.
  • gases adsorbed on the noble metal include carbon monoxide (CO); volatile sulfur-containing compounds (for example, sulfur oxides (SO x ) such as sulfur dioxide (SO 2 ), mercaptans such as methanethiol, hydrogen sulfide (H 2 S)); nitrogen oxides (NO x ) such as nitric oxide (NO), and the like.
  • the ratio of the gas adsorption amount (B) by the catalyst metal exposed on the catalyst carrier to the gas adsorption amount (A) by the whole catalyst metal is exposed on the catalyst carrier to the specific surface area (A) of the whole catalyst metal. It can be calculated as the specific surface area (B) of the catalyst metal. Since the gas adsorption amount by the catalyst metal is proportional to the specific surface area of the catalyst metal, the catalyst metal exposure rate can be calculated by the following formula (1), where the gas adsorption amount by the catalyst metal is the specific surface area of the catalyst metal.
  • gas adsorption amount (A) by the entire catalyst metal (“gas adsorption amount (A)”) is the gas adsorption amount by the entire catalyst metal supported on the catalyst carrier. That is, the gas adsorption amount (A) (cm 3 / g catalyst metal) is the gas adsorption amount by the catalyst metal exposed on the catalyst carrier (not coated with the electrolyte) and the gas by the catalyst metal coated with the electrolyte. It is the total with the amount of adsorption. Further, in the above formula (1), “gas adsorption amount (B) by catalytic metal exposed on catalyst carrier” (“gas adsorption amount (B)”) is exposed on catalyst carrier (covered with electrolyte). It is the gas adsorption amount (cm 3 / g catalyst metal) by the catalyst metal which is not.
  • a catalyst comprising a catalyst carrier and a catalyst metal supported on the catalyst carrier, and an electrode catalyst layer for a fuel cell comprising an electrolyte, or a membrane catalyst layer assembly or membrane electrode comprising the fuel cell electrode catalyst layer
  • the gas adsorption amount (A) by the whole catalyst metal and the gas adsorption amount (B) by the catalyst metal exposed on the catalyst carrier are measured, and the above formula (1) or the following formula (2) is measured.
  • the method comprises a catalyst comprising a catalyst carrier and a catalyst metal supported on the catalyst carrier, and an electrode catalyst layer for a fuel cell comprising an electrolyte, or a membrane catalyst layer assembly or membrane electrode assembly comprising the fuel cell electrode catalyst layer.
  • the gas adsorption amount (A) by the whole catalyst metal and the gas adsorption amount (B) by the catalyst metal exposed on the catalyst carrier are measured, and the catalyst is obtained by the above formula (1) or the following formula (2).
  • It is also an inspection method for an electrode catalyst layer for a fuel cell which includes evaluating a metal exposure rate.
  • a method for producing a fuel cell is provided, which includes the step of evaluating the catalyst metal exposure rate by the method. For example, J. et al. Electroanal.
  • the ionomer (electrolyte) coverage of the catalytic metal is determined by an electrochemical method. For this reason, unless the electrolyte and the catalyst metal or the electrolyte and the catalyst carrier are in direct contact, the electric double layer capacity (C dl ) cannot be detected. For example, in the catalyst coated with the electrolyte, when bubbles are formed in the electrolyte coating, the catalyst metal disposed in the bubbles does not come into contact with the electrolyte.
  • the catalyst metal supported (stored) inside the pores whose openings are covered with the electrolyte does not come into contact with the electrolyte.
  • the metal catalyst present in the bubbles and pores is covered with the electrolyte, gas access is hindered. Nevertheless, the specific surface area corresponding to the catalytic metal without contact with these electrolytes cannot be detected by electrochemical techniques.
  • the ratio of the specific surface area of the catalyst metal that can reach the gas without passing through the electrolyte with respect to the specific surface area of the entire catalyst metal by measuring the gas adsorption amount (catalyst Metal exposure rate).
  • the microstructure can be evaluated in consideration of access to the gas of the metal catalyst.
  • the catalyst metal in which the microstructure is coated with the electrolyte It can detect as an area and can predict catalyst performance (for example, power generation performance) with high accuracy.
  • the performance evaluation method of an electrode catalyst layer in consideration of access to gas of a metal catalyst can be provided.
  • the adsorptive gas such as carbon monoxide, volatile sulfur-containing compound, and nitrogen oxide is, for example, 1 to 100% (v / v) with respect to the entire measurement gas. included.
  • the measurement comprises one or more selected from 1 to 100% (v / v) of the adsorptive gas and one or more selected from the group consisting of the remaining helium, nitrogen and argon.
  • Use gas In the case of a mixed gas, from the viewpoint of the signal intensity of the adsorbed gas, the adsorbable gas may be contained in a ratio of 2 to 40% (v / v) more preferably with respect to the entire mixed gas.
  • a measurement gas consisting of one or more selected from 2 to 40% (v / v) of the above adsorptive gas and one or more selected from the group consisting of the remaining helium, nitrogen and argon is used. May be.
  • the gas used for the measurement is platinum or a catalytic metal containing a metal component other than platinum and platinum, carbon monoxide (CO) is preferably included.
  • the measurement gas used for measuring the gas adsorption amount (A) and the measurement gas used for measuring the gas adsorption amount (B) usually have the same composition.
  • the gas adsorption amount (A) is measured under temperature conditions where the molecular motion of the electrolyte is active to such an extent that the gas can pass through the electrolyte.
  • the molecular movement of the electrolyte becomes active by increasing the temperature of the electrolyte, and is suppressed by decreasing the temperature. Therefore, the value of the gas adsorption amount (A) can be obtained by measuring the gas adsorption amount of the catalytic metal under the condition of high temperature (for example, 50 ° C.).
  • the temperature at which the gas adsorption amount (A) is measured (the temperature of the fuel cell electrode catalyst layer) varies depending on the electrolyte contained therein and cannot be defined unconditionally, but is, for example, more than 0 ° C. and 120 ° C. or less.
  • the gas adsorption amount (A) is measured, for example, under atmospheric pressure.
  • the gas adsorption amount (B) is measured under temperature conditions in which the molecular motion of the electrolyte is suppressed to such an extent that the electrolyte does not pass through the gas. Therefore, the value of the gas adsorption amount (B) can be obtained by measuring the gas adsorption amount of the catalytic metal under the condition of low temperature (for example, ⁇ 74 ° C.).
  • the temperature at which the gas adsorption amount (B) is measured (the temperature of the electrode catalyst layer for the fuel cell to be used) varies depending on the electrolyte contained and cannot be defined unconditionally.
  • the gas adsorption amount (A) is measured. The temperature is lower than the temperature. More specifically, the temperature at which the gas adsorption amount (B) is measured is, for example, ⁇ 150 to 0 ° C.
  • the gas adsorption amount (B) is measured, for example, under atmospheric pressure.
  • the temperature T (A) (° C.) at which the gas adsorption amount (A) is measured and the temperature T (B) (° C.) at which the gas adsorption amount (B) is measured are 80 ⁇ (T (A) (° C.) ⁇ T (B) (° C.)) ⁇ 270.
  • the ratio of the specific surface area of the catalyst metal that can be reached without passing through the electrolyte described for the electrode catalyst layer for fuel cells is a value measured by the following CO adsorption method. It is.
  • the following method is a more specific evaluation method according to one aspect of the present invention, and utilizes the selective adsorption of carbon monoxide (CO) to a catalyst metal (for example, platinum).
  • CO carbon monoxide
  • the following mechanism is used. That is, carbon monoxide (CO) passes through the electrolyte at 50 ° C. For this reason, at 50 ° C., CO chemisorbs both on the catalyst metal exposed on the catalyst support (not coated with electrolyte) and on the catalyst metal coated with electrolyte.
  • the specific surface area of the catalyst metal in the catalyst layer (COMSA ⁇ 74 ° C. ) (m 2 / g catalyst metal) measured by the CO adsorption method at ⁇ 74 ° C. is the ratio of the catalyst metal that the gas can reach without passing through the electrolyte. Corresponds to surface area. Therefore, COMSA 50 ° C. (m 2 / g catalytic metal) and COMSA ⁇ 74 ° C. (m 2 / g catalytic metal) were measured by the following CO adsorption method, and the catalytic metal exposure rate was obtained from the obtained value by the following formula (2). (%) Is calculated.
  • the “CO adsorption method” is a method for evaluating the catalyst metal exposure rate using the gas adsorption amount (A) and the gas adsorption amount (B), using carbon monoxide as the adsorption gas, and the gas adsorption amount (A).
  • the measurement temperature is 50 ° C. and the gas adsorption amount (B) is ⁇ 74 ° C.
  • a sample (eg, catalyst layer) is dried in a vacuum oven at 100 ° C. for 5 hours or more. After drying for a predetermined time, the sample is cooled to room temperature (25 ° C.). Thereafter, about 100 mg is weighed, put into an I-shaped tube, and then purged with hydrogen gas at room temperature (25 ° C.) for 10 minutes. The sample is heated to 100 ° C. in 20 minutes under a hydrogen gas flow. Thereafter, it is kept at 100 ° C. for 15 minutes in a hydrogen atmosphere. Next, the flow gas is switched to helium gas, and the sample is held at a temperature of 100 ° C. for 15 minutes.
  • FIG. 2 shows a schematic time change of the gas adsorption amount (A) and the gas adsorption amount (B) when measuring the gas adsorption amount.
  • the gas adsorption amount gradually increases in the temperature maintenance process (50 ° C. or ⁇ 74 ° C. in the above) through which the measurement gas is circulated, and reaches a constant value when the saturated adsorption amount is reached. .
  • the gas adsorption amount is plotted against time from the time when the sample temperature is lowered to the measurement temperature (50 ° C or -74 ° C in the above) and the flow of the measurement gas is started, and the integrated gas as shown in FIG. An adsorption amount plot is obtained. Based on the plot, the gas adsorption amount at an arbitrary predetermined time before reaching the saturated adsorption amount may be adopted as the gas adsorption amount (A) and the gas adsorption amount (B).
  • the sample used for the measurement of the catalyst metal exposure rate by the gas adsorption amount may be a membrane catalyst layer assembly (CCM) or a membrane electrode assembly (MEA) in addition to the fuel cell electrode catalyst layer as described above.
  • the fuel cell electrode catalyst layer may be used as it is or scraped off as applied to the substrate.
  • a catalyst layer different from the measurement target is used as a counter electrode of a catalyst layer (for example, cathode catalyst layer) to be measured for gas adsorption.
  • a catalyst layer for example, cathode catalyst layer
  • an anode catalyst layer may be present.
  • the measurement gas may be measured while preventing the measurement gas from adsorbing to a catalyst layer different from the measurement target (in the above example, the anode catalyst layer).
  • the method for preventing adsorption of the measurement gas to the catalyst layer different from the measurement target is not particularly limited.
  • the entire catalyst layer different from the measurement target is covered with the polymer electrolyte membrane as described above, and the film is transferred by hot press or the like.
  • the measurement gas may be prevented from entering the catalyst layer.
  • the measurement gas is prevented from being adsorbed by the polymer electrolyte membrane using a membrane electrode assembly (MEA)
  • the GDL may be mechanically peeled from the catalyst layer and then coated with the polymer electrolyte membrane. Thereby, adsorption
  • the catalyst layer of the present invention may be either a cathode catalyst layer or an anode catalyst layer, but is preferably a cathode catalyst layer.
  • the catalyst in the catalyst layer of the present invention, the catalyst can be effectively used by forming a three-phase interface with water even if the catalyst and the electrolyte are not in contact with each other, but water is formed in the cathode catalyst layer. Because it does.
  • the catalyst layer essentially includes a catalyst and an electrolyte in which a catalyst metal is supported on a catalyst carrier.
  • the catalyst is not particularly limited.
  • the catalyst may have the following (a) and (b):
  • (A) The catalyst has pores having a radius of less than 1 nm and pores having a radius of 1 nm or more, and the pore volume of the pores having a radius of less than 1 nm is 0.3 cc / g or more of the catalyst, and Metal is supported inside the pores having a radius of 1 nm or more;
  • (B) the catalyst has holes having a radius of less than 1 nm and holes having a radius of 1 nm or more, and the mode radius of the hole distribution of the holes having a radius of less than 1 nm is 0.3 nm or more and less than 1 nm;
  • the catalyst metal is supported in the pores having a radius of 1 nm or more, It is preferable to satisfy at least one of the following.
  • the catalyst satisfying the above (a) is also referred to as “catalyst (a)”
  • the catalyst satisfying the above (b) is also referred to as “cata
  • the catalyst may comprise (c): (C)
  • the catalyst has pores having a radius of 1 nm or more and less than 5 nm, the pore volume of the pores is 0.8 cc / g or more, and the ratio of the catalyst metal measured electrochemically
  • the surface area is below 60 m 2 / g carrier; It is preferable to satisfy.
  • the catalyst satisfying the above (c) is also referred to as “catalyst (c)”.
  • the catalyst (a) comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier, and satisfies the following constitutions (a-1) to (a-3): (A-1) the catalyst has holes having a radius of less than 1 nm (primary holes) and holes having a radius of 1 nm or more (primary holes); (A-2) The pore volume of the pores having a radius of less than 1 nm is 0.3 cc / g or more; and (a-3) the catalyst metal is supported inside the pores having a radius of 1 nm or more. ing.
  • the catalyst (b) comprises a catalyst carrier and a catalyst metal supported on the catalyst carrier, and satisfies the following constitutions (a-1), (b-1) and (a-3): (A-1) the catalyst has pores having a radius of less than 1 nm and pores having a radius of 1 nm or more; (B-1) the mode radius of the pore distribution of the pores having a radius of less than 1 nm is 0.3 nm or more and less than 1 nm; and (a-3) the catalyst metal is placed inside the pores having a radius of 1 nm or more. It is supported.
  • pores having a radius of less than 1 nm are also referred to as “micropores”.
  • holes having a radius of 1 nm or more are also referred to as “meso holes”.
  • the present inventors have found that even when the catalyst metal does not contact the electrolyte, the catalyst metal can be effectively used by forming a three-phase interface with water. Therefore, the catalytic activity of the catalysts (a) and (b) can be improved by adopting a structure in which the catalyst metal (a-3) is supported in the mesopores into which the electrolyte cannot enter. On the other hand, when the catalyst metal is supported inside the mesopores into which the electrolyte cannot enter, the transport distance of gas such as oxygen is increased and the gas transport property is lowered. Then, catalyst performance will fall.
  • the catalysts (a) and (b) are used in the catalyst layer, since the micropores exist in a large volume, the reaction occurs on the surface of the catalyst metal existing in the mesopores via the micropores (pass). Since gas can be transported, gas transport resistance can be further reduced. Therefore, the catalyst layer containing the catalysts (a) and (b) can exhibit higher catalytic activity, that is, can further promote the catalytic reaction. For this reason, the membrane electrode assembly and fuel cell which have a catalyst layer using catalyst (a) and (b) can further improve electric power generation performance.
  • FIG. 3 is a schematic cross-sectional explanatory view showing the shapes and structures of the catalysts (a) and (b).
  • the catalysts (a) and (b) 20 include a catalyst metal 22 and a catalyst carrier 23.
  • the catalyst 20 has pores (micropores) 25 having a radius of less than 1 nm and pores (mesopores) 24 having a radius of 1 nm or more.
  • the catalytic metal 22 is carried inside the mesopores 24.
  • at least a part of the catalyst metal 22 may be supported in the mesopores 24, and a part of the catalyst metal 22 may be formed on the surface of the catalyst carrier 23.
  • substantially all of the catalyst metal 22 is supported inside the mesopores 24.
  • substantially all catalytic metals is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity.
  • substantially all catalyst metals are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
  • the catalyst metal is supported in the mesopores can be confirmed by the decrease in the volume of the mesopores before and after the catalyst metal is supported on the catalyst support.
  • the catalytic metal is supported inside the micropores”.
  • the catalyst metal is supported more in the mesopores than in the micropores (that is, the decrease value of the mesopore volume before and after the support> the decrease value of the micropore volume before and after the support). This is because gas transport resistance can be reduced and a sufficient path for gas transport can be secured.
  • the decrease value of the pore volume of the mesopores before and after supporting the catalyst metal is 0.02 cc / g or more.
  • a carrier of 02 to 0.4 cc / g is more preferable.
  • the pore volume of the pores (micropores) having a radius of less than 1 nm (of the catalyst after supporting the catalyst metal) is 0.3 cc / g or more and / or the micropores (of the catalyst after supporting the catalyst metal)
  • the mode radius (most frequent diameter) of the pore distribution is 0.3 nm or more and less than 1 nm.
  • the pore volume of the micropores is 0.3 cc / g or more and the mode radius of the pore distribution of the micropores is 0.3 nm or more and less than 1 nm. If the pore volume and / or mode diameter of the micropores are in the above ranges, sufficient micropores can be secured for gas transport, and the gas transport resistance is low.
  • the catalyst of the present invention can exhibit high catalytic activity, that is, promote the catalytic reaction. it can. Moreover, electrolyte (ionomer) and liquid (for example, water) cannot penetrate into the micropores, and only gas is selectively passed (gas transport resistance can be reduced).
  • the pore volume of the micropores is 0.3 to 2 cc / g carrier, and particularly preferably 0.4 to 1.5 cc / g carrier.
  • the mode radius of the pore distribution of the micropores is 0.4 to 1 nm, and particularly preferably 0.4 to 0.8 nm.
  • the pore volume of pores having a radius of less than 1 nm is also simply referred to as “micropore pore volume”.
  • the mode radius of the pore distribution of the micropores is also simply referred to as “mode diameter of the micropores”.
  • the pore volume of the pores (mesopores) having a radius of 1 nm or more (of the catalyst after supporting the catalyst metal) is not particularly limited, but is 0.4 cc / g carrier or more, more preferably 0.4 to 3 cc / g carrier.
  • the carrier is preferably 0.4 to 1.5 cc / g. If the void volume is in the above range, a large amount of catalyst metal can be stored (supported) in the mesopores, and the catalyst and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte is prevented). It can be suppressed and prevented more effectively). Therefore, the activity of the catalytic metal can be utilized more effectively.
  • the presence of many mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the micropores act as a gas transport path, and a three-phase interface is formed more remarkably with water, so that the catalytic activity can be further improved.
  • the void volume of holes having a radius of 1 nm or more is also simply referred to as “mesopore void volume”.
  • the mode radius (most frequent diameter) of the pore distribution of the pores (mesopores) having a radius of 1 nm or more (of the catalyst after supporting the catalyst metal) is not particularly limited, but is 1 to 5 nm, more preferably 1 to 4 nm. Particularly preferably, the thickness is 1 to 3 nm.
  • the presence of the large volume of mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the micropores act as a gas transport path, and a three-phase interface is formed more remarkably with water, so that the catalytic activity can be further improved.
  • the mode radius of the pore distribution of mesopores is also simply referred to as “mode diameter of mesopores”.
  • the BET specific surface area (of the catalyst after supporting the catalyst metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g support)] is not particularly limited, but is preferably 900 m 2 / g or more, more preferably 1000 m. It is 2 / g carrier or more.
  • the BET specific surface area (of the catalyst after supporting the catalyst metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g support)] is more preferably 1000 to 3000 m 2 / g support, particularly preferably 1100 to 1800 m 2 / g carrier.
  • the specific surface area is as described above, sufficient mesopores and micropores can be secured, so that more catalysts can be accommodated in the mesopores while securing sufficient micropores (lower gas transport resistance) for gas transport.
  • Metal can be stored (supported).
  • the electrolyte and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively.
  • the presence of many micropores and mesopores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the micropores act as a gas transport path, and a three-phase interface is formed more remarkably with water, so that the catalytic activity can be further improved.
  • the “BET specific surface area (m 2 / g support)” of the catalyst is measured by a nitrogen adsorption method. Specifically, about 0.04 to 0.07 g of catalyst powder is precisely weighed and sealed in a sample tube. This sample tube is preliminarily dried at 90 ° C. for several hours in a vacuum dryer to obtain a measurement sample. For weighing, an electronic balance (AW220) manufactured by Shimadzu Corporation is used. In the case of a coated sheet, a net weight of about 0.03 to 0.04 g of the coated layer obtained by subtracting the weight of Teflon (registered trademark) (base material) of the same area from the total weight is used as the sample weight. .
  • the BET specific surface area is measured under the following measurement conditions. On the adsorption side of the adsorption / desorption isotherm, a BET specific surface area is calculated from the slope and intercept by creating a BET plot from the relative pressure (P / P0) range of about 0.00 to 0.45.
  • micropore pore radius (nm) means the pore radius measured by the nitrogen adsorption method (MP method).
  • mode radius (nm) of pore distribution of micropores means a pore radius at a point where a peak value (maximum frequency) is obtained in a differential pore distribution curve obtained by a nitrogen adsorption method (MP method).
  • the lower limit of the pore radius of the micropore is a lower limit value measurable by the nitrogen adsorption method, that is, 0.42 nm or more.
  • the radius (nm) of mesopores means the radius of the pores measured by the nitrogen adsorption method (DH method).
  • mode radius (nm) of pore distribution of mesopores means a pore radius at a point where a peak value (maximum frequency) is obtained in a differential pore distribution curve obtained by a nitrogen adsorption method (DH method).
  • the upper limit of the pore radius of the mesopore is not particularly limited, but is less than 5 nm.
  • the pore volume of micropores means the total volume of micropores having a radius of less than 1 nm present in the catalyst, and is represented by the volume per gram of support (cc / g support).
  • the “micropore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (MP method).
  • pore volume of mesopores means the total volume of mesopores having a radius of 1 nm or more present in the catalyst, and is represented by the volume per gram of support (cc / g support).
  • the “mesopore pore volume (cc / g carrier)” is calculated as the area (integrated value) below the differential pore distribution curve obtained by the nitrogen adsorption method (DH method).
  • the “differential pore distribution” is a distribution curve in which the pore diameter is plotted on the horizontal axis and the pore volume corresponding to the pore diameter in the catalyst is plotted on the vertical axis. That is, the differential pore volume when the pore volume of the catalyst obtained by the nitrogen adsorption method (MP method in the case of micropores; DH method in the case of mesopores) is V and the pore diameter is D. A value (dV / d (logD)) obtained by dividing dV by the logarithmic difference d (logD) of the hole diameter is obtained. A differential pore distribution curve is obtained by plotting this dV / d (logD) against the average pore diameter of each section.
  • the differential hole volume dV refers to an increase in the hole volume between measurement points.
  • the method of measuring the micropore radius and pore volume by the nitrogen adsorption method is not particularly limited.
  • “Fuel cell analysis method” Yoshio Takasu, Yuu Yoshitake, Tatsumi Ishihara, Chemistry
  • Sh. Mikhal S.M. Brunauer, E.M. E. Bodor J. Colloid Interface Sci. , 26, 45 (1968), etc.
  • the radius and pore volume of the micropores by the nitrogen adsorption method Sh. Mikhal, S.M. Brunauer, E.M. E. Bodor J. Colloid Interface Sci. , 26, 45 (1968).
  • the method for measuring the mesopore radius and pore volume by the nitrogen adsorption method is also not particularly limited.
  • “Science of adsorption” (2nd edition, written by Seiichi Kondo, Tatsuo Ishikawa, Ikuo Abe) , Maruzen Co., Ltd.) and "Fuel Cell Analysis Method” (Yoshio Takasu, Yuu Yoshitake, Tatsumi Ishihara, Chemistry), Dollion, G. R. Heal: J. Appl. Chem. , 14, 109 (1964), etc.
  • the mesopore radius and the pore volume by the nitrogen adsorption method Dollion, G. R. Heal: J. Appl. Chem. , 14, 109 (1964).
  • the method for producing a catalyst having a specific pore distribution as described above is not particularly limited, but it is usually important that the pore distribution (micropores and mesopores) of the support is as described above. is there.
  • a method for producing a carrier having micropores and mesopores and having a micropore pore volume of 0.3 cc / g or more Japanese Patent Application Laid-Open No. 2010-208887 (US Patent Application Publication) No. 2011/318254 (the same applies hereinafter) and International Publication No. 2009/75264 (US Patent Application Publication No. 2011/058308, the same applies hereinafter) and the like.
  • the catalyst (c) is composed of a catalyst carrier and a catalyst metal supported on the catalyst carrier, and satisfies the following constitutions (c-1) to (c-3): (C-1) having vacancies having a radius of 1 nm or more and less than 5 nm; (C-2) The pore volume of the pores having a radius of 1 nm or more and less than 5 nm is 0.8 cc / g support or more; and (c-3) The specific surface area of the catalytic metal measured electrochemically is 60 m 2. / G carrier or less.
  • the pores of the catalyst are prevented from being filled with water, and the pores contributing to the transport of the reaction gas are sufficient. Secured.
  • a catalyst excellent in gas transportability can be provided.
  • the volume of mesopores effective for gas transportation is sufficiently secured, and furthermore, the amount of water retained in the mesopores carrying the catalyst metal is sufficiently reduced by reducing the specific surface area of the catalyst metal. be able to. Therefore, since the inside of the mesopores is suppressed from being filled with water, a gas such as oxygen can be more efficiently transported to the catalyst metal in the mesopores. That is, the gas transport resistance in the catalyst can be further reduced.
  • the catalyst (c) of the present embodiment can promote a catalytic reaction and exhibit higher catalytic activity.
  • the membrane electrode assembly and fuel cell which have a catalyst layer using the catalyst (c) of this embodiment can further improve electric power generation performance.
  • FIG. 4 is a schematic sectional explanatory view showing the shape and structure of the catalyst (c) according to one embodiment of the present invention.
  • the catalyst 20 'of the present invention comprises a catalyst metal 22' and a catalyst carrier 23 '.
  • the catalyst 20 ′ has pores (mesopores) 24 ′ having a radius of 1 nm or more and less than 5 nm.
  • the catalytic metal 22 ' is supported mainly inside the mesopores 24'. Further, it is sufficient that at least part of the catalyst metal 22 ′ is supported inside the mesopores 24 ′, and part of the catalyst metal 22 ′ may be supported on the surface of the catalyst carrier 23 ′.
  • the catalyst metal 22 ′ is supported inside the mesopores 24 ′. It is preferable.
  • the area specific activity of the catalytic metal surface decreases.
  • the electrolyte can be prevented from entering the mesopores 24 ′ of the catalyst carrier 23 ′, and the catalyst metal 22 ′ and the electrolyte are physically separated. And as a result of being able to form a three-phase interface with water, the catalytic activity is improved.
  • substantially all catalytic metals is not particularly limited as long as it is an amount capable of improving sufficient catalytic activity.
  • “Substantially all catalyst metals” are present in an amount of preferably 50 wt% or more (upper limit: 100 wt%), more preferably 80 wt% or more (upper limit: 100 wt%) in all catalyst metals.
  • the pore volume of the pores (mesopores) having a radius of 1 nm or more and less than 5 nm (of the catalyst after supporting the catalyst metal) is 0.8 cc / g or more of the carrier.
  • the pore volume of the mesopores is preferably 0.8 to 3 cc / g carrier, particularly preferably 0.8 to 2 cc / g carrier. If the pore volume is in the range as described above, a large number of pores that contribute to the transport of the reaction gas are ensured, so that the transport resistance of the reaction gas can be reduced. Therefore, since the reaction gas is quickly transported to the surface of the catalytic metal stored in the mesopores, the catalytic metal is effectively used.
  • the catalyst metal can be stored (supported) in the mesopore, and the electrolyte and catalyst metal in the catalyst layer can be physically separated (catalyst metal and electrolyte). Can be more effectively suppressed / prevented).
  • the above-described embodiment in which the contact between the catalyst metal in the mesopores and the electrolyte is suppressed the activity of the catalyst is more effective than when the amount of the catalyst metal supported on the support surface is large.
  • the void volume of holes having a radius of 1 nm or more and less than 5 nm is also simply referred to as “mesopore void volume”.
  • the BET specific surface area (of the catalyst after supporting the catalyst metal) [the BET specific surface area of the catalyst per 1 g of support (m 2 / g support)] is not particularly limited, but is preferably 900 m 2 / g support or more, and 1000 m 2 / G carrier or more, more preferably 1200 m 2 / g carrier or more.
  • the upper limit of the BET specific surface area of the catalyst is not particularly limited, preferably is not more than 3000 m 2 / g carrier, and more preferably is not more than 1800 m 2 / g carrier. With the specific surface area as described above, sufficient mesopores can be secured and the catalyst metal particles can be supported with good dispersibility.
  • the catalyst metal particles have good dispersibility refers to a state in which the particles of the catalyst metal are supported in a state of being separated from each other without aggregating each other.
  • the catalyst metal particles are aggregated to form a lump, the local flux of gas increases in the vicinity of the lump catalyst metal, and the gas transport resistance increases.
  • the individual catalyst metal particles are supported in a dispersed state, the local flux in the vicinity of the individual particles is smaller than that in the above embodiment. Therefore, the transport resistance of the reaction gas is reduced, and the catalytic metal is effectively used.
  • the catalytic metal (catalyst component) has an electrochemically measured specific surface area of 60 m 2 / g or less.
  • the specific surface area of the catalytic metal measured electrochemically is preferably 5 to 60 m 2 / g support, more preferably 5 to 30 m 2 / g support, and particularly preferably 10 to 25 m 2 / g support. is there. Since the surface of the catalytic metal is hydrophilic and water generated by the catalytic reaction is easily adsorbed, water is easily retained in the mesopores in which the catalytic metal is stored.
  • the gas transport path becomes narrow and the diffusion rate of the reaction gas in water is slow, so that the gas transport performance is lowered.
  • the amount of water adsorbed on the surface of the catalyst metal can be reduced by making the specific surface area of the catalyst metal measured electrochemically relatively small as in the above range.
  • the “specific surface area of the catalytic metal measured electrochemically” in the present specification can be measured by a method described in, for example, Journal of Electrochemical Chemistry 693 (2013) 34-41. Specifically, in this specification, a value measured by the following method is adopted as the “specific surface area of the catalytic metal measured electrochemically”.
  • ECA electrochemical effective surface area
  • the method for producing a catalyst having a specific pore volume as described above is not particularly limited, but it is important that the mesopore volume of the support has a pore distribution as described above.
  • a method for producing a carrier having mesopores and having a mesopore pore volume of 0.8 cc / g or more is disclosed in JP 2010-208887 A (US Patent Application Publication No. 2011/2011). No. 318254, the same applies hereinafter), International Publication No. 2009/075264 (US Patent Application Publication No. 2011/058308, the same applies hereinafter) and the like.
  • At least a part of the catalyst metal is supported inside the mesopores, and in the catalyst (c), at least a part of the catalyst metal is supported inside the mesopores. Preferably it is.
  • the material of the carrier constituting the catalyst is not particularly limited, and a known carrier material can be used. It is possible to form pores (primary pores) having pore volumes or mode diameters defined by the catalysts (a) to (c) in the inside of the carrier, and the catalyst components are pores (mesopores). It is preferable that it has a specific surface area and electron conductivity sufficient to be supported in a dispersed state inside.
  • the main component is carbon. Specific examples include carbon particles made of carbon black (Ketjen black, oil furnace black, channel black, lamp black, thermal black, acetylene black, etc.), activated carbon, and the like.
  • the main component is carbon means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. It may be included. “Substantially consists of carbon atoms” means that contamination of impurities of about 2 to 3% by weight or less can be allowed.
  • porous metals such as Sn (tin) and Ti (titanium), and conductive metal oxides can also be used as carriers.
  • the BET specific surface area of the support may be a specific surface area sufficient to support the catalyst component in a highly dispersed state.
  • the BET specific surface area of the support is substantially equivalent to the BET specific surface area of the catalyst.
  • the BET specific surface area of the carrier is, for example, 700 m 2 / g carrier or more, preferably 900 m 2 / g carrier or more, more preferably 1000 m 2 / g carrier or more, particularly preferably 1100 m 2 / g carrier or more.
  • the upper limit of the BET specific surface area of the support is not particularly limited, preferably is not more than 3000 m 2 / g carrier, and more preferably is not more than 1800 m 2 / g carrier.
  • the specific surface area is as described above, sufficient mesopores and, in some cases, sufficient micropores can be secured, so that more catalyst metals can be stored (supported) with better dispersibility in the mesopores. Further, sufficient mesopores and, in some cases, micropores for gas transportation can be secured, so that the gas transportation resistance can be further reduced.
  • the electrolyte and the catalyst metal in the catalyst layer are physically separated (contact between the catalyst metal and the electrolyte can be more effectively suppressed / prevented). Therefore, the activity of the catalytic metal can be utilized more effectively. Moreover, since the local flux in the vicinity of the catalyst metal particles is reduced, the reaction gas is quickly transported and the catalyst metal is effectively used.
  • the presence of many pores (mesopores) and, in some cases, micropores can more effectively promote the catalytic reaction by exerting the effects and advantages of the present invention more remarkably.
  • the balance between the dispersibility of the catalyst component on the catalyst carrier and the effective utilization rate of the catalyst component can be appropriately controlled.
  • the micropores act as a gas transport path, and a three-phase interface is formed more remarkably with water, so that the catalytic activity can be further improved.
  • examples of the carrier include a non-porous conductive carrier, a non-woven fabric made of carbon fibers constituting a gas diffusion layer, carbon paper, and carbon cloth.
  • the catalyst can be supported on these non-porous conductive carriers, or directly attached to a non-woven fabric made of carbon fibers, carbon paper, carbon cloth, etc. constituting the gas diffusion layer of the membrane electrode assembly. It is.
  • the catalytic metal constituting the catalyst has a function of catalyzing an electrochemical reaction.
  • the catalyst metal used in the anode catalyst layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used in the same manner.
  • the catalyst metal used in the cathode catalyst layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a known catalyst can be used in the same manner.
  • metals such as platinum, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, copper, silver, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof Can be selected.
  • the catalyst metal is preferably platinum or contains a metal component other than platinum and platinum, and more preferably platinum or a platinum-containing alloy.
  • a catalytic metal can exhibit high activity.
  • the composition of the alloy depends on the type of metal to be alloyed, the content of platinum is preferably 30 to 90 atomic%, and the content of the metal to be alloyed with platinum is preferably 10 to 70 atomic%.
  • an alloy is a generic term for a metal element having one or more metal elements or non-metal elements added and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the component elements as separate crystals, a component element completely melted into a solid solution, and a component element composed of an intermetallic compound or a compound of a metal and a nonmetal.
  • the catalyst metal used for the anode catalyst layer and the catalyst metal used for the cathode catalyst layer can be appropriately selected from the above.
  • the description of the catalyst metal for the anode catalyst layer and the cathode catalyst layer has the same definition for both.
  • the catalyst metals of the anode catalyst layer and the cathode catalyst layer do not have to be the same, and can be appropriately selected so as to exhibit the desired action as described above.
  • the shape and size of the catalyst metal are not particularly limited, and the same shape and size as known catalyst components can be adopted.
  • As the shape for example, a granular shape, a scale shape, a layered shape, and the like can be used, but a granular shape is preferable.
  • the average particle diameter of the catalyst metal (catalyst metal particles) is not particularly limited.
  • the average particle diameter of the catalyst metal (catalyst metal particles) is, for example, 2 nm or more. Further, for example, when the catalyst (a) and / or (b) is used as a catalyst, the average particle diameter of the catalyst metal (catalyst metal particles) is 3 nm or more, more preferably more than 3 nm and not more than 30 nm, particularly preferably. It is preferable that it is more than 3 nm and 10 nm or less.
  • the catalyst metal is supported relatively firmly in the mesopores, and the contact with the electrolyte in the catalyst layer is more effectively suppressed / prevented. Further, the micropores remain without being clogged with the catalyst metal, and the gas transport path can be secured better, and the gas transport resistance can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, the catalytic activity can be further improved, that is, the catalytic reaction can be promoted more efficiently.
  • the average particle diameter of the catalyst metal particles is 30 nm or less, the catalyst metal can be supported inside the mesopores of the carrier by a simple method.
  • the average particle diameter of a catalyst metal is a magnitude
  • the amount of water adsorbed on the catalytic metal surface can be reduced, and a large number of mesopores contributing to the transport of the reaction gas can be secured. Therefore, the transport resistance of the reaction gas can be further reduced. In addition, elution due to potential change can be prevented, and deterioration in performance over time can be suppressed. For this reason, catalyst activity can be improved more. That is, the catalytic reaction can be promoted more efficiently.
  • the average particle diameter of the catalyst metal particles is 30 nm or less, the catalyst metal can be supported inside the mesopores of the carrier by a simple method.
  • the “average particle diameter of catalyst metal particles” (diameter) and “average particle radius of catalyst metal particles” in the present invention are the crystallite radius determined from the half-value width of the diffraction peak of the catalyst metal component in X-ray diffraction, It is obtained from the average value of the particle radii of the catalytic metal particles examined with a transmission electron microscope (TEM).
  • “average particle diameter of catalyst metal particle” and “average particle radius of catalyst metal” are respectively the crystallite diameter and crystallite radius determined from the half width of the diffraction peak of the catalyst metal component in X-ray diffraction. is there.
  • the content of catalyst metal per unit catalyst application area is not particularly limited as long as sufficient degree of dispersion on the carrier and power generation performance can be obtained. 1 mg / cm 2 or less.
  • the platinum content per unit catalyst coating area is preferably 0.5 mg / cm 2 or less.
  • the use of expensive noble metal catalysts typified by platinum (Pt) and platinum alloys has become a high cost factor for fuel cells. Therefore, it is preferable to reduce the amount of expensive platinum used (platinum content) to the above range and reduce the cost.
  • the lower limit is not particularly limited as long as power generation performance is obtained. In this embodiment, since the activity per catalyst weight can be improved by controlling the pore structure of the carrier, the amount of expensive catalyst used can be reduced.
  • inductively coupled plasma emission spectroscopy is used for measurement (confirmation) of “content of catalyst metal (platinum) per unit catalyst application area (mg / cm 2 )”.
  • ICP inductively coupled plasma emission spectroscopy
  • a person skilled in the art can easily carry out a method of making the desired “content of catalyst metal (platinum) per unit catalyst coating area (mg / cm 2 )”.
  • the composition of the slurry (catalyst concentration) and the coating amount The amount can be adjusted by controlling.
  • the amount of catalyst metal supported on the carrier (sometimes referred to as a loading rate) is not particularly limited.
  • the supporting rate is preferably 10 to 80% by weight, more preferably based on the total amount of the catalyst (that is, the support and the catalyst metal).
  • the content is preferably 20 to 70% by weight. If the loading is within the above range, it is preferable because a sufficient degree of dispersion of the catalyst components on the carrier, improvement in power generation performance, economic advantages, and catalytic activity per unit weight can be achieved.
  • the ratio of the catalyst metal to the catalyst is based on the total weight of the catalyst (total weight of the support and the catalyst metal). 60 wt% or less, preferably 40 wt% or less. Further, the catalyst loading is more preferably 30% by weight or less. On the other hand, the lower limit of the catalyst loading is preferably 5% by weight or more, and more preferably 20% by weight or more.
  • the catalyst loading is in the above range, a catalyst having a small specific surface area of the catalyst metal can be obtained. As a result, the amount of water adsorbed on the catalytic metal surface can be reduced, and more mesopores contributing to the reaction gas transport can be secured.
  • the “catalyst loading” in the present invention is a value obtained by measuring the weight of the carrier before supporting the catalyst metal and the catalyst after supporting the catalyst metal.
  • the catalyst layer of the present invention contains an electrolyte in addition to the above catalyst.
  • the electrolyte is not particularly limited, but is preferably an ion conductive polymer electrolyte. Since the polymer electrolyte plays a role of transmitting protons generated around the catalyst active material on the fuel electrode side, it is also called a proton conductive polymer.
  • the polymer electrolyte is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • Polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material. Of these, fluorine-based polymer electrolytes are preferred. That is, the electrolyte is preferably a fluorine-based polymer electrolyte.
  • ion exchange resins constituting the fluorine-based polymer electrolyte include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride-per Examples thereof include fluorocarbon sulfonic acid polymers. From the viewpoint of excellent heat resistance, chemical stability, durability, and mechanical strength, these fluorine-based polymer electrolytes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. Is used.
  • hydrocarbon electrolyte examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • the catalyst layer of this embodiment contains a polymer electrolyte having a small EW.
  • the catalyst layer of the present embodiment preferably contains a polymer electrolyte having an EW of 1500 g / mol or less, more preferably a polymer electrolyte having 1200 g / mol or less, and particularly preferably a high electrolyte of 1100 g / mol or less. Contains molecular electrolytes.
  • the EW of the polymer electrolyte is preferably 600 g / mol or more.
  • EW Equivalent Weight
  • the equivalent weight is the dry weight of the ion exchange membrane per equivalent of ion exchange group, and is expressed in units of “g / mol”.
  • the catalyst layer includes two or more types of polymer electrolytes having different EWs in the power generation surface.
  • the polymer electrolyte having the lowest EW among the polymer electrolytes has a relative humidity of 90% or less of the gas in the flow path. It is preferable to use in the region. By adopting such a material arrangement, the resistance value becomes small regardless of the current density region, and the battery performance can be improved.
  • the EW of the polymer electrolyte used in the region where the relative humidity of the gas in the flow path is 90% or less, that is, the polymer electrolyte having the lowest EW is desirably 900 g / mol or less. Thereby, the above-mentioned effect becomes more reliable and remarkable.
  • the polymer electrolyte having the lowest EW is within 3/5 from the gas supply port of at least one of the fuel gas and the oxidant gas with respect to the flow path length. It is desirable to use it in the range area.
  • a water repellent such as polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer, a dispersing agent such as a surfactant, glycerin, ethylene glycol (EG), as necessary.
  • a thickener such as polyvinyl alcohol (PVA) and propylene glycol (PG), and an additive such as a pore-forming agent may be contained.
  • the thickness (dry film thickness) of the catalyst layer is preferably 0.05 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, still more preferably 2 to 15 ⁇ m.
  • the said thickness is applied to both a cathode catalyst layer and an anode catalyst layer.
  • the thickness of the cathode catalyst layer and the anode catalyst layer may be the same or different.
  • the method for producing the catalyst layer of the present invention is not particularly limited, and for example, a known method such as the method described in JP 2010-21060 A is applied in the same manner or appropriately modified.
  • a mixed solution in which the mixing weight ratio of water and alcohol is 60/40 or more and less than 91/9 is used.
  • the method to use is mentioned.
  • a method is used in which a coating liquid containing such a water-alcohol mixed solvent (water-alcohol mixed liquid), a catalyst and an electrolyte is prepared, and the obtained coating liquid is applied to a substrate to form an electrode catalyst layer. .
  • a mixing weight ratio of a catalyst comprising a platinum-containing catalyst metal supported on a catalyst carrier having a BET specific surface area of 900 m 2 / g or more, an electrolyte, water and alcohol is 60/40 or more and less than 91/9
  • a method of preparing a coating solution containing a water-alcohol mixed solvent and applying the resulting coating solution to a substrate to form an electrode catalyst layer is used.
  • the present invention provides a catalyst carrier having a BET specific surface area of 900 m 2 / g or more and a catalyst comprising a platinum-containing catalyst metal supported on the catalyst carrier, an electrolyte, water, and an alcohol in a mixing weight ratio of 60 /
  • a method for producing an electrode catalyst layer for a fuel cell comprising preparing a coating solution containing a water-alcohol mixed solvent of 40 or more and less than 91/9, and applying the coating solution to form an electrode catalyst layer.
  • a carrier having a BET specific surface area of 700 m 2 / g carrier or more, preferably 900 m 2 / g carrier or more (also referred to herein as “porous carrier” or “conductive porous carrier”) is prepared. Specifically, it may be produced as described in the method for producing the carrier. Thereby, pores having a specific pore distribution defined by the catalysts (a) to (c) can be formed in the carrier.
  • the catalyst metal can be efficiently supported (stored) inside the support (especially mesopores).
  • the graphitization of the support is simultaneously promoted by the heat treatment, and the corrosion resistance can be improved.
  • the conditions for the heat treatment vary depending on the material and are appropriately determined so that a desired pore structure is obtained. Generally, when the heating temperature is high, the mode diameter of the hole distribution tends to shift in the direction of increasing the hole diameter. Such heat treatment conditions may be determined according to the material while confirming the pore structure, and can be easily determined by those skilled in the art.
  • the catalyst metal is supported on the porous carrier to obtain catalyst powder.
  • the catalyst metal can be supported on the porous carrier by a known method.
  • known methods such as an impregnation method, a liquid phase reduction support method using an acid such as citric acid, an evaporation to dryness method, a colloid adsorption method, a spray pyrolysis method, and a reverse micelle (microemulsion method) can be used.
  • a reverse micelle microemulsion method
  • the heat treatment temperature is preferably in the range of 300 to 1200 ° C., more preferably in the range of 500 to 1150 ° C., and particularly preferably in the range of 700 to 1000 ° C.
  • the reducing atmosphere is not particularly limited as long as it contributes to the grain growth of the catalyst metal, but it is preferably performed in a mixed atmosphere of a reducing gas and an inert gas.
  • the reducing gas is not particularly limited, but hydrogen (H 2 ) gas is preferable.
  • the inert gas is not particularly limited, and helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), nitrogen (N 2 ), and the like can be used.
  • the said inert gas may be used independently or may be used with the form of 2 or more types of mixed gas.
  • the heat treatment time is preferably 0.1 to 2 hours, more preferably 0.5 to 1.5 hours.
  • the catalyst metal can be carried and stored (stored) in the mesopores of the catalyst carrier by performing the above steps.
  • a water-alcohol mixed solvent having a mixing weight ratio of water and alcohol of 60/40 or more and less than 91/9 is prepared, and the obtained water-alcohol mixed solvent, catalyst powder, and polymer electrolyte are mixed. Then, a coating liquid (catalyst ink) is prepared.
  • a mixed solvent having a high water content ratio as a dispersion medium it is possible to prevent the electrolyte from covering the inlet of the mesopores.
  • the mixing weight ratio of water and alcohol is less than 60/40 (water is less than 60 parts by weight with respect to 40 parts by weight of alcohol), the electrolyte excessively covers the catalyst and is defined in the present invention.
  • the electrolyte covers the mesopore opening, and the catalyst metal exposure rate defined in the present invention cannot be achieved.
  • the mixing weight ratio of water and alcohol is 91/9 or more (water is 91 parts by weight or more with respect to 9 parts by weight of alcohol), the catalyst excessively aggregates to increase the size, and the electrolyte Thus, the catalyst layer is formed in an excessively phase-separated form. For this reason, since the transport distance of the reaction gas is increased and the gas transport property is lowered, sufficient catalytic activity cannot be obtained, and the catalyst performance is deteriorated particularly under a high load condition.
  • the mixing weight ratio of water and alcohol is preferably 65/35 to 90/10, more preferably 70/30 to 90/10.
  • Water is not particularly limited, and tap water, pure water, ion exchange water, distilled water and the like can be used.
  • alcohol is not particularly limited. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol, 2-methyl-2-propanol, cyclohexanol, and the like. Of these, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol and 2-methyl-2-propanol are preferred.
  • the alcohol may be used alone or in the form of a mixture of two or more.
  • the alcohol is at least one selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 2-butanol and 2-methyl-2-propanol. It is preferable that By using such a lower alcohol having a high affinity, it is possible to prevent extreme uneven distribution of the electrolyte. Of the above-mentioned alcohols, it is more preferable to use an alcohol having a boiling point of less than 100 ° C. By using alcohol having a boiling point of less than 100 ° C., there is an advantage that the drying process can be simplified. Alcohols having a boiling point of less than 100 ° C.
  • methanol (boiling point: 65 ° C.), ethanol (boiling point: 78 ° C.), 1-propanol (boiling point: 97 ° C.), 2-propanol (boiling point: 82 ° C.), and 2-methyl.
  • Examples thereof include those selected from the group consisting of -2-propanol (boiling point: 83 ° C.).
  • the said alcohol can be used individually by 1 type or in mixture of 2 or more types.
  • polymer electrolytes are roughly classified into fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes depending on the type of ion exchange resin that is a constituent material.
  • fluorine-based polymer electrolytes are preferred. That is, the electrolyte is preferably a fluorine-based polymer electrolyte.
  • the amount of the solvent constituting the catalyst ink is not particularly limited as long as it is an amount capable of completely dissolving the electrolyte.
  • the solid content concentration of the catalyst powder and the polymer electrolyte is preferably 1 to 50% by weight, more preferably about 5 to 30% by weight in the electrode catalyst ink.
  • additives such as a water repellent, a dispersant, a thickener, and a pore-forming agent
  • these additives may be added to the catalyst ink.
  • the amount of the additive added is not particularly limited as long as it is an amount that does not interfere with the effects of the present invention.
  • the amount of additive added is preferably 5 to 20% by weight with respect to the total weight of the electrode catalyst ink.
  • a catalyst ink is applied to the surface of the substrate.
  • the application method to the substrate is not particularly limited, and a known method can be used. Specifically, it can be performed using a known method such as a spray (spray coating) method, a gulliver printing method, a die coater method, a screen printing method, or a doctor blade method.
  • a solid polymer electrolyte membrane (electrolyte layer) or a gas diffusion substrate (gas diffusion layer) can be used as the substrate on which the catalyst ink is applied.
  • the obtained laminate can be used for the production of the membrane electrode assembly as it is.
  • a peelable substrate such as a polytetrafluoroethylene (PTFE) [Teflon (registered trademark)] sheet is used as the substrate, and after the catalyst layer is formed on the substrate, the catalyst layer portion is peeled from the substrate.
  • PTFE polytetrafluoroethylene
  • the coating layer (film) of the catalyst ink is dried at room temperature to 180 ° C. for 1 to 60 minutes in an air atmosphere or an inert gas atmosphere. Thereby, a catalyst layer is formed.
  • a fuel cell membrane electrode assembly comprising the fuel cell electrode catalyst layer. That is, the solid polymer electrolyte membrane 2, the cathode catalyst layer disposed on one side of the electrolyte membrane, the anode catalyst layer disposed on the other side of the electrolyte membrane, the electrolyte membrane 2 and the anode catalyst layer.
  • a fuel cell membrane electrode assembly having 3a and a pair of gas diffusion layers (4a, 4c) sandwiching the cathode catalyst layer 3c.
  • at least one of the cathode catalyst layer and the anode catalyst layer is the catalyst layer of the embodiment described above.
  • the cathode catalyst layer may be the catalyst layer of the embodiment described above.
  • the catalyst layer according to the above embodiment may be used as an anode catalyst layer, or may be used as both a cathode catalyst layer and an anode catalyst layer, and is not particularly limited.
  • a fuel cell having the above membrane electrode assembly there is provided a fuel cell having the above membrane electrode assembly. That is, one embodiment of the present invention is a fuel cell having a pair of anode separator and cathode separator that sandwich the membrane electrode assembly of the above-described embodiment.
  • the present invention is characterized by the catalyst layer. Therefore, the specific form of the members other than the catalyst layer constituting the fuel cell can be appropriately modified with reference to conventionally known knowledge.
  • the electrolyte membrane is composed of a solid polymer electrolyte membrane 2 as shown in FIG.
  • the solid polymer electrolyte membrane 2 has a function of selectively transmitting protons generated in the anode catalyst layer 3a during the operation of the PEFC 1 to the cathode catalyst layer 3c along the film thickness direction.
  • the solid polymer electrolyte membrane 2 also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • the electrolyte material constituting the solid polymer electrolyte membrane 2 is not particularly limited, and conventionally known knowledge can be appropriately referred to.
  • the fluorine-based polymer electrolyte or hydrocarbon-based polymer electrolyte described above as the polymer electrolyte can be used. At this time, it is not always necessary to use the same polymer electrolyte used for the catalyst layer.
  • the thickness of the electrolyte layer may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited.
  • the thickness of the electrolyte layer is usually about 5 to 300 ⁇ m. When the thickness of the electrolyte layer is within such a range, the balance of strength during film formation, durability during use, and output characteristics during use can be appropriately controlled.
  • the gas diffusion layers are catalyst layers (3a, 3c) of gas (fuel gas or oxidant gas) supplied via the gas flow paths (6a, 6c) of the separator. ) And a function as an electron conduction path.
  • the material which comprises the base material of a gas diffusion layer (4a, 4c) is not specifically limited, A conventionally well-known knowledge can be referred suitably.
  • a sheet-like material having conductivity and porosity such as a carbon woven fabric, a paper-like paper body, a felt, and a non-woven fabric can be used.
  • the thickness of the substrate may be appropriately determined in consideration of the characteristics of the obtained gas diffusion layer, but may be about 30 to 500 ⁇ m. If the thickness of the substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be appropriately controlled.
  • the gas diffusion layer preferably contains a water repellent for the purpose of further improving water repellency and preventing flooding.
  • the water repellent is not particularly limited, but fluorine-based high repellents such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). Examples thereof include molecular materials, polypropylene, and polyethylene.
  • the gas diffusion layer is made of a carbon particle layer (microporous layer or microporous layer; MPL, not shown) made of an aggregate of carbon particles containing a water repellent. It may be on the catalyst layer side.
  • the carbon particles contained in the carbon particle layer are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Among them, carbon black such as oil furnace black, channel black, lamp black, thermal black, acetylene black and the like can be preferably used because of excellent electron conductivity and a large specific surface area.
  • the average particle size of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, it becomes possible to improve contact property with a catalyst layer.
  • Examples of the water repellent used for the carbon particle layer include the same water repellents as described above.
  • fluorine-based polymer materials can be preferably used because of excellent water repellency, corrosion resistance during electrode reaction, and the like.
  • the mixing ratio of the carbon particles to the water repellent in the carbon particle layer is about 90:10 to 40:60 (carbon particles: water repellent) by weight in consideration of the balance between water repellency and electronic conductivity. It is good.
  • a method for producing the membrane electrode assembly is not particularly limited, and a conventionally known method can be used.
  • a catalyst layer is transferred or applied to a solid polymer electrolyte membrane by hot pressing, and this is dried, and a gas diffusion layer is bonded to the gas diffusion layer, or the microporous layer side of the gas diffusion layer (not including the microporous layer)
  • two gas diffusion electrodes are produced by applying a catalyst layer on one side of the base material layer in advance and drying, and then hot-pressing the gas diffusion electrodes on both sides of the solid polymer electrolyte membrane.
  • the joining method can be used. Application and joining conditions such as hot pressing may be appropriately adjusted according to the type of polymer electrolyte in the solid polymer electrolyte membrane or catalyst layer (perfluorosulfonic acid type or hydrocarbon type).
  • the separator has a function of electrically connecting each cell in series when a plurality of single cells of a fuel cell such as a polymer electrolyte fuel cell are connected in series to form a fuel cell stack.
  • the separator also functions as a partition that separates the fuel gas, the oxidant gas, and the coolant from each other.
  • each of the separators is preferably provided with a gas flow path and a cooling flow path.
  • a material constituting the separator conventionally known materials such as dense carbon graphite, carbon such as a carbon plate, and metal such as stainless steel can be appropriately employed without limitation.
  • the thickness and size of the separator and the shape and size of each flow path provided are not particularly limited, and can be appropriately determined in consideration of the desired output characteristics of the obtained fuel cell.
  • the manufacturing method of the fuel cell is not particularly limited, and conventionally known knowledge can be appropriately referred to in the field of the fuel cell.
  • a fuel cell stack having a structure in which a plurality of membrane electrode assemblies are stacked and connected in series via a separator may be formed so that the fuel cell can exhibit a desired voltage.
  • the shape of the fuel cell is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.
  • the above-mentioned PEFC and membrane electrode assembly use a catalyst layer having excellent power generation performance and durability. Therefore, the PEFC and the membrane electrode assembly are excellent in power generation performance and durability.
  • the PEFC of this embodiment and the fuel cell stack using the same can be mounted on a vehicle as a driving power source, for example.
  • Synthesis example 1 Carbon material A was produced by the method described in International Publication No. 2009/75264. The obtained carbon material A was heated at 1800 ° C. for 5 minutes in an argon gas atmosphere to produce a carrier A.
  • the pore volume of micropores and mesopores, the mode diameter of micropores and mesopores, and the BET specific surface area were measured.
  • the micropore has a pore volume of 0.75 cc / g;
  • the mesopore has a pore volume of 0.90 cc / g;
  • the micropore has a mode diameter of 0.75 nm;
  • the mesopore has a mode diameter of 1.66 nm.
  • a BET specific surface area of 1166 m 2 / g support a BET specific surface area of 1166 m 2 / g support.
  • Synthesis example 2 Using the carrier A prepared in Synthesis Example 1 above, platinum (Pt) as a catalyst metal was supported on the carrier A so that the supporting rate was 30% by weight and the average particle diameter (diameter) was 3.3 nm.
  • platinum (Pt) as a catalyst metal was supported on the carrier A so that the supporting rate was 30% by weight and the average particle diameter (diameter) was 3.3 nm.
  • 46 g of carrier A was immersed in 429 g (platinum content: 19.7 g) of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.6% by weight, and 100 ml of 100% ethanol was added as a reducing agent. This solution was stirred and mixed at the boiling point for 7 hours, and platinum was supported on the carrier A.
  • the catalyst powder having a loading rate of 30% by weight was obtained by filtration and drying. Then, it hold
  • the pore volume of micropores and mesopores, the mode diameter of micropores and mesopores, and the BET specific surface area were measured.
  • the pore volume of the micropore is 0.69 cc / g carrier; the pore volume of the mesopore is 0.80 cc / g carrier; the mode diameter of the micropore is 0.75 nm; the mode diameter of the mesopore is 1.66 nm.
  • a BET specific surface area of 1226 m 2 / g carrier a BET specific surface area of 1226 m 2 / g carrier.
  • EW 700 g / mol
  • Ketjen Black EC300J (manufactured by Ketjen Black International Co., Ltd.) is heat-treated at 2000 to 3000 ° C. for 5 to 20 hours in an argon atmosphere, thereby supporting graphite ketjen black (particle size: 30 to 60 nm). As produced. Using this support, platinum (Pt) having an average particle size of 2.3 nm was supported on the support metal so as to have a support ratio of 30% by weight to obtain a catalyst powder.
  • the cathode catalyst ink and the anode catalyst ink prepared above were respectively applied to a transfer substrate (Teflon (registered trademark) sheet) by a screen printing method so as to have a Pt basis weight of 0.15 mg / cm 2. And dried at 80 ° C. for 15 minutes. As a result, a cathode catalyst layer having a film thickness (dry film thickness) of 14.7 ⁇ m and an anode catalyst layer having a film thickness (dry film thickness) of 2 ⁇ m were formed on the transfer substrate. Further, the cathode catalyst layer and the anode catalyst layer were cut so as to have a size of 5 cm ⁇ 2 cm.
  • a transfer substrate Teflon (registered trademark) sheet
  • the cathode catalyst layer obtained above was measured for the catalyst metal exposure rate by the CO adsorption method and found to be 97%. Further, when the specific surface area of the catalytic metal (catalyst component) was electrochemically measured for the thus obtained cathode catalyst layer, it was 18.6 m 2 / g carrier.
  • a gasket (manufactured by Teijin Dupont, Teonex, thickness: 25 ⁇ m (adhesive layer: 10 ⁇ m)) was disposed around both sides of a polymer electrolyte membrane (Dupont, NAFION NR211, thickness: 25 ⁇ m).
  • the cathode catalyst layer and anode catalyst layer (size: 5 cm ⁇ 2 cm) prepared above are combined with each exposed portion of the polymer electrolyte membrane, and hot pressing is performed at 150 ° C. and 0.8 MPa for 10 minutes.
  • a membrane / catalyst layer assembly (CCM) was obtained. Both surfaces of the obtained membrane catalyst layer assembly (CCM) were sandwiched between gas diffusion layers (24BC, manufactured by SGL Carbon Co., Ltd.) to obtain a membrane electrode assembly (1) (MEA (1)).
  • the membrane electrode assembly (1) had a power generation current per platinum surface area at 0.9 V of 846 ( ⁇ A / cm 2 (Pt)) and a gas transport resistance of 8.6 (s / m). It was.
  • the limiting current density (A / cm 2 ) was measured using diluted oxygen.
  • gas transport resistance (s / m) was computed from the inclination of the limiting current density (A / cm ⁇ 2 >) with respect to oxygen partial pressure (kPa).
  • the gas transport resistance is proportional to the total pressure of the gas, and can be separated into a component that depends on the total pressure of the gas (gas transport resistance due to molecular diffusion) and a component that does not depend on the component.
  • the former is, for example, a transport resistance component in a relatively large vacancy of 100 nm or more existing in a gas diffusion layer
  • the latter is a transport resistance component in a relatively small vacancy of less than 100 nm existing in a catalyst layer.
  • the gas transport resistance in the catalyst layer was obtained by measuring the total pressure dependence of the gas transport resistance and extracting components that do not depend on the total pressure.
  • Example 1-2 A mixed solvent 3 having a mixing weight ratio of water and n-propyl alcohol of 90/10 was prepared.
  • Example 1-1 the same procedure as in Example 1-1 was performed, except that the mixed solvent 3 prepared above was used instead of the mixed solvent 1, and the cathode catalyst layer was measured on the transfer substrate. did. With respect to the cathode catalyst layer obtained above, the catalytic metal exposure rate was measured and found to be 93%. The cathode catalyst layer thus obtained was electrochemically measured for the specific surface area of the catalyst metal (catalyst component) and found to be 21.1 m 2 / g support.
  • Example 1-1 except that the cathode catalyst layer formed above was used instead, the same operation as in Example 1-1 was performed, and the membrane electrode assembly (2) (MEA (2 )).
  • the membrane / electrode assembly (2) obtained above was evaluated for catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) in the same manner as in Example 1-1.
  • the membrane electrode assembly (2) had a generated current per platinum surface area at 0.9 V of 998 ( ⁇ A / cm 2 (Pt)) and a gas transport resistance of 7.2 (s / m). It was.
  • Example 1-3 A mixed solvent 4 having a mixing weight ratio of water and n-propyl alcohol of 60/40 was prepared.
  • Example 1-1 the same procedure as in Example 1-1 was performed except that the mixed solvent 4 prepared above was used instead of the mixed solvent 1, and the cathode catalyst layer was measured on the transfer substrate. did.
  • the cathode catalyst layer obtained above was measured for the catalyst metal exposure rate and found to be 95%. Further, the specific surface area of the catalytic metal (catalyst component) of the cathode catalyst layer thus obtained was measured electrochemically to be 19.6 m 2 / g support.
  • Example 1-1 the same operation as in Example 1-1 was performed except that the cathode catalyst layer formed above was used instead, and a membrane electrode assembly (3) (MEA (3 )).
  • MEA (3 ) a membrane electrode assembly (3)
  • the membrane / electrode assembly (3) obtained above was evaluated for catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) in the same manner as in Example 1-1.
  • the generated current per platinum surface area at 0.9 V of the membrane electrode assembly (3) was 908 ( ⁇ A / cm 2 (Pt)), and the gas transport resistance was 12.8 (s / m). It was.
  • MEA (1) to (3) using the catalyst layer of the present invention has extremely low gas transport resistance and is particularly excellent in catalyst activity (oxygen reduction activity). From the above results, it is considered that the catalyst layer of the present invention has improved gas transport properties and can exhibit high catalytic activity.
  • the carrier B was sufficiently dispersed in 2500 parts by weight of an aqueous chloroplatinic acid solution (containing 0.2% by weight of platinum) using a homogenizer. Next, 50 parts by weight of sodium citrate was added and mixed well to prepare a reaction solution. Furthermore, using a reflux reactor, the reaction solution was refluxed at 85 ° C. for 4 hours while stirring, and platinum was reduced and supported on the ketjen black surface.
  • the sample solution was allowed to cool to room temperature, the platinum-supported ketjen black powder was filtered off with a suction filtration device, and washed thoroughly with water.
  • catalyst powder B having a supporting rate of 50% by weight and an average particle diameter (diameter) of the catalyst metal of 2.5 nm.
  • Catalyst powder B had a micropore void volume of 0.23 cc / g carrier; a mesopore void volume of 0.30 cc / g carrier; and a BET specific surface area of 720 m 2 / g carrier.
  • the mode radius of mesopores or micropores was not clearly detected.
  • catalyst powder B 10 parts by weight of catalyst powder B, 50 parts by weight of ion-exchanged water, 50 parts by weight of n-propyl alcohol (mixing weight ratio of water and n-propyl alcohol is 50/50), and 4.5 parts by weight Part of the polymer electrolyte was mixed.
  • the mixture was sufficiently dispersed with an ultrasonic homogenizer and degassed under reduced pressure to obtain a catalyst ink.
  • the catalyst ink was used to form a cathode catalyst layer and an anode catalyst layer.
  • a catalyst ink was applied to a size of 5 cm ⁇ 5 cm on a transfer substrate made of polytetrafluoroethylene (PTFE) by a screen printing method so that the amount of platinum per unit area was 0.12 mg / cm 2 . Then, it processed for 30 minutes at 130 degreeC, and obtained the cathode catalyst layer and anode catalyst layer whose film thickness (dry film thickness) is 6.5 micrometers.
  • PTFE polytetrafluoroethylene
  • the cathode catalyst layer obtained above was measured for the catalytic metal exposure rate by the CO adsorption method and found to be 45%.
  • the cathode catalyst layer thus obtained was electrochemically measured for the specific surface area of the catalyst metal to be 27.4 m 2 / g carrier.
  • MEA (4) membrane electrode assembly (4)
  • Example 1 A membrane electrode assembly (4) (MEA (4)) was obtained in the same manner as in Example 1 except that the size of the cathode catalyst layer and the anode catalyst layer was 5 cm ⁇ 5 cm.
  • MEA (4) catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2-1 In the production of the catalyst ink in Comparative Example 1, the weight ratio of ion-exchanged water and n-propyl alcohol was 60 parts by weight and 40 parts by weight (mixing weight ratio of water and n-propyl alcohol was 60/40), respectively. changed. Except for the above, a cathode catalyst layer and an anode catalyst layer were obtained in the same manner as in Comparative Example 1.
  • the catalytic metal exposure rate was measured by the CO adsorption method, and found to be 52%. Further, when the specific surface area of the catalytic metal of the cathode catalyst layer thus obtained was measured electrochemically, it was 33.3 m 2 / g carrier.
  • MEA (5) A membrane electrode assembly (5) (MEA (5)) was obtained in the same manner as in Comparative Example 1 using the cathode catalyst layer and the anode catalyst layer.
  • MEA (5) catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2-2 In the production of the catalyst ink in Comparative Example 1, the weight ratio of ion-exchanged water and n-propyl alcohol was 80 parts by weight and 20 parts by weight (mixing weight ratio of water and n-propyl alcohol was 80/20), respectively. changed. Except for the above, a cathode catalyst layer and an anode catalyst layer were obtained in the same manner as in Comparative Example 1.
  • the catalytic metal exposure rate was measured by the CO adsorption method. As a result, it was 65%. Moreover, when the specific surface area of the catalytic metal was electrochemically measured for the cathode catalyst layer thus obtained, it was 30.7 m 2 / g carrier.
  • Membrane electrode assembly (6) (MEA (6)) was obtained in the same manner as in Comparative Example 1 using the cathode catalyst layer and the anode catalyst layer.
  • MEA (6) catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2-3 In the production of the catalyst ink in Comparative Example 1, the weight ratio of ion-exchanged water and n-propyl alcohol was 90 parts by weight and 10 parts by weight (the mixing weight ratio of water and n-propyl alcohol was 90/10), respectively. changed. Except for the above, a cathode catalyst layer and an anode catalyst layer were obtained in the same manner as in Comparative Example 1.
  • the catalytic metal exposure rate was measured by the CO adsorption method. As a result, it was 62%. Further, when the specific surface area of the catalytic metal was electrochemically measured for the cathode catalyst layer thus obtained, it was 26.9 m 2 / g carrier.
  • Membrane / electrode assembly (7) (MEA (7)) was obtained in the same manner as in Comparative Example 1 using the cathode catalyst layer and the anode catalyst layer.
  • MEA (7) catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 In the production of the catalyst ink in Comparative Example 1, the weight ratio of ion-exchanged water and n-propyl alcohol was 100 parts by weight and 10 parts by weight, respectively (the mixing weight ratio of water and n-propyl alcohol was 100/10). changed. Except for the above, a cathode catalyst layer and an anode catalyst layer were obtained in the same manner as in Comparative Example 1.
  • the catalytic metal exposure rate was measured by the CO adsorption method. As a result, it was 38%. Further, when the specific surface area of the catalytic metal was electrochemically measured for the thus obtained cathode catalyst layer, it was 29.6 m 2 / g carrier.
  • Membrane / electrode assembly (8) (MEA (8)) was obtained in the same manner as in Comparative Example 1 using the cathode catalyst layer and the anode catalyst layer.
  • MEA (8) catalytic activity (Experiment 1) and gas transport resistance (Experiment 2) were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the catalyst metal exposure rate can be increased to 50% or more by using a mixed solution having a mixing weight ratio of water and alcohol of 60/40 or more and less than 91/9 for the preparation of the slurry.
  • PEFC Polymer electrolyte fuel cell
  • Solid polymer electrolyte membrane 3 ... Catalyst layer, 3a ... anode catalyst layer, 3c ... cathode catalyst layer, 4a ... anode gas diffusion layer, 4c ... cathode gas diffusion layer, 5, ... Separator, 5a ... anode separator, 5c ... cathode separator, 6a ... anode gas flow path, 6c ... cathode gas flow path, 7: Refrigerant flow path, 10 ... Membrane electrode assembly (MEA), 20, 20 '... catalyst, 22, 22 '... catalytic metal (catalyst component), 23, 23 '... support (catalyst support), 24, 24 '... mesopores, 25 ... Micropores.
  • MEA Membrane electrode assembly

Abstract

触媒担体および前記触媒担体に担持される触媒金属からなる触媒ならびに電解質を含む、燃料電池用電極触媒層であって、前記触媒は部分的に前記電解質で被覆され、電解質を通過しなくともガスが到達できる前記触媒金属の比表面積が、前記触媒金属の全比表面積に対して、50%以上である、燃料電池用電極触媒層により、ガス輸送性に優れる電極触媒層が提供される。

Description

燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
 本発明は、燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池に関する。
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、例えば、固体酸化物形燃料電池や溶融炭酸塩形燃料電池など、他のタイプの燃料電池と比較して低温で作動する。このため、固体高分子形燃料電池は、定置用電源や、自動車などの移動体用動力源として期待されており、その実用も開始されている。
 このような固体高分子形燃料電池には、一般的に、Pt(白金)やPt合金に代表される高価な金属触媒が用いられており、このような燃料電池の高価格要因となっている。このため、貴金属触媒の使用量を低減して、燃料電池の低コスト化が可能な技術の開発が求められている。
 例えば、特許文献1には、導電性担体に触媒金属粒子が担持される電極触媒において、触媒金属粒子の平均粒径が導電性担体の微細孔の平均孔径より大きい電極触媒が開示される。特許文献1には、当該構成により、触媒金属粒子が担体の微細孔内に入り込まないようにし、三相界面に使用される触媒金属粒子の割合を向上させて、高価な貴金属の利用効率を向上できることが記載される。
特開2007-250274号公報(米国特許出願公開第2009/0047559号明細書に相当)
 しかしながら、特許文献1の触媒を用いた電極触媒層では、電解質と触媒金属粒子が接触して、触媒活性が低下するという問題があった。一方で、電解質と触媒金属粒子が接触しないように、触媒金属を担体内部の電解質が進入できない微細な空孔内に担持すると、酸素等のガスの輸送距離が増大してガス輸送性が低下する。このため、十分な触媒活性を引き出せずに、高負荷条件では触媒性能が低下してしまうという問題があった。
 したがって、本発明は、上記事情を鑑みてなされたものであり、ガス輸送性に優れる電極触媒層を提供することを目的とする。
 本発明の他の目的は、触媒活性に優れる電極触媒層を提供することである。
 本発明のさらなる他の目的は、発電性能に優れる膜電極接合体及び燃料電池を提供することである。
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、部分的に電解質を介さずに直接触媒金属に反応ガス(特にO)を供給させることによって、上記課題を解決することを見出し、本発明を完成するに至った。
本発明の一実施形態に係る固体高分子形燃料電池の基本構成を示す概略断面図である。 ガス吸着量測定時の、ガス吸着量(A)およびガス吸着量(B)の時間変化を、模式的に示す。 本発明の一実施形態に係る触媒(a)及び(b)の形状・構造を示す概略断面説明図である。 本発明の一実施形態に係る触媒(c)の形状・構造を示す概略断面説明図である。
 本発明の燃料電池用電極触媒層(本明細書中では、「電極触媒層」または「触媒層」とも称する)は、触媒担体および前記触媒担体に担持される触媒金属からなる触媒ならびに電解質を含む。ここで、電解質を通過しなくともガスが到達できる前記触媒金属の比表面積が前記触媒金属の全比表面積に対して50%以上となる割合で、触媒金属を電解質を介さずに直接反応ガスと接触できるよう配置する。上記構成を有する触媒層では、電解質を通過しなくても反応ガスが到達しうる触媒金属の比表面積を適切な範囲に調節して、反応ガス(特にO)を電解質を介さずに直接供給する輸送パスを確保し、ガス輸送性が向上できる。その結果、触媒活性に優れる触媒層を提供することができる。なお、本明細書中、「/g担体」は、「担体1g当たり」を意味する。同様に、「/g触媒金属」は、「触媒金属1g当たり」を意味する。
 上記特許文献1に記載の電極触媒層では、反応ガス、触媒金属及び電解質(電解質ポリマー)が同時に存在する三相界面を十分確保するために、電解質と触媒粒子とを導電性担体上でかなり接触させていた(例えば、段落「0058」、図2)。しかし、本発明者らは、上記構成では、大部分の反応ガス(特にO)は電解質を介して触媒金属に輸送されるため、ガス輸送抵抗が高く、十分な反応ガスが触媒金属に到達できず、触媒は十分な活性を発揮できないことを見出した。本発明者らは、上記課題の解決について鋭意検討を行った結果、反応ガス、触媒金属及び水により三相界面(反応サイト)を形成することによって、触媒を有効に利用できることを見出した。このため、一定割合以上で電解質を介さずに反応ガスを直接触媒金属に供給することによって、触媒金属まで反応ガス(特にO)をより速やかにかつより効率よく輸送できる(ガス輸送抵抗を低減する)。このようなガス輸送性の向上により、触媒金属は反応ガスをより有効に利用できるようになり、触媒活性を向上できる、すなわち、触媒反応を促進できる。また、上記効果は高負荷条件下でも有効に発揮できる。したがって、本発明の触媒層を有する膜電極接合体および燃料電池は、高い電流電圧(iV)特性を示し(高い電流密度での電圧低下を抑制し)、発電性能に優れる。なお、上記メカニズムは推定であり、本発明は上記推定によって限定されない。
 したがって、本発明の触媒層は、ガス輸送性に優れ、反応ガスを触媒金属に速やかに効率よく輸送できる。ゆえに、本発明の触媒層は、高い触媒活性を発揮できる、すなわち、触媒反応を促進できる。このため、本発明の触媒層を有する膜電極接合体および燃料電池は、発電性能に優れる。したがって、本発明は、本発明の触媒層を有する膜電極接合体および燃料電池をも提供する。
 以下、適宜図面を参照しながら、本発明の触媒の一実施形態、並びにこれを使用した触媒層、膜電極接合体(MEA)および燃料電池の一実施形態を詳細に説明する。しかし、本発明は、以下の実施形態のみには制限されない。なお、各図面は説明の便宜上誇張されて表現されており、各図面における各構成要素の寸法比率が実際とは異なる場合がある。また、本発明の実施の形態について図面を参照しながら説明した場合では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。
 [燃料電池]
 燃料電池は、膜電極接合体(MEA)と、燃料ガスが流れる燃料ガス流路を有するアノード側セパレータと酸化剤ガスが流れる酸化剤ガス流路を有するカソード側セパレータとからなる一対のセパレータとを有する。本形態の燃料電池は、耐久性に優れ、かつ高い発電性能を発揮できる。
 図1は、本発明の一実施形態に係る固体高分子形燃料電池(PEFC)1の基本構成を示す概略図である。PEFC 1は、まず、固体高分子電解質膜2と、これを挟持する一対の触媒層(アノード触媒層3aおよびカソード触媒層3c)とを有する。そして、固体高分子電解質膜2と触媒層(3a、3c)との積層体(CCM)はさらに、一対のガス拡散層(GDL)(アノードガス拡散層4aおよびカソードガス拡散層4c)により挟持されている。このように、固体高分子電解質膜2、一対の触媒層(3a、3c)および一対のガス拡散層(4a、4c)は、積層された状態で膜電極接合体(MEA)10を構成する。
 PEFC 1において、MEA 10はさらに、一対のセパレータ(アノードセパレータ5aおよびカソードセパレータ5c)により挟持されている。図1において、セパレータ(5a、5c)は、図示したMEA 10の両端に位置するように図示されている。ただし、複数のMEAが積層されてなる燃料電池スタックでは、セパレータは、隣接するPEFC(図示せず)のためのセパレータとしても用いられるのが一般的である。換言すれば、燃料電池スタックにおいてMEAは、セパレータを介して順次積層されることにより、スタックを構成することとなる。なお、実際の燃料電池スタックにおいては、セパレータ(5a、5c)と固体高分子電解質膜2との間や、PEFC 1とこれと隣接する他のPEFCとの間にガスシール部が配置されるが、図1ではこれらの記載を省略する。
 セパレータ(5a、5c)は、例えば、厚さ0.5mm以下の薄板にプレス処理を施すことで図1に示すような凹凸状の形状に成形することにより得られる。セパレータ(5a、5c)のMEA側から見た凸部はMEA 10と接触している。これにより、MEA 10との電気的な接続が確保される。また、セパレータ(5a、5c)のMEA側から見た凹部(セパレータの有する凹凸状の形状に起因して生じるセパレータとMEAとの間の空間)は、PEFC 1の運転時にガスを流通させるためのガス流路として機能する。具体的には、アノードセパレータ5aのガス流路6aには燃料ガス(例えば、水素など)を流通させ、カソードセパレータ5cのガス流路6cには酸化剤ガス(例えば、空気など)を流通させる。
 一方、セパレータ(5a、5c)のMEA側とは反対の側から見た凹部は、PEFC 1の運転時にPEFCを冷却するための冷媒(例えば、水)を流通させるための冷媒流路7とされる。さらに、セパレータには通常、マニホールド(図示せず)が設けられる。このマニホールドは、スタックを構成した際に各セルを連結するための連結手段として機能する。かような構成とすることで、燃料電池スタックの機械的強度が確保されうる。
 なお、図1に示す実施形態においては、セパレータ(5a、5c)は凹凸状の形状に成形されている。ただし、セパレータは、かような凹凸状の形態のみに限定されるわけではなく、ガス流路および冷媒流路の機能を発揮できる限り、平板状、一部凹凸状などの任意の形態であってもよい。
 上記のような、本発明のMEAを有する燃料電池は、優れた発電性能を発揮する。ここで、燃料電池の種類としては、特に限定されず、上記した説明中では高分子電解質形燃料電池を例に挙げて説明したが、この他にも、アルカリ型燃料電池、ダイレクトメタノール型燃料電池、マイクロ燃料電池などが挙げられる。なかでも小型かつ高密度・高出力化が可能であるから、高分子電解質形燃料電池(PEFC)が好ましく挙げられる。また、前記燃料電池は、搭載スペースが限定される車両などの移動体用電源の他、定置用電源などとして有用である。なかでも、比較的長時間の運転停止後に高い出力電圧が要求される自動車などの移動体用電源として用いられることが特に好ましい。
 燃料電池を運転する際に用いられる燃料は特に限定されない。例えば、水素、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、第2級ブタノール、第3級ブタノール、ジメチルエーテル、ジエチルエーテル、エチレングリコール、ジエチレングリコールなどが用いられうる。なかでも、高出力化が可能である点で、水素やメタノールが好ましく用いられる。
 また、燃料電池の適用用途は特に限定されるものではないが、車両に適用することが好ましい。本発明の電解質膜-電極接合体は、発電性能および耐久性に優れ、小型化が実現可能である。このため、本発明の燃料電池は、車載性の点から、車両に該燃料電池を適用した場合、特に有利である。したがって、本発明は、本発明の燃料電池を有する車両を提供する。
 以下、本形態の燃料電池を構成する部材について簡単に説明するが、本発明の技術的範囲は下記の形態のみに制限されない。
 [電極触媒層(触媒層)]
 本発明の電極触媒層(触媒層)は、触媒担体および前記触媒担体に担持される触媒金属からなる触媒ならびに電解質を含む。また、本発明では、電解質を通過しなくともガスが到達できる前記触媒金属の比表面積が、触媒金属の全比表面積に対して、50%以上であるように、触媒金属を電解質を介さずに直接反応ガスと接触できるよう配置する。このような割合で触媒金属を電解質で被覆せずに暴露させることによって、ガス輸送抵抗を低減し、反応ガス(特にO)を電解質を介さずに触媒金属に直接供給できる。また、上記したように電解質を介さずに反応ガスを触媒金属に供給すると、反応ガス(特にO)の触媒金属への輸送時間が短くなる。このため、触媒金属は反応ガスをより速やかに利用できる。ゆえに、本発明の触媒層は、触媒をより有効に利用して、触媒活性を向上できる、すなわち、触媒反応を促進できる。なお、本明細書では、触媒金属の全比表面積に対する、電解質を通過しなくともガスが到達できる触媒金属の比表面積の割合を、単に「触媒金属暴露率」とも称する。
 本発明の電極触媒層は、特定の触媒金属暴露率で触媒金属を電解質を介さずに直接反応ガスと接触させる(触媒を電解質で特定の触媒金属暴露率で部分的に被覆する)。ここで、電解質による触媒の被覆形態(触媒金属の暴露形態)は、特に制限されない。具体的には、触媒が電解質で被覆された部分は、1か所(電解質が50%未満の触媒表面にわたって全面を被覆し、残りの部分には電解質が存在しない形態)であっても、または複数個所に分割されても(電解質が50%未満の触媒表面を複数の部分に分けて被覆し、残りの部分には電解質が存在しない形態であっても)、いずれの形態であってもよい。または、触媒の凝集体を電解質で被覆してもよい。
 また、電解質と触媒金属との関係に関しても、触媒金属暴露率が50%以上であれば特に制限されない。このため、触媒金属が、触媒が電解質で被覆された部分に存在してもまたは存在しなくてもよい。
 さらに、以下に詳述するが、触媒が半径1nm以上の空孔(メソ孔)を有することが好ましい。この場合には、電解質は、上記メソ孔開口部(入口)を被覆するように触媒を被覆しても、または上記メソ孔開口部(入口)を暴露する(空孔開口部を電解質で被覆しない)ように触媒を被覆してもいずれでもよい。ここで、触媒がメソ孔を有する場合には、触媒金属の少なくとも一部は上記メソ孔の空孔内部に担持(格納)された形態であることが好ましい。触媒の上記空孔開口部を電解質で被覆しない場合には、反応ガスが、電解質を介することなく空孔内部に担持された触媒金属まで直接供給される。ゆえに、空孔内部の触媒金属への反応ガスの輸送抵抗をより低減し、反応ガス(特にO)が触媒までより速やかにかつより効率よく輸送されるようになり、触媒反応をより有効に促進できる。このため、触媒のメソ孔開口部(入口)を電解質で被覆しない形態が好ましい。
 上述したように、触媒金属の全比表面積に対する、電解質を通過しなくともガスが到達できる触媒金属の比表面積の割合(触媒金属暴露率)は、50%以上であるが、55%以上、60%以上、65%以上、80%以上、90%以上、93%以上、95%以上の順で、値が大きい方が好ましい。上記触媒金属暴露率であれば、電解質による触媒金属の被覆を低減して、より電解質を介さずに反応ガス(特にO)が直接触媒金属により速やかにかつより効率よく供給され、ガス輸送性をより向上できる。触媒金属暴露率が80%以上であると、ガス輸送性の向上が特に顕著となる。本発明の一実施形態では、電解質を通過しなくともガスが到達できる前記触媒金属の比表面積が、前記触媒金属の全比表面積に対して、80%以上である、燃料電池用電極触媒層が提供される。なお、電解質を通過しなくともガスが到達できる触媒金属の比表面積の割合(触媒金属暴露率)の上限は、高いほど好ましいため特に制限されず、100%である。
 触媒金属暴露率の測定原理と方法について以下により詳しく説明する。なお、本明細書においては、「電解質を通過しなくともガスが到達できる触媒金属」を「触媒担体上に暴露された触媒金属」とも称する。また、「触媒金属の全比表面積に対する、電解質を通過しなくともガスが到達できる触媒金属の比表面積」を「触媒金属全体の比表面積(A)に対する触媒担体上に暴露された触媒金属の比表面積(B)の割合」または、「触媒金属暴露率」とも称する。
 触媒金属として従来用いられる白金等の貴金属が、ある種のガスを吸着することは知られている。貴金属に吸着するガスとしては、一酸化炭素(CO);揮発性含硫化合物(例えば、二酸化硫黄(SO)等の硫黄酸化物(SO)、メタンチオール等のメルカプタン、硫化水素(HS));一酸化窒素(NO)等の窒素酸化物(NO)等が例示できる。
 ここで、触媒金属全体によるガス吸着量(A)に対する触媒担体上に暴露された触媒金属によるガス吸着量(B)の比は、触媒金属全体の比表面積(A)に対する触媒担体上に暴露された触媒金属の比表面積(B)として算出できる。触媒金属によるガス吸着量は、触媒金属の比表面積と比例関係にあるため、触媒金属によるガス吸着量を触媒金属の比表面積として下記式(1)により触媒金属暴露率を算出できる。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、「触媒金属全体によるガス吸着量(A)」(「ガス吸着量(A)」)は、触媒担体上に担持された触媒金属全体によるガス吸着量である。すなわち、ガス吸着量(A)(cm/g触媒金属)は、触媒担体上に暴露された(電解質で被覆されていない)触媒金属によるガス吸着量と、電解質で被覆された触媒金属によるガス吸着量との総計である。また、上記式(1)において、「触媒担体上に暴露された触媒金属によるガス吸着量(B)」(「ガス吸着量(B)」)は、触媒担体上に暴露された(電解質で被覆されていない)触媒金属によるガス吸着量(cm/g触媒金属)である。
 本発明の一側面では、触媒担体および触媒担体に担持される触媒金属からなる触媒ならびに電解質を含む燃料電池用電極触媒層、または当該燃料電池用電極触媒層を含む膜触媒層接合体もしくは膜電極接合体を用いて、触媒金属全体によるガス吸着量(A)、および触媒担体上に暴露された前記触媒金属によるガス吸着量(B)を測定し、上記式(1)または下記式(2)により触媒金属暴露率を評価する方法が提供される。当該方法は、触媒担体および触媒担体に担持される触媒金属からなる触媒ならびに電解質を含む燃料電池用電極触媒層、または当該燃料電池用電極触媒層を含む膜触媒層接合体もしくは膜電極接合体を用いて、前記触媒金属全体によるガス吸着量(A)および前記触媒担体上に暴露された前記触媒金属によるガス吸着量(B)を測定し、上記式(1)または下記式(2)により触媒金属暴露率を評価することを含む、燃料電池用電極触媒層の検査方法でもある。本発明の一実施形態では、当該方法により触媒金属暴露率を評価する工程を含む、燃料電池の製造方法が提供される。例えば、J.Electroanal.Chem., 693 (2013) 34-41では、電気化学的な手法により触媒金属のアイオノマー(電解質)被覆率を求めている。このため、電解質と触媒金属、または電解質と触媒担体とが、直接接触していなければ、電気二重層容量(Cdl)を検出することができない。例えば、電解質によって被覆された触媒において、電解質の被膜中に気泡が形成されたような場合、当該気泡中に配置されている触媒金属は電解質と接触しない。この他、触媒金属が収容可能な空孔(例えば、メソ孔)を有する触媒の場合、開口部が電解質で被覆された空孔の内部に担持(格納)された触媒金属も、電解質と接触しない。このような場合、気泡や空孔中に存在する金属触媒は電解質に被覆されているためガスアクセスが妨げられることとなる。それにもかかわらず、これらの電解質との接触が無い触媒金属に相当する比表面積は、電気化学的手法では検出することができないこととなる。一方、本発明の一側面にかかる評価方法においては、ガス吸着量を測定することにより、触媒金属全体の比表面積に対する、電解質を通過しなくともガスが到達できる触媒金属の比表面積の割合(触媒金属暴露率)を評価する。これにより、金属触媒のガスに対するアクセスを考慮した、微細構造の評価を行うことができる。このため、気泡や空孔中に触媒金属が存在する場合のように、電解質と触媒金属とが直接接触していない微細構造を含む触媒層においても、当該微細構造を電解質により被覆された触媒金属面積として検出し、触媒性能(例えば、発電性能)を高精度で予測することができる。本発明の一側面にかかる測定方法によれば、金属触媒のガスに対するアクセスを考慮した、電極触媒層の性能評価方法を提供できる。
 本発明の一側面にかかる評価方法では、一酸化炭素、揮発性含硫化合物、窒素酸化物等の吸着性ガスは、測定ガス全体に対し、例えば1~100%(v/v)の割合で含まれる。ある実施形態では、1~100%(v/v)の上記吸着性ガスから選択される1種以上と、残部のヘリウム、窒素およびアルゴンからなる群から選択される1種以上、とからなる測定ガスを用いる。混合ガスの場合、吸着ガスのシグナル強度の観点から、上記吸着性ガスは、混合ガス全体に対し、より好ましくは2~40%(v/v)の割合で含まれ得る。すなわち、2~40%(v/v)の上記吸着性ガスから選択される1種以上と、残部のヘリウム、窒素およびアルゴンからなる群から選択される1種以上、とからなる測定ガスを用いてもよい。測定に用いるガスは、白金であるまたは白金と白金以外の金属成分を含む触媒金属を用いる場合は、一酸化炭素(CO)を含むことが好ましい。ガス吸着量(A)の測定に用いられる測定ガスと、ガス吸着量(B)の測定に用いられる測定ガスとは、通常同一の組成である。
 上記式(1)において、ガス吸着量(A)は、ガスが電解質を通過できる程度に電解質の分子運動が活発な温度条件にて測定される。電解質の分子運動は、電解質の温度を高めることにより活発となり、温度を低くすることにより抑制される。従って、高温(例えば、50℃)の条件で触媒金属のガス吸着量を測定することにより、ガス吸着量(A)の値を得ることができる。ガス吸着量(A)が測定される温度(燃料電池用電極触媒層の温度)は、含まれる電解質によっても異なるため一概には定義できないが、例えば0℃を超えて120℃以下である。ガス吸着量(A)の測定は、例えば大気圧下で行われる。
 上記式(1)において、ガス吸着量(B)は、電解質がガスを通過させない程度に電解質の分子運動が抑制された温度条件にて測定される。従って、低温(例えば、-74℃)の条件で触媒金属のガス吸着量を測定することにより、ガス吸着量(B)の値を得ることができる。ガス吸着量(B)が測定される温度(用いる燃料電池用電極触媒層の温度)は、含まれる電解質によっても異なるため一概には定義できないが、例えば、ガス吸着量(A)が測定される温度よりも低い温度である。より具体的には、ガス吸着量(B)が測定される温度は、例えば、-150~0℃である。ガス吸着量(B)の測定は、例えば大気圧下で行われる。
 また、一実施形態では、ガス吸着量(A)が測定される温度T(A)(℃)と、ガス吸着量(B)が測定される温度T(B)(℃)とは、80≦(T(A)(℃)-T(B)(℃))≦270である。
 本明細書において、燃料電池用電極触媒層について説明される電解質を通過しなくともガスが到達できる触媒金属の比表面積の割合(触媒金属暴露率)は、以下のCO吸着法によって測定される値である。なお、下記方法は、本発明の一側面にかかる評価方法をより具体化したもので、一酸化炭素(CO)が触媒金属(例えば、白金)に選択的に吸着することを利用するものであり、以下のメカニズムを利用するものである。すなわち、一酸化炭素(CO)は、50℃では、電解質を通過する。このため、50℃では、COは、触媒担体上に暴露した(電解質で被覆されていない)触媒金属および電解質で被覆された触媒金属双方に化学吸着する。一方、低温(例えば、-74℃)では、一酸化炭素(CO)は電解質を通過しない。このため、低温(例えば、-74℃)では、COは、触媒担体上に暴露した(電解質で被覆されていない)触媒金属には化学吸着するが、電解質で被覆された触媒金属や開口部が電解質で被覆された空孔(例えば、メソ孔)の内部に担持(格納)された触媒金属に化学吸着しない。すなわち、50℃でCO吸着法により測定された触媒層の触媒金属の比表面積(COMSA50℃)(m/g触媒金属)は触媒金属の全比表面積に相当する。また、-74℃でCO吸着法により測定された触媒層の触媒金属の比表面積(COMSA-74℃)(m/g触媒金属)は電解質を通過しなくともガスが到達できる触媒金属の比表面積に相当する。ゆえに、COMSA50℃(m/g触媒金属)及びCOMSA-74℃(m/g触媒金属)を下記CO吸着法によって測定し、得られた値から下記式(2)によって触媒金属暴露率(%)を求める。触媒金属暴露率(%)が小さいほど、電解質で被覆された触媒金属の割合が大きいことを意味する。また、「CO吸着法」は、ガス吸着量(A)およびガス吸着量(B)を利用した触媒金属暴露率の評価方法のうち、吸着ガスとして一酸化炭素を用い、ガス吸着量(A)の測定温度が50℃、ガス吸着量(B)が-74℃の方法をいう。
Figure JPOXMLDOC01-appb-M000002
 (CO吸着法による触媒金属の比表面積の測定方法)
 試料(例えば、触媒層)を減圧オーブン中100℃で5時間以上乾燥する。所定時間乾燥後、試料を室温(25℃)に冷却する。その後、約100mgを秤量し、I字型チューブに入れた後、室温(25℃)の水素ガスで10分間パージする。水素ガス流通下、100℃まで20分で試料を昇温する。その後、水素雰囲気下で、100℃にて15分保持する。次に、流通ガスをヘリウムガスに切り換えて、試料を温度100℃で15分間保持する。さらに、試料の温度を50℃または-74℃まで降温し、この温度で15分間維持し、測定装置(製品名:BELCAT(登録商標)、温度制御ユニット:CATCryo、 いずれも日本ベル社製)の指示に従って、CO吸着量(m/g触媒金属)を測定する。なお、He:CO=90:10(v/v)である混合ガスを測定に用いる。測定されたCO吸着量に基づき、式(2)により、触媒金属暴露率(%)を求める。
 50℃および-74℃での測定を例にとり、ガス吸着量測定時のガス吸着量(A)およびガス吸着量(B)の模式的な時間変化を、図2に示す。
 図2に示すように、ガス吸着量は、上記の測定ガスを流通した温度維持プロセス(上記では50℃または-74℃)において徐々に上昇し、飽和吸着量に達した時点で一定値となる。CO吸着法では、ガス吸着量としては、かような飽和吸着量を採用する。この他、試料温度が測定温度(上記では50℃または-74℃)まで降温し測定ガスの流通を開始した時点から、ガス吸着量を時間に対してプロットし、図2に示すような積算ガス吸着量プロットを得る。当該プロットに基づき、飽和吸着量に達する前の任意の所定時間におけるガス吸着量を、ガス吸着量(A)およびガス吸着量(B)として採用しても良い。
 ガス吸着量による触媒金属暴露率の測定に用いる試料は、上記のような燃料電池用電極触媒層のほか、膜触媒層接合体(CCM)や膜電極接合体(MEA)であってもよい。燃料電池用電極触媒層は、基材に塗布したものをそのまま、または掻き落として用いても良い。
 測定試料として用いる膜触媒層接合体(CCM)や膜電極接合体(MEA)には、ガス吸着量の測定対象とする触媒層(例えば、カソード触媒層)の対極に、測定対象と異なる触媒層(例えば、アノード触媒層)が存在していてもよい。この場合は、測定対象と異なる触媒層(上記の例ではアノード触媒層)への測定ガスの吸着を防止して測定すればよい。測定対象と異なる触媒層への測定ガスの吸着防止方法は特に制限されず、例えば、上記のような高分子電解質膜により測定対象と異なる触媒層の全体を被覆し、ホットプレス等により膜を転写する等により、測定ガスの触媒層への侵入を防止すればよい。膜電極接合体(MEA)を用いて上記の高分子電解質膜による測定ガスの吸着防止を行うときは、触媒層からGDLを機械的に剥離してから高分子電解質膜による被覆を行えばよい。これにより、測定対象と異なる触媒層による測定ガスの吸着を抑止することができる。
 本発明の触媒層は、カソード触媒層またはアノード触媒層のいずれであってもよいが、カソード触媒層であることが好ましい。上述したように、本発明の触媒層では、触媒と電解質とが接触しなくても、水との三相界面を形成することによって、触媒を有効に利用できるが、カソード触媒層で水が形成するからである。
 ここで、触媒層は、触媒金属が触媒担体に担持されてなる触媒および電解質を必須に含む。このうち、触媒は、特に制限されない。
 例えば、触媒は、下記(a)および(b):
 (a)前記触媒は半径が1nm未満の空孔および半径1nm以上の空孔を有し、前記半径が1nm未満の空孔の空孔容積は0.3cc/g担体以上であり、かつ前記触媒金属は前記半径1nm以上の空孔の内部に担持されている;
 (b)前記触媒は半径が1nm未満の空孔および半径1nm以上の空孔を有し、前記半径が1nm未満の空孔の空孔分布のモード半径が0.3nm以上1nm未満であり、かつ前記触媒金属は前記半径1nm以上の空孔の内部に担持されている、
の少なくとも一を満たすことが好ましい。なお、本明細書では、上記(a)を満たす触媒を「触媒(a)」と、および上記(b)を満たす触媒を「触媒(b)」と、も称する。
 上記に代えてまたは上記に加えて、触媒は、下記(c):
 (c)前記触媒は半径が1nm以上5nm未満の空孔を有し、該空孔の空孔容積は0.8cc/g担体以上であり、かつ電気化学的に測定される前記触媒金属の比表面積は60m/g担体以下である;
を満たすことが好ましい。なお、本明細書では、上記(c)を満たす触媒を「触媒(c)」とも称する。
 以下、上記好ましい形態である触媒(a)~(c)について詳述する。
 (触媒(a)および(b))
 触媒(a)は、触媒担体および前記触媒担体に担持される触媒金属からなり、下記構成(a-1)~(a-3)を満たす:
(a-1)前記触媒は半径が1nm未満の空孔(一次空孔)および半径1nm以上の空孔(一次空孔)を有する;
(a-2)前記半径が1nm未満の空孔の空孔容積は0.3cc/g担体以上である;および
(a-3)前記触媒金属は前記半径1nm以上の空孔の内部に担持されている。
 また、触媒(b)は、触媒担体および前記触媒担体に担持される触媒金属からなり、下記構成(a-1)、(b-1)および(a-3)を満たす:
(a-1)前記触媒は半径が1nm未満の空孔および半径1nm以上の空孔を有する;
(b-1)前記半径が1nm未満の空孔の空孔分布のモード半径が0.3nm以上1nm未満である;および
(a-3)前記触媒金属は前記半径1nm以上の空孔の内部に担持されている。
 なお、本明細書中では、半径が1nm未満の空孔を「ミクロ孔」とも称する。また、本明細書中では、半径1nm以上の空孔を「メソ孔」とも称する。
 上述したように、本発明者らは、触媒金属が電解質と接触しない場合であっても、水により三相界面を形成することによって、触媒金属を有効に利用できることを見出した。このため、上記触媒(a)及び(b)について、上記(a-3)触媒金属を電解質が進入できないメソ孔内部に担持する構成をとることによって、触媒活性を向上できる。一方、触媒金属を電解質が進入できないメソ孔内部に担持する場合には、酸素等のガスの輸送距離が増大してガス輸送性が低下するため、十分な触媒活性を引き出せずに、高負荷条件では触媒性能が低下してしまう。これに対して、上記(a-2)電解質や触媒金属がほとんどまたは全く進入できないミクロ孔の空孔容積を十分確保するまたは上記(b-1)ミクロ孔のモード径を大きく設定することによって、ガスの輸送パスを十分確保できる。ゆえに、メソ孔内の触媒金属に酸素等のガスを効率よく輸送できる、すなわち、ガス輸送抵抗を低減できる。当該構成により、ガス(例えば、酸素)がミクロ孔内を通過して(ガス輸送性が向上して)、ガスを効率よく、触媒金属と接触させることができる。したがって、触媒(a)及び(b)を触媒層に使用する場合には、ミクロ孔が大容積で存在するため、メソ孔に存在する触媒金属の表面に当該ミクロ孔(パス)を介して反応ガスを輸送できるため、ガス輸送抵抗をより低減できる。ゆえに、触媒(a)及び(b)を含む触媒層は、より高い触媒活性を発揮できる、すなわち、触媒反応をより促進できる。このため、触媒(a)及び(b)を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能をさらに向上できる。
 図3は、触媒(a)及び(b)の形状・構造を示す概略断面説明図である。図3に示されるように、触媒(a)及び(b)20は、触媒金属22および触媒担体23からなる。また、触媒20は、半径が1nm未満の空孔(ミクロ孔)25および半径1nm以上の空孔(メソ孔)24を有する。ここで、触媒金属22は、メソ孔24の内部に担持される。また、触媒金属22は、少なくとも一部がメソ孔24の内部に担持されていればよく、一部が触媒担体23表面にされていてもよい。しかし、触媒層での電解質と触媒金属の接触を防ぐという観点からは、実質的にすべての触媒金属22がメソ孔24の内部に担持されることが好ましい。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。
 本明細書において、「触媒金属がメソ孔の内部に担持される」ことは、触媒担体への触媒金属の担持前後のメソ孔の容積の減少によって確認できる。詳細には、触媒担体(以下、単に「担体」とも称する)は、ミクロ孔およびメソ孔を有し、各空孔はそれぞれ一定の容積を有しているが、触媒金属がこれらの空孔に担持されると、各空孔の容積は減少する。したがって、触媒金属担持前の触媒(担体)のメソ孔の容積と触媒金属担持後の触媒(担体)のメソ孔の容積の差[=(担持前の容積)-(担持後の容積)]が0を超える場合には、「触媒金属がメソ孔の内部に担持される」こととなる。同様にして、触媒金属担持前の触媒(担体)のミクロ孔の容積と触媒金属担持後の触媒(担体)のミクロ孔の容積の差[=(担持前の容積)-(担持後の容積)]が0を超える場合には、「触媒金属がミクロ孔の内部に担持される」こととなる。好ましくは、触媒金属が、ミクロ孔よりメソ孔に多く担持される(即ち、担持前後のメソ孔の容積の減少値>担持前後のミクロ孔の容積の減少値)。これにより、ガス輸送抵抗を低減し、ガス輸送のためのパスを十分確保できるからである。ガス輸送抵抗の低減、ガス輸送のためのパスの確保などを考慮すると、上記触媒金属担持前後のメソ孔の空孔容積の減少値が0.02cc/g担体以上であることが好ましく、0.02~0.4cc/g担体であることがより好ましい。
 また、(触媒金属担持後の触媒の)半径1nm未満の空孔(ミクロ孔)の空孔容積は0.3cc/g担体以上であるおよび/または(触媒金属担持後の触媒の)ミクロ孔の空孔分布のモード半径(最頻度径)が0.3nm以上1nm未満である。好ましくは、ミクロ孔の空孔容積は0.3cc/g担体以上でありかつミクロ孔の空孔分布のモード半径が0.3nm以上1nm未満である。ミクロ孔の空孔容積および/またはモード径が上記したような範囲にあれば、ガス輸送を行うのに十分なミクロ孔が確保でき、ガス輸送抵抗が小さい。このため、当該ミクロ孔(パス)を介して十分量のガスをメソ孔に存在する触媒金属の表面に輸送できるため、本発明の触媒は、高い触媒活性を発揮できる、即ち、触媒反応を促進できる。また、ミクロ孔内には電解質(アイオノマー)や液体(例えば、水)が侵入できず、ガスのみを選択的に通す(ガス輸送抵抗を低減できる)。ガス輸送性の向上効果を考慮すると、より好ましくは、ミクロ孔の空孔容積は、0.3~2cc/g担体であり、0.4~1.5cc/g担体であることが特に好ましい。また、より好ましくは、ミクロ孔の空孔分布のモード半径は、0.4~1nmであり、0.4~0.8nmであることが特に好ましい。なお、本明細書では、半径1nm未満の空孔の空孔容積を単に「ミクロ孔の空孔容積」とも称する。同様にして、本明細書では、ミクロ孔の空孔分布のモード半径を単に「ミクロ孔のモード径」とも称する。
 (触媒金属担持後の触媒の)半径1nm以上の空孔(メソ孔)の空孔容積は、特に制限されないが、0.4cc/g担体以上、より好ましくは0.4~3cc/g担体であり、特に好ましくは0.4~1.5cc/g担体であることが好ましい。空孔容積が上記したような範囲にあれば、メソ孔により多くの触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著に形成して、触媒活性をより向上できる。なお、本明細書では、半径1nm以上の空孔の空孔容積を単に「メソ孔の空孔容積」とも称する。
 (触媒金属担持後の触媒の)半径1nm以上の空孔(メソ孔)の空孔分布のモード半径(最頻度径)は、特に制限されないが、1~5nm、より好ましくは1~4nmであり、特に好ましくは1~3nmであることが好ましい。上記したようなメソ孔の空孔分布のモード径であれば、メソ孔により十分量の触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、大容積のメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著に形成して、触媒活性をより向上できる。なお、本明細書では、メソ孔の空孔分布のモード半径を単に「メソ孔のモード径」とも称する。
 (触媒金属担持後の触媒の)BET比表面積[担体1gあたりの触媒のBET比表面積(m/g担体)]は、特に制限されないが、好ましくは900m/g担体以上、より好ましくは1000m/g担体以上である。(触媒金属担持後の触媒の)BET比表面積[担体1gあたりの触媒のBET比表面積(m/g担体)]は、より好ましくは1000~3000m/g担体であり、特に好ましくは1100~1800m/g担体である。上記したような比表面積であれば、十分なメソ孔及びミクロ孔を確保できるため、ガス輸送を行うのに十分なミクロ孔(より低いガス輸送抵抗)を確保しつつ、メソ孔により多くの触媒金属を格納(担持)できる。また、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、多くのミクロ孔及びメソ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著に形成して、触媒活性をより向上できる。
 なお、本明細書において、触媒の「BET比表面積(m/g担体)」は、窒素吸着法により測定される。詳細には、触媒粉末 約0.04~0.07gを精秤し、試料管に封入する。この試料管を真空乾燥器で90℃×数時間予備乾燥し、測定用サンプルとする。秤量には、島津製作所株式会社製電子天秤(AW220)を用いる。なお、塗布シートの場合には、これの全重量から、同面積のテフロン(登録商標)(基材)重量を差し引いた塗布層の正味の重量約0.03~0.04gを試料重量として用いる。次に、下記測定条件にて、BET比表面積を測定する。吸着・脱着等温線の吸着側において、相対圧(P/P0)約0.00~0.45の範囲から、BETプロットを作成することで、その傾きと切片からBET比表面積を算出する。
Figure JPOXMLDOC01-appb-C000003
 本明細書において、「ミクロ孔の空孔の半径(nm)」は、窒素吸着法(MP法)により測定される空孔の半径を意味する。また、「ミクロ孔の空孔分布のモード半径(nm)」は、窒素吸着法(MP法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、ミクロ孔の空孔半径の下限は、窒素吸着法により測定可能な下限値、すなわち、0.42nm以上である。同様にして、「メソ孔の空孔の半径(nm)」は、窒素吸着法(DH法)により測定される空孔の半径を意味する。また、「メソ孔の空孔分布のモード半径(nm)」は、窒素吸着法(DH法)により得られる微分細孔分布曲線においてピーク値(最大頻度)をとる点の空孔半径を意味する。ここで、メソ孔の空孔半径の上限は、特に制限されないが、5nm未満である。
 本明細書において、「ミクロ孔の空孔容積」は、触媒に存在する半径1nm未満のミクロ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「ミクロ孔の空孔容積(cc/g担体)」は、窒素吸着法(MP法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。同様にして、「メソ孔の空孔容積」は、触媒に存在する半径1nm以上のメソ孔の総容積を意味し、担体1gあたりの容積(cc/g担体)で表される。「メソ孔の空孔容積(cc/g担体)」は、窒素吸着法(DH法)によって求めた微分細孔分布曲線の下部の面積(積分値)として算出される。
 本明細書において、「微分細孔分布」とは、細孔径を横軸に、触媒中のその細孔径に相当する細孔容積を縦軸にプロットした分布曲線である。すなわち、窒素吸着法(ミクロ孔の場合にはMP法;メソ孔の場合にはDH法)により得られる触媒の空孔容積をVとし、空孔直径をDとした際の、差分空孔容積dVを空孔直径の対数差分d(logD)で割った値(dV/d(logD))を求める。そして、このdV/d(logD)を各区分の平均空孔直径に対してプロットすることにより微分細孔分布曲線が得られる。差分空孔容積dVとは、測定ポイント間の空孔容積の増加分をいう。
 ここで、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積の測定方法は、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)、「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、R. Sh. Mikhail, S. Brunauer, E. E. Bodor  J.Colloid Interface Sci.,26, 45(1968)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(MP法)によるミクロ孔の半径及び空孔容積は、R. Sh. Mikhail, S. Brunauer, E. E. Bodor J.Colloid Interface Sci.,26, 45(1968)に記載される方法によって、測定された値である。
 また、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積の測定方法もまた、特に制限されず、例えば、「吸着の科学」(第2版 近藤精一、石川達雄、安部郁夫 共著、丸善株式会社)や「燃料電池の解析手法」(高須芳雄、吉武優、石原達己 編、化学同人)、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964)等の公知の文献に記載される方法が採用できる。本明細書では、窒素吸着法(DH法)によるメソ孔の半径及び空孔容積は、D. Dollion, G. R. Heal : J. Appl. Chem., 14, 109 (1964) に記載される方法によって、測定された値である。
 上記したような特定の空孔分布を有する触媒の製造方法は、特に制限されないが、通常、担体の空孔分布(ミクロ孔及びメソ孔)を上記したような空孔分布とすることが重要である。具体的には、ミクロ孔及びメソ孔を有し、かつミクロ孔の空孔容積が0.3cc/g担体以上である担体の製造方法としては、特開2010-208887号公報(米国特許出願公開第2011/318254号明細書、以下同様)や国際公開第2009/75264号(米国特許出願公開第2011/058308号明細書、以下同様)などの公報に記載される方法が好ましく使用される。また、ミクロ孔及びメソ孔を有し、かつミクロ孔の空孔分布のモード半径が0.3nm以上1nm未満である担体の製造方法としては、特開2010-208887号公報や国際公開第2009/75264号などの公報に記載される方法が好ましく使用される。
 (触媒(c))
 触媒(c)は、触媒担体および前記触媒担体に担持される触媒金属からなり、下記構成(c-1)~(c-3)を満たす:
(c-1)半径が1nm以上5nm未満の空孔を有する;
(c-2)半径が1nm以上5nm未満の空孔の空孔容積は0.8cc/g担体以上である;および
(c-3)電気化学的に測定される触媒金属の比表面積は60m/g担体以下である。
 上記(c-1)~(c-3)の構成を有する触媒によれば、触媒の空孔内が水で満たされることが抑制された上で、反応ガスの輸送に寄与する空孔が十分に確保される。その結果、ガス輸送性に優れた触媒を提供することができる。詳細には、ガス輸送に有効なメソ孔の容積が十分確保され、さらに、触媒金属の比表面積を小さくすることで、触媒金属が担持されたメソ孔内に保持される水の量を十分減らすことができる。ゆえに、メソ孔内が水で満たされることが抑制されるため、メソ孔内の触媒金属に酸素等のガスをより効率よく輸送することができる。すなわち、触媒におけるガス輸送抵抗をより低減することができる。その結果、本実施形態の触媒(c)は、触媒反応が促進され、より高い触媒活性を発揮することができる。このため、本実施形態の触媒(c)を用いた触媒層を有する膜電極接合体および燃料電池は、発電性能をさらに向上できる。
 図4は、本発明の一実施形態に係る触媒(c)の形状・構造を示す概略断面説明図である。図4に示されるように、本発明の触媒20’は、触媒金属22’および触媒担体23’からなる。また、触媒20’は、半径1nm以上5nm未満の空孔(メソ孔)24’を有する。ここで、触媒金属22’は、主としてメソ孔24’の内部に担持される。また、触媒金属22’は、少なくとも一部がメソ孔24’の内部に担持されていればよく、一部が触媒担体23’表面に担持されていてもよい。しかし、触媒層での電解質(電解質ポリマー、アイオノマー)と触媒金属の接触を防ぎ、触媒活性を向上させるという観点からは、実質的にすべての触媒金属22’がメソ孔24’の内部に担持されることが好ましい。触媒金属が電解質と接触すると、触媒金属表面の面積比活性が減少する。これに対し、上記構成により、電解質が触媒担体23’のメソ孔24’内に入り込まないようにすることができ、触媒金属22’と電解質とが物理的に分離される。そして、水により三相界面を形成することができる結果、触媒活性が向上する。ここで、「実質的にすべての触媒金属」とは、十分な触媒活性を向上できる量であれば特に制限されない。「実質的にすべての触媒金属」は、全触媒金属において、好ましくは50重量%以上(上限:100重量%)、より好ましくは80重量%以上(上限:100重量%)の量で存在する。
 (触媒金属担持後の触媒の)半径1nm以上5nm未満の空孔(メソ孔)の空孔容積は0.8cc/g担体以上である。メソ孔の空孔容積は、好ましくは0.8~3cc/g担体であり、特に好ましくは0.8~2cc/g担体であることが好ましい。空孔容積が上記したような範囲にあれば、反応ガスの輸送に寄与する空孔が多く確保されるため、反応ガスの輸送抵抗を低減することができる。したがって、メソ孔内に格納される触媒金属の表面に反応ガスが速やかに輸送されるため、触媒金属が有効に利用される。さらに、メソ孔の容積が上記範囲にあれば、メソ孔内に触媒金属を格納(担持)でき、触媒層での電解質と触媒金属とを物理的に分離することができる(触媒金属と電解質との接触をより有効に抑制・防止できる)。このように、メソ孔内の触媒金属と、電解質との接触が抑制される上記態様であれば、担体表面に担持される触媒金属の量が多い時と比較して、触媒の活性をより有効に利用できる。なお、本明細書では、半径1nm以上5nm未満の空孔の空孔容積を単に「メソ孔の空孔容積」とも称する。
 (触媒金属担持後の触媒の)BET比表面積[担体1gあたりの触媒のBET比表面積(m/g担体)]は、特に制限されないが、900m/g担体以上であると好ましく、1000m/g担体以上であるとより好ましく、1200m/g担体以上であるとさらにより好ましい。また、触媒のBET比表面積の上限は、特に制限されないが、3000m/g担体以下であると好ましく、1800m/g担体以下であるとより好ましい。上記したような比表面積であれば、十分なメソ孔を確保できると共に、触媒金属の粒子を分散性良く担持させることができる。ここでいう「触媒金属の粒子の分散性が良い」とは、触媒金属の粒子同士が互いに凝集することなく、それぞれの粒子が互いに離間した状態で担持された状態を示す。触媒金属の粒子が凝集し、塊状となっていると、塊状の触媒金属の近傍において、ガスの局所的な流束が大きくなり、ガスの輸送抵抗が大きくなる。一方、個々の触媒金属の粒子が分散した状態で担持されると、個々の粒子の近傍における局所的な流束は、上記態様と比較して小さくなる。したがって、反応ガスの輸送抵抗が低減され、触媒金属が有効に利用される。
 また、触媒(c)において、触媒金属(触媒成分)は、電気化学的に測定される比表面積が60m/g担体以下である。電気化学的に測定される触媒金属の比表面積は、好ましくは5~60m/g担体であり、より好ましくは5~30m/g担体であり、特に好ましくは10~25m/g担体である。触媒金属の表面は親水性であり、触媒反応により生成する水が吸着しやすいため、触媒金属が格納されたメソ孔には、水が保持されやすくなる。メソ孔内に水が保持されると、ガスの輸送経路が狭くなり、かつ、水中の反応ガスの拡散速度は遅いため、ガスの輸送性が低下する。これに対し、電気化学的に測定される触媒金属の比表面積を上記範囲のように比較的小さくすることにより、触媒金属の表面に吸着する水の量を減らすことができる。その結果、メソ孔内に水が保持されにくくなり、触媒中、さらには触媒層中の含水率を低くすることができる。なお、本明細書における「電気化学的に測定される触媒金属の比表面積」は、例えば、Journal of Electroanalytical Chemistry 693 (2013) 34-41等に記載される方法によって測定できる。具体的には、本明細書では、「電気化学的に測定される触媒金属の比表面積」は、以下の方法によって測定された値を採用する。
 (触媒金属の比表面積の電気化学的測定方法)
 カソード触媒層について、サイクリックボルタンメトリーによる電気化学的有効表面積(ECA:Electrochemical surface area)を求める。ここで、対向するアノードには、測定温度において飽和するよう加湿した水素ガスを流通させ、これを参照極および対極として用いる。カソードには同様に加湿した窒素ガスを流通させておき、測定を開始する直前に、カソード入口および出口のバルブを閉じ、窒素ガスを封入する。この状態で、電気化学測定装置(北斗電工株式会社製、型番:HZ-5000)を用いて下記条件にて測定する。
Figure JPOXMLDOC01-appb-C000004
 上記したような特定の空孔容積を有する触媒の製造方法は、特に制限されないが、担体のメソ孔容積を上記したような空孔分布とすることが重要である。具体的には、メソ孔を有し、かつメソ孔の空孔容積が0.8cc/g担体以上である担体の製造方法としては、特開2010-208887号公報(米国特許出願公開第2011/318254号明細書、以下同様)、国際公開第2009/075264号(米国特許出願公開第2011/058308号明細書、以下同様)などの公報に記載される方法が好ましく使用される。
 上記触媒(a)及び(b)では、触媒金属の少なくとも一部がメソ孔の内部に担持されており、上記触媒(c)では、触媒金属の少なくとも一部がメソ孔の内部に担持されていることが好ましい。
 触媒を構成する担体の材質は、特に制限されず、公知の担体の材質が使用できる。上記触媒(a)~(c)で規定される空孔容積またはモード径を有する空孔(一次空孔)を担体の内部に形成することができ、かつ、触媒成分を空孔(メソ孔)内部に分散状態で担持させるのに充分な比表面積及び電子伝導性を有するものであることが好ましい。具体的には、主成分がカーボンである。具体的には、カーボンブラック(ケッチェンブラック、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなど)、活性炭などからなるカーボン粒子が挙げられる。「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念であり、炭素原子以外の元素が含まれていてもよい。「実質的に炭素原子からなる」とは、2~3重量%程度以下の不純物の混入が許容されうることを意味する。
 より好ましくは、担体内部に所望の空孔領域を形成し易いことから、カーボンブラックを使用することが望ましく、特に好ましくは特開2010-208887号公報や国際公開第2009/75264号等の公報に記載される方法によって製造される担体を使用する。
 上記カーボン材料の他、Sn(錫)やTi(チタン)などの多孔質金属、さらには導電性金属酸化物なども担体として使用可能である。
 担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよい。担体のBET比表面積は、実質的に触媒のBET比表面積と同等である。担体のBET比表面積は、例えば700m/g担体以上、好ましくは900m/g担体以上、より好ましくは1000m/g担体以上、特に好ましくは1100m/g担体以上である。また、担体のBET比表面積の上限は、特に制限されないが、3000m/g担体以下であると好ましく、1800m/g担体以下であるとより好ましい。上記したような比表面積であれば、十分なメソ孔及び場合によっては十分なミクロ孔を確保できるため、メソ孔により多くの触媒金属をより分散性良く格納(担持)できる。また、ガス輸送を行うのに十分なメソ孔及び場合によってはミクロ孔を確保できるため、ガス輸送抵抗をより低減できる。また、触媒層での電解質と触媒金属とを物理的に離す(触媒金属と電解質との接触をより有効に抑制・防止できる)。ゆえに、触媒金属の活性をより有効に利用できる。また、触媒金属粒子の近傍における局所的な流束が小さくなるため、反応ガスが速やかに輸送され、触媒金属が有効に利用される。また、多くの空孔(メソ孔)及び場合によってはミクロ孔の存在により、本発明による作用・効果をさらに顕著に発揮して、触媒反応をより効果的に促進できる。また、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切に制御できる。加えて、ミクロ孔がガスの輸送パスとして作用して、水により三相界面をより顕著に形成して、触媒活性をより向上できる。
 なお、本発明においては、触媒内に上記したようなミクロ孔及びメソ孔の空孔分布を有するものである限り、必ずしも上記したような粒状の多孔質担体を用いる必要はない。
 すなわち、担体として、非多孔質の導電性担体やガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなども挙げられる。このとき、触媒をこれら非多孔質の導電性担体に担持したり、膜電極接合体のガス拡散層を構成する炭素繊維から成る不織布やカーボンペーパー、カーボンクロスなどに直接付着させたりすることも可能である。
 また、触媒を構成する触媒金属は、電気的化学反応の触媒作用をする機能を有する。アノード触媒層に用いられる触媒金属は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。また、カソード触媒層に用いられる触媒金属もまた、酸素の還元反応に触媒作用を有するものであれば特に制限はなく公知の触媒が同様にして使用できる。具体的には、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、銅、銀、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などから選択されうる。
 これらのうち、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましく用いられる。すなわち、触媒金属は、白金であるまたは白金と白金以外の金属成分を含むことが好ましく、白金または白金含有合金であることがより好ましい。このような触媒金属は、高い活性を発揮できる。前記合金の組成は、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とし、白金と合金化する金属の含有量を10~70原子%とするのがよい。なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本願ではいずれであってもよい。この際、アノード触媒層に用いられる触媒金属およびカソード触媒層に用いられる触媒金属は、上記の中から適宜選択されうる。本明細書では、特記しない限り、アノード触媒層用およびカソード触媒層用の触媒金属についての説明は、両者について同様の定義である。しかしながら、アノード触媒層およびカソード触媒層の触媒金属は同一である必要はなく、上記したような所望の作用を奏するように、適宜選択されうる。
 触媒金属(触媒成分)の形状や大きさは、特に制限されず公知の触媒成分と同様の形状および大きさが採用されうる。形状としては、例えば、粒状、鱗片状、層状などのものが使用できるが、好ましくは粒状である。
 触媒金属(触媒金属粒子)の平均粒径は、特に制限されない。触媒金属(触媒金属粒子)の平均粒径は、例えば、2nm以上である。また、例えば、触媒(a)および/または(b)を触媒として使用する場合には、触媒金属(触媒金属粒子)の平均粒径は、3nm以上、より好ましくは3nm超30nm以下、特に好ましくは3nm超10nm以下であることが好ましい。触媒金属の平均粒径が3nm以上であれば、触媒金属がメソ孔内に比較的強固に担持され、触媒層内で電解質と接触するのをより有効に抑制・防止される。また、ミクロ孔が触媒金属で塞がれずに残存し、ガスの輸送パスがより良好に確保されて、ガス輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上できる、すなわち、触媒反応をより効率的に促進できる。一方、触媒金属粒子の平均粒径が30nm以下であれば、担体のメソ孔内部に触媒金属を簡便な方法で担持することができる。また、触媒(c)を触媒として使用する場合には、触媒金属(触媒金属粒子)の平均粒径は、3nmを超える大きさであると好ましい。より好ましくは3nm超~30nm、特に好ましくは3nm超~10nmである。触媒金属の平均粒径が3nmを超える大きさであれば、電気化学的に測定される触媒金属の比表面積を小さくすることができる。その結果、上記のように、触媒金属表面に吸着する水の量を低減することができ、反応ガスの輸送に寄与するメソ孔を多く確保することができる。したがって、反応ガスの輸送抵抗をより低減できる。また、電位変化による溶出を防止し、経時的な性能低下をも抑制できる。このため、触媒活性をより向上させることができる。すなわち、触媒反応をより効率的に促進することができる。一方、触媒金属粒子の平均粒径が30nm以下であれば、担体のメソ孔内部に触媒金属を簡便な方法で担持することができる。
 なお、本発明における「触媒金属粒子の平均粒径」(直径)および「触媒金属粒子の平均粒半径」は、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子半径や、透過型電子顕微鏡(TEM)より調べられる触媒金属粒子の粒子半径の平均値から求められる。本明細書では、「触媒金属粒子の平均粒径」および「触媒金属の平均粒半径」はそれぞれ、X線回折における触媒金属成分の回折ピークの半値幅より求められる結晶子直径および結晶子半径である。
 本形態において、単位触媒塗布面積当たりの触媒金属の含有量(目付量、mg/cm)は、十分な触媒の担体上での分散度、発電性能が得られる限り特に制限されず、例えば、1mg/cm以下である。ただし、触媒が白金または白金含有合金を含む場合、単位触媒塗布面積当たりの白金含有量が0.5mg/cm以下であることが好ましい。白金(Pt)や白金合金に代表される高価な貴金属触媒の使用は燃料電池の高価格要因となっている。したがって、高価な白金の使用量(白金含有量)を上記範囲まで低減し、コストを削減することが好ましい。下限値は発電性能が得られる限り特に制限されない。本形態では、担体の空孔構造を制御することにより、触媒重量あたりの活性を向上させることができるため、高価な触媒の使用量を低減することが可能となる。
 なお、本明細書において、「単位触媒塗布面積当たりの触媒金属(白金)の含有量(mg/cm)」の測定(確認)には、誘導結合プラズマ発光分光法(ICP)を用いる。所望の「単位触媒塗布面積当たりの触媒金属(白金)の含有量(mg/cm)」にせしめる方法も当業者であれば容易に行うことができ、スラリーの組成(触媒濃度)と塗布量を制御することで量を調整することができる。
 また、担体における触媒金属の担持量(担持率とも称する場合がある)は、特に制限されない。例えば、触媒(a)および(b)の少なくとも一種を触媒として使用する場合には、担持率は、触媒(つまり、担体および触媒金属)の全量に対して、好ましくは10~80重量%、より好ましくは20~70重量%とするのがよい。担持量が前記範囲であれば、十分な触媒成分の担体上での分散度、発電性能の向上、経済上での利点、単位重量あたりの触媒活性が達成できるため好ましい。また、触媒(c)を触媒として使用する場合には、触媒に対する触媒金属の割合(「触媒担持率」とも称する場合がある)が、触媒の全重量(担体と触媒金属の合計重量)に対し、60重量%以下であると好ましく、40重量%以下であるとより好ましい。さらに触媒担持率は、30重量%以下であるとさらに好ましい。一方、触媒担持率の下限は、5重量%以上であると好ましく、20重量%以上であるとより好ましい。触媒担持率が上記範囲であれば、触媒金属の比表面積が小さい触媒を得ることができる。その結果、触媒金属表面に吸着する水の量を低減させることができ、反応ガスの輸送に寄与するメソ孔をより多く確保することができる。したがって、反応ガスの輸送抵抗をより低減できるため、反応ガスが速やかに輸送される。そして、触媒金属が有効に利用される結果、触媒活性をより向上させることができる。すなわち、触媒反応をより効率的に促進することができる。また、本形態によれば、使用する触媒金属が比較的少量で良く、経済上の観点からも好ましい。なお、本発明における「触媒担持率」は、触媒金属を担持する前の担体と、触媒金属を担持させた後の触媒の重量を測定することにより求められる値である。
 本発明の触媒層は、上記触媒に加えて、電解質を含む。ここで、電解質は、特に制限されないが、イオン伝導性の高分子電解質であることが好ましい。上記高分子電解質は、燃料極側の触媒活物質周辺で発生したプロトンを伝達する役割を果たすことから、プロトン伝導性高分子とも呼ばれる。
 当該高分子電解質は、特に限定されず従来公知の知見が適宜参照されうる。高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。これらのうち、フッ素系高分子電解質が好ましい。すなわち、電解質は、フッ素系高分子電解質であることが好ましい。
 フッ素系高分子電解質を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。耐熱性、化学的安定性、耐久性、機械強度に優れるという観点からは、これらのフッ素系高分子電解質が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質が用いられる。
 炭化水素系電解質として、具体的には、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などが挙げられる。原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。また、上述した材料のみに制限されず、その他の材料が用いられてもよい。
 プロトンの伝達を担う高分子電解質においては、プロトンの伝導度が重要となる。ここで、高分子電解質のEWが大きすぎる場合には触媒層全体でのイオン伝導性が低下する。したがって、本形態の触媒層は、EWの小さい高分子電解質を含むことが好ましい。具体的には、本形態の触媒層は、好ましくはEWが1500g/mol以下の高分子電解質を含み、より好ましくは1200g/mol以下の高分子電解質を含み、特に好ましくは1100g/mol以下の高分子電解質を含む。
 一方、EWが小さすぎる場合には、親水性が高すぎて、水の円滑な移動が困難となる。かような観点から、高分子電解質のEWは600g/mol以上であることが好ましい。なお、EW(Equivalent Weight)は、プロトン伝導性を有する交換基の当量重量を表している。当量重量は、イオン交換基1当量あたりのイオン交換膜の乾燥重量であり、「g/mol」の単位で表される。
 また、触媒層は、EWが異なる2種類以上の高分子電解質を発電面内に含み、この際、高分子電解質のうち最もEWが低い高分子電解質が流路内ガスの相対湿度が90%以下の領域に用いることが好ましい。このような材料配置を採用することにより、電流密度領域によらず、抵抗値が小さくなって、電池性能の向上を図ることができる。流路内ガスの相対湿度が90%以下の領域に用いる高分子電解質、すなわちEWが最も低い高分子電解質のEWとしては、900g/mol以下であることが望ましい。これにより、上述の効果がより確実、顕著なものとなる。
 さらに、EWが最も低い高分子電解質を冷却水の入口と出口の平均温度よりも高い領域に用いることが望ましい。これによって、電流密度領域によらず、抵抗値が小さくなって、電池性能のさらなる向上を図ることができる。
 さらには、燃料電池システムの抵抗値を小さくするとする観点から、EWが最も低い高分子電解質は、流路長に対して燃料ガス及び酸化剤ガスの少なくとも一方のガス供給口から3/5以内の範囲の領域に用いることが望ましい。
 触媒層には、必要に応じて、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などの撥水剤、界面活性剤などの分散剤、グリセリン、エチレングリコール(EG)、ポリビニルアルコール(PVA)、プロピレングリコール(PG)などの増粘剤、造孔剤等の添加剤が含まれていても構わない。
 触媒層の厚み(乾燥膜厚)は、好ましくは0.05~30μm、より好ましくは1~20μm、さらに好ましくは2~15μmである。なお、上記厚みは、カソード触媒層およびアノード触媒層双方に適用される。しかし、カソード触媒層及びアノード触媒層の厚みは、同じであってもあるいは異なってもよい。
 (触媒層の製造方法)
 本発明の触媒層を製造する方法は、特に限定されず、例えば、特開2010-21060号公報に記載される方法などの公知の方法が同様にしてあるいは適宜修飾して適用される。
 触媒金属暴露率が50%以上の燃料電池用電極触媒層を製造する方法としては、水およびアルコールの混合重量比が60/40以上91/9未満である混合液(水-アルコール混合溶媒)を用いる方法が挙げられる。かような水-アルコール混合溶媒(水-アルコール混合液)、触媒および電解質を含む塗布液を調製し、得られた塗布液を基材に塗布して電極触媒層を形成する方法が使用される。好ましくは、BET比表面積が900m/g担体以上である触媒担体に担持されてなる白金含有触媒金属からなる触媒と、電解質と、水およびアルコールの混合重量比が60/40以上91/9未満である水-アルコール混合溶媒と、を含む塗布液を調製し、得られた塗布液を基材に塗布して電極触媒層を形成する方法が使用される。すなわち、本発明は、BET比表面積が900m/g担体以上である触媒担体および前記触媒担体に担持される白金含有触媒金属からなる触媒と、電解質と、水およびアルコールの混合重量比が60/40以上91/9未満である水-アルコール混合溶媒と、を含む塗布液を調製し、前記塗布液を塗布して電極触媒層を形成することを有する、燃料電池用電極触媒層の製造方法を提供する。
 以下、上記方法について説明するが、本発明の技術的範囲は下記の形態のみには限定されない。また、触媒層の各構成要素の材質などの諸条件については、上述した通りであるため、ここでは説明を省略する。
 まず、BET比表面積が700m/g担体以上、好ましくは900m/g担体以上である担体(本明細書では、「多孔質担体」または「導電性多孔質担体」とも称する)を準備する。具体的には、上記担体の製造方法で説明したように、作製すればよい。これにより、上記触媒(a)~(c)で規定される特定の空孔分布を有する空孔が担体内に形成できる。特にBET比表面積の大きい担体を使用することによって、触媒金属を担体内部(特にメソ孔)により効率よく担持(格納)できる。また、熱処理により、担体の黒鉛化も同時に促進され、耐腐食性を向上させることができる。
 当該熱処理の条件は材料に応じて異なり、所望の空孔構造が得られるように適宜決定される。一般に、加熱温度を高温とすると空孔分布のモード径は空孔直径大の方向にシフトする傾向がある。このような熱処理条件は、空孔構造を確認しつつ、材料に応じて決定すればよく、当業者であれば容易に決定することができるであろう。
 次いで、多孔質担体に触媒金属を担持させて、触媒粉末とする。多孔質担体への触媒金属の担持は公知の方法で行うことができる。例えば、含浸法、クエン酸等の酸を用いた液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル(マイクロエマルジョン法)などの公知の方法が使用できる。なお、触媒金属の平均粒径を所望の範囲とするために、触媒金属を担体に担持させた後、還元雰囲気下で加熱処理を行ってもよい。このとき、加熱処理温度は、300~1200℃の範囲であると好ましく、500~1150℃の範囲であるとより好ましく、700~1000℃の範囲であると特に好ましい。また、還元雰囲気とは、触媒金属の粒成長に寄与するものであれば特に制限されないが、還元性ガスと不活性ガスとの混合雰囲気下で行うことが好ましい。還元性ガスは、特に制限されないが、水素(H)ガスが好ましい。また、不活性ガスは、特に制限されないが、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)、及び窒素(N)などが使用できる。上記不活性ガスは、単独で使用されてもあるいは2種以上の混合ガスの形態で使用されてもよい。また、加熱処理時間は、0.1~2時間であると好ましく、0.5~1.5時間であるとより好ましい。触媒担体がメソ孔を有する場合には、上記工程を行うことにより、触媒金属を触媒担体のメソ孔内に粒成長させて担持(格納)することができる。
 続いて、水およびアルコールの混合重量比が60/40以上91/9未満である水-アルコール混合溶媒を調製し、得られた水-アルコール混合溶媒、触媒粉末、および高分子電解質を混合して、塗布液(触媒インク)を作製する。このように水の含有比率の高い混合溶媒を分散媒として使用することによって、電解質がメソ孔の入口を被覆することを防ぐことができる。ここで、水およびアルコールの混合重量比が60/40未満(40重量部のアルコールに対して水が60重量部未満)であると、電解質が過度に触媒を被覆し、本願発明で規定される触媒金属暴露率を達成できない。特に、触媒(a)~(c)を使用した場合には、電解質がメソ孔開口部を被覆してしまい、やはり本願発明で規定される触媒金属暴露率を達成できない。逆に、水およびアルコールの混合重量比が91/9以上(9重量部のアルコールに対して水が91重量部以上)であると、触媒が過度に凝集してサイズが大きくなり、また、電解質と過度に相分離した形態で触媒層が形成される。このため、反応ガスの輸送距離が増大してガス輸送性が低下するため、十分な触媒活性を引き出せず、特に高負荷条件では触媒性能が低下してしまう。ガス輸送性、触媒活性のさらなる向上を考慮すると、水およびアルコールの混合重量比は、好ましくは65/35~90/10、より好ましくは70/30~90/10である。
 水は、特に制限されず、水道水、純水、イオン交換水、蒸留水等が使用できる。また、アルコールも、特に制限されない。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノール、2-メチル-2-プロパノール、シクロヘキサノールなどが挙げられる。これらのうち、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノールおよび2-メチル-2-プロパノールが好ましい。上記アルコールは、単独で使用されてもあるいは2種以上の混合液の状態で使用されてもよい。すなわち、アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノールおよび2-メチル-2-プロパノールからなる群より選択される少なくとも1種であることが好ましい。このような親和性が高い低級アルコールを用いることで、電解質の極端な偏在を防ぐことができる。また、上記のアルコールのうち、沸点が100℃未満のアルコールを用いることがより好ましい。沸点が100℃未満のアルコールを用いることにより、乾燥工程が簡素化できるという利点がある。沸点が100℃未満のアルコールとしては、メタノール(沸点:65℃)、エタノール(沸点:78℃)、1-プロパノール(沸点:97℃)、2-プロパノール(沸点:82℃)、および2-メチル-2-プロパノール(沸点:83℃)からなる群より選択されるものが例示できる。上記アルコールを1種単独で、または2種以上を混合して用いることができる。
 上述したように、高分子電解質は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質と炭化水素系高分子電解質とに大別される。これらのうち、フッ素系高分子電解質が好ましい。すなわち、電解質は、フッ素系高分子電解質であることが好ましい。このように疎水性のフッ素系高分子電解質を用いることによって、溶媒中の水比率を高くすることで電解質がさらに凝集しやすくなる。
 触媒インクを構成する溶剤の量は、電解質を完全に溶解できる量であれば特に制限されない。具体的には、触媒粉末および高分子電解質などを合わせた固形分の濃度が、電極触媒インク中、1~50重量%、より好ましくは5~30重量%程度とするのが好ましい。
 なお、撥水剤、分散剤、増粘剤、造孔剤等の添加剤を使用する場合には、触媒インクにこれらの添加剤を添加すればよい。この際、添加剤の添加量は、本発明の上記効果を妨げない程度の量であれば特に制限されない。例えば、添加剤の添加量は、それぞれ、電極触媒インクの全重量に対して、好ましくは5~20重量%である。
 次に、基材の表面に触媒インクを塗布する。基材への塗布方法は、特に制限されず、公知の方法を使用できる。具体的には、スプレー(スプレー塗布)法、ガリバー印刷法、ダイコーター法、スクリーン印刷法、ドクターブレード法など、公知の方法を用いて行うことができる。
 この際、触媒インクを塗布する基材としては、固体高分子電解質膜(電解質層)やガス拡散基材(ガス拡散層)を使用することができる。かような場合には、固体高分子電解質膜(電解質層)またはガス拡散基材(ガス拡散層)の表面に触媒層を形成した後、得られた積層体をそのまま膜電極接合体の製造に利用することができる。あるいは、基材としてポリテトラフルオロエチレン(PTFE)[テフロン(登録商標)]シート等の剥離可能な基材を使用し、基材上に触媒層を形成した後に基材から触媒層部分を剥離することにより、触媒層を得てもよい。
 最後に、触媒インクの塗布層(膜)を、空気雰囲気下あるいは不活性ガス雰囲気下、室温~180℃で、1~60分間、乾燥する。これにより、触媒層が形成される。
 (膜電極接合体)
 本発明のさらなる実施形態によれば、上記燃料電池用電極触媒層を含む、燃料電池用膜電極接合体が提供される。すなわち、固体高分子電解質膜2、前記電解質膜の一方の側に配置されたカソード触媒層と、前記電解質膜の他方の側に配置されたアノード触媒層と、前記電解質膜2並びに前記アノード触媒層3a及び前記カソード触媒層3cを挟持する一対のガス拡散層(4a,4c)とを有する燃料電池用膜電極接合体が提供される。そしてこの膜電極接合体において、前記カソード触媒層およびアノード触媒層の少なくとも一方が上記に記載した実施形態の触媒層である。
 ただし、プロトン伝導性の向上および反応ガス(特にO)の輸送特性(ガス拡散性)の向上の必要性を考慮すると、少なくともカソード触媒層が上記に記載した実施形態の触媒層であることが好ましい。ただし、上記形態に係る触媒層は、アノード触媒層として用いてもよいし、カソード触媒層およびアノード触媒層双方として用いてもよいなど、特に制限されるものではない。
 本発明のさらなる実施形態によれば、上記形態の膜電極接合体を有する燃料電池が提供される。すなわち、本発明の一実施形態は、上記形態の膜電極接合体を挟持する一対のアノードセパレータおよびカソードセパレータを有する燃料電池である。
 以下、図1を参照しつつ、上記実施形態の触媒層を用いたPEFC 1の構成要素について説明する。ただし、本発明は触媒層に特徴を有するものである。よって、燃料電池を構成する触媒層以外の部材の具体的な形態については、従来公知の知見を参照しつつ、適宜、改変が施されうる。
 (電解質膜)
 電解質膜は、例えば、図1に示す形態のように固体高分子電解質膜2から構成される。この固体高分子電解質膜2は、PEFC 1の運転時にアノード触媒層3aで生成したプロトンを膜厚方向に沿ってカソード触媒層3cへと選択的に透過させる機能を有する。また、固体高分子電解質膜2は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
 固体高分子電解質膜2を構成する電解質材料としては特に限定されず従来公知の知見が適宜参照されうる。例えば、先に高分子電解質として説明したフッ素系高分子電解質や炭化水素系高分子電解質を用いることができる。この際、触媒層に用いた高分子電解質と必ずしも同じものを用いる必要はない。
 電解質層の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されない。電解質層の厚さは、通常は5~300μm程度である。電解質層の厚さがかような範囲内の値であると、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切に制御されうる。
 (ガス拡散層)
 ガス拡散層(アノードガス拡散層4a、カソードガス拡散層4c)は、セパレータのガス流路(6a、6c)を介して供給されたガス(燃料ガスまたは酸化剤ガス)の触媒層(3a、3c)への拡散を促進する機能、および電子伝導パスとしての機能を有する。
 ガス拡散層(4a、4c)の基材を構成する材料は特に限定されず、従来公知の知見が適宜参照されうる。例えば、炭素製の織物、紙状抄紙体、フェルト、不織布といった導電性および多孔質性を有するシート状材料が挙げられる。基材の厚さは、得られるガス拡散層の特性を考慮して適宜決定すればよいが、30~500μm程度とすればよい。基材の厚さがかような範囲内の値であれば、機械的強度とガスおよび水などの拡散性とのバランスが適切に制御されうる。
 ガス拡散層は、撥水性をより高めてフラッディング現象などを防止することを目的として、撥水剤を含むことが好ましい。撥水剤としては、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどが挙げられる。
 また、撥水性をより向上させるために、ガス拡散層は、撥水剤を含むカーボン粒子の集合体からなるカーボン粒子層(マイクロポーラス層または微多孔質層;MPL、図示せず)を基材の触媒層側に有するものであってもよい。
 カーボン粒子層に含まれるカーボン粒子は特に限定されず、カーボンブラック、グラファイト、膨張黒鉛などの従来公知の材料が適宜採用されうる。なかでも、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いられうる。カーボン粒子の平均粒径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、触媒層との接触性も向上させることが可能となる。
 カーボン粒子層に用いられる撥水剤としては、上述した撥水剤と同様のものが挙げられる。なかでも、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料が好ましく用いられうる。
 カーボン粒子層におけるカーボン粒子と撥水剤との混合比は、撥水性および電子伝導性のバランスを考慮して、重量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのがよい。なお、カーボン粒子層の厚さについても特に制限はなく、得られるガス拡散層の撥水性を考慮して適宜決定すればよい。
 (膜電極接合体の製造方法)
 膜電極接合体の作製方法としては、特に制限されず、従来公知の方法を使用できる。例えば、固体高分子電解質膜に触媒層をホットプレスで転写または塗布し、これを乾燥したものに、ガス拡散層を接合する方法や、ガス拡散層のマイクロポーラス層側(マイクロポーラス層を含まない場合には、基材層)の片面に触媒層を予め塗布して乾燥することによりガス拡散電極(GDE)を2枚作製し、固体高分子電解質膜の両面にこのガス拡散電極をホットプレスで接合する方法を使用することができる。ホットプレス等の塗布、接合条件は、固体高分子電解質膜や触媒層内の高分子電解質の種類(パーフルオロスルホン酸系や炭化水素系)によって適宜調整すればよい。
 (セパレータ)
 セパレータは、固体高分子形燃料電池などの燃料電池の単セルを複数個直列に接続して燃料電池スタックを構成する際に、各セルを電気的に直列に接続する機能を有する。また、セパレータは、燃料ガス、酸化剤ガス、および冷却剤を互に分離する隔壁としての機能も有する。これらの流路を確保するため、上述したように、セパレータのそれぞれにはガス流路および冷却流路が設けられていることが好ましい。セパレータを構成する材料としては、緻密カーボングラファイト、炭素板などのカーボンや、ステンレスなどの金属など、従来公知の材料が適宜制限なく採用できる。セパレータの厚さやサイズ、設けられる各流路の形状やサイズなどは特に限定されず、得られる燃料電池の所望の出力特性などを考慮して適宜決定できる。
 燃料電池の製造方法は、特に制限されることなく、燃料電池の分野において従来公知の知見が適宜参照されうる。
 さらに、燃料電池が所望する電圧を発揮できるように、セパレータを介して膜電極接合体を複数積層して直列に繋いだ構造の燃料電池スタックを形成してもよい。燃料電池の形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。
 上述したPEFCや膜電極接合体は、発電性能および耐久性に優れる触媒層を用いている。したがって、当該PEFCや膜電極接合体は発電性能および耐久性に優れる。
 本実施形態のPEFCやこれを用いた燃料電池スタックは、例えば、車両に駆動用電源として搭載されうる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「重量%」および「重量部」を意味する。
 合成例1
 国際公開第2009/75264号に記載の方法により、炭素材料Aを作製した。得られた炭素材料Aを、アルゴンガスの雰囲気下で、1800℃で5分間、加熱して、担体Aを作製した。
 このようにして得られた担体Aについて、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、ミクロ孔の空孔容積が0.75cc/g担体;メソ孔の空孔容積が0.90cc/g担体;ミクロ孔のモード径が0.75nm;メソ孔のモード径が1.66nm;およびBET比表面積が1166m/g担体であった。
 合成例2
 上記合成例1で作製した担体Aを用い、これに触媒金属として白金(Pt)を担持率が30重量%、平均粒径(直径)が3.3nmとなるように担持させて、触媒粉末Aを得た。すなわち、白金濃度4.6重量%のジニトロジアンミン白金硝酸溶液を429g(白金含有量:19.7g)に担体Aを46g浸漬させ攪拌後、還元剤として100%エタノールを100ml添加した。この溶液を沸点で7時間、攪拌、混合し、白金を担体Aに担持させた。そして、濾過、乾燥することにより、担持率が30重量%の触媒粉末を得た。その後、水素雰囲気において、900℃で1時間保持し、触媒粉末Aを得た。
 このようにして得られた触媒粉末Aについて、ミクロ孔及びメソ孔の空孔容積、ミクロ孔及びメソ孔のモード径ならびにBET比表面積を測定した。その結果、ミクロ孔の空孔容積が0.69cc/g担体;メソ孔の空孔容積が0.80cc/g担体;ミクロ孔のモード径が0.75nm;メソ孔のモード径が1.66nm;およびBET比表面積が1226m/g担体であった。
 (実施例1-1)
 合成例2で作製した触媒粉末Aと、高分子電解質としてのフッ素系高分子電解質(EW=700g/mol)とをカーボン担体とアイオノマーの重量比が0.9となるよう混合した(混合物1)。別途、水とn-プロピルアルコールとの混合重量比が80/20である混合溶媒1を調製した。この混合溶媒1を、上記混合物1に、固形分率(Pt+カーボン担体+アイオノマー)が15重量%となるよう添加して、カソード触媒インクを調製した。
 別途、ケッチェンブラックEC300J(ケッチェンブラックインターナショナル株式会社製)を、アルゴン雰囲気下、2000~3000℃で5~20時間、熱処理することによって、グラファイトケッチェンブラック(粒径:30~60nm)を担体として作製した。この担体を用い、これに触媒金属として平均粒径2.3nmの白金(Pt)を担持率が30重量%となるように担持させて、触媒粉末を得た。この触媒粉末と、高分子電解質としてのアイオノマー分散液(Nafion(登録商標)D2020,EW=1000g/mol、DuPont社製)とをカーボン担体とアイオノマーの重量比が1.2となるよう混合した(混合物2)。別途、水とn-プロピルアルコールとの混合重量比が60/40である混合溶媒2を調製した。この混合溶媒2を、上記混合物2に、固形分率(Pt+カーボン担体+アイオノマー)が15重量%となるよう添加して、アノード触媒インクを調製した。
 次に、上記で調製したカソード触媒インク及びアノード触媒インクを、それぞれ、転写基材(テフロン(登録商標)シート)にスクリーン印刷法によって0.15mg/cmのPt目付量になるように塗布し、80℃で15分乾燥した。これにより、膜厚(乾燥膜厚)が14.7μmのカソード触媒層及び膜厚(乾燥膜厚)が2μmのアノード触媒層を転写基材上にそれぞれ形成した。また、このカソード触媒層及びアノード触媒層を、5cm×2cmのサイズになるように切断した。上記で得られたカソード触媒層について、CO吸着法により触媒金属暴露率を測定した結果、97%であった。また、このようにして得られたカソード触媒層について、触媒金属(触媒成分)の比表面積を電気化学的に測定したところ、18.6m/g担体であった。
 高分子電解質膜(Dupont社製、NAFION NR211、厚み:25μm)の両面の周囲にガスケット(帝人Dupont社製、テオネックス、厚み:25μm(接着層:10μm))を配置した。次いで、高分子電解質膜の各露出部に、それぞれ、上記で作製したカソード触媒層及びアノード触媒層(サイズ:5cm×2cm)を合わせて、150℃、0.8MPaで10分間ホットプレスを行うことにより、膜触媒層接合体(CCM)を得た。得られた膜触媒層接合体(CCM)の両面をガス拡散層(24BC,SGLカーボン社製)で挟持し、膜電極接合体(1)(MEA(1))を得た。
 また、上記で得られた膜電極接合体(1)について、以下のようにして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。その結果、膜電極接合体(1)の、0.9V時の白金表面積当たり発電電流は846(μA/cm(Pt))であり、ガス輸送抵抗は8.6(s/m)であった。
 (実験1:酸素還元(ORR)活性の評価)
 実施例および比較例で作製された膜電極接合体について、下記評価条件下、0.9V時の白金表面積当たり発電電流(μA/cm(Pt))を測定し、酸素還元活性評価を行った。
Figure JPOXMLDOC01-appb-C000005
 (実験2:ガス輸送抵抗の評価)
 実施例および比較例で作製された膜電極接合体について、T.Mashio et al. ECS Trans., 11, 529, (2007)に記載の方法に従って、ガス輸送抵抗評価を行った。
 すなわち、希釈酸素を用いて限界電流密度(A/cm)を計測した。この際、酸素分圧(kPa)に対する限界電流密度(A/cm)の傾きから、ガス輸送抵抗(s/m)を算出した。ガス輸送抵抗はガスの全圧に比例し、ガスの全圧に依存する成分(分子拡散によるガス輸送抵抗)と、依存しない成分とに分離できる。このうち、前者は例えばガス拡散層などに存在する100nm以上の比較的大きな空孔における輸送抵抗成分であり、後者は触媒層などに存在する100nm未満の比較的小さな空孔における輸送抵抗成分である。このように、ガス輸送抵抗の全圧依存性を計測し、全圧に依存しない成分を抽出することで、触媒層内のガス輸送抵抗を得た。
 (実施例1-2)
 水とn-プロピルアルコールとの混合重量比が90/10である混合溶媒3を調製した。
 実施例1-1において、混合溶媒1の代わりに、上記で調製した混合溶媒3を使用する以外は、上記実施例1-1と同様の操作を行い、カソード触媒層を転写基材上に測定した。上記で得られたカソード触媒層について、触媒金属暴露率を測定した結果、93%であった。また、このようにして得られたカソード触媒層について、触媒金属(触媒成分)の比表面積を電気化学的に測定したところ、21.1m/g担体であった。
 次に、実施例1-1において、上記にて形成したカソード触媒層を代わりに使用する以外は、上記実施例1-1と同様の操作を行い、膜電極接合体(2)(MEA(2))を得た。
 また、上記で得られた膜電極接合体(2)について、実施例1-1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。その結果、膜電極接合体(2)の、0.9V時の白金表面積当たり発電電流は998(μA/cm(Pt))であり、ガス輸送抵抗は7.2(s/m)であった。
 (実施例1-3)
 水とn-プロピルアルコールとの混合重量比が60/40である混合溶媒4を調製した。
 実施例1-1において、混合溶媒1の代わりに、上記で調製した混合溶媒4を使用する以外は、上記実施例1-1と同様の操作を行い、カソード触媒層を転写基材上に測定した。上記で得られたカソード触媒層について、触媒金属暴露率を測定した結果、95%であった。また、このようにして得られたカソード触媒層について、触媒金属(触媒成分)の比表面積を電気化学的に測定したところ、19.6m/g担体であった。
 次に、実施例1-1において、上記にて形成したカソード触媒層を代わりに使用する以外は、上記実施例1-1と同様の操作を行い、膜電極接合体(3)(MEA(3))を得た。
 また、上記で得られた膜電極接合体(3)について、実施例1-1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。その結果、膜電極接合体(3)の、0.9V時の白金表面積当たり発電電流は908(μA/cm(Pt))であり、ガス輸送抵抗は12.8(s/m)であった。
 上記結果から、本発明の触媒層を使用したMEA(1)~(3)は、ガス輸送抵抗が極めて低く、触媒活性(酸素還元活性)に特に優れることが分かった。上記結果から、本発明の触媒層は、ガス輸送性が向上し、高い触媒活性を発揮できると考察される。
 (比較例1)
 触媒担体(担体B)として、ケッチェンブラックEC300J(ケッチェンブラックインターナショナル株式会社製、BET比表面積が718m/g担体)を用いた。
 5重量部の担体Bを、2500重量部の塩化白金酸水溶液(0.2重量%白金含有)中にホモジナイザを用いて十分に分散させた。次に、50重量部のクエン酸ナトリウムを加え、十分に混合させて反応液を調製した。更に、還流反応装置を用い、反応液を攪拌しながら85℃で4時間還流して白金をケッチェンブラック表面へ還元担持させた。
 反応終了後、室温まで試料溶液を放冷し、白金担持されたケッチェンブラック粉末を吸引ろ過装置でろ別し、十分に水洗した。
 その後、ろ別した粉末を80℃で6時間減圧乾燥して、担持率が50重量%、触媒金属の平均粒径(直径)が2.5nmの触媒粉末Bを得た。触媒粉末Bは、ミクロ孔の空孔容積が0.23cc/g担体;メソ孔の空孔容積が0.30cc/g担体;およびBET比表面積が720m/g担体であった。触媒粉末Bでは、メソ孔またはミクロ孔のモード半径は明確に検出されなかった。
 次に、10重量部の触媒粉末B、50重量部のイオン交換水、50重量部のn-プロピルアルコール(水とn-プロピルアルコールとの混合重量比が50/50)、および4.5重量部の高分子電解質を混合した。なお、高分子電解質としては、NAFION(登録商標)溶液(Aldrich社製、20重量%NAFION(登録商標)含有)、EW=1000)を用いた。更に、上記混合物を超音波ホモジナイザで十分に分散させ、減圧脱泡し、触媒インクを得た。触媒インクを、カソード触媒層、およびアノード触媒層の形成に用いた。
 次に、ポリテトラフルオロエチレン(PTFE)からなる転写基材上に、白金目付量が0.12mg/cmとなるよう、スクリーン印刷法により、5cm×5cmのサイズに触媒インクを塗布した。その後、130℃で30分間処理して、膜厚(乾燥膜厚)が6.5μmのカソード触媒層およびアノード触媒層を得た。
 上記で得られたカソード触媒層について、CO吸着法にて触媒金属暴露率を測定した結果、45%であった。また、このようにして得られたカソード触媒層について、触媒金属の比表面積を電気化学的に測定したところ、27.4m/g担体であった。
 カソード触媒層及びアノード触媒層のサイズを5cm×5cmとした以外は上記実施例1と同様の操作を行い、膜電極接合体(4)(MEA(4))を得た。MEA(4)について、実施例1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。結果を表1に示す。
 (実施例2-1)
 比較例1における触媒インクの製造時において、イオン交換水とn-プロピルアルコールとの重量比をそれぞれ60重量部と40重量部(水とn-プロピルアルコールとの混合重量比が60/40)に変更した。上記以外は比較例1と同様にして、カソード触媒層およびアノード触媒層を得た。
 当該方法で得られたカソード触媒層について、CO吸着法にて触媒金属暴露率を測定した結果、52%であった。また、このようにして得られたカソード触媒層について、触媒金属の比表面積を電気化学的に測定したところ、33.3m/g担体であった。
 上記のカソード触媒層およびアノード触媒層を用いて、比較例1と同様の手法により、膜電極接合体(5)(MEA(5))を得た。MEA(5)について、実施例1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。結果を表1に示す。
 (実施例2-2)
 比較例1における触媒インクの製造時において、イオン交換水とn-プロピルアルコールとの重量比をそれぞれ80重量部と20重量部(水とn-プロピルアルコールとの混合重量比が80/20)に変更した。上記以外は比較例1と同様にして、カソード触媒層およびアノード触媒層を得た。
 当該方法で得られたカソード触媒層について、CO吸着法にて触媒金属暴露率を測定した結果、65%であった。また、このようにして得られたカソード触媒層について、触媒金属の比表面積を電気化学的に測定したところ、30.7m/g担体であった。
 上記のカソード触媒層およびアノード触媒層を用いて、比較例1と同様の手法により、膜電極接合体(6)(MEA(6))を得た。MEA(6)について、実施例1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。結果を表1に示す。
 (実施例2-3)
 比較例1における触媒インクの製造時において、イオン交換水とn-プロピルアルコールとの重量比をそれぞれ90重量部と10重量部(水とn-プロピルアルコールとの混合重量比が90/10)に変更した。上記以外は比較例1と同様にして、カソード触媒層およびアノード触媒層を得た。
 当該方法で得られたカソード触媒層について、CO吸着法にて触媒金属暴露率を測定した結果、62%であった。また、このようにして得られたカソード触媒層について、触媒金属の比表面積を電気化学的に測定したところ、26.9m/g担体であった。
 上記のカソード触媒層およびアノード触媒層を用いて、比較例1と同様の手法により、膜電極接合体(7)(MEA(7))を得た。MEA(7)について、実施例1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。結果を表1に示す。
 (比較例2)
 比較例1における触媒インクの製造時において、イオン交換水とn-プロピルアルコールとの重量比をそれぞれ100重量部と10重量部(水とn-プロピルアルコールとの混合重量比が100/10)に変更した。上記以外は比較例1と同様にして、カソード触媒層およびアノード触媒層を得た。
 当該方法で得られたカソード触媒層について、CO吸着法にて触媒金属暴露率を測定した結果、38%であった。また、このようにして得られたカソード触媒層について、触媒金属の比表面積を電気化学的に測定したところ、29.6m/g担体であった。
 上記のカソード触媒層およびアノード触媒層を用いて、比較例1と同様の手法により、膜電極接合体(8)(MEA(8))を得た。MEA(8)について、実施例1と同様にして、触媒活性(実験1)およびガス輸送抵抗(実験2)を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表1に示す通り、水およびアルコールの混合重量比が60/40以上91/9未満の混合溶液をスラリーの調製に用いることにより、触媒金属暴露率を50%以上にできることが分かる。
 本出願は、2014年10月29日に出願された日本特許出願第2014-220573号に基づいており、その開示内容は、参照により全体として本開示に引用される。
  1…固体高分子形燃料電池(PEFC)、
  2…固体高分子電解質膜、
  3…触媒層、
  3a…アノード触媒層、
  3c…カソード触媒層、
  4a…アノードガス拡散層、
  4c…カソードガス拡散層、
  5、…セパレータ、
  5a…アノードセパレータ、
  5c…カソードセパレータ、
  6a…アノードガス流路、
  6c…カソードガス流路、
  7…冷媒流路、
  10…膜電極接合体(MEA)、
  20,20’…触媒、
  22,22’…触媒金属(触媒成分)、
  23,23’…担体(触媒担体)、
  24,24’…メソ孔、
  25…ミクロ孔。

Claims (11)

  1.  触媒担体および前記触媒担体に担持される触媒金属からなる触媒ならびに電解質を含む、燃料電池用電極触媒層であって、
     前記触媒は部分的に前記電解質で被覆され、
     電解質を通過しなくともガスが到達できる前記触媒金属の比表面積が、前記触媒金属の全比表面積に対して、50%以上である、燃料電池用電極触媒層。
  2.  前記触媒は、下記(a)および(b)の少なくとも一を満たす、請求項1に記載の燃料電池用電極触媒層:
     (a)前記触媒は半径が1nm未満の空孔および半径1nm以上の空孔を有し、前記半径が1nm未満の空孔の空孔容積は0.3cc/g担体以上であり、かつ前記触媒金属は前記半径1nm以上の空孔の内部に担持されている;
     (b)前記触媒は半径が1nm未満の空孔および半径1nm以上の空孔を有し、前記半径が1nm未満の空孔の空孔分布のモード半径が0.3nm以上1nm未満であり、かつ前記触媒金属は前記半径1nm以上の空孔の内部に担持されている。
  3.  前記触媒は、下記(c)を満たす、請求項1または2に記載の燃料電池用電極触媒層:
     (c)前記触媒は半径が1nm以上5nm未満の空孔を有し、該空孔の空孔容積は0.8cc/g担体以上であり、かつ電気化学的に測定される前記触媒金属の比表面積は60m/g担体以下である。
  4.  前記触媒のBET比表面積が900m/g担体以上である、請求項1~3のいずれか1項に記載の燃料電池用電極触媒層。
  5.  前記触媒金属は、白金であるまたは白金と白金以外の金属成分を含む、請求項1~4のいずれか1項に記載の燃料電池用電極触媒層。
  6.  前記電解質がフッ素系高分子電解質である、請求項1~5のいずれか1項に記載の燃料電池用電極触媒層。
  7.  電解質を通過しなくともガスが到達できる前記触媒金属の比表面積が、前記触媒金属の全比表面積に対して、80%以上である、請求項1~6のいずれか1項に記載の燃料電池用電極触媒層。
  8.  BET比表面積が900m/g担体以上である触媒担体および前記触媒担体に担持される白金含有触媒金属からなる触媒と、電解質と、水およびアルコールの混合重量比が60/40以上91/9未満である水-アルコール混合溶媒と、を含む塗布液を調製し、前記塗布液を塗布して電極触媒層を形成することを有する、請求項1~6のいずれか1項に記載の燃料電池用電極触媒層の製造方法。
  9.  前記アルコールが、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、2-ブタノールおよび2-メチル-2-プロパノールからなる群より選択される少なくとも1種である、請求項8に記載の方法。
  10.  請求項1~7のいずれか1項に記載の燃料電池用電極触媒層を含む、燃料電池用膜電極接合体。
  11.  請求項10に記載の燃料電池用膜電極接合体を含む燃料電池。
PCT/JP2015/078614 2014-10-29 2015-10-08 燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池 WO2016067878A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15855794.2A EP3214679B1 (en) 2014-10-29 2015-10-08 Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same
US15/522,023 US10367218B2 (en) 2014-10-29 2015-10-08 Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
CA2966176A CA2966176C (en) 2014-10-29 2015-10-08 Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
CN201580058462.1A CN107210447B (zh) 2014-10-29 2015-10-08 燃料电池用电极催化剂层、其制造方法以及使用该催化剂层的膜电极接合体及燃料电池
JP2016556475A JP6339220B2 (ja) 2014-10-29 2015-10-08 燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220573 2014-10-29
JP2014-220573 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067878A1 true WO2016067878A1 (ja) 2016-05-06

Family

ID=55857220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078614 WO2016067878A1 (ja) 2014-10-29 2015-10-08 燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池

Country Status (6)

Country Link
US (1) US10367218B2 (ja)
EP (1) EP3214679B1 (ja)
JP (1) JP6339220B2 (ja)
CN (1) CN107210447B (ja)
CA (1) CA2966176C (ja)
WO (1) WO2016067878A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021909A (ja) * 2015-07-07 2017-01-26 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP2017072504A (ja) * 2015-10-08 2017-04-13 日産自動車株式会社 触媒および電解質を含む構造体の評価方法、ならびに当該評価方法を用いる燃料電池の製造方法
JP2018152333A (ja) * 2017-03-10 2018-09-27 株式会社豊田中央研究所 アイオノマコート触媒及びその製造方法、並びに触媒インク

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014175097A1 (ja) 2013-04-25 2017-02-23 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
US10535881B2 (en) 2013-04-25 2020-01-14 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
JP6575602B2 (ja) * 2015-09-09 2019-09-25 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP6566331B2 (ja) * 2017-04-17 2019-08-28 パナソニックIpマネジメント株式会社 電気化学デバイスの電極触媒層、電気化学デバイスの膜/電極接合体、電気化学デバイス、および電気化学デバイスの電極触媒層の製造方法
CN113793962B (zh) * 2021-08-11 2023-09-19 广州市乐基智能科技有限公司 一种燃料电池粘结剂及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300324A (ja) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd 複合触媒とその製造方法およびその複合触媒を使用した燃料電池用電極の製造方法
JP2011119209A (ja) * 2009-11-04 2011-06-16 Equos Research Co Ltd 燃料電池用触媒層及び膜電極接合体
WO2012053638A1 (ja) * 2010-10-22 2012-04-26 日産自動車株式会社 固体高分子型燃料電池用電極触媒
JP2012174623A (ja) * 2011-02-24 2012-09-10 Toyota Motor Corp 燃料電池用電極材料の製造方法および燃料電池
JP2013109856A (ja) * 2011-11-17 2013-06-06 Nissan Motor Co Ltd 燃料電池用電極触媒層
WO2014175107A1 (ja) * 2013-04-25 2014-10-30 日産自動車株式会社 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
WO2014175098A1 (ja) * 2013-04-25 2014-10-30 日産自動車株式会社 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150639A (ja) 1984-08-14 1986-03-12 Nissan Motor Co Ltd メタノ−ル改質用触媒
JP3099976B2 (ja) 1991-04-11 2000-10-16 健治 橋本 炭素系形状選択性触媒及びその製造方法
JP3407320B2 (ja) 1992-12-25 2003-05-19 松下電器産業株式会社 固体高分子型燃料電池
JPH09257687A (ja) 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池の貴金属触媒の反応比表面積と利用率測定法および固体高分子型燃料電池用電極の触媒層
EP1157069B1 (en) 1999-03-05 2003-05-07 Cabot Corporation Process for preparing colored pigments
US6277513B1 (en) 1999-04-12 2001-08-21 General Motors Corporation Layered electrode for electrochemical cells
JP4472109B2 (ja) 1999-09-21 2010-06-02 旭化成ケミカルズ株式会社 カルボン酸水添用触媒
JP4433552B2 (ja) * 2000-03-15 2010-03-17 株式会社ジーエス・ユアサコーポレーション 複合触媒とその製造方法
DE10112585A1 (de) 2000-03-15 2001-10-31 Japan Storage Battery Co Ltd Composit-Katalysator für eine Brennstoffzelle vom festen Polymer-Elektrolyt-Typ und Verfahren zu seiner Herstellung
WO2002003489A1 (en) 2000-07-03 2002-01-10 Matsushita Electric Industrial Co., Ltd. Polyelectrolyte fuel cell
US8591855B2 (en) 2000-08-09 2013-11-26 British American Tobacco (Investments) Limited Porous carbons
EP1254711A1 (de) 2001-05-05 2002-11-06 OMG AG & Co. KG Edelmetallhaltiger Trägerkatalysator und Verfahren zu seiner Herstellung
JP4300014B2 (ja) 2001-10-30 2009-07-22 エヌ・イーケムキャット株式会社 カーボンブラック、該カーボンブラックからなる電極触媒用担体、並びに該担体を用いる電極触媒および電気化学的装置
EP1309024A3 (en) 2001-10-30 2005-06-22 N.E. Chemcat Corporation Carbon black, electrocatalyst carrier formed from carbon black, and electrocatalyst and electrochemical device using carrier
US6686308B2 (en) 2001-12-03 2004-02-03 3M Innovative Properties Company Supported nanoparticle catalyst
WO2003056649A1 (fr) 2001-12-27 2003-07-10 Daihatsu Motor Co., Ltd. Pile a combustible
JP4239489B2 (ja) 2002-06-25 2009-03-18 東洋紡績株式会社 活性炭担体、触媒担持活性炭およびそれらの製造方法
JP4555897B2 (ja) 2002-12-26 2010-10-06 地方独立行政法人 大阪市立工業研究所 金属を含有する活性炭の製造方法
KR100474854B1 (ko) 2003-02-13 2005-03-10 삼성에스디아이 주식회사 탄소 분자체 및 그 제조 방법
US7432221B2 (en) 2003-06-03 2008-10-07 Korea Institute Of Energy Research Electrocatalyst for fuel cells using support body resistant to carbon monoxide poisoning
ATE541330T1 (de) 2003-06-24 2012-01-15 Asahi Glass Co Ltd Membran-elektrodenbaugruppe für eine festpolymer- brennstoffzelle und herstellungsverfahren dafür
AU2004257183A1 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size
JP4620341B2 (ja) 2003-10-31 2011-01-26 株式会社日鉄技術情報センター 燃料電池用電極触媒
JP2005235688A (ja) 2004-02-23 2005-09-02 Cataler Corp 燃料電池用担持触媒、その製造方法及び燃料電池
WO2005083818A1 (ja) 2004-02-26 2005-09-09 Sharp Kabushiki Kaisha 燃料電池用電極触媒、これを用いた燃料電池
US7871955B2 (en) 2004-04-09 2011-01-18 Basf Fuel Cell Gmbh Platinum catalysts from in situ formed platinum dioxide
US9786925B2 (en) 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
JP4511911B2 (ja) 2004-11-30 2010-07-28 新日本製鐵株式会社 固体高分子型燃料電池用電極
JP4533108B2 (ja) 2004-11-25 2010-09-01 新日本製鐵株式会社 固体高分子形燃料電池用電極
US20050282061A1 (en) 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
US7282466B2 (en) 2004-10-04 2007-10-16 The United States Of America As Represented By The Secretary Of The Navy Sulfur-functionalized carbon nanoarchitectures as porous, high-surface-area supports for precious metal catalysts
US7713910B2 (en) 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
JP2006134630A (ja) 2004-11-04 2006-05-25 Honda Motor Co Ltd 固体高分子型燃料電池の電極構造体
EP1852180A4 (en) 2005-02-21 2010-10-13 Nissan Motor ELECTRODE CATALYST AND METHOD FOR MANUFACTURING THE SAME
KR100751350B1 (ko) 2005-11-29 2007-08-22 삼성에스디아이 주식회사 헤테로원자 함유 중형 다공성 탄소, 그 제조방법 및 이를이용한 연료전지
JP2007220384A (ja) 2006-02-15 2007-08-30 Toyota Motor Corp 触媒担体、燃料電池用電極触媒、燃料電池用電極及び燃料電池セル並びに燃料電池
US7827000B2 (en) * 2006-03-03 2010-11-02 Garmin Switzerland Gmbh Method and apparatus for estimating a motion parameter
JP2007250274A (ja) 2006-03-14 2007-09-27 Cataler Corp 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
EP2109868A4 (en) 2006-11-08 2015-07-29 Univ Missouri HIGH-SURFACE CARBON AND METHOD OF PRODUCTION
KR101408041B1 (ko) 2006-12-29 2014-06-18 삼성에스디아이 주식회사 황 함유 중형 다공성 탄소, 그 제조방법 및 이를 이용한 연료전지
US20080182745A1 (en) 2007-01-30 2008-07-31 More Energy Ltd. Supported platinum and palladium catalysts and preparation method thereof
US20100092830A1 (en) 2007-02-01 2010-04-15 National Institute Of Advanced Industrial Science Electrode catalyst for a fuel cell, and fuel cell using the same
JP5121290B2 (ja) 2007-04-17 2013-01-16 新日鐵住金株式会社 固体高分子形燃料電池電極用触媒
JP5368685B2 (ja) 2007-07-31 2013-12-18 電気化学工業株式会社 アセチレンブラック、その製造方法及び用途
KR101473319B1 (ko) 2007-10-16 2014-12-16 삼성에스디아이 주식회사 복합 중형 다공성 탄소, 그 제조방법 및 이를 이용한연료전지
JP2009123474A (ja) * 2007-11-14 2009-06-04 Sony Corp 非水電解質電池
KR101543486B1 (ko) 2007-12-12 2015-08-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 금속 내포 수상 탄소 나노 구조물, 탄소 나노 구조체, 금속 내포 수상 탄소 나노 구조물의 제작방법, 탄소 나노 구조체의 제작방법, 및 캐패시터
JP5386977B2 (ja) 2008-06-06 2014-01-15 東洋紡株式会社 金属錯体複合体を用いた燃料電池用触媒、並びに膜電極接合体、燃料電池、及び酸化還元触媒
JP2010208887A (ja) 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
CN102687320A (zh) 2009-06-10 2012-09-19 丰田自动车株式会社 用于燃料电池的电极催化剂
JP5488254B2 (ja) 2009-06-26 2014-05-14 日産自動車株式会社 燃料電池用親水性多孔質層、ガス拡散電極およびその製造方法、ならびに膜電極接合体
US8916296B2 (en) * 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
JP4880064B1 (ja) 2010-12-08 2012-02-22 田中貴金属工業株式会社 固体高分子形燃料電池用触媒及びその製造方法
JP5823285B2 (ja) 2011-12-22 2015-11-25 田中貴金属工業株式会社 固体高分子形燃料電池用の触媒及びその製造方法
JP6198810B2 (ja) * 2013-02-21 2017-09-20 新日鉄住金化学株式会社 触媒担体用炭素材料
JPWO2014175097A1 (ja) 2013-04-25 2017-02-23 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
CA2910374C (en) 2013-04-25 2018-10-23 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
EP2991142B1 (en) 2013-04-25 2017-05-03 Nissan Motor Co., Ltd. Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US20160064744A1 (en) 2013-04-25 2016-03-03 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer for fuel cell having the catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300324A (ja) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd 複合触媒とその製造方法およびその複合触媒を使用した燃料電池用電極の製造方法
JP2011119209A (ja) * 2009-11-04 2011-06-16 Equos Research Co Ltd 燃料電池用触媒層及び膜電極接合体
WO2012053638A1 (ja) * 2010-10-22 2012-04-26 日産自動車株式会社 固体高分子型燃料電池用電極触媒
JP2012174623A (ja) * 2011-02-24 2012-09-10 Toyota Motor Corp 燃料電池用電極材料の製造方法および燃料電池
JP2013109856A (ja) * 2011-11-17 2013-06-06 Nissan Motor Co Ltd 燃料電池用電極触媒層
WO2014175107A1 (ja) * 2013-04-25 2014-10-30 日産自動車株式会社 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
WO2014175098A1 (ja) * 2013-04-25 2014-10-30 日産自動車株式会社 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214679A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021909A (ja) * 2015-07-07 2017-01-26 日産自動車株式会社 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP2017072504A (ja) * 2015-10-08 2017-04-13 日産自動車株式会社 触媒および電解質を含む構造体の評価方法、ならびに当該評価方法を用いる燃料電池の製造方法
JP2018152333A (ja) * 2017-03-10 2018-09-27 株式会社豊田中央研究所 アイオノマコート触媒及びその製造方法、並びに触媒インク
JP7128634B2 (ja) 2017-03-10 2022-08-31 株式会社豊田中央研究所 アイオノマコート触媒及びその製造方法、並びに触媒インク

Also Published As

Publication number Publication date
US10367218B2 (en) 2019-07-30
EP3214679A8 (en) 2017-10-11
CA2966176C (en) 2019-12-31
EP3214679A1 (en) 2017-09-06
US20170331134A1 (en) 2017-11-16
CN107210447B (zh) 2019-08-23
CA2966176A1 (en) 2016-05-06
JPWO2016067878A1 (ja) 2017-08-31
JP6339220B2 (ja) 2018-06-06
EP3214679B1 (en) 2019-12-25
CN107210447A (zh) 2017-09-26
EP3214679A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
US11031604B2 (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
JP5998277B2 (ja) 燃料電池用触媒、およびこれを含む燃料電池用電極触媒層
CA2910237C (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
JP5998275B2 (ja) 燃料電池用触媒ならびに当該燃料電池用触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6339220B2 (ja) 燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
JP6008044B2 (ja) 燃料電池用触媒ならびに当該燃料電池用触媒を用いる電極触媒層、膜電極接合体および燃料電池
WO2014175105A1 (ja) 触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JPWO2015045852A1 (ja) 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池
JP6276870B2 (ja) 燃料電池用電極触媒層、ならびに当該触媒層を用いる燃料電池用膜電極接合体および燃料電池
JP6327681B2 (ja) 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池
WO2014175101A1 (ja) 触媒の製造方法ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
JP6323818B2 (ja) 燃料電池用電極触媒、燃料電池用電極触媒層、その製造方法ならびに当該触媒層を用いる膜電極接合体および燃料電池
JP6780912B2 (ja) 燃料電池用電極触媒層の製造方法
JP6672622B2 (ja) 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両
JP6183120B2 (ja) 燃料電池用膜電極接合体および燃料電池
JP6661954B2 (ja) 触媒および電解質を含む構造体の評価方法、ならびに当該評価方法を用いる燃料電池の製造方法
JP6191368B2 (ja) 燃料電池用膜電極接合体および燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855794

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016556475

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522023

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2966176

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015855794

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE