WO2014157592A1 - 伝動用ベルト - Google Patents

伝動用ベルト Download PDF

Info

Publication number
WO2014157592A1
WO2014157592A1 PCT/JP2014/059049 JP2014059049W WO2014157592A1 WO 2014157592 A1 WO2014157592 A1 WO 2014157592A1 JP 2014059049 W JP2014059049 W JP 2014059049W WO 2014157592 A1 WO2014157592 A1 WO 2014157592A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber layer
mass
belt
parts
Prior art date
Application number
PCT/JP2014/059049
Other languages
English (en)
French (fr)
Inventor
久登 石黒
啓二 高野
三浦 義弘
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP14773244.0A priority Critical patent/EP2980445B1/en
Priority to BR112015024499-8A priority patent/BR112015024499B1/pt
Priority to US14/781,078 priority patent/US10001193B2/en
Priority to CN201480019247.6A priority patent/CN105190089B/zh
Publication of WO2014157592A1 publication Critical patent/WO2014157592A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0207Elastomeric fibres
    • B32B2262/0215Thermoplastic elastomer fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2433/00Closed loop articles

Definitions

  • the present invention relates to a transmission belt such as a V-belt or a V-ribbed belt, and more particularly to a transmission belt excellent in durability performance and transmission efficiency.
  • Patent Document 1 discloses a holding elastic body layer in a belt including an adhesive elastic body layer in which a cord is embedded and a holding elastic body layer (compression rubber layer) positioned above and below the adhesive elastic body layer.
  • a rubber V-belt containing chloroprene rubber, reinforcing filler, metal oxidative vulcanizing agent, bismaleimide and aramid short fibers in which the aramid short fibers are arranged in the width direction of the belt.
  • the elastic modulus in the cutting direction (orientation direction of the short fibers) is increased, the side pressure resistance is maintained, and the durability is improved.
  • the rubber hardness of at least one of the stretch rubber layer and the compression rubber layer is set to 90 to 96 °, and the rubber hardness of the adhesive rubber layer is set to 83 to 89 °.
  • cracks and separation (separation) of each rubber layer and cord are prevented from occurring at an early stage, and the lateral load resistance is improved to improve the high load transmission capability.
  • a series of characteristics of lateral pressure resistance and durability and a series of characteristics of bending fatigue and fuel saving are in a trade-off relationship.
  • by providing cogs on the inner peripheral side of the V-belt or on both the inner peripheral side and the outer peripheral side it is possible to improve the bending fatigue property and the fuel saving property.
  • the rubber hardness is increased in order to maintain the lateral pressure resistance and durability, the fuel saving performance is not yet sufficient. Therefore, a preferable rubber composition (particularly a rubber composition of a compressed rubber layer) is desired.
  • Patent Document 3 discloses a friction transmission belt in which a belt main body is wound so as to be in contact with a pulley and transmits power, and at least a pulley contact portion of the belt main body is powdered into an ethylene- ⁇ -olefin elastomer.
  • a friction transmission belt formed of a rubber composition containing a granular or granular polyolefin resin is disclosed.
  • low-sounding performance and wear resistance are improved by blending a powdery or granular polyolefin resin to short fibers that cannot be blended in large quantities due to the uniformity of the composition and material costs. It is aimed.
  • a rubber composition is prepared by blending 75 parts by mass of carbon black and 25 parts by mass of nylon short fibers with respect to 100 parts by mass of chloroprene rubber. It is described as a comparative example.
  • Japanese Patent Publication No. 5-63656 Japanese Unexamined Patent Publication No. 10-238596 Japanese Unexamined Patent Publication No. 2004-324794
  • an object of the present invention is to provide a transmission belt that can improve the side pressure resistance and durability while maintaining fuel efficiency.
  • Another object of the present invention is to provide a transmission belt that has a small change in transmission efficiency after traveling and can improve durability in a high-temperature environment even if the proportion of reinforcing agents such as short fibers is small. .
  • the present inventors have made it possible to save fuel consumption by forming the compression rubber layer of the transmission belt with a vulcanized rubber composition containing chloroprene rubber, polyolefin resin and short fibers.
  • the inventors have found that the lateral pressure resistance and durability can be improved while maintaining the above, and have completed the present invention.
  • the transmission belt of the present invention includes a core wire extending in the longitudinal direction of the belt, an adhesive rubber layer in contact with at least a part of the core wire, a compressed rubber layer formed on one surface of the adhesive rubber layer, and A transmission belt provided with an extended rubber layer formed on the other surface of the adhesive rubber layer, wherein the compressed rubber layer is formed of a vulcanized rubber composition containing a rubber component, a polyolefin resin, and a reinforcing agent,
  • the rubber component includes chloroprene rubber
  • the reinforcing agent includes short fibers.
  • the proportion of the reinforcing agent may be 80 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the proportion of the polyolefin resin may be 5 to 40 parts by mass with respect to 100 parts by mass of the rubber component.
  • the proportion of the polyolefin resin may be 15 to 50 parts by mass with respect to 100 parts by mass of the reinforcing agent.
  • the proportion of the short fibers may be 15 to 25 parts by mass with respect to 100 parts by mass of the rubber component.
  • the reinforcing agent may include aramid short fibers and carbon black.
  • the average molecular weight of the polyolefin resin may be 200,000 to 6,000,000 according to a method measured according to ASTM D4020.
  • the polyolefin resin raw material may have an average particle size of 25 to 200 ⁇ m.
  • the polyolefin resin in the compressed rubber layer has an elongated shape with an aspect ratio of 1.6 to 10, the major axis direction is oriented substantially parallel to the belt width direction, and the minor axis direction is the belt longitudinal direction. May be oriented substantially in parallel.
  • the polyolefin resin may be exposed on the surface of the compressed rubber layer.
  • the area occupied by the polyolefin resin on the surface of the compressed rubber layer may be 0.2 to 30%.
  • the transmission belt of the present invention may be a belt used in a continuously variable transmission.
  • the compression rubber layer of the transmission belt is formed of a vulcanized rubber composition containing chloroprene rubber, polyolefin resin and short fibers, the side pressure resistance and durability are maintained while maintaining fuel efficiency. Can be improved. Furthermore, even if the ratio of reinforcing agents such as short fibers is small, the change in transmission efficiency after traveling is small, and the durability under a high temperature environment can be improved.
  • FIG. 1 is a schematic sectional view showing an example of a transmission belt.
  • FIG. 2 is a schematic diagram for explaining a method for measuring transmission efficiency.
  • FIG. 3 is a schematic diagram for explaining a method of measuring a bending stress in the embodiment.
  • FIG. 4 is a schematic diagram for explaining a method of measuring a friction coefficient in the embodiment.
  • FIG. 5 is a schematic diagram for explaining a high-load running test in the embodiment.
  • FIG. 6 is a schematic diagram for explaining a high-speed running test in the embodiment.
  • FIG. 7 is a schematic view for explaining a durability running test in the embodiment.
  • FIG. 8 is a view showing a scanning electron micrograph of a cross section of the compressed rubber layer of the belt obtained in Example 3.
  • the transmission belt of the present invention includes a core wire extending in the longitudinal direction of the belt, an adhesive rubber layer in contact with at least a part of the core wire, a compression rubber layer formed on one surface of the adhesive rubber layer, and the adhesive rubber An elastic rubber layer is provided on the other surface of the layer, and the compression rubber layer is formed of a vulcanized rubber composition containing a rubber component, a polyolefin resin, and a reinforcing agent.
  • the rubber component includes chloroprene rubber because durability can be improved.
  • a conventional chloroprene rubber can be used as the chloroprene rubber.
  • the chloroprene rubber contains a trans-1,4 bond having a relatively high stereoregularity as a main unit, and may further contain a cis-1,2 bond and a small amount of 1,2 or 3,4 bond.
  • the ratio of trans-1,4 bonds may be 85% or more, and the ratio of cis-1,2 bonds may be 10% or more.
  • the glass transition temperature of the chloroprene rubber may be, for example, ⁇ 50 to ⁇ 20 ° C., and preferably about ⁇ 40 to ⁇ 20 ° C.
  • the chloroprene rubber may be a sulfur-modified type or a non-sulfur-modified type.
  • the rubber component may further contain another vulcanizable or crosslinkable rubber component.
  • vulcanizable or crosslinkable rubber components include other diene rubbers (natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile rubber, etc. ), Ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber, and the like. These rubber components can be used alone or in combination of two or more.
  • the proportion of chloroprene rubber may be about 50% by mass or more (particularly 80 to 100% by mass), and chloroprene rubber alone (100% by mass) is particularly preferable.
  • Polyolefin resin In the present invention, by blending the polyolefin resin with the vulcanized rubber composition of the compressed rubber layer, the friction coefficient of the compressed rubber layer can be reduced and the wear resistance of the belt can be improved. Usually, in order to improve fuel efficiency, the friction coefficient is lowered by excessively adding short fibers, but the interface between the rubber component and the short fibers is likely to crack, and the durability may be impaired. On the other hand, when a polyolefin resin is added instead of increasing the amount of short fibers, the polyolefin resin has a relatively low specific gravity, and even when added in a small amount, the friction coefficient can be reduced, contributing to fuel saving. In particular, the friction coefficient increases when the short fiber wears off as the belt travels.
  • the presence of the polyolefin resin can suppress the increase in the friction coefficient even if the short fiber wears off, and can maintain fuel efficiency for a long period of time.
  • an appropriate hardness required for durability can be obtained by adding an appropriate amount of polyolefin resin.
  • the volume ratio of the short fiber is reduced, and cracking at the interface between the rubber and the short fiber, which is a defect when a large amount of the short fiber is added, can be suppressed.
  • the polyolefin resin becomes soft due to the heat generated during travel, and even if peeling (microcracks) occurs at the interface between rubber and short fibers, the polyolefin resin dispersed nearby relaxes the stress concentration (acts as a cushion). ), Crack growth can be suppressed.
  • a polyolefin resin plays the role of a reinforcing agent when added in a small amount, unlike reinforcing agents such as short fibers and carbon black. In the present invention, by combining these actions, it is presumed that the lateral pressure rigidity can be increased while maintaining fuel efficiency, and the durability can be improved.
  • Polyolefin resin is manufactured by cutting long fibers and has a relatively low material cost compared to short fibers that require an adhesion treatment to give adhesion to rubber. What can be done is also excellent in terms of economy.
  • polyolefin resins examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 2-butene, 1-pentene, 1-hexene, 3-methylpentene and 4-methylpentene (particularly ⁇ -C such as ethylene and propylene).
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 2-butene, 1-pentene, 1-hexene, 3-methylpentene and 4-methylpentene (particularly ⁇ -C such as ethylene and propylene).
  • a polymer having 2-6 olefin) as a main polymerization component may be used.
  • Examples of the copolymerizable monomer other than the ⁇ -olefin include (meth) acrylic monomers [for example, (meth) acrylic acid C 1 such as methyl (meth) acrylate and ethyl (meth) acrylate. -6 alkyl ester etc.], unsaturated carboxylic acids (eg maleic anhydride etc.), vinyl esters (eg vinyl acetate, vinyl propionate etc.), dienes (butadiene, isoprene etc.) and the like. These monomers can be used alone or in combination of two or more.
  • acrylic monomers for example, (meth) acrylic acid C 1 such as methyl (meth) acrylate and ethyl (meth) acrylate. -6 alkyl ester etc.
  • unsaturated carboxylic acids eg maleic anhydride etc.
  • vinyl esters eg vinyl acetate, vinyl propionate etc.
  • dienes butadiene, isoprene etc.
  • polystyrene resin examples include polyethylene resins and polypropylene resins (polypropylene, propylene-ethylene copolymer, propylene-butene-1 copolymer, propylene-ethylene-butene-1 copolymer, etc.). These polyolefins can be used alone or in combination of two or more.
  • polyethylene resins and polypropylene resins are preferred, and polyethylene resins are preferred because they have a large effect of reducing the friction coefficient.
  • the polyethylene resin may be a polyethylene homopolymer (homopolymer) or a polyethylene copolymer (copolymer).
  • the copolymerizable monomer contained in the copolymer include olefins (eg, propylene, 1-butene, 2-butene, 1-pentene, 1-hexene, 3-methylpentene, 4-methylpentene, 1- ⁇ -C 3-8 olefins such as octene), (meth) acrylic monomers (for example, (meth) acrylic acid C 1-6 alkyl esters such as methyl (meth) acrylate and ethyl (meth) acrylate Etc.), unsaturated carboxylic acids (eg, maleic anhydride, etc.), vinyl esters (eg, vinyl acetate, vinyl propionate, etc.), dienes (butadiene, isoprene, etc.), and the like.
  • olefins eg, propylene, 1-
  • copolymerizable monomers can be used alone or in combination of two or more.
  • ⁇ -C 3-8 olefins such as propylene, 1-butene, 1-hexene, 4-methylpentene and 1-octene are preferred.
  • the proportion of the copolymerizable monomer is preferably 30 mol% or less (for example, 0.01 to 30 mol%), more preferably 20 mol% or less (for example, 0.1 to 20 mol%), and even more preferably 10 mol%. It is about mol% or less (for example, 1 to 10 mol%).
  • the copolymer may be a random copolymer, a block copolymer, or the like.
  • polyethylene resin examples include low, medium or high density polyethylene, linear low density polyethylene, ultrahigh molecular weight polyethylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-propylene-butene- 1 copolymer, ethylene- (4-methylpentene-1) copolymer and the like. These polyethylene resins can be used alone or in combination of two or more. Of these polyolefin resins, ultra high molecular weight polyethylene is particularly preferable from the viewpoint that the durability of the belt can be improved.
  • the average molecular weight of the polyolefin resin can be selected from a range of, for example, about 10,000 to 12 million in the method measured according to ASTM D4020, and the lower limit is, for example, 50,000 or more, 10 It may be 10,000 or more, preferably 200,000 or more, more preferably 500,000 or more, and particularly preferably about 1,000,000 or more.
  • the upper limit of the average molecular weight may be, for example, 10 million or less or 8.5 million or less, preferably 8 million or less, more preferably 7.5 million or less, further preferably 7 million or less, and particularly preferably about 6 million or less. is there.
  • the molecular weight is too small, the mechanical properties and heat resistance are lowered, the friction coefficient is too large, the wear amount is increased, and the durability may be lowered. On the other hand, if it is too large, the flexibility of the belt will be lowered and the durability will be lowered, and the friction coefficient will be too small, and the belt will easily slip.
  • the polyolefin resin is dispersed almost uniformly in the vulcanized rubber composition with a predetermined size.
  • the shape of the polyolefin resin in the vulcanized rubber composition is spherical or elongated (rod or fiber), and the average major axis diameter is, for example, 5 to 500 ⁇ m (for example, 10 to 500 ⁇ m).
  • the average diameter of the minor axis is, for example, 30 to 500 ⁇ m (for example, 30 to 500 ⁇ m), preferably about 100 to 300 ⁇ m (particularly 150 to 250 ⁇ m). 400 ⁇ m), preferably 30 to 350 ⁇ m (for example, 30 to 300 ⁇ m), more preferably about 50 to 200 ⁇ m (particularly 70 to 150 ⁇ m).
  • the aspect ratio (average diameter of major axis / average diameter of minor axis) may be, for example, 1 to 16 (eg, 1.4 to 14), preferably 1.6 to 12 (eg, 1 .6 to 10), more preferably about 1.7 to 5 (for example, 1.8 to 3).
  • the compressed rubber in the compressed rubber layer, when the polyolefin resin is slenderly deformed in the rubber (for example, a shape similar to the potato shape) and is firmly embedded and dispersed using the anchor effect, the compressed rubber is used.
  • the polyolefin resin is more preferably prevented from dropping off from the surface of the layer, and fuel consumption can be maintained over a longer period.
  • Such a long and narrow polyolefin resin is a heat generation of a rubber composition in the process of kneading a substantially polyolefin polymer having a substantially isotropic shape (substantially spherical, polygonal, irregular shape, etc.) in the rubber composition. It can be obtained by receiving a shearing force in a softened state and deforming into a thin shape.
  • the average particle size (primary particle size) of the raw material before deformation may be, for example, 10 to 300 ⁇ m, preferably 20 to 250 ⁇ m, more preferably 25 to 200 ⁇ m (particularly 50 to 150 ⁇ m). If the particle size is too small, the economic efficiency is lowered, and if it is too large, uniform dispersion in the composition becomes difficult, and durability is lowered due to a decrease in wear resistance.
  • the elongated polyolefin resin is preferably embedded with the major axis direction oriented substantially parallel to the belt width direction and the minor axis direction oriented substantially parallel to the belt longitudinal direction (circumferential direction). . Since the belt is required to bend in the longitudinal direction, it is possible to suppress a decrease in the bendability of the belt by orienting the long axis direction of the polyolefin resin that lowers the bendability of the belt in the belt width direction. Furthermore, by orienting the minor axis direction in the belt longitudinal direction, the minor axis side (end in the major axis direction) of the polyolefin resin is exposed on the surface of the compressed rubber layer (friction transmission surface).
  • the polyolefin resin is hard to fall off even if the friction transmission surface slides on the pulley.
  • a method for orienting the major axis direction of the polyolefin resin in the belt width direction for example, a method of rolling with a roll is common.
  • the average diameter and the average particle diameter of the major axis and the minor axis can be measured by measurement software (“analySIS” manufactured by Soft Imaging System) from an image observed with a scanning electron microscope.
  • the melting point (or softening point) of the polyolefin resin may be, for example, 10 to 300 ° C., preferably 20 to 275 ° C., more preferably about 30 to 250 ° C. If the melting point is too high, it will be difficult to deform into an elongated shape during the kneading process, and if it is too low, the durability may be reduced.
  • the polyolefin resin is preferably exposed on the surface of the compressed rubber layer (friction transmission surface) in order to reduce the coefficient of friction and improve fuel economy.
  • the area occupied by the polyolefin resin with respect to the friction transmission surface may be, for example, 0.1 to 40% (for example, 0.2 to 30%), and preferably 0.5 to 25% (for example, 1 to 1%). 20%), more preferably about 3 to 15% (especially 5 to 10%). If the area occupied by the polyolefin resin is too small, the effect of reducing the friction coefficient is small, and conversely if too large, the friction coefficient is too low and slipping easily occurs.
  • the ratio of the area occupied by the polyolefin resin is also observed with the scanning electron microscope on the surface of the friction transmission surface, and the phase separation structure between the rubber and the polyolefin resin is confirmed.
  • the occupation area of the phase formed with the polyolefin resin is calculated by measurement software (Soft Imaging, “analySIS”).
  • the phase structure on the friction transmission surface of the polyolefin resin is not particularly limited as long as it adheres in the above-mentioned area ratio, but the island phase is a sea-island phase separation structure formed of polyolefin resin and short fibers, the island phase is a rubber component and Any of the sea-island phase separation structures formed of short fibers may be used.
  • These phase separation structures can be controlled mainly by adjusting the ratio of the polyolefin resin, but from the viewpoint that the friction coefficient can be adjusted to an appropriate coefficient, a sea-island phase separation structure using a polyolefin resin as an island phase is preferable.
  • the ratio of the polyolefin resin can be selected from the range of about 0.1 to 50 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint that both mechanical properties such as lateral pressure resistance and fuel economy can be achieved.
  • it may be 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and particularly preferably about 10 parts by mass or more.
  • the upper limit of the ratio of the polyolefin resin may be, for example, 45 parts by mass or less, preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and particularly preferably 30 parts by mass with respect to 100 parts by mass of the rubber component. It is about the following.
  • the proportion of the polyolefin resin can be selected from the range of about 1 to 100 parts by mass with respect to 100 parts by mass of the following reinforcing agent, and may be, for example, 5 to 90 parts by mass, preferably 10 to 80 parts by mass, More preferably, it is about 15 to 50 parts by mass (particularly 20 to 40 parts by mass).
  • the reinforcing agent includes at least short fibers.
  • Short fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, etc.), polyalkylene arylate fibers (polyethylene terephthalate (PET) fibers, polyethylene naphthalate (PEN)). ) C2-4 alkylene C 6-14 arylate fiber such as fiber), synthetic fiber such as vinylon fiber, polyvinyl alcohol fiber, polyparaphenylenebenzobisoxazole (PBO) fiber; natural such as cotton, hemp, wool Examples of fibers include inorganic fibers such as carbon fibers.
  • short fibers can be used alone or in combination of two or more.
  • synthetic fibers and natural fibers particularly synthetic fibers (polyamide fibers, polyalkylene arylate fibers, etc.), among others, at least in terms of maintaining flexibility and lateral pressure resistance and reducing the coefficient of friction.
  • Short fibers including aramid fibers are preferred.
  • aramid short fibers examples include polyparaphenylene terephthalamide fibers (for example, “Twaron (registered trademark)” manufactured by Teijin Limited, “Kevlar (registered trademark)” manufactured by Toray DuPont), polyparaphenylene, and the like.
  • Copolymer fiber of terephthalamide and 3,4'-oxydiphenylene terephthalamide for example, “Technola (registered trademark)” manufactured by Teijin Limited
  • meta-type polymetaphenylene isophthalamide fiber for example, Teijin
  • Teijin "Conex (registered trademark)” manufactured by Co., Ltd., "Nomex (registered trademark)” manufactured by DuPont Co., Ltd.
  • These aramid short fibers can be used alone or in combination of two or more.
  • the short fiber is oriented in the belt width direction and embedded in the compressed rubber layer in order to suppress the compressive deformation of the belt against the pressure from the pulley.
  • a method for orienting the short fibers in the belt width direction for example, a method of rolling with a roll is common. Further, by causing the short fibers to protrude from the surface of the compressed rubber layer, it is possible to reduce the friction coefficient of the surface to suppress noise (sound generation) and to reduce wear due to rubbing with the pulley.
  • the average length of the short fibers may be, for example, 1 to 20 mm, preferably 2 to 15 mm, more preferably 3 to 10 mm, and may be about 1 to 5 mm (for example, 2 to 4 mm). .
  • the average fiber diameter may be, for example, 5 to 50 ⁇ m, preferably 7 to 40 ⁇ m, and more preferably about 10 to 35 ⁇ m.
  • the proportion of the short fibers may be, for example, 10 to 40 parts by mass, preferably 12 to 35 parts by mass, more preferably 13 to 30 parts by mass (particularly 15 to 25 parts by mass) with respect to 100 parts by mass of the rubber component. Part) grade. If the proportion of short fibers is too small, the mechanical properties of the compressed rubber layer will be insufficient, and if it is too large, the bending fatigue property of the compressed rubber layer will decrease (the compressed rubber layer will become harder and the bending stress will increase). In a state where the belt winding diameter is small, the loss due to bending becomes large, and the fuel efficiency is reduced.
  • the proportion of short fibers can be controlled within the above range (particularly 15 to 25 parts by mass with respect to 100 parts by mass of the rubber component) by blending the polyolefin resin, so that both the mechanical properties of the belt and the fuel efficiency can be achieved. it can.
  • the short fiber is treated with various adhesive treatments, for example, a treatment liquid containing an initial condensate of phenols and formalin (such as a prepolymer of a novolac or a resol type phenol resin), a rubber component (Or latex) treatment liquid, treatment liquid containing the above initial condensate and rubber component (latex), silane coupling agent, epoxy compound (epoxy resin, etc.), reactive compound such as isocyanate compound (adhesive compound) It can process with the process liquid containing this.
  • a treatment liquid containing an initial condensate of phenols and formalin such as a prepolymer of a novolac or a resol type phenol resin
  • a rubber component (Or latex) treatment liquid treatment liquid containing the above initial condensate and rubber component (latex)
  • silane coupling agent such as epoxy compound (epoxy resin, etc.
  • epoxy compound epoxy resin, etc.
  • reactive compound such as isocyanate compound (adhesive
  • the short fibers may be subjected to an adhesion treatment with a treatment liquid containing the initial condensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) liquid.
  • a treatment liquid containing the initial condensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) liquid in general, the adhesion treatment can be performed by immersing the fiber in the RFL solution and then drying by heating to form a uniform adhesion layer on the surface.
  • RFL liquid latex include chloroprene rubber, styrene-butadiene-vinylpyridine terpolymer, hydrogenated nitrile rubber (H-NBR), and nitrile rubber (NBR).
  • H-NBR hydrogenated nitrile rubber
  • NBR nitrile rubber
  • short fibers may be pre-treated with a conventional adhesive component such as an epoxy compound (epoxy resin or the like) or a reactive compound (adhesive compound) such as an isocyanate compound.
  • a conventional adhesive component such as an epoxy compound (epoxy resin or the like) or a reactive compound (adhesive compound) such as an isocyanate compound.
  • the reinforcing agent may contain a conventional reinforcing agent, for example, a carbon material such as carbon black, silicon oxide such as hydrous silica, clay, calcium carbonate, talc, mica and the like in addition to the short fibers.
  • a carbon material such as carbon black, silicon oxide such as hydrous silica, clay, calcium carbonate, talc, mica and the like in addition to the short fibers.
  • silicon oxide such as hydrous silica
  • clay such as hydrous silica
  • calcium carbonate such as calcium carbonate, talc, mica and the like
  • the ratio of the reinforcing agent (the total amount of the reinforcing agent including short fibers) may be 90 parts by mass or less with respect to 100 parts by mass of the rubber component, for example, 80 parts by mass or less (for example, 10 to 80 parts by mass), The amount is preferably about 20 to 70 parts by mass, more preferably about 30 to 60 parts by mass (particularly 40 to 55 parts by mass). If the proportion of the reinforcing agent is too small, the mechanical properties of the compressed rubber layer may be deteriorated.
  • the proportion of the reinforcing agent is too large, the volume proportion of the polyolefin resin is decreased, so that it becomes difficult for the polyolefin resin to be exposed in a predetermined area on the surface of the compressed rubber layer, and the friction coefficient of the belt may not be reduced. is there.
  • the rubber composition may include a vulcanizing agent or a crosslinking agent (or a crosslinking agent system), a co-crosslinking agent, a vulcanization aid, a vulcanization accelerator, a vulcanization retarder, a metal oxide (for example, zinc oxide, Magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), softener (oils such as paraffin oil and naphthenic oil), processing agent or processing aid (stearic acid, stearin) Acid metal salts, wax, paraffin, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending agents, anti-ozone agents, etc.), colorants, tackifiers, plasticizers, coupling agents ( Silane coupling agents, etc.), stabilizers (ultraviolet absorbers, heat stabilizers, etc.), flame retardants, antistatic agents and the like may be included.
  • the metal oxide for example, zinc oxide, Magnesium oxide
  • the vulcanizing agent or the crosslinking agent conventional components can be used depending on the type of rubber component.
  • the metal oxide magnesium oxide, zinc oxide, etc.
  • organic peroxide diacyl peroxide, peroxyester
  • dialkyl peroxide sulfur vulcanizing agents
  • sulfur-based vulcanizing agent examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), and the like.
  • These crosslinking agents or vulcanizing agents may be used alone or in combination of two or more.
  • a metal oxide magnesium oxide, zinc oxide, etc.
  • the metal oxide may be used in combination with other vulcanizing agents (such as sulfur-based vulcanizing agents), and the metal oxide and / or sulfur-based vulcanizing agent may be used alone or in combination with a vulcanization accelerator. May be used.
  • the amount of the vulcanizing agent used can be selected from a range of about 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component depending on the type of the vulcanizing agent and the rubber component.
  • the amount of the organic peroxide used as the vulcanizing agent may be 1 to 8 parts by weight, preferably 1.5 to 5 parts by weight, more preferably 2 parts per 100 parts by weight of the rubber component.
  • the metal oxide can be used in an amount of about 1 to 20 parts by weight, preferably 3 to 17 parts by weight, and more preferably 3 to 17 parts by weight.
  • it can be selected from a range of about 5 to 15 parts by mass (for example, 7 to 13 parts by mass).
  • co-crosslinking agents include known crosslinking aids such as polyfunctional (iso) cyanurates (eg, triallyl isocyanurate (TAIC), triallyl shear). Nurate (TAC), etc.), polydienes (eg, 1,2-polybutadiene, etc.), metal salts of unsaturated carboxylic acids (eg, zinc (meth) acrylate, magnesium (meth) acrylate), oximes (eg, Quinonedioxime, etc.), guanidines (eg, diphenylguanidine, etc.), polyfunctional (meth) acrylates (eg, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, etc.) ), Bismaleimides (aliphatic bismaleimides such as N N′-1,2-ethylenebismaleimide, 1,6′-bismaleimide,
  • crosslinking aids can be used alone or in combination of two or more.
  • bismaleimides arene bismaleimides such as N, N'-m-phenylene dimaleimide or aromatic bismaleimides
  • the addition of bismaleimides can increase the degree of crosslinking and prevent adhesive wear and the like.
  • the ratio of the co-crosslinking agent (crosslinking aid) can be selected from the range of, for example, about 0.01 to 10 parts by mass, for example, 0.1 to 5 parts by mass, in terms of solid content, with respect to 100 parts by mass of the rubber component. Parts (for example, 0.3 to 4 parts by mass), and preferably about 0.5 to 3 parts by mass (for example, 0.5 to 2 parts by mass).
  • vulcanization accelerator examples include thiuram accelerators (for example, tetramethylthiuram monosulfide (TMTM), tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD).
  • TMTM tetramethylthiuram monosulfide
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TBTD tetrabutylthiuram disulfide
  • thiazol accelerators for example, 2-mercaptobenzothiazol, 2 -Zinc salts of mercaptobenzothiazol, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (4'-morpholinodithio) benzothiazole, etc.
  • sulfenamide accelerators for example, N-cyclohexyl-2) -Benzothiazylsulfe Amide (CBS), N, N′-dicyclohexyl-2-benzothiazylsulfenamide, etc.
  • bismaleimide accelerators for example, N, N′-m-phenylenebismaleimide, N, N′-1,2) -Ethylene bismaleimide
  • guanidines diphenyl guanidines
  • the proportion of the vulcanization accelerator may be, for example, 0.1 to 15 parts by mass, preferably 0.3 to 10 parts by mass, more preferably 100 parts by mass of the rubber component in terms of solid content. It may be about 0.5 to 5 parts by mass.
  • the use amount of the softening agent may be, for example, 1 to 30 parts by mass, preferably 3 to 20 parts by mass (for example, for example) with respect to 100 parts by mass of the total amount of rubber components. 5 to 10 parts by mass).
  • the amount of anti-aging agent used may be, for example, 0.5 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2.5 to 7 parts per 100 parts by weight of the total amount of rubber components. It may be about 5 parts by mass (for example, 3 to 7 parts by mass).
  • the structure of the transmission belt is not particularly limited as long as the belt has the compressed rubber layer that can come into contact with the pulley.
  • the power transmission belt includes a core wire extending in a longitudinal direction of the belt, an adhesive rubber layer in contact with at least a part of the core wire, a compression rubber layer formed on one surface of the adhesive rubber layer, and the other of the adhesive rubber layers It has a stretch rubber layer formed on the surface.
  • FIG. 1 is a schematic sectional view showing an example of a transmission belt.
  • the core wire 2 is embedded in the adhesive rubber layer 1
  • the compressed rubber layer 3 is laminated on one surface of the adhesive rubber layer 1
  • the stretched rubber layer is formed on the other surface of the adhesive rubber layer 1. 4 are stacked.
  • the core wire 2 is integrally embedded in a form sandwiched between a pair of adhesive rubber sheets.
  • a reinforcing cloth 5 is laminated on the compressed rubber layer 3, and a cog portion 6 is formed by a cogging mold.
  • the laminated body of the compressed rubber layer 3 and the reinforcing cloth 5 is integrally formed by vulcanizing the laminated body of the reinforcing cloth and the compressed rubber layer sheet (unvulcanized rubber sheet).
  • the stretched rubber layer may be formed of a vulcanized rubber composition containing the rubber component exemplified in the compressed rubber layer, and may contain a reinforcing agent and a polyolefin resin similarly to the compressed rubber layer. Further, the stretch rubber layer may be a layer formed of the same vulcanized rubber composition as the compression rubber layer.
  • the vulcanized rubber composition for forming the adhesive rubber layer is composed of a rubber component (such as chloroprene rubber), a vulcanizing agent or a cross-linking agent (such as magnesium oxide and zinc oxide) in the same manner as the vulcanized rubber composition of the compressed rubber layer.
  • a rubber component such as chloroprene rubber
  • a vulcanizing agent or a cross-linking agent such as magnesium oxide and zinc oxide
  • Metal oxides sulfur-based vulcanizing agents such as sulfur
  • co-crosslinking agents or crosslinking aids such as maleimide-based crosslinking agents such as N, N'-m-phenylene dimaleimide), vulcanization accelerators (TMTD, DPTT) , CBS, etc.
  • reinforcing agents carbon black, silica, etc.
  • softeners oils such as naphthenic oils
  • processing agents or processing aids stearic acid, metal stearate, wax, paraffin, etc.
  • adhesion improver resorcin-formaldehyde co-condensate, amino resin (condensate of nitrogen-containing cyclic compound and formaldehyde, eg hexamethylol melamine, hex Melamine resins such as alkoxylmethyl melamine (hexamethoxymethyl melamine, hexabutoxymethyl melamine, etc.), urea resins such as methylol
  • the resorcin-formaldehyde cocondensate and amino resin may be an initial condensate (prepolymer) of a nitrogen-containing cyclic compound such as resorcin and / or melamine and formaldehyde.
  • the rubber component a rubber of the same type (diene rubber or the like) or the same type (chloroprene rubber or the like) as the rubber component of the vulcanized rubber composition of the compressed rubber layer is often used.
  • the amounts of the vulcanizing agent or crosslinking agent, co-crosslinking agent or crosslinking aid, vulcanization accelerator, enhancer, softener and anti-aging agent are each in the same range as the rubber composition of the compressed rubber layer. You can choose from.
  • the amount of processing agent or processing aid (such as stearic acid) used is, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the amount of the adhesion improver used may be, for example, 0.1 to 20 parts by mass, preferably 100 parts by mass of the rubber component. May be about 1 to 10 parts by mass, more preferably about 2 to 8 parts by mass.
  • the cores are arranged to extend in the longitudinal direction of the belt, and are usually arranged to extend in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt.
  • the core wire only needs to be at least partially in contact with the adhesive rubber layer.
  • the adhesive rubber layer embeds the core wire, the core wire embeds between the adhesive rubber layer and the stretch rubber layer, and the adhesive rubber. Any form of embedding a core wire between the layer and the compressed rubber layer may be employed. Among these, the form in which the adhesive rubber layer embeds the core wire is preferable from the viewpoint that durability can be improved.
  • Examples of the fibers constituting the core wire include the same fibers as the short fibers.
  • these fibers from the viewpoint of high modulus, synthesis of polyester fibers (polyalkylene arylate fibers) mainly composed of C 2-4 alkylene arylates such as ethylene terephthalate and ethylene-2,6-naphthalate, aramid fibers, etc.
  • Inorganic fibers such as fibers and carbon fibers are widely used, and polyester fibers (polyethylene terephthalate fibers, ethylene naphthalate fibers) and polyamide fibers are preferable.
  • the fiber may be a multifilament yarn.
  • the fineness of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the multifilament yarn may include, for example, 100 to 5,000 monofilament yarns, preferably 500 to 4,000 yarns, and more preferably about 1,000 to 3,000 monofilament yarns.
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, 0.5 to 3 mm, preferably 0.6 to 2 mm, more preferably about 0.7 to 1.5 mm. Also good.
  • the core wire may be subjected to adhesion treatment (or surface treatment) in the same manner as the short fiber in order to improve adhesion with the rubber component.
  • adhesion treatment or surface treatment
  • the core wire is preferably subjected to adhesion treatment with at least the RFL solution.
  • the transmission efficiency is an index for the belt to transmit the rotational torque from the drive pulley to the driven pulley.
  • the higher the transmission efficiency the smaller the belt transmission loss and the better the fuel efficiency.
  • the transmission efficiency can be obtained as follows.
  • the rotational torque T 1 of the driving pulley can be expressed by ⁇ 1 ⁇ Te ⁇ r 1 .
  • Te is an effective tension obtained by subtracting the loose side tension (tension on the side where the belt faces the driven pulley) from the tension side tension (tension on the side where the belt faces the driving pulley).
  • the rotational torque T 2 of the driven pulley is represented by ⁇ 2 ⁇ Te ⁇ r 2 .
  • the transmission efficiency T 2 / T 1 is calculated by dividing the rotational torque T 2 of the driven pulley by the rotational torque T 1 of the drive pulley, and can be expressed by the following equation.
  • the transmission efficiency does not become a value of 1 or more, but the closer to 1, the smaller the belt transmission loss and the better the fuel economy.
  • the belt manufacturing method is not particularly limited, and a conventional method can be adopted.
  • the belt shown in FIG. 1 has a core wire embedded therein, and a laminated body of the unvulcanized rubber layer having the above-described configuration is formed with a molding die, vulcanized to form a belt sleeve, and this vulcanized belt sleeve. Can be formed by cutting to a predetermined size.
  • Aramid short fibers (average fiber length 3 mm, “Conex short fibers” manufactured by Teijin Techno Products Co., Ltd.) are bonded with RFL liquid (resorcin and formaldehyde and vinylpyridine-styrene-butadiene rubber latex as latex) After processing, short fibers having a solid content of 6 mass% were used.
  • RFL liquid 2.6 parts by mass of resorcin, 1.4 parts by mass of 37% formalin, 17.2 parts by mass of vinylpyridine-styrene-butadiene copolymer latex (manufactured by Nippon Zeon Co., Ltd.), 78.8 parts by mass of water was used.
  • Polyolefin The polyolefins used are shown in Table 1 below.
  • Ether ester oil “RS700” manufactured by ADEKA Corporation Carbon black: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
  • Anti-aging agent “Nonflex OD3” manufactured by Seiko Chemical Co., Ltd.
  • Silica “Nipsil VN3” manufactured by Tosoh Silica Corporation Vulcanization accelerator: Tetramethylthiuram disulfide (TMTD).
  • (Core) A fiber obtained by adhering a cord of total denier 6,000 in which a PET fiber of 1,000 denier is twisted in a 2 ⁇ 3 twist configuration with an upper twist factor of 3.0 and a lower twist factor of 3.0.
  • Examples 1 to 9 and Comparative Examples 1 and 2 (Formation of rubber layer)
  • the rubber compositions shown in Table 2 (compressed rubber layer, stretched rubber layer) and Table 3 (adhesive rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll.
  • Rolled rubber sheets (compressed rubber layer sheet, stretch rubber layer sheet, adhesive rubber layer sheet) were prepared.
  • the laminate of the reinforcing fabric and the compressed rubber layer sheet (unvulcanized rubber) is placed on a flat cogging die with the teeth and grooves alternately arranged with the reinforcing fabric down, and press-pressed at 75 ° C.
  • a cog pad (not completely vulcanized but in a semi-vulcanized state) with a cog part formed by pressing was produced. Next, both ends of the cog pad were cut vertically from the top of the cog crest.
  • the inner die with teeth and grooves alternately on a cylindrical mold, engage the teeth and grooves, wrap a cog pad, and joint at the top of the cog crest.
  • the core wire was spun into a spiral shape, and the second sheet for the adhesive rubber layer (for the first adhesive rubber layer) The same as the sheet) and a stretched rubber layer sheet (unvulcanized rubber) were sequentially wound to prepare a molded body. Thereafter, the jacket was put on and the mold was placed in a vulcanizing can and vulcanized at a temperature of 160 ° C. for 20 minutes to obtain a belt sleeve.
  • This sleeve is cut into a V shape with a cutter, and a belt having the structure shown in FIG. 1, that is, a low edge cogged V belt (size: upper width 22.0 mm, thickness 11) which is a transmission belt having a cog on the inner peripheral side of the belt. 0.0 mm, outer peripheral length 800 mm).
  • Abrasion A hollow rubber with an inner diameter of 16.2 ⁇ 0.05 mm from a vulcanized rubber sheet (50 mm x 50 mm x 8 mm thick) produced by press vulcanizing a sheet for a compressed rubber layer at a temperature of 160 ° C for 20 minutes.
  • a cylindrical sample having a diameter of 16.2 ⁇ 0.2 mm and a thickness of 6 to 8 mm was produced by cutting with a drill.
  • the amount of vulcanized rubber was measured using a rotating cylindrical drum device (DIN abrasion tester) wound with a polishing cloth.
  • the compressed rubber layer sheet was press vulcanized at a temperature of 160 ° C. for 20 minutes to prepare a vulcanized rubber molded body (length 25 mm, width 25 mm, thickness 12.5 mm).
  • the short fibers were oriented in the direction perpendicular to the compression surface (thickness direction).
  • This vulcanized rubber molded body is sandwiched between two metal compression plates up and down (in the state where the vulcanized molded body is not pressed by the compression plate, the position of the upper compression plate is the initial position), the upper side
  • the compression plate was pressed against the vulcanized rubber molded body at a speed of 10 mm / min (pressing surface 25 mm ⁇ 25 mm) to distort the vulcanized rubber molded body by 20%, held in this state for 1 second, To the initial position (preliminary compression).
  • the compression rubber layer sheet was press vulcanized at a temperature of 160 ° C. for 20 minutes to prepare a vulcanized rubber molded body (length 60 mm, width 25 mm, thickness 6.5 mm).
  • the short fibers were oriented in a direction parallel to the width of the vulcanized rubber molding.
  • this vulcanized rubber molded body 21 is placed on and supported by a pair of rolls (6 mm ⁇ ) 22a and 22b that can be rotated with an interval of 20 mm, and the upper center portion of the vulcanized rubber molded body.
  • the metal pressing member 23 was placed in the width direction (orientation direction of the short fibers).
  • the front end portion of the pressing member 23 has a semicircular shape of 10 mm ⁇ , and the vulcanized rubber molded body 21 can be smoothly pressed by the front end portion. Further, at the time of pressing, a frictional force acts between the lower surface of the vulcanized rubber molded body 21 and the rolls 22a and 22b along with the compression deformation of the vulcanized rubber molded body 21, but the rolls 22a and 22b can be rotated. This reduces the influence of friction.
  • the state in which the tip of the pressing member 23 is in contact with the upper surface of the vulcanized rubber molded body 21 and is not pressed is set to “0”. From this state, the pressing member 23 is molded downward at a speed of 100 mm / min. The upper surface of the body 21 was pressed, and the stress when the strain in the thickness direction of the vulcanized rubber molded body 21 became 10% was measured as a bending stress.
  • the polyolefin in the compressed rubber layer of the belt was cut along the width direction, and based on the image observed with a scanning electron microscope (SEM), the measurement was performed with the measurement software (Soft Imaging System “analySIS”). The average diameter (major axis) of the major axis and the minor axis (minor axis) of the minor axis were measured. Further, the friction transmission surface (the surface of the compressed rubber layer) in one circumference of the belt is based on the image of the scanning electron microscope at any three locations (area 1.2 mm 2 (1.0 mm ⁇ 1.2 mm)). The area occupied by the polyolefin particles (polyolefin phase) relative to the friction transmission surface was calculated using the measurement software.
  • Friction coefficient measurement As shown in FIG. 4, the friction coefficient of the belt is such that one end of the cut belt 31 is fixed to the load cell 32, and a load 33 of 3 kgf is placed on the other end to the pulley 34.
  • the belt 31 was wound around the pulley 34 with a belt winding angle of 45 °. Then, the belt 31 on the load cell 32 side was pulled at a speed of 30 mm / min for about 15 seconds, and the average friction coefficient of the friction transmission surface was measured. In the measurement, the pulley 34 was fixed so as not to rotate.
  • the high-load running test was performed using a two-axis running test machine including a driving (Dr.) pulley 42 having a diameter of 50 mm and a driven (Dn.) Pulley 43 having a diameter of 125 mm.
  • a low-edge cogged V-belt 41 is hung on each pulley 42, 43, a load of 3 N ⁇ m is applied to the driven pulley 43 at a rotation speed of 3000 rpm of the driving pulley 42, and the belt 41 is run in a room temperature atmosphere.
  • the rotational speed of the driven pulley 43 was read from the detector, and the transmission efficiency was obtained from the above formula.
  • the high-speed running test was performed using a two-axis running test machine including a driving (Dr.) pulley 52 having a diameter of 95 mm and a driven (Dn.) Pulley 53 having a diameter of 85 mm.
  • the low-edge cogged V-belt 51 is hung on each pulley 52, 53, the rotational speed of the driving pulley 52 is 5000 rpm, a load of 3 N ⁇ m is applied to the driven pulley 53, and the belt 51 is run in a room temperature atmosphere.
  • the rotational speed of the driven pulley 52 was read from the detector, and the transmission efficiency was obtained from the above formula.
  • Table 4 the transmission efficiency of Comparative Example 1 is set to “1”, and the transmission efficiency of each Example and Comparative Example is shown as a relative value. If this value is larger than 1, the transmission efficiency, that is, the fuel efficiency is high. It was judged.
  • the endurance running test uses a two-axis running test machine comprising a driving (Dr.) pulley 62 having a diameter of 50 mm and a driven (Dn.) Pulley 63 having a diameter of 125 mm, as shown in FIG. It was done.
  • a low-edge cogged V-belt 61 is hung on each pulley 62, 63, the drive pulley 62 is rotated at 5000 rpm, a load of 10 N ⁇ m is applied to the driven pulley 63, and the belt 61 is kept at an ambient temperature of 80 ° C for a maximum of 60 hours. I drove it. If the belt 61 traveled for 60 hours, it was determined that there was no problem with durability.
  • the side surface of the belt (the surface in contact with the pulley) after running was observed with a microscope to check for the presence of peeling of the core wire, and the peeling depth of the peeling site was measured with a microscope. Further, the side of the compressed rubber after running (the surface in contact with the pulley) was visually observed to check for cracks. Further, the friction coefficient and transmission efficiency of the belt after running with high load durability were measured.
  • Vulcanized rubber properties and belt properties are shown in Table 4.
  • FIG. 8 shows an SEM photograph (image) of the belt cross section (cross section cut in the belt width direction) obtained in Example 3.
  • the large particles are polyethylene and the small particles are aramid short fibers.
  • the transmission belt of the present invention can be used as various belts that require transmission loss, and is preferably a friction transmission belt.
  • the friction transmission belt include a low-edge belt having a V-shaped cross section, a low-edge cogged V-belt having a cog provided on the inner peripheral side of the low-edge belt or both the inner peripheral side and the outer peripheral side, and a V-ribbed belt.
  • belts (transmission belts) used in transmissions in which the gear ratio changes steplessly during belt travel such as low-edge cogged V-belts such as motorcycles, ATVs (four-wheel buggy), and snowmobiles, low-edge It is preferable to apply to a double cogged V belt.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、ベルトの長手方向に延びる心線、この心線の少なくとも一部と接する接着ゴム層、この接着ゴム層の一方の面に形成された圧縮ゴム層、及び前記接着ゴム層の他方の面に形成された伸張ゴム層を備えた伝動用ベルトであって、前記圧縮ゴム層が、ゴム成分、ポリオレフィン樹脂及び補強剤を含む加硫ゴム組成物で形成され、前記ゴム成分がクロロプレンゴムを含み、かつ前記補強剤が短繊維を含む、伝動用ベルトに関する。

Description

伝動用ベルト
 本発明は、Vベルト、Vリブドベルトなどの伝動用ベルトに関し、詳しくは耐久性能と伝達効率に優れた伝動用ベルトに関する。
 従来、Vベルト、Vリブドベルトなどの伝動用ベルトの耐側圧性を向上させるため、圧縮ゴム層に補強剤として短繊維が配合されている。例えば、特許文献1には、コードが埋設された接着弾性体層と、この接着弾性体層の上下側に位置する保持弾性体層(圧縮ゴム層)とを備えたベルトにおいて、保持弾性体層が、クロロプレンゴム、補強性充填剤、金属酸化加硫剤、ビスマレイミド及びアラミド短繊維を含み、アラミド短繊維がベルトの幅方向に配列したゴムVベルトが開示されている。この特許文献には、アラミド繊維の配列により、列理方向(短繊維の配向方向)の弾性率を高くして、耐側圧性を維持し、耐久性を向上させている。
 特許文献2には、伸張ゴム層及び圧縮ゴム層の少なくとも一方のゴム硬度を90~96°、接着ゴム層のゴム硬度を83~89°の範囲に設定し、伸張ゴム層及び圧縮ゴム層にはアラミド短繊維をベルト幅方向に配列させた伝動用Vベルトが開示されている。この特許文献では、早期にクラックや各ゴム層及びコードのセパレーション(剥離)が発生することを防止し、耐側圧性を向上させて高負荷伝動能力を向上させている。
 ところで、近年、伝動用ベルトには前記耐側圧性や耐久性以外に、ベルトの伝動ロスを低減して、燃費性を改善するため、省燃費性を向上させることが求められている。例えば、特許文献2の段落[0005]には、ベルトのゴム硬度を上げると曲げ剛性が高くなるため、小プーリ径では伝動ロスが生じることが記載されている。このため、Vベルトの内周側または内周側と外周側(背面側)の両方にコグを設け、ベルトの曲げ剛性を低くして伝動ロスを抑える試みがなされている。この種のベルトとして、一般的にコグドVベルトが知られている。
 耐側圧性や耐久性の向上に対しては、前記特許文献に記載のように、アラミド繊維などの高弾性率の短繊維やカーボンブラックなどの補強剤を増量してゴム硬度を高めることが有効な手段である。しかし、ゴム硬度を高めるとベルトの曲げ剛性の上昇に繋がり、屈曲疲労性の低下や、小プーリ径においてはベルトの伝動ロスが大きくなり、省燃費性を低下させる。一方、屈曲疲労性や省燃費性を向上させるため、ゴム硬度を下げると、耐側圧性が低下してベルトが早期に寿命に達する虞がある。すなわち、耐側圧性、耐久性の一連の特性と、屈曲疲労性、省燃費性の一連の特性とは二律背反の関係にある。なお、Vベルトの内周側または内周側と外周側の両方にコグを設けることにより屈曲疲労性、省燃費性を向上させることができる。しかし、耐側圧性、耐久性を維持すべくゴム硬度を高くしているため、省燃費性は未だ十分ではないのが現状である。そのため、好ましいゴム組成物(特に圧縮ゴム層のゴム組成物)が望まれている。
 なお、この種のVベルトとして無段変速機に用いられる変速ベルトがある。この変速ベルトにおいて、変速比(駆動プーリと従動プーリとの回転比)を変えるためには、ベルトがそのプーリ上をプーリ半径方向に上下動(又は進退動)する。この移動がスムーズに行なわれないと、プーリからの剪断力が強く作用してゴム層間(接着ゴム層と圧縮ゴム層)や接着ゴム層と心線間とで剥離が生じたり、省燃費性(曲げ剛性に起因する省燃費性ではなく、摺動性の低下に基づく省燃費性)が低下する。これに対して、短繊維やカーボンブラックなどの補強剤を多く配合してゴム硬度を高めたり、短繊維を摩擦伝動面から突出させることにより、摩擦係数を低減させ摺動性を向上させることが試みられているが、二律背反の関係にある耐久性能(耐側圧性や耐久性)と伝達効率(省燃費性)との両立は、充分に達成されてはいない。
 なお、特許文献3には、ベルト本体がプーリに接触するように巻き掛けられて動力を伝達する摩擦伝動ベルトであって、前記ベルト本体の少なくともプーリ接触部分が、エチレン-α-オレフィンエラストマーに粉状乃至粒状のポリオレフィン樹脂を含有させたゴム組成物で形成された摩擦伝動ベルトが開示されている。この文献では、組成物の均一性や材料費の関係で多量に配合できない短繊維に対して、粉状乃至粒状のポリオレフィン樹脂を配合することにより、低発音性及び耐摩耗性を向上させることを目的としている。この特許文献の実施例では、クロロプレンゴム100質量部に対して、カーボンブラック75質量部及びナイロン短繊維25質量部を配合したゴム組成物が調製されているが、音圧が高く、損失摩耗量も多い比較例として記載されている。
 しかし、この文献には、省燃費性について記載されていない上に、このベルトを、省燃費性が要求される変速ベルトに適用しても、省燃費性は低く、耐久性も低かった。
日本国特公平5-63656号公報 日本国特開平10-238596号公報 日本国特開2004-324794号公報
 従って、本発明の目的は、省燃費性を維持しながら、耐側圧性及び耐久性を向上できる伝動用ベルトを提供することにある。
 本発明の他の目的は、短繊維などの補強剤の割合が少なくても、走行後の伝達効率の変化が小さく、高温環境下での耐久性も向上できる伝動用ベルトを提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、伝動用ベルトの圧縮ゴム層を、クロロプレンゴム、ポリオレフィン樹脂及び短繊維を含む加硫ゴム組成物で形成することにより、省燃費性を維持しながら、耐側圧性及び耐久性を向上できることを見出し、本発明を完成した。
 すなわち、本発明の伝動用ベルトは、ベルトの長手方向に延びる心線、この心線の少なくとも一部と接する接着ゴム層、この接着ゴム層の一方の面に形成された圧縮ゴム層、及び前記接着ゴム層の他方の面に形成された伸張ゴム層を備えた伝動用ベルトであって、前記圧縮ゴム層が、ゴム成分、ポリオレフィン樹脂及び補強剤を含む加硫ゴム組成物で形成され、前記ゴム成分がクロロプレンゴムを含み、かつ前記補強剤が短繊維を含む。
 なお、前記補強剤の割合は、ゴム成分100質量部に対して80質量部以下であってもよい。前記ポリオレフィン樹脂の割合は、ゴム成分100質量部に対して5~40質量部であってもよい。前記ポリオレフィン樹脂の割合は、補強剤100質量部に対して15~50質量部であってもよい。前記短繊維の割合は、ゴム成分100質量部に対して15~25質量部であってもよい。前記補強剤は、アラミド短繊維及びカーボンブラックを含んでいてもよい。前記ポリオレフィン樹脂の平均分子量は、ASTM D4020に準拠して測定した方法において、20万~600万であってもよい。前記ポリオレフィン樹脂の原料の平均粒径は25~200μmであってもよい。前記圧縮ゴム層中でのポリオレフィン樹脂はアスペクト比1.6~10の長細形状であり、長軸方向がベルト幅方向に対して略平行に配向し、かつ短軸方向がベルト長手方向に対して略平行に配向していてもよい。前記ポリオレフィン樹脂は、圧縮ゴム層の表面に露出していてもよい。前記圧縮ゴム層の表面におけるポリオレフィン樹脂の占有面積は0.2~30%であってもよい。本発明の伝動用ベルトは、無段変速装置に用いられるベルトであってもよい。
 本発明では、伝動用ベルトの圧縮ゴム層が、クロロプレンゴム、ポリオレフィン樹脂及び短繊維を含む加硫ゴム組成物で形成されているため、省燃費性を維持しながら、耐側圧性及び耐久性を向上できる。さらに、短繊維などの補強剤の割合が少なくても、走行後の伝達効率の変化が小さく、高温環境下での耐久性も向上できる。
図1は伝動用ベルトの一例を示す概略断面図である。 図2は伝達効率の測定方法を説明するための概略図である。 図3は実施例での曲げ応力の測定方法を説明するための概略図である。 図4は実施例での摩擦係数の測定方法を説明するための概略図である。 図5は実施例での高負荷走行試験を説明するための概略図である。 図6は実施例での高速走行試験を説明するための概略図である。 図7は実施例での耐久走行試験を説明するための概略図である。 図8は実施例3で得られたベルトの圧縮ゴム層断面の走査型電子顕微鏡写真をあらわす図である。
 [圧縮ゴム層]
 本発明の伝動用ベルトは、ベルトの長手方向に延びる心線、この心線の少なくとも一部と接する接着ゴム層、この接着ゴム層の一方の面に形成された圧縮ゴム層、及び前記接着ゴム層の他方の面に形成された伸張ゴム層を備えており、前記圧縮ゴム層は、ゴム成分、ポリオレフィン樹脂及び補強剤を含む加硫ゴム組成物で形成されている。
 (ゴム成分)
 本発明では、耐久性を向上できる点などから、ゴム成分は、クロロプレンゴムを含む。クロロプレンゴムとしては、慣用のクロロプレンゴムを利用できる。
 クロロプレンゴムは、主単位として、比較的立体規則性の高いトランス-1,4結合を含み、さらにシス-1,2結合、及び少量の1,2又は3,4結合を含んでいてもよい。トランス-1,4結合の割合は85%以上であってもよく、シス-1,2結合の割合は10%以上であってもよい。
 クロロプレンゴムのガラス転移温度は、例えば、-50~-20℃であってもよく、好ましくは-40~-20℃程度である。
 クロロプレンゴムは、硫黄変性タイプであってもよく、非硫黄変性タイプであってもよい。
 ゴム成分は、さらに他の加硫又は架橋可能なゴム成分を含んでいてもよい。他の加硫又は架橋可能なゴム成分としては、例えば、他のジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴムなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのゴム成分は単独で又は二種以上組み合わせて使用できる。
 ゴム成分中において、クロロプレンゴムの割合は50質量%以上(特に80~100質量%)程度であってもよく、クロロプレンゴムのみ(100質量%)が特に好ましい。
 (ポリオレフィン樹脂)
 本発明では、圧縮ゴム層の加硫ゴム組成物にポリオレフィン樹脂を配合することにより、圧縮ゴム層の摩擦係数を低下してベルトの耐摩耗性を向上できる。通常、省燃費性を向上させるためには、短繊維を過度に添加することにより摩擦係数を低下させるが、ゴム成分と短繊維の界面に亀裂が入り易く、耐久性が損なわれる虞がある。これに対して、短繊維を増量する代わりに、ポリオレフィン樹脂を添加すると、ポリオレフィン樹脂は比較的比重が低く、少量の添加でも摩擦係数を低減でき、省燃費性に寄与する。特に、ベルトの走行に伴い短繊維が摩滅すると摩擦係数が上昇するが、ポリオレフィン樹脂の存在により、短繊維が摩滅しても摩擦係数の上昇を抑制でき、長期間に亘り省燃費性を維持できる。また、ポリオレフィン樹脂を適量添加することにより、耐久性に必要な適度な硬度を得られる。さらに、短繊維とポリオレフィン樹脂とを併用することにより、短繊維の体積割合が低くなり、短繊維を多量に添加したときの欠点であるゴムと短繊維との界面での亀裂も抑制できる。詳しくは、走行の発熱によりポリオレフィン樹脂が柔軟になり、ゴムと短繊維との界面で剥離(微小亀裂)が生じても、付近に分散するポリオレフィン樹脂が応力集中を緩和し(クッションの役割をし)、亀裂の成長を抑制できる。特に、ポリオレフィン樹脂は、短繊維やカーボンブラックなどの補強剤と異なり、少量の添加で補強剤の役割を果たす。本発明では、これらの作用が組み合わされることにより、省燃費性を維持しながらも耐側圧剛性を高めることができ、耐久性を向上させることができると推定される。
 なお、ポリオレフィン樹脂は、長繊維をカットして製造されさらにゴムとの接着性を付与するための接着処理を要する短繊維に比べて比較的材料コストが安価であるため、短繊維の割合を抑制できることは、経済性の点からも優れている。
 ポリオレフィン樹脂としては、エチレン、プロピレン、1-ブテン、2-ブテン、1-ペンテン、1-ヘキセン、3-メチルペンテン、4-メチルペンテンなどのα-オレフィン(特に、エチレン、プロピレンなどのα-C2-6オレフィン)を主要な重合成分とする重合体であってもよい。
 前記α-オレフィン以外の共重合性単量体としては、例えば、(メタ)アクリル系単量体[例えば、(メタ)アクリル酸メチルや(メタ)アクリル酸エチルなどの(メタ)アクリル酸C1-6アルキルエステルなど]、不飽和カルボン酸類(例えば、無水マレイン酸など)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニルなど)、ジエン類(ブタジエン、イソプレンなど)などが挙げられる。これらの単量体は、単独で又は二種以上組み合わせて使用できる。
 ポリオレフィン樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂(ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体など)などが挙げられる。これらのポリオレフィンは、単独で又は二種以上組み合わせて使用できる。
 これらのポリオレフィン樹脂のうち、ポリエチレン系樹脂、ポリプロピレン系樹脂が好ましく、摩擦係数の低減効果が大きい点から、ポリエチレン系樹脂が好ましい。
 ポリエチレン系樹脂は、ポリエチレンホモポリマー(単独重合体)であってもよく、ポリエチレンコポリマー(共重合体)であってもよい。コポリマーに含まれる共重合性単量体としては、例えば、オレフィン類(例えば、プロピレン、1-ブテン、2-ブテン、1-ペンテン、1-ヘキセン、3-メチルペンテン、4-メチルペンテン、1-オクテンなどのα-C3-8オレフィンなど)、(メタ)アクリル系単量体(例えば、(メタ)アクリル酸メチルや(メタ)アクリル酸エチルなどの(メタ)アクリル酸C1-6アルキルエステルなど)、不飽和カルボン酸類(例えば、無水マレイン酸など)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニルなど)、ジエン類(ブタジエン、イソプレンなど)などが挙げられる。これらの共重合性単量体は、単独で又は二種以上組み合わせて使用できる。これらの共重合性単量体のうち、プロピレン、1-ブテン、1-ヘキセン、4-メチルペンテン、1-オクテンなどのα-C3-8オレフィンが好ましい。共重合性単量体の割合は好ましくは30モル%以下(例えば、0.01~30モル%)、より好ましくは20モル%以下(例えば、0.1~20モル%)、さらに好ましくは10モル%以下(例えば、1~10モル%)程度である。コポリマーは、ランダム共重合体、ブロック共重合体などであってもよい。
 ポリエチレン系樹脂としては、例えば、低、中又は高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、エチレン-プロピレン共重合体、エチレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体、エチレン-(4-メチルペンテン-1)共重合体などが挙げられる。これらのポリエチレン系樹脂は、単独で又は二種以上組み合わせて使用できる。これらのポリオレフィン樹脂のうち、ベルトの耐久性を向上できる点から、超高分子量ポリエチレンが特に好ましい。
 ポリオレフィン樹脂(特にポリエチレン系樹脂)の平均分子量は、ASTM D4020に準拠して測定した方法において、例えば、1万~1200万程度の範囲から選択でき、下限値としては、例えば、5万以上や10万以上であってもよく、好ましくは20万以上、さらに好ましくは50万以上、特に好ましくは100万以上程度である。平均分子量の上限値としては、例えば1000万以下や850万以下であってもよく、好ましくは800万以下、より好ましくは750万以下、さらに好ましくは700万以下、特に好ましくは600万以下程度である。分子量が小さすぎると、機械的特性及び耐熱性が低下するとともに、摩擦係数が大きくなりすぎて、摩耗量が増加するとともに、耐久性が低下する虞がある。一方、大きすぎると、ベルトの屈曲性が低下して耐久性が低下するとともに、摩擦係数が小さくなりすぎて、ベルトがスリップし易くなる。
 ポリオレフィン樹脂は、所定のサイズで加硫ゴム組成物中に略均一に分散しているのが好ましい。加硫ゴム組成物中でのポリオレフィン樹脂の形状は、球状、もしくは長細形状(棒状又は繊維状)であり、長軸の平均径は、例えば、5~500μm(例えば、10~500μm)であってもよく、好ましくは20~500μm(例えば、30~500μm)、さらに好ましくは100~300μm(特に150~250μm)程度であり、短軸の平均径は、例えば、30~500μm(例えば、30~400μm)であってもよく、に好ましくは30~350μm(例えば、30~300μm)、さらに好ましくは50~200μm(特に70~150μm)程度である。また、アスペクト比(長軸の平均径/短軸の平均径)は、例えば、1~16(例えば、1.4~14)であってもよく、好ましくは1.6~12(例えば、1.6~10)、さらに好ましくは1.7~5(例えば、1.8~3)程度である。本発明では、圧縮ゴム層において、ポリオレフィン樹脂がゴム中に長細く変形した状態(例えば、ジャガイモ形状に類似の形状)で、アンカー効果を利用して強固に埋まって分散している場合、圧縮ゴム層表面からポリオレフィン樹脂が脱落するのがより抑制され、より長期間に亘り省燃費性を維持でき、好ましい。
 このような長細形状のポリオレフィン樹脂は、略等方形状(略球状、多角体形、不定形状など)の粒状のポリオレフィン重合体が、ゴム組成物中で混練りされる過程で、ゴム組成物の発熱により軟化した状態でせん断力を受けて長細く変形することで得られる。変形前の原料の平均粒径(一次粒径)は、例えば、10~300μmであってもよく、好ましくは20~250μm、さらに好ましくは25~200μm(特に50~150μm)程度である。粒径が小さすぎると、経済性が低下し、大きすぎると、組成物中での均一な分散が困難となり、耐摩耗性の低下により耐久性が低下する。
 長細形状のポリオレフィン樹脂は、長軸方向がベルト幅方向に対して略平行に配向し、かつ短軸方向がベルト長手方向(周方向)に対して略平行に配向して埋設するのが好ましい。ベルトは長手方向の屈曲性を要求されため、ベルトの屈曲性を低下させるポリオレフィン樹脂の長軸方向をベルト幅方向に配向することにより、ベルトの屈曲性の低下を抑制できる。さらに、短軸方向をベルト長手方向に配向することにより、圧縮ゴム層表面(摩擦伝動面)において、ポリオレフィン樹脂の短軸側(長軸方向の端部)が露出するため、ポリオレフィン樹脂が層中で強固に埋設し、摩擦伝動面がプーリと摺動してもポリオレフィン樹脂が脱落しにくい。ポリオレフィン樹脂の長軸方向をベルト幅方向に配向させる方法としては、例えば、ロールによって圧延する方法が一般的である。
 なお、本発明では、長軸及び短軸の平均径、平均粒径は、走査型電子顕微鏡で観察した画像から、計測ソフト(Soft Imaging System社製「analySIS」)により測定できる。
 ポリオレフィン樹脂の融点(又は軟化点)は、例えば、10~300℃であってもよく、好ましくは20~275℃、さらに好ましくは30~250℃程度である。融点が高すぎると、混練過程で長細形状に変形し難くなり、逆に低すぎると、耐久性が低下する虞がある。
 ポリオレフィン樹脂は、摩擦係数を低下し、省燃費性を向上させるために、圧縮ゴム層表面(摩擦伝動面)に露出しているのが好ましい。摩擦伝動面に対してポリオレフィン樹脂の占める面積は、例えば、0.1~40%(例えば、0.2~30%)であってもよく、好ましくは0.5~25%(例えば、1~20%)、さらに好ましくは3~15%(特に5~10%)程度である。ポリオレフィン樹脂の占める面積が小さすぎると、摩擦係数を低減する効果が小さく、逆に大きすぎると、摩擦係数が低下し過ぎて、スリップし易くなる。なお、本発明では、ポリオレフィン樹脂の占める面積の割合も走査型電子顕微鏡で摩擦伝動面の表面を観察し、ゴムとポリオレフィン樹脂との相分離構造を確認し、ポリオレフィン樹脂で形成された相について、計測ソフト(Soft Imaging System社製「analySIS」)により、ポリオレフィン樹脂で形成された相の占有面積を計算する。
 ポリオレフィン樹脂の摩擦伝動面における相構造は、前記面積割合で付着していればよく、特に限定されないが、島相がポリオレフィン樹脂及び短繊維で形成された海島相分離構造、島相がゴム成分及び短繊維で形成された海島相分離構造のいずれであってもよい。これらの相分離構造は、主として、ポリオレフィン樹脂の割合を調整することにより制御できるが、適度な摩擦係数に調整できる点から、ポリオレフィン樹脂を島相とする海島相分離構造が好ましい。
 ポリオレフィン樹脂の割合は、耐側圧性などの力学特性と省燃費性とを両立できる点から、ゴム成分100質量部に対して0.1~50質量部程度の範囲から選択でき、下限値としては、例えば、1質量部以上であってもよく、好ましくは3質量部以上、さらに好ましくは5質量部以上、特に好ましくは10質量部以上程度である。ポリオレフィン樹脂の割合の上限値は、ゴム成分100質量部に対して、例えば45質量部以下であってもよく、好ましくは40質量部以下、さらに好ましくは35質量部以下、特に好ましくは30質量部以下程度である。
 また、ポリオレフィン樹脂の割合は、下記補強剤100質量部に対して1~100質量部程度の範囲から選択でき、例えば、5~90質量部であってもよく、好ましくは10~80質量部、さらに好ましくは15~50質量部(特に20~40質量部)程度である。
 ポリオレフィン樹脂の割合が少なすぎると、ポリオレフィン樹脂のゴム層表面への突出が少なくなり摩擦係数の低減効果が小さくなる。
 一方、ポリオレフィン樹脂の割合が多すぎると、摩擦係数が極端に低下し、ベルトがスリップしたり、圧縮ゴム層の屈曲疲労性が低下するため(圧縮ゴム層が硬くなり、曲げ応力が大きくなるため)、ベルト巻き付き径の小さい状態では屈曲による損失が大きくなり、省燃費性が低下する。また、ポリオレフィン樹脂の分散性が低下して分散不良が生じ、その箇所を起点にして圧縮ゴム層に亀裂が早期に発生する虞がある。
 (補強剤)
 補強剤は、少なくとも短繊維を含む。短繊維としては、ポリオレフィン繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維など)、ポリアルキレンアリレート繊維(ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのC2-4アルキレンC6-14アリレート系繊維など)、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維などが挙げられる。これらの短繊維は、単独で又は二種以上組み合わせて使用できる。これらの短繊維のうち、合成繊維や天然繊維、特に合成繊維(ポリアミド繊維、ポリアルキレンアリレート系繊維など)、中でも、屈曲性、耐側圧性を維持して、摩擦係数を低減できる点から、少なくともアラミド繊維を含む短繊維が好ましい。
 アラミド短繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維(例えば、帝人(株)製「トワロン(登録商標)」、東レ・デュポン(株)製「ケブラー(登録商標)」など)、ポリパラフェニレンテレフタルアミドと3,4’-オキシジフェニレンテレフタルアミドとの共重合体繊維(例えば、帝人(株)製「テクノーラ(登録商標)」)、メタ型であるポリメタフェニレンイソフタルアミド繊維(例えば、帝人(株)製「コーネックス(登録商標)」、デュポン(株)製「ノーメックス(登録商標)」など)などが挙げられる。これらのアラミド短繊維は、単独で又は二種以上組み合わせて使用できる。
 短繊維は、プーリからの押圧に対するベルトの圧縮変形を抑制するため、ベルト幅方向に配向して圧縮ゴム層中に埋設される。短繊維をベルト幅方向に配向させる方法としては、例えば、ロールによって圧延する方法が一般的である。また、圧縮ゴム層の表面より短繊維を突出させることにより、表面の摩擦係数を低下させてノイズ(発音)を抑制したり、プーリとの擦れによる摩耗を低減ができる。短繊維の平均長さは、例えば、1~20mmであってもよく、好ましくは2~15mm、より好ましくは3~10mmであり、1~5mm(例えば、2~4mm)程度であってもよい。短繊維の平均長さが短すぎると、列理方向の力学特性(例えばモジュラスなど)を十分に高めることができず、一方、長すぎると、ゴム組成物中の短繊維の分散不良が生じ、ゴムに亀裂が発生してベルトが早期に損傷する虞がある。平均繊維径は、例えば、5~50μmであってもよく、好ましくは7~40μm、さらに好ましくは10~35μm程度である。
 短繊維の割合は、ゴム成分100質量部に対して、例えば、10~40質量部であってもよく、好ましくは12~35質量部、さらに好ましくは13~30質量部(特に15~25質量部)程度である。短繊維の割合が少なすぎると、圧縮ゴム層の力学特性が不十分であり、多すぎると、圧縮ゴム層の屈曲疲労性が低下(圧縮ゴム層が硬くなり、曲げ応力が大きくなる)するため、ベルト巻き付き径の小さい状態では屈曲による損失が大きくなり、省燃費性が低下する。また、短繊維の割合が多すぎると、短繊維のゴム組成物中の分散性が低下して分散不良が生じ、その箇所を起点にして圧縮ゴム層に亀裂が早期に発生する虞がある。本発明では、ポリオレフィン樹脂の配合により、短繊維の割合を前記範囲(特にゴム成分100質量部に対して15~25質量部)に抑制できるため、ベルトの力学的特性と省燃費性とを両立できる。
 短繊維は、ゴム成分との接着性を改善するため、種々の接着処理、例えば、フェノール類とホルマリンとの初期縮合物(ノボラック又はレゾール型フェノール樹脂のプレポリマーなど)を含む処理液、ゴム成分(又はラテックス)を含む処理液、前記初期縮合物とゴム成分(ラテックス)とを含む処理液、シランカップリング剤、エポキシ化合物(エポキシ樹脂など)、イソシアネート化合物などの反応性化合物(接着性化合物)を含む処理液などで処理することができる。好ましい接着処理では、短繊維は、前記初期縮合物とゴム成分(ラテックス)とを含む処理液、特に、少なくともレゾルシン-ホルマリン-ラテックス(RFL)液で接着処理してもよい。接着処理は、一般的に、繊維をRFL液に浸漬後、加熱乾燥して表面に均一に接着層を形成することで行うことができる。RFL液のラテックスとしては、例えば、クロロプレンゴム、スチレン-ブタジエン-ビニルピリジン三元共重合体、水素化ニトリルゴム(H-NBR)、ニトリルゴム(NBR)などが例示できる。このような処理液は組み合わせて使用してもよく、例えば、短繊維を、慣用の接着性成分、例えば、エポキシ化合物(エポキシ樹脂など)、イソシアネート化合物などの反応性化合物(接着性化合物)で前処理(プレディップ)や、RFL処理後にゴム糊処理(オーバーコーティング)などの接着処理した後、さらにRFL液で処理してもよい。
 補強剤は、短繊維に加えて、慣用の補強剤、例えば、カーボンブラックなどの炭素材料、含水シリカなどの酸化ケイ素、クレー、炭酸カルシウム、タルク、マイカなどを含んでいてもよい。これらの補強剤のうち、カーボンブラックが汎用される。
 補強剤(短繊維を含む補強剤の総量)の割合は、ゴム成分100質量部に対して90質量部以下であってもよく、例えば、80質量部以下(例えば、10~80質量部)、好ましくは20~70質量部、さらに好ましくは30~60質量部(特に40~55質量部)程度である。補強剤の割合が少なすぎると、圧縮ゴム層の力学特性が低下する虞がある。一方で、補強剤の割合が多すぎると、ポリオレフィン樹脂の体積割合が減少するため、ポリオレフィン樹脂が圧縮ゴム層表面で所定の面積で露出させるのが困難となり、ベルトの摩擦係数を低減できない虞がある。
 (加硫剤などの添加剤)
 ゴム組成物には、必要により、加硫剤又は架橋剤(又は架橋剤系)、共架橋剤、加硫助剤、加硫促進剤、加硫遅延剤、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止材、オゾン劣化防止剤など)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。なお、金属酸化物は架橋剤として作用してもよい。
 加硫剤又は架橋剤としては、ゴム成分の種類に応じて慣用の成分が使用でき、例えば、前記金属酸化物(酸化マグネシウム、酸化亜鉛など)、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)、硫黄系加硫剤などが例示できる。硫黄系加硫剤としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、塩化硫黄(一塩化硫黄、二塩化硫黄など)などが挙げられる。これらの架橋剤又は加硫剤は単独で又は二種以上組み合わせて使用してもよい。ゴム成分がクロロプレンゴムである場合、加硫剤又は架橋剤として金属酸化物(酸化マグネシウム、酸化亜鉛など)を使用してもよい。なお、金属酸化物は他の加硫剤(硫黄系加硫剤など)と組合せて使用してもよく、金属酸化物及び/又は硫黄系加硫剤は単独で又は加硫促進剤と組み合わせて使用してもよい。
 加硫剤の使用量は、加硫剤及びゴム成分の種類に応じて、ゴム成分100質量部に対して、1~20質量部程度の範囲から選択できる。例えば、加硫剤としての有機過酸化物の使用量は、ゴム成分100質量部に対して、1~8質量部であってもよく、好ましくは1.5~5質量部、さらに好ましくは2~4.5質量部程度の範囲から選択でき、金属酸化物の使用量は、ゴム成分100質量部に対して、1~20質量部であってもよく、好ましくは3~17質量部、さらに好ましくは5~15質量部(例えば、7~13質量部)程度の範囲から選択できる。
 共架橋剤(架橋助剤、又は共加硫剤(co-agent))としては、公知の架橋助剤、例えば、多官能(イソ)シアヌレート(例えば、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート(TAC)など)、ポリジエン(例えば、1,2-ポリブタジエンなど)、不飽和カルボン酸の金属塩(例えば、(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなど)、オキシム類(例えば、キノンジオキシムなど)、グアニジン類(例えば、ジフェニルグアニジンなど)、多官能(メタ)アクリレート(例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど)、ビスマレイミド類(脂肪族ビスマレイミド、例えば、N,N’-1,2-エチレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)シクロヘキサンなど;アレーンビスマレイミド又は芳香族ビスマレイミド、例えば、N-N’-m-フェニレンビスマレイミド、4-メチル-1,3-フェニレビスマレイミド、4,4’-ジフェニルメタンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼンなど)などが挙げられる。これらの架橋助剤は、単独で又は二種以上組み合わせて使用できる。これらの架橋助剤のうち、ビスマレイミド類(N,N’-m-フェニレンジマレイミドなどのアレーンビスマレイミド又は芳香族ビスマレイミド)が好ましい。ビスマレイミド類の添加により架橋度を高め、粘着摩耗などを防止できる。
 共架橋剤(架橋助剤)の割合は、固形分換算で、ゴム成分100質量部に対して、例えば、0.01~10質量部程度の範囲から選択でき、例えば、0.1~5質量部(例えば、0.3~4質量部)であってもよく、好ましくは0.5~3質量部(例えば、0.5~2質量部)程度であってもよい。
 加硫促進剤としては、例えば、チウラム系促進剤(例えば、テトラメチルチウラム・モノスルフィド(TMTM)、テトラメチルチウラム・ジスルフィド(TMTD)、テトラエチルチウラム・ジスルフィド(TETD)、テトラブチルチウラム・ジスルフィド(TBTD)、ジペンタメチレンチウラムテトラスルフィド(DPTT)、N,N’-ジメチル-N,N’-ジフェニルチウラム・ジスルフィドなど)、チアゾ-ル系促進剤(例えば、2-メルカプトベンゾチアゾ-ル、2-メルカプトベンゾチアゾ-ルの亜鉛塩、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(4’-モルホリノジチオ)ベンゾチアゾールなど)、スルフェンアミド系促進剤(例えば、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N,N’-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミドなど)、ビスマレイミド系促進剤(例えば、N,N’-m-フェニレンビスマレイミド、N,N’-1,2-エチレンビスマレイミドなど)、グアニジン類(ジフェニルグアニジン、ジo-トリルグアニジンなど)、ウレア系又はチオウレア系促進剤(例えば、エチレンチオウレアなど)、ジチオカルバミン酸塩類、キサントゲン酸塩類などが挙げられる。これらの加硫促進剤は、単独で又は二種以上組み合わせて使用できる。これらの加硫促進剤のうち、TMTD、DPTT、CBSなどが汎用される。
 加硫促進剤の割合は、固形分換算で、ゴム成分100質量部に対して、例えば、0.1~15質量部であってもよく、好ましくは0.3~10質量部、さらに好ましくは0.5~5質量部程度であってもよい。
 軟化剤(ナフテン系オイルなどのオイル類)の使用量は、ゴム成分の総量100質量部に対して、例えば、1~30質量部であってもよく、好ましくは3~20質量部(例えば、5~10質量部)程度であってもよい。老化防止剤の使用量は、ゴム成分の総量100質量部に対して、例えば、0.5~15質量部であってもよく、好ましくは1~10質量部、さらに好ましくは2.5~7.5質量部(例えば、3~7質量部)程度であってもよい。
 [ベルトの構造]
 伝動用ベルトの構造は特に制限されず、プーリと接触可能な前記圧縮ゴム層を有するベルトであればよい。伝動用ベルトは、ベルトの長手方向に延びる心線、この心線の少なくとも一部と接する接着ゴム層、この接着ゴム層の一方の面に形成された圧縮ゴム層、及び前記接着ゴム層の他方の面に形成された伸張ゴム層を備えている。
 図1は伝動用ベルトの一例を示す概略断面図である。この例では、接着ゴム層1内に心線2が埋設されており、接着ゴム層1の一方の表面には圧縮ゴム層3が積層され、接着ゴム層1の他方の表面には伸張ゴム層4が積層されている。なお、心線2は一対の接着ゴムシートに挟持された形態で一体に埋設されている。さらに、圧縮ゴム層3には補強布5が積層され、コグ付き成形型によりコグ部6が形成されている。圧縮ゴム層3と補強布5との積層体は、補強布と圧縮ゴム層用シート(未加硫ゴムシート)との積層体を加硫することにより一体に形成されている。
 なお、前記の例では、コグドVベルトの例が図示されているが、前記構造に限らず、前記圧縮ゴム層を有する種々のベルト(例えば、ローエッジベルト、Vリブドベルトなど)に適用できる。
 [伸張ゴム層]
 伸張ゴム層は、圧縮ゴム層で例示されたゴム成分を含む加硫ゴム組成物で形成されていてもよく、圧縮ゴム層と同様に補強剤及びポリオレフィン樹脂が含まれていてもよい。さらに、伸張ゴム層は、圧縮ゴム層と同一の加硫ゴム組成物で形成された層であってもよい。
 [接着ゴム層]
 接着ゴム層を形成するための加硫ゴム組成物は、圧縮ゴム層の加硫ゴム組成物と同様に、ゴム成分(クロロプレンゴムなど)、加硫剤又は架橋剤(酸化マグネシウム、酸化亜鉛などの金属酸化物、硫黄などの硫黄系加硫剤など)、共架橋剤又は架橋助剤(N,N’-m-フェニレンジマレイミドなどのマレイミド系架橋剤など)、加硫促進剤(TMTD、DPTT、CBSなど)、増強剤(カーボンブラック、シリカなど)、軟化剤(ナフテン系オイルなどのオイル類)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂(窒素含有環状化合物とホルムアルデヒドとの縮合物、例えば、ヘキサメチロールメラミン、ヘキサアルコキシメチルメラミン(ヘキサメトキシメチルメラミン、ヘキサブトキシメチルメラミンなど)などのメラミン樹脂、メチロール尿素などの尿素樹脂、メチロールベンゾグアナミン樹脂などのベンゾグアナミン樹脂など)、これらの共縮合物(レゾルシン-メラミン-ホルムアルデヒド共縮合物など)など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。なお、接着性改善剤において、レゾルシン-ホルムアルデヒド共縮合物及びアミノ樹脂は、レゾルシン及び/又はメラミンなどの窒素含有環状化合物とホルムアルデヒドとの初期縮合物(プレポリマー)であってもよい。
 なお、このゴム組成物において、ゴム成分としては、前記圧縮ゴム層の加硫ゴム組成物のゴム成分と同系統(ジエン系ゴムなど)又は同種(クロロプレンゴムなど)のゴムを使用する場合が多い。また、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤、増強剤、軟化剤及び老化防止剤の使用量は、それぞれ、前記圧縮ゴム層のゴム組成物と同様の範囲から選択できる。また、接着ゴム層の加硫ゴム組成物において、加工剤又は加工助剤(ステアリン酸など)の使用量は、ゴム成分100質量部に対して、例えば、0.1~10質量部であってもよく、好ましくは0.5~5質量部、さらに好ましくは1~3質量部程度であってもよい。また、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなど)の使用量は、ゴム成分100質量部に対して、例えば、0.1~20質量部であってもよく、好ましくは1~10質量部、さらに好ましくは2~8質量部程度であってもよい。
 [心線]
 心線は、ベルトの長手方向に延びて配設され、通常、ベルトの長手方向に平行に所定のピッチで並列的に延びて配設されている。心線は、少なくともその一部が接着ゴム層と接していればよく、接着ゴム層が心線を埋設する形態、接着ゴム層と伸張ゴム層との間に心線を埋設する形態、接着ゴム層と圧縮ゴム層との間に心線を埋設する形態のいずれの形態であってもよい。これらのうち、耐久性を向上できる点から、接着ゴム層が心線を埋設する形態が好ましい。
 心線を構成する繊維としては、前記短繊維と同様の繊維が例示できる。前記繊維のうち、高モジュラスの点から、エチレンテレフタレート、エチレン-2,6-ナフタレートなどのC2-4アルキレンアリレートを主たる構成単位とするポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(ポリエチレンテレフタレート系繊維、エチレンナフタレート系繊維)、ポリアミド繊維が好ましい。繊維はマルチフィラメント糸であってもよい。マルチフィラメント糸の繊度は、例えば、2000~10000デニール(特に4000~8000デニール)程度であってもよい。マルチフィラメント糸は、例えば、100~5,000本であってもよく、好ましくは500~4,000本、さらに好ましくは1,000~3,000本程度のモノフィラメント糸を含んでいてもよい。
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば、0.5~3mmであってもよく、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。
 心線は、ゴム成分との接着性を改善するため、短繊維と同様の方法で接着処理(又は表面処理)されていてもよい。心線も短繊維と同様に、少なくともRFL液で接着処理するのが好ましい。
 [伝達効率]
 前記圧縮ゴム層を備えた伝動用ベルトを用いると、伝達効率を大きく向上できる。伝達効率とは、ベルトが駆動プーリからの回転トルクを従動プーリに伝える指標であり、この伝達効率が高いほどベルトの伝動ロスが小さく、省燃費性に優れることを意味する。図2に示す駆動プーリ(Dr.)12と従動プーリ(Dn.)13との二つのプーリにベルト11を掛架した二軸レイアウトにおいて、伝達効率は以下のようにして求めることができる。
 駆動プーリの回転数をρ、プーリ半径をrとしたとき、駆動プーリの回転トルクTは、ρ×Te×rで表すことができる。Teは張り側張力(ベルトが駆動プーリに向かう側の張力)から緩み側張力(ベルトが従動プーリに向かう側の張力)を差し引いた有効張力である。同様に、従動プーリの回転数をρ、プーリ半径をrとしたとき、従動プーリの回転トルクTは、ρ×Te×rで示される。そして、伝達効率T/Tは、従動プーリの回転トルクTを駆動プーリの回転トルクTで除して算出され、次式で表すことができる。
 T/T=(ρ×Te×r)/(ρ1×Te×r)=(ρ×r)/(ρ×r
 なお、実際は伝達効率が1以上の値になることはないが、1に近いほどベルトの伝動ロスが小さく、省燃費性に優れていることを表す。
 ベルトの製造方法は、特に制限されず、慣用の方法が採用できる。例えば、前記図1に示すベルトは、心線が埋設され、かつ前記形態の未加硫ゴム層の積層体を成形型で形成し、加硫してベルトスリーブを成形し、この加硫ベルトスリーブを所定サイズにカッティングすることにより形成できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、実施例に用いた原料を以下に示す。
 [原料]
 (アラミド短繊維)
 アラミド短繊維(平均繊維長3mm、帝人テクノプロダクツ(株)製「コーネックス短繊維」)を、RFL液(レゾルシン及びホルムアルデヒドと、ラテックスとしてのビニルピリジン-スチレン-ブタジエンゴムラテックスとを含有)で接着処理し、固形分の付着率6質量%の短繊維を用いた。RFL液として、レゾルシン2.6質量部、37%ホルマリン1.4質量部、ビニルピリジン-スチレン-ブタジエン共重合体ラテックス(日本ゼオン(株)製)17.2質量部、水78.8質量部を用いた。
 (ポリオレフィン)
 使用したポリオレフィンを以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (他の添加剤)
 エーテルエステル系オイル:(株)ADEKA製「RS700」
 カーボンブラック:東海カーボン(株)製「シースト3」
 老化防止剤:精工化学(株)製「ノンフレックスOD3」
 シリカ:東ソー・シリカ(株)製「Nipsil VN3」
 加硫促進剤:テトラメチルチウラム・ジスルフィド(TMTD)。
 (心線)
 1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で緒撚りしたトータルデニール6,000のコードを接着処理した繊維。
 実施例1~9及び比較例1~2
 (ゴム層の形成)
 表2(圧縮ゴム層、伸張ゴム層)及び表3(接着ゴム層)のゴム組成物は、それぞれ、バンバリーミキサーなど公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して圧延ゴムシート(圧縮ゴム層用シート、伸張ゴム層用シート、接着ゴム層用シート)を作製した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (ベルトの製造)
 補強布と圧縮ゴム層用シート(未加硫ゴム)との積層体を、補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、75℃でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にある)を作製した。次に、このコグパッドの両端をコグ山部の頂部から垂直に切断した。
 円筒状の金型に歯部と溝部とを交互に配した内母型を被せ、この歯部と溝部に係合させてコグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に第一の接着ゴム層用シート(未加硫ゴム)を積層した後、心線を螺旋状にスピニングし、この上に第二の接着ゴム層用シート(上記第一の接着ゴム層用シートと同じ)と伸張ゴム層用シート(未加硫ゴム)を順次巻き付けて成形体を作製した。その後、ジャケットを被せて金型を加硫缶に設置し、温度160℃、時間20分で加硫してベルトスリーブを得た。このスリーブをカッターでV状に切断して、図1に示す構造のベルト、すなわち、ベルト内周側にコグを有する変速ベルトであるローエッジコグドVベルト(サイズ:上幅22.0mm、厚み11.0mm、外周長800mm)を作製した。
 (加硫ゴム物性の測定)
 (1)硬度
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫し、加硫ゴムシート(長さ100mm、幅100mm、厚み2mm)を作製した。硬度はJIS K6253(2012)に準じ、加硫ゴムシートを3枚重ね合わせた積層物を試料とし、デュロメータA形硬さ試験機を用いて硬度を測定した。
 (2)摩耗量
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫して作製した加硫ゴムシート(50mm×50mm×8mm厚)より、内径16.2±0.05mmの中空ドリルで切り抜いて、直径16.2±0.2mm、厚さ6~8mmの円筒状の試料を作製した。JIS K6264(2005)に準じ、研磨布を巻きつけた回転円筒ドラム装置(DIN摩耗試験機)を用いて加硫ゴムの摩減量を測定した。
 (3)圧縮応力
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫し、加硫ゴム成形体(長さ25mm、幅25mm、厚み12.5mm)を作製した。短繊維は圧縮面に対して垂直方向(厚み方向)に配向させた。この加硫ゴム成形体を2枚の金属製の圧縮板で上下に挟み込み(加硫成形体が圧縮板で押圧されていない挟み込み状態で、上側の圧縮板の位置を初期位置とする)、上側の圧縮板を10mm/分の速度で加硫ゴム成形体に押圧(押圧面25mm×25mm)して加硫ゴム成形体を20%歪ませ、この状態で1秒間保持した後、圧縮板を上方に初期位置まで戻した(予備圧縮)。この予備圧縮を3回繰り返した後、4回目の圧縮試験(条件は予備圧縮と同じ)で測定される応力-歪み曲線より、加硫ゴム成形体の厚み方向の歪が10%となったときの応力を圧縮応力として測定した。なお、測定データのバラツキを小さくするため予備圧縮を3回行なった。
 (4)曲げ応力
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫し、加硫ゴム成形体(長さ60mm、幅25mm、厚み6.5mm)を作製した。短繊維は加硫ゴム成形体の幅と平行方向に配向させた。図3に示すように、この加硫ゴム成形体21を、20mmの間隔を空けて回転可能な一対のロール(6mmφ)22a,22b上に置いて支持し、加硫ゴム成形体の上面中央部において幅方向(短繊維の配向方向)に金属製の押さえ部材23を載せた。押さえ部材23の先端部は、10mmφの半円状の形状を有しており、その先端部で加硫ゴム成形体21をスムーズに押圧可能である。また、押圧時には加硫ゴム成形体21の圧縮変形に伴って、加硫ゴム成形体21の下面とロール22a,22bとの間に摩擦力が作用するが、ロール22a,22bを回転可能とすることにより、摩擦による影響を小さくしている。押さえ部材23の先端部が加硫ゴム成形体21の上面に接触し、かつ押圧していない状態を「0」とし、この状態から押さえ部材23を下方に100mm/分の速度で加硫ゴム成形体21の上面を押圧し、加硫ゴム成形体21の厚み方向の歪が10%となったときの応力を曲げ応力として測定した。
 (ベルトの圧縮ゴム層におけるポリオレフィンの形状及び面積)
 ベルトの圧縮ゴム層におけるポリオレフィンについて、ベルトを幅方向に沿って切断し、走査型電子顕微鏡(SEM)で観察した画像に基づいて、計測ソフト(Soft Imaging System社製「analySIS」)により、ポリオレフィン(ポリオレフィン粒子)の長軸の平均径(長径)及び短軸の平均径(短径)を測定した。さらに、ベルト1周内の摩擦伝動面(圧縮ゴム層の表面)について、任意の3箇所(面積1.2mm(1.0mm×1.2mm))で、走査型電子顕微鏡の画像に基づいて、前記計測ソフトにより、摩擦伝動面に対するポリオレフィン粒子(ポリオレフィン相)の占有面積を算出した。
 (ベルト物性の測定)
 (1)摩擦係数測定
 ベルトの摩擦係数は、図4に示すように、切断したベルト31の一方の端部をロードセル32に固定し、他方の端部に3kgfの荷重33を載せ、プーリ34へのベルトの巻き付け角度を45°にしてベルト31をプーリ34に巻き付けた。そして、ロードセル32側のベルト31を30mm/分の速度で15秒程度引張り、摩擦伝動面の平均摩擦係数を測定した。なお、測定に際して、プーリ34は回転しないように固定した。
 (2)高負荷走行試験
 この走行試験では、ベルトが大きく曲げられた状態(小プーリに巻き付いた状態)で走行させたときのベルトの伝達効率を評価した。
 高負荷走行試験は、図5に示すように、直径50mmの駆動(Dr.)プーリ42と、直径125mmの従動(Dn.)プーリ43とからなる2軸走行試験機を用いて行なった。各プーリ42,43にローエッジコグドVベルト41を掛架し、駆動プーリ42の回転数3000rpmで、従動プーリ43に3N・mの負荷を付与し、室温雰囲気下にてベルト41を走行させた。そして、走行させて直ちに従動プーリ43の回転数を検出器より読取り、前記計算式より伝達効率を求めた。表4では、比較例1の伝達効率を「1」とし、各実施例及び比較例の伝達効率を相対値で示しており、この値が1より大きければベルト41の伝達効率、すなわち省燃費性が高いと判断した。
 (3)高速走行試験
 この走行試験では、ベルトがプーリ上をプーリ半径方向外側に摺動させた状態で走行させたときのベルトの伝達効率を評価した。特に、駆動プーリの回転数が大きくなると、ベルトに遠心力が強く作用する。また、駆動プーリの緩み側(図6参照)の位置ではベルト張力が低く作用しており、上記遠心力との複合作用により、この位置でベルトはプーリ半径方向外側に飛び出そうとする。この飛び出しがスムーズに行なわれない、すなわちベルトの摩擦伝動面とプーリとの間に摩擦力が強く作用すると、その摩擦力によりベルトの伝動ロスが生じ、伝達効率が低下することになる。
 高速走行試験は、図6に示すように、直径95mmの駆動(Dr.)プーリ52と、直径85mmの従動(Dn.)プーリ53とからなる2軸走行試験機を用いて行なった。各プーリ52,53にローエッジコグドVベルト51を掛架し、駆動プーリ52の回転数5000rpm、従動プーリ53に3N・mの負荷を付与し、室温雰囲気下にてベルト51を走行させた。そして、走行させて直ちに従動プーリ52の回転数を検出器より読取り、前記計算式より伝達効率を求めた。表4では、比較例1の伝達効率を「1」とし、各実施例及び比較例の伝達効率を相対値で示しており、この値が1より大きければ伝達効率、すなわち省燃費性が高いと判断した。
 (4)耐久走行試験
 耐久走行試験は、図7に示すように、直径50mmの駆動(Dr.)プーリ62と、直径125mmの従動(Dn.)プーリ63とからなる2軸走行試験機を用いて行なった。各プーリ62,63にローエッジコグドVベルト61を掛架し、駆動プーリ62の回転数5000rpm、従動プーリ63に10N・mの負荷を付与し、雰囲気温度80℃にてベルト61を最大60時間走行させた。ベルト61が60時間走行すれば耐久性は問題ないと判断した。また、走行後のベルト側面(プーリと接する面)をマイクロスコープで観察して心線の剥離の有無を調べ、剥離部位については剥離の深さをマイクロスコープで測定した。また、走行後の圧縮ゴム側面(プーリと接する面)を目視観察して亀裂の有無を調べた。さらに、高負荷耐久性走行後のベルトについて、摩擦係数及び伝動効率を測定した。
 加硫ゴム物性及びベルト物性を表4に示す。
 
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例と比較例とを比較すると、ポリオレフィンを添加することにより、圧縮応力は向上(増加)し、心線剥離及び亀裂が改善されていることが分かる。これは、ポリオレフィンが補強材としての役割を果たし、かつ短繊維の体積分率が低下したことにより耐久性が向上したと推定できる。また、ポリオレフィンを添加することにより耐久前と耐久後の摩擦係数の変化も少なく、伝達効率も向上していることが分かる。これは、短繊維が摩滅しても、ベルト表面にポリオレフィンが突出していることにより摩擦係数の低減が図られるためであると推定できる。さらに、ポリエチレンとポリプロピレンとを比較すると、ポリエチレンの方が若干優れた耐久性を示した。
 さらに、実施例について、圧縮ゴム層中でのポリオレフィンの形状をSEMで観察した結果、いずれもジャガイモ形状に類似の長細形状であり、長軸方向がベルトの幅方向に沿って配向した状態で分散していた。図8に実施例3で得られたベルト断面(ベルト幅方向に切断された断面)のSEM写真(画像)を示す。図中で分散している粒子(分散相)のうち、大粒子がポリエチレンであり、小粒子がアラミド短繊維である。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2013年3月29日出願の日本特許出願2013-073402及び2014年3月6日出願の日本特許出願2014-043510に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の伝動用ベルトは、伝動ロスが求められる種々のベルトとして利用でき、摩擦伝動用ベルトであるのが好ましい。摩擦伝動用ベルトとしては、例えば、断面がV字形状のローエッジベルト、ローエッジベルトの内周側又は内周側及び外周側の両方にコグを設けたローエッジコグドVベルト、Vリブドベルトなどが例示できる。特に、ベルト走行中に変速比が無段階で変わる変速機に使用されるベルト(変速ベルト)、例えば、自動2輪車やATV(四輪バギー)、スノーモービルなどのローエッジコグドVベルト、ローエッジダブルコグドVベルトに適用するのが好ましい。
 1…接着ゴム層
 2…心線
 3…圧縮ゴム層
 4…伸張ゴム層

Claims (12)

  1.  ベルトの長手方向に延びる心線、
     この心線の少なくとも一部と接する接着ゴム層、
     この接着ゴム層の一方の面に形成された圧縮ゴム層、及び
     前記接着ゴム層の他方の面に形成された伸張ゴム層を備えた伝動用ベルトであって、
     前記圧縮ゴム層が、ゴム成分、ポリオレフィン樹脂及び補強剤を含む加硫ゴム組成物で形成され、前記ゴム成分がクロロプレンゴムを含み、かつ前記補強剤が短繊維を含む、伝動用ベルト。
  2.  補強剤の割合が、ゴム成分100質量部に対して80質量部以下である請求項1記載の伝動用ベルト。
  3.  ポリオレフィン樹脂の割合が、ゴム成分100質量部に対して5~40質量部である請求項1又は2記載の伝動用ベルト。
  4.  ポリオレフィン樹脂の割合が、補強剤100質量部に対して15~50質量部である請求項1~3のいずれか一項に記載の伝動用ベルト。
  5.  短繊維の割合が、ゴム成分100質量部に対して15~25質量部である請求項1~4のいずれか一項に記載の伝動用ベルト。
  6.  ポリオレフィン樹脂の平均分子量は、ASTM D4020に準拠して測定した方法において、20万~600万である請求項1~5のいずれか一項に記載の伝動用ベルト。
  7.  ポリオレフィン樹脂の原料の平均粒径が25~200μmである請求項1~6のいずれか一項に記載の伝動用ベルト。
  8.  圧縮ゴム層中でのポリオレフィン樹脂がアスペクト比1.6~10の長細形状であり、長軸方向がベルト幅方向に対して略平行に配向し、かつ短軸方向がベルト長手方向に対して略平行に配向している請求項1~7のいずれか一項に記載の伝動用ベルト。
  9.  補強剤が、アラミド短繊維及びカーボンブラックを含む請求項1~8のいずれか一項に記載の伝動用ベルト。
  10.  ポリオレフィン樹脂が圧縮ゴム層の表面に露出している請求項1~9のいずれか一項に記載の伝動用ベルト。
  11.  圧縮ゴム層の表面におけるポリオレフィン樹脂の占有面積が0.2~30%である請求項1~10のいずれか一項に記載の伝動用ベルト。
  12.  無段変速装置に用いられる請求項1~11のいずれか一項に記載の伝動用ベルト。
PCT/JP2014/059049 2013-03-29 2014-03-27 伝動用ベルト WO2014157592A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14773244.0A EP2980445B1 (en) 2013-03-29 2014-03-27 Transmission belt
BR112015024499-8A BR112015024499B1 (pt) 2013-03-29 2014-03-27 Cinta de transmissão de potência
US14/781,078 US10001193B2 (en) 2013-03-29 2014-03-27 Transmission belt
CN201480019247.6A CN105190089B (zh) 2013-03-29 2014-03-27 传动带

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013073402 2013-03-29
JP2013-073402 2013-03-29
JP2014-043510 2014-03-06
JP2014043510A JP6055430B2 (ja) 2013-03-29 2014-03-06 伝動用ベルト

Publications (1)

Publication Number Publication Date
WO2014157592A1 true WO2014157592A1 (ja) 2014-10-02

Family

ID=51624548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059049 WO2014157592A1 (ja) 2013-03-29 2014-03-27 伝動用ベルト

Country Status (7)

Country Link
US (1) US10001193B2 (ja)
EP (1) EP2980445B1 (ja)
JP (1) JP6055430B2 (ja)
CN (1) CN105190089B (ja)
BR (1) BR112015024499B1 (ja)
MY (1) MY175175A (ja)
WO (1) WO2014157592A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997712B2 (ja) * 2013-01-30 2016-09-28 三ツ星ベルト株式会社 摩擦伝動ベルト
EP4151261A1 (en) 2015-03-31 2023-03-22 Fisher & Paykel Healthcare Limited A user interface and system for supplying gases to an airway
WO2017110784A1 (ja) * 2015-12-21 2017-06-29 三ツ星ベルト株式会社 摩擦伝動ベルト
JP6748002B2 (ja) * 2016-02-25 2020-08-26 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
KR101992858B1 (ko) * 2016-03-28 2019-06-25 반도 카가쿠 가부시키가이샤 마찰 전동 벨트
JP6306266B2 (ja) 2016-03-28 2018-04-04 バンドー化学株式会社 摩擦伝動ベルト
JP6616793B2 (ja) * 2016-04-15 2019-12-04 三ツ星ベルト株式会社 摩擦伝動ベルト
WO2017200047A1 (ja) 2016-05-20 2017-11-23 バンドー化学株式会社 コグ付vベルト及びそれを用いた伝動システム
JP6616808B2 (ja) 2016-07-22 2019-12-04 三ツ星ベルト株式会社 伝動用vベルト
EP3489544B1 (en) * 2016-07-22 2022-04-06 Mitsuboshi Belting Ltd. Transmission v-belt
CA3033581A1 (en) 2016-08-11 2018-02-15 Fisher & Paykel Healthcare Limited A collapsible conduit, patient interface and headgear connector
JP6654653B2 (ja) 2017-01-26 2020-02-26 三ツ星ベルト株式会社 伝動用vベルトおよびその製造方法
JP6616852B2 (ja) * 2017-02-27 2019-12-04 三ツ星ベルト株式会社 伝動ベルト
CA3053901C (en) * 2017-02-27 2022-05-24 Mitsuboshi Belting Ltd. Transmission belt
JP6383135B1 (ja) * 2017-07-19 2018-08-29 バンドー化学株式会社 伝動ベルト及びその製造方法
CN110799770B (zh) * 2017-07-19 2020-09-01 阪东化学株式会社 传动带及其制造方法
WO2019131407A1 (ja) * 2017-12-26 2019-07-04 三ツ星ベルト株式会社 両面歯付ベルト
WO2020158629A1 (ja) * 2019-01-28 2020-08-06 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
JP6778315B1 (ja) * 2019-01-28 2020-10-28 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法
DE102019207434A1 (de) * 2019-05-21 2020-11-26 Contitech Antriebssysteme Gmbh Zahnriemen
JP6849850B1 (ja) * 2019-09-25 2021-03-31 三ツ星ベルト株式会社 ゴム組成物および摩擦伝動ベルト

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563656B2 (ja) 1985-06-18 1993-09-13 Bando Chemical Ind
JPH10238596A (ja) 1997-02-26 1998-09-08 Bando Chem Ind Ltd 伝動用vベルト
JP2004324794A (ja) 2003-04-25 2004-11-18 Bando Chem Ind Ltd 摩擦伝動ベルト
JP2010151209A (ja) * 2008-12-25 2010-07-08 Mitsuboshi Belting Ltd 伝動ベルト
JP2012241831A (ja) * 2011-05-20 2012-12-10 Mitsuboshi Belting Ltd 伝動用ベルト

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064947A1 (de) * 1999-12-15 2001-07-19 Mitsuboshi Belting Ltd Verfahren zum Verbinden einer Ethylen-alpha-Olefin-Kautschukmischung mit einer Faser sowie ein Antriebsriemen, der mittels dieses Verfahrens hergestellt wird
JP2003014052A (ja) * 2000-06-22 2003-01-15 Mitsuboshi Belting Ltd 動力伝動用ベルト
JP2003139198A (ja) * 2001-01-26 2003-05-14 Mitsuboshi Belting Ltd 短繊維の接着処理方法及びゴム組成物並びに動力伝動用ベルト
RU2385944C2 (ru) 2004-02-23 2010-04-10 Новартис Аг Биомаркер
JP2006194322A (ja) * 2005-01-12 2006-07-27 Bando Chem Ind Ltd 摩擦伝動ベルト
JP5236980B2 (ja) * 2007-04-26 2013-07-17 三ツ星ベルト株式会社 ベルト及びベルトの製造方法
TWI342291B (en) * 2007-12-13 2011-05-21 Ind Tech Res Inst A conveyor belt and method for producing the same
JPWO2009150803A1 (ja) * 2008-06-12 2011-11-10 バンドー化学株式会社 摩擦伝動ベルト及びそれを用いたベルト伝動装置
EP2631507B1 (en) * 2010-10-21 2018-08-29 Bando Chemical Industries, Ltd. Friction transmission belt
JP5727442B2 (ja) * 2012-04-25 2015-06-03 三ツ星ベルト株式会社 伝動用ベルト
JP5997712B2 (ja) * 2013-01-30 2016-09-28 三ツ星ベルト株式会社 摩擦伝動ベルト
JP5945562B2 (ja) * 2013-03-28 2016-07-05 三ツ星ベルト株式会社 伝動用ベルト及びベルト変速装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563656B2 (ja) 1985-06-18 1993-09-13 Bando Chemical Ind
JPH10238596A (ja) 1997-02-26 1998-09-08 Bando Chem Ind Ltd 伝動用vベルト
JP2004324794A (ja) 2003-04-25 2004-11-18 Bando Chem Ind Ltd 摩擦伝動ベルト
JP2010151209A (ja) * 2008-12-25 2010-07-08 Mitsuboshi Belting Ltd 伝動ベルト
JP2012241831A (ja) * 2011-05-20 2012-12-10 Mitsuboshi Belting Ltd 伝動用ベルト

Also Published As

Publication number Publication date
EP2980445A1 (en) 2016-02-03
US10001193B2 (en) 2018-06-19
US20160298725A1 (en) 2016-10-13
JP2014209026A (ja) 2014-11-06
MY175175A (en) 2020-06-12
EP2980445A4 (en) 2016-12-14
CN105190089A (zh) 2015-12-23
BR112015024499B1 (pt) 2021-06-01
CN105190089B (zh) 2017-08-25
BR112015024499A2 (pt) 2017-07-18
JP6055430B2 (ja) 2016-12-27
EP2980445B1 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6055430B2 (ja) 伝動用ベルト
JP5813996B2 (ja) 伝動用ベルト
CN109477548B (zh) 传动用v带
US20190390047A1 (en) Transmission Belt
JP6809985B2 (ja) 摩擦伝動ベルト
WO2017110784A1 (ja) 摩擦伝動ベルト
CA3053901A1 (en) Transmission belt
JP6483745B2 (ja) 摩擦伝動ベルト
JP6650388B2 (ja) 摩擦伝動ベルト
EP3489544B1 (en) Transmission v-belt
JP6747924B2 (ja) 摩擦伝動ベルト及びその製造方法
JP6616793B2 (ja) 摩擦伝動ベルト
JP6567210B1 (ja) ラップドvベルト
TWI842352B (zh) 傳動帶用橡膠組合物及傳動帶
WO2024004769A1 (ja) 伝動ベルト用ゴム組成物、伝動ベルトおよび伝動ベルトの製造方法
WO2017179688A1 (ja) 摩擦伝動ベルト
JP7189381B2 (ja) 伝動用vベルト
JP7500829B2 (ja) 伝動ベルト用ゴム組成物、伝動ベルトおよび伝動ベルトの製造方法
EP4296537A1 (en) Transmission v-belt
JP2024022495A (ja) 伝動ベルト用ゴム組成物および伝動ベルト
WO2017179690A1 (ja) 摩擦伝動ベルト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019247.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014773244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201506091

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781078

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024499

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024499

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150924