WO2014136609A1 - 微粒子-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池 - Google Patents

微粒子-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014136609A1
WO2014136609A1 PCT/JP2014/054444 JP2014054444W WO2014136609A1 WO 2014136609 A1 WO2014136609 A1 WO 2014136609A1 JP 2014054444 W JP2014054444 W JP 2014054444W WO 2014136609 A1 WO2014136609 A1 WO 2014136609A1
Authority
WO
WIPO (PCT)
Prior art keywords
exfoliated graphite
ion secondary
graphite
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2014/054444
Other languages
English (en)
French (fr)
Inventor
省二 野里
中壽賀 章
藤原 昭彦
博司 吉谷
靖 上松
正太郎 小原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US14/433,842 priority Critical patent/US9711786B2/en
Priority to KR1020157013578A priority patent/KR102151663B1/ko
Priority to JP2014511643A priority patent/JP5636135B1/ja
Priority to EP14760126.4A priority patent/EP2966714B1/en
Priority to CN201480011542.7A priority patent/CN105190965B/zh
Priority to ES14760126T priority patent/ES2701526T3/es
Publication of WO2014136609A1 publication Critical patent/WO2014136609A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fine particle-exfoliated graphite composite, a negative electrode material used for a lithium ion secondary battery, and a method for producing the same, and more specifically, a fine particle-exfoliated graphite composite made of a carbon-based material in which fine particles are included.
  • Body a negative electrode material for a lithium ion secondary battery, and a production method thereof.
  • this invention relates to the lithium ion secondary battery using this negative electrode material for lithium ion secondary batteries.
  • lithium ion secondary batteries have been widely used in order to reduce the size and increase the capacity.
  • lithium is intercalated and deintercalated at the positive electrode and the negative electrode. Therefore, a material capable of intercalating and deintercalating Li is used as a material constituting the positive electrode and the negative electrode, that is, an active material.
  • Patent Document 1 is a spherical assembly formed by combining plate-like Si-based materials, and pores are formed inside the assembly.
  • a negative electrode material is disclosed.
  • An object of the present invention is a negative electrode material for a lithium ion secondary battery, which is easy to manufacture and hardly deteriorates in charge / discharge cycle characteristics, and a fine particle-exfoliated graphite composite used for the negative electrode material for the lithium ion secondary battery And providing a manufacturing method thereof.
  • Another object of the present invention is to provide a lithium ion secondary battery using the above negative electrode material for lithium ion secondary batteries.
  • the method for producing a fine particle-exfoliated graphite composite according to the present invention comprises thermally decomposing a resin in a composition in which the resin is fixed to graphite or primary exfoliated graphite, while leaving a part of the resin, Alternatively, a step of preparing a resin-retained partially exfoliated graphite having a structure in which graphene exfoliates partially obtained by exfoliating primary exfoliated graphite, and the partially exfoliated graphite described above, Heating a raw material composition containing fine particles, and encapsulating the fine particles in the partially exfoliated exfoliated graphite, thereby obtaining a fine particle-exfoliated graphite composite.
  • the thermal decomposition temperature of the fine particles is higher than the thermal decomposition temperature of the resin.
  • the raw material composition is heated at a temperature higher than the thermal decomposition temperature of the resin and lower than the thermal decomposition temperature of the fine particles.
  • the fine particle is in a powder form.
  • the fine particle is an inorganic compound or a metal. More preferably, the inorganic compound or metal is a material that can occlude and release lithium. More preferably, the inorganic compound or metal is at least one selected from the group consisting of Co, Mn, Ni, P, Sn, Ge, Si, Ti, Zr, V, Al, and these compounds.
  • a method for producing a negative electrode material for a lithium ion secondary battery according to the present invention includes a step of obtaining a fine particle-exfoliated graphite composite according to the present invention, the fine particle-exfoliated graphite composite, a binder resin, and a solvent. A step of preparing a composition, and a step of shaping the composition.
  • the fine particles are Si particles, and the finely divided partially exfoliated graphite in the step of obtaining the fine particle-exfoliated graphite composite. Inclusion is performed by doping Si particles into partially exfoliated graphite.
  • the composition containing the partially exfoliated exfoliated graphite and the Si particles is further conductively doped.
  • Mix auxiliaries preferably, in the step of doping the Si particles, the composition containing the partially exfoliated exfoliated graphite and the Si particles is further conductively doped.
  • At least one selected from the group consisting of ketjen black and acetylene black is used as the conductive doping aid.
  • the binder resin is at least one selected from the group consisting of styrene butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyimide resin, acrylic resin, and butyral resin. Is used.
  • fine particles are included in partially exfoliated exfoliated graphite having a structure in which graphene is partially exfoliated.
  • the fine particles are Si particles, and the partially exfoliated exfoliated graphite is doped.
  • the negative electrode material for a lithium ion secondary battery according to the present invention includes a fine particle-exfoliated graphite composite constituted according to the present invention and a binder resin.
  • the negative electrode material for a lithium ion secondary battery further includes a conductive doping aid.
  • the binder resin is at least one selected from the group consisting of styrene butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyimide resin, acrylic resin, and butyral resin. It is a seed.
  • the lithium ion secondary battery according to the present invention includes a negative electrode material for a lithium ion secondary battery configured according to the present invention as a negative electrode.
  • the lithium ion secondary battery according to the present invention preferably includes a negative electrode made of the negative electrode material for a lithium ion secondary battery, a positive electrode, and a separator disposed between the negative electrode and the positive electrode. More preferably, the said negative electrode does not have metal foil, but consists of the said negative electrode material for lithium ion secondary batteries.
  • the negative electrode may be formed as a coating film in which the negative electrode material for a lithium ion secondary battery is provided on one side of the separator.
  • a negative electrode material for a lithium ion secondary battery According to the method for manufacturing a negative electrode material for a lithium ion secondary battery according to the present invention, it is possible to provide a negative electrode material for a lithium ion secondary battery that is easy to manufacture and hardly deteriorates in charge / discharge cycle characteristics. .
  • the negative electrode material for a lithium ion secondary battery according to the present invention is easy to manufacture, and the charge / discharge cycle characteristics are hardly deteriorated.
  • FIG. 1 is a diagram showing a TG / DTA analysis result of a resin-retained partially exfoliated exfoliated graphite doped with Si prepared in Example 1.
  • FIG. 2 shows expanded graphite as a raw material graphite used in Example 1, partially exfoliated graphite, partially exfoliated graphite doped with Si particles, and a sheet-like lithium ion secondary battery of Example 1. It is a figure which shows the XRD spectrum of the negative electrode material.
  • 3 is a view showing a scanning electron micrograph at a magnification of 10,000 times that of the resin-retained partially exfoliated exfoliated graphite used in Example 1.
  • FIG. 4 is a view showing a scanning electron micrograph at a magnification of 1000 times of the partially exfoliated exfoliated graphite doped with Si particles produced in Example 1.
  • FIG. 5 is a diagram showing a TG / DTA measurement result of a sheet as a negative electrode material for a lithium ion secondary battery obtained in Example 1.
  • 6 is a scanning electron micrograph of the negative electrode material for a lithium ion secondary battery obtained in Example 1 at a magnification of 10,000 times.
  • 7 is an exploded perspective view showing a schematic configuration of a coin-type battery (Li secondary battery experimental battery cell) assembled as an evaluation battery in Example 1.
  • FIG. FIG. 8 is a graph showing the charge / discharge characteristics of the lithium ion secondary battery obtained in Example 1.
  • FIG. 9 is a graph showing the lifetime characteristic of the Coulomb efficiency of the lithium ion secondary battery obtained in Example 1.
  • FIG. 10 is a diagram showing a TG / DTA measurement result of a sheet as a negative electrode material for a lithium ion secondary battery obtained in Example 2.
  • FIG. 11 is a view showing a scanning electron micrograph of the sheet-like negative electrode material for lithium ion secondary batteries obtained in Example 2 at a magnification of 10,000 times.
  • FIG. 12 is a diagram showing the charge / discharge characteristics of the lithium ion secondary battery obtained in Example 2.
  • FIG. 13 is a graph showing the Coulomb efficiency cycle characteristics of the lithium ion secondary battery obtained in Example 2.
  • FIG. 14 is a view showing a scanning electron micrograph of the sheet-like negative electrode material for a lithium ion secondary battery obtained in Example 3 at a magnification of 20000 times.
  • FIG. 15 is a diagram showing a TG / DTA measurement result of a sheet as a negative electrode material for a lithium ion secondary battery obtained in Example 3.
  • FIG. 16 is a diagram showing the charge / discharge characteristics of the lithium ion secondary battery obtained in Example 3.
  • FIG. 17 is a diagram showing the cycle characteristics of the Coulomb efficiency of the lithium ion secondary battery obtained in Example 3.
  • 18 is a view showing a scanning electron micrograph of the sheet-like negative electrode material for a lithium ion secondary battery obtained in Example 4 at a magnification of 10,000 times.
  • FIG. 19 is a diagram showing a TG / DTA measurement result of the negative electrode material for a lithium ion secondary battery obtained in Example 4.
  • FIG. 20 is a diagram showing the charge / discharge characteristics of the lithium ion secondary battery obtained in Example 4.
  • FIG. 21 is a diagram showing the cycle characteristics of the Coulomb efficiency of the lithium ion secondary battery obtained in Example 4.
  • FIG. 22 is a view showing a scanning electron micrograph at a magnification of 20000 times of the cross section along the thickness direction of the edge portion of the partially exfoliated exfoliated graphite doped with Si particles produced in Example 1.
  • FIG. 24 is a diagram showing XRD spectra of expanded graphite as raw material graphite used in Example 6, partially exfoliated exfoliated graphite before and after heat treatment, partially exfoliated graphite doped with Si particles and Si particles. is there.
  • Figure 25 shows expanded graphite as a raw material graphite used in Example 7, part exfoliated flake graphite before and after the heat treatment, TiO 2 particles, the XRD spectra of partially exfoliated flake graphite to TiO 2 particles are subsumed FIG.
  • the method for producing a fine particle-exfoliated graphite composite according to the present invention includes (1) a step of obtaining a resin-retained partially exfoliated exfoliated graphite in which the distance between graphenes is partially expanded, and (2) Heating a raw material composition containing the partially exfoliated exfoliated graphite and fine particles, and encapsulating the fine particles in the partially exfoliated exfoliated graphite, thereby obtaining a fine particle-exfoliated graphite composite.
  • Resin-retained partially exfoliated graphite Resin-retained partially exfoliated graphite is bonded to the portion where the interlayer distance between graphenes is widened and the resin where the graphene remains.
  • a composite material Such a resin-retained partially exfoliated graphite comprises a raw material composition comprising graphite or primary exfoliated graphite and a resin, wherein the resin is fixed to the graphite or primary exfoliated graphite; By thermally decomposing the resin contained in the raw material composition, it can be obtained by a production method comprising a step of exfoliating graphite or primary exfoliated graphite while leaving a part of the resin.
  • Graphite is a laminate of a plurality of graphene layers, and examples thereof include natural graphite, artificial graphite, and expanded graphite.
  • expanded graphite As graphite used as a raw material, expanded graphite is preferable. Expanded graphite can be easily peeled off because the interlayer of the graphene layer is larger than that of normal graphite. Therefore, by using expanded graphite as the raw material graphite, it is possible to easily produce a resin-retained partially exfoliated exfoliated graphite.
  • the number of graphene layers is from about 100,000 to about 1 million, and the specific surface area by BET has a value of 20 m 2 / g or less.
  • the resin-retained partially exfoliated graphite of the present invention refers to one having a graphene stack of 3000 layers or less.
  • the BET specific surface area of the resin-retained partially exfoliated graphite is preferably 40 m 2 / g or more, and more preferably 100 m 2 / g or more.
  • the upper limit value of the BET specific surface area of the resin-retained partially exfoliated graphite is usually 2500 m 2 / g or less.
  • primary exfoliated graphite may be used instead of graphite.
  • Primary exfoliated graphite includes exfoliated graphite obtained by exfoliating graphite, resin-exfoliated exfoliated graphite, and exfoliated graphite obtained by exfoliating graphite by various methods described below. Shall be included. Since primary exfoliated graphite is obtained by exfoliating graphite, the specific surface area may be larger than that of graphite.
  • the resin contained in the resin-retained partially exfoliated exfoliated graphite is not particularly limited, but is preferably a polymer of a radical polymerizable monomer. In this case, it may be a homopolymer of one kind of radically polymerizable monomer or a copolymer of plural kinds of radically polymerizable monomers.
  • the radical polymerizable monomer is not particularly limited as long as it is a monomer having a radical polymerizable functional group.
  • radical polymerizable monomer examples include styrene, methyl ⁇ -ethyl acrylate, methyl ⁇ -benzyl acrylate, methyl ⁇ - [2,2-bis (carbomethoxy) ethyl] acrylate, dibutyl itaconate, and itaconic acid.
  • ⁇ -substituted acrylic acid ester consisting of dimethyl, dicyclohexyl itaconate, ⁇ -methylene- ⁇ -valerolactone, ⁇ -methylstyrene, ⁇ -acetoxystyrene, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, hydroxyethyl methacrylate, Vinyl monomers having a glycidyl group or hydroxyl group such as hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl methacrylate; allylamine, diethylaminoethyl (meth) acrylate, dimethyl Vinyl monomers having an amino group such as tilaminoethyl (meth) acrylate; methacrylic acid, maleic anhydride, maleic acid, itaconic acid, acrylic acid, crotonic acid, 2-acryloyloxyethyl succinate, 2-meth
  • polypropylene glycol, styrene polymer, vinyl acetate polymer, polyglycidyl methacrylate, butyral resin or the like is preferably used as the resin contained in the resin-retained partially exfoliated graphite.
  • the reason is that when the silicon powder is inserted between the graphene layers, it is necessary to remove the residual resin by a firing step, and it is important that the decomposition temperature of the residual resin is lower than that of the partially exfoliated graphite. by.
  • the resin content in the resin-retained partially exfoliated graphite is preferably 1% by mass to 60% by mass. More preferably, it is 5% by mass to 30% by mass, and further preferably 10% by mass to 20% by mass. If the content of the resin is too small, the handleability may be deteriorated or the silicon powder may not be sufficiently inserted between the graphene layers. If the resin content is too high, it may be difficult to insert a sufficient amount of silicon powder between the graphene layers.
  • the thermal decomposition start temperature and the thermal decomposition end temperature of the resin in the resin-retained partially exfoliated graphite are higher than the thermal decomposition start temperature and the thermal decomposition end temperature of the resin before compounding, respectively.
  • the pyrolysis start temperature and the pyrolysis end temperature refer to a TGA measurement-dependent decomposition start temperature and a decomposition end point temperature, respectively.
  • the biggest feature of the resin-retained partially exfoliated graphite is that graphene is not oxidized. Therefore, excellent conductivity is expressed. In addition, since graphene is not oxidized, a complicated reduction treatment in the presence of high temperature and inert gas is not required. Resin-retained exfoliated graphite has a feature that it is relatively difficult to scatter. This is considered to be because, as will be described later, the polymer obtained by polymerizing the radical polymerizable monomer remains without being completely decomposed in the thermal decomposition step.
  • the polymer located in the portion sandwiched between the graphene layers in exfoliated graphite is not completely decomposed near the thermal decomposition temperature because it is sandwiched between the graphenes on both sides. Therefore, the resin-retained partially exfoliated graphite is easy to handle.
  • the interlayer distance between graphenes is widened and the specific surface area is large.
  • the resin-retained partially exfoliated graphite has a graphite structure at the center and a flaky edge. For this reason, handling is easier than conventional exfoliated graphite.
  • Resin-retained partially exfoliated graphite has high dispersibility in other resins because it contains a resin.
  • the other resin is a resin having a high affinity with the resin contained in the resin residual type exfoliated graphite, the dispersibility of the resin residual type partially exfoliated graphite in the other resin is higher. .
  • a composition containing graphite or primary exfoliated graphite and the resin, and the resin fixed to the graphite or primary exfoliated graphite is prepared.
  • the steps of preparing this composition include, for example, the following first and second methods for fixing a polymer to graphite or primary exfoliated graphite by grafting the polymer to graphite or primary exfoliated graphite, By adsorbing graphite or primary exfoliated graphite, a third method of fixing the polymer to graphite or primary exfoliated graphite can be used.
  • First method In the first method, first, as a raw material, a mixture containing the above graphite or primary exfoliated graphite and the above radical polymerizable monomer is prepared. Next, the radical polymerizable monomer contained in the mixture is polymerized to produce a polymer in which the radical polymerizable monomer is polymerized in the mixture, and the polymer is grafted to graphite or primary exfoliated graphite.
  • a composition containing graphite or primary exfoliated graphite and a radical polymerizable monomer is prepared.
  • the blending ratio of graphite and radical polymerizable monomer is not particularly limited, but is preferably 1: 1 to 1: 100 by mass ratio. By setting the blending ratio within the above range, graphite or primary exfoliated graphite can be effectively exfoliated, and a resin-retained partially exfoliated graphite can be obtained more effectively.
  • a composition further including a thermally decomposable foaming agent that generates a gas upon thermal decomposition is prepared.
  • the graphite or primary exfoliated graphite can be more effectively exfoliated by heating described later.
  • the thermal decomposable foaming agent is not particularly limited as long as it is a compound that spontaneously decomposes by heating and generates a gas upon decomposition.
  • the thermally decomposable foaming agent include foaming agents such as azocarboxylic acid-based, diazoacetamide-based, azonitrile compound-based, benzenesulfohydrazine-based or nitroso compound-based which generate nitrogen gas during decomposition, carbon monoxide during decomposition, A foaming agent that generates carbon dioxide, methane, aldehyde, or the like can be used.
  • the above pyrolyzable foaming agents may be used alone or in combination of a plurality of types of foaming agents.
  • thermally decomposable foaming agent azodicarbonamide (ADCA) having a structure represented by the following formula (1), or a foaming agent having a structure represented by the following formulas (2) to (4): Can be used.
  • ADCA azodicarbonamide
  • foaming agents decompose spontaneously by heating, and generate nitrogen gas during decomposition.
  • the thermal decomposition temperature of the thermally decomposable foaming agent is not particularly limited, and may be lower or higher than the temperature at which the radical polymerizable monomer spontaneously starts polymerization.
  • the thermal decomposition temperature of ADCA having the structure represented by the above formula (1) is 210 ° C.
  • the temperature at which styrene spontaneously starts polymerization is higher than 150 ° C. High temperature.
  • the thermal decomposition start temperatures of the thermally decomposable foaming agents having the structures represented by the above formulas (2) to (4) are 88 ° C., 96 ° C., and 110 ° C. in order, and these are the temperatures at which styrene spontaneously starts polymerization.
  • the temperature is lower than 150 ° C.
  • the mixing ratio of the graphite or primary exfoliated graphite and the thermally decomposable foaming agent is not particularly limited, but the pyrolyzable foaming agent is 100 parts by weight to 300 parts by weight with respect to 100 parts by weight of the graphite or primary exfoliated graphite. It is preferable to blend partly.
  • the blending amount of the pyrolyzable foaming agent in the above range, the graphite or primary exfoliated graphite can be more effectively exfoliated, and a resin-retained partially exfoliated graphite can be obtained effectively. it can.
  • the method for preparing the composition is not particularly limited, and examples thereof include a method in which the radical polymerizable monomer is used as a dispersion medium and the graphite or primary exfoliated graphite is dispersed in the radical polymerizable monomer.
  • the composition further containing the thermally decomposable foaming agent can be prepared by dissolving or dispersing the thermally decomposable foaming agent in the radical polymerizable monomer.
  • the radical polymerizable monomer generates free radicals, whereby the radical polymerizable monomer undergoes radical polymerization, thereby generating a polymer in which the radical polymerizable monomer is polymerized.
  • the graphite contained in the composition is a laminate of a plurality of graphene layers and thus has radical trapping properties. Therefore, when the radically polymerizable monomer is co-polymerized in the composition containing the graphite or primary exfoliated graphite, the free radicals are adsorbed on the end and surface of the graphene layer of the graphite or primary exfoliated graphite. . Therefore, the polymer having the free radicals or the radical polymerizable monomer generated at the time of polymerization is grafted to the end portion and the surface of the graphene layer of the graphite or primary exfoliated graphite.
  • Examples of a method for polymerizing the radical polymerizable monomer contained in the composition include a method in which the composition is heated to a temperature higher than the temperature at which the radical polymerizable monomer spontaneously starts polymerization. By heating the composition to the temperature or higher, free radicals can be generated in the radical polymerizable monomer contained in the composition. Thereby, the polymerization and grafting described above can be carried out.
  • both the polymerization of the radical polymerizable monomer and the thermal decomposition of the polymer described later can be performed only by heating the composition. . Accordingly, the graphite or primary exfoliated graphite can be more easily separated.
  • the heating method is not particularly limited as long as the composition can be heated to the temperature or higher, and the composition can be heated by an appropriate method and apparatus. Moreover, in the case of the said heating, you may heat without sealing, ie, a normal pressure.
  • the temperature may be further maintained for a certain period of time after heating to a temperature equal to or higher than the temperature at which the radical polymerizable monomer spontaneously starts polymerization.
  • the time for maintaining the temperature near the above temperature is preferably in the range of 0.5 to 5 hours, although it depends on the kind and amount of the radical polymerizable monomer to be used.
  • the step of thermally decomposing the polymer is performed while the composition is heated to the thermal decomposition temperature of the polymer to leave a part of the polymer.
  • the thermal decomposition temperature of the polymer means a decomposition end point temperature dependent on TGA measurement.
  • the thermal decomposition temperature of the polymer is about 350 ° C.
  • thermal decomposition start temperature and thermal decomposition end temperature of the resin in the resin-retained partially exfoliated graphite obtained by thermal decomposition are respectively higher than the thermal decomposition start temperature and thermal decomposition end temperature of the resin before compounding. Get higher.
  • exfoliated graphite is a graphene laminate after exfoliation obtained by exfoliating original graphite or primary exfoliated graphite, and has a specific surface area larger than that of original graphite or primary exfoliated graphite.
  • the heating method is not particularly limited as long as it can be heated to the thermal decomposition temperature of the polymer, and the composition can be heated by an appropriate method and apparatus. Moreover, in the case of the said heating, you may heat without sealing, ie, a normal pressure. Therefore, exfoliated graphite can be produced inexpensively and easily.
  • Thermal decomposition so that the resin remains can be achieved by adjusting the heating time. That is, the amount of residual resin can be increased by shortening the heating time. Also, the amount of residual resin can be increased by lowering the heating temperature.
  • the heating temperature and the heating time may be adjusted in the step of heating so that a part of the polymer remains.
  • the temperature is increased after heating to a temperature equal to or higher than the thermal decomposition temperature of the polymer. Furthermore, you may maintain for a fixed time.
  • the time for maintaining the temperature near the above temperature is preferably in the range of 0.5 to 5 hours, although it depends on the kind and amount of the radical polymerizable monomer to be used.
  • the heat treatment in the step of producing the polymer and the heat treatment in the step of thermally decomposing the polymer described later are the same.
  • the method and apparatus may be used continuously.
  • the thermally decomposable foaming agent is contained in the composition when the composition is heated to the thermal decomposition temperature of the thermally decomposable foaming agent. Pyrolysis with On the other hand, the thermally decomposable foaming agent generates gas and foams during thermal decomposition. At this time, when the pyrolyzable foaming agent is thermally decomposed in the vicinity of the graphene layer of the graphite or primary exfoliated graphite, the gas generated by the pyrolysis enters between the graphene layers, and the interval between the graphene layers is widened.
  • the graphite or primary exfoliated graphite can be more effectively exfoliated by using the radically polymerizable monomer and / or the polymer and the thermally decomposable foaming agent in combination.
  • graphite or primary exfoliated graphite can be more effectively exfoliated by such a method.
  • the radical polymerizable monomer when the radical polymerizable monomer generates a free radical, the polymer having the free radical generated during polymerization or the radical polymerizable monomer is an end of the graphene layer of the graphite or primary exfoliated graphite. And graft onto the surface. Therefore, the free radical is trapped in the graphene layer of the graphite or primary exfoliated graphite.
  • the thermally decomposable foaming agent since the thermally decomposable foaming agent has a property of having high affinity with radicals, it is attracted to free radicals trapped in the graphene layer of the graphite or primary exfoliated graphite in the composition. Therefore, the thermally decomposable foaming agent is easily thermally decomposed in the vicinity of the graphene sheet laminated surface of graphite or primary exfoliated graphite. Therefore, by the thermal decomposition of the thermally decomposable foaming agent, a peeling force can be effectively applied between the graphene layers of the graphite or primary exfoliated graphite.
  • the thermal decomposition of the thermally decomposable foaming agent is not necessarily performed in the process of thermally decomposing the polymer.
  • the thermal decomposition temperature of the thermally decomposable foaming agent is lower than the temperature at which the radical polymerizable monomer spontaneously starts polymerization, the radical polymerizable monomer is heated by heating in the step of producing the polymer.
  • the thermally decomposable foaming agent may be thermally decomposed.
  • the thermal decomposition of the thermally decomposable foaming agent may be performed before the polymerization of the radical polymerizable monomer, after the polymerization, or simultaneously with the polymerization.
  • the temperature may be maintained for a certain time after heating to a temperature equal to or higher than the thermal decomposition temperature of the thermally decomposable foaming agent.
  • the time for maintaining the temperature near the above temperature is preferably in the range of 0.5 to 5 hours, although it depends on the kind and amount of the thermally decomposable foaming agent to be used.
  • a radical polymerizable monomer is polymerized in the presence of graphite or primary exfoliated graphite to produce a polymer, and grafting of the polymer to graphite or primary exfoliated graphite has been attempted.
  • a polymer radical generated by thermally decomposing a polymer is obtained by heating the polymer obtained in advance to the specific temperature range in the presence of graphite or primary exfoliated graphite. It can be grafted directly to graphite or primary exfoliated graphite.
  • an appropriate pyrolytic radical generating polymer can be used as the polymer of the second method.
  • the blending ratio of the graphite or primary exfoliated graphite and the polymer is not particularly limited, but it is desirable that the weight ratio is 1: 5 to 1:20. By setting the blending ratio within this range, it is possible to more effectively exfoliate graphite or primary exfoliated graphite and effectively obtain a resin-retained partially exfoliated graphite.
  • the step of preparing the composition in the step of preparing the composition, it is preferable to further include a thermally decomposable foaming agent in the composition.
  • the graphite or primary exfoliated graphite can be more effectively exfoliated by heating that causes thermal decomposition of the polymer described later.
  • the thermally decomposable foaming agent that can be used is the same as in the first method. Therefore, it is preferable to use a foaming agent having a structure represented by the above formulas (1) to (4).
  • the blending ratio of graphite or primary exfoliated graphite and the pyrolyzable foaming agent is not particularly limited, but the pyrolyzable foaming agent is 100 to 300 per 100 parts by weight of graphite or primary exfoliated graphite. It is preferable to mix
  • a specific method for preparing the composition is not limited. For example, a method in which the polymer and graphite or primary exfoliated graphite are put in an appropriate solvent or dispersion medium and heated is mentioned. It is done.
  • the polymer is grafted to graphite or primary exfoliated graphite by the above heating.
  • this heating temperature it is desirable to set it as the range of 50 to 400 degreeC.
  • the polymer can be effectively grafted onto the graphite.
  • graphite or primary exfoliated graphite can be more effectively exfoliated. The reason for this is considered as follows.
  • the third method a method of dissolving or dispersing the graphite and the polymer in an appropriate solvent can be mentioned.
  • a solvent tetrahydrofuran, methyl ethyl ketone, toluene, ethyl acetate or the like can be used.
  • a thermally decomposable foaming agent may be further added and dispersed or dissolved in the solvent.
  • a composition in which a polymer is adsorbed on graphite or primary exfoliated graphite in a solvent is prepared as the above composition.
  • the method for adsorbing the polymer to graphite or primary exfoliated graphite is not particularly limited. Since the polymer has adsorptivity to graphite, a method of mixing graphite or primary exfoliated graphite with the polymer in the above-described solvent can be used.
  • ultrasonic treatment is performed in order to effectively adsorb the polymer by graphite or primary exfoliated graphite.
  • the ultrasonic processing method is not particularly limited. For example, a method of irradiating an ultrasonic wave having an oscillation frequency of about 100 W and an oscillation frequency of about 28 kHz using an appropriate ultrasonic processing apparatus can be used.
  • the sonication time is not particularly limited as long as it is longer than the time required for the polymer to be adsorbed on graphite.
  • the sonication time is not particularly limited as long as it is longer than the time required for the polymer to be adsorbed on graphite.
  • it is preferably maintained for about 30 minutes to 120 minutes.
  • the polymer adsorption is considered to be due to the interaction between the surface energy of graphite and the polymer.
  • the composition may be heated to a temperature higher than the thermal decomposition temperature of the polymer. More specifically, it is heated to a temperature higher than the thermal decomposition temperature of the polymer, and the polymer is further baked.
  • the thermal decomposition temperature of polystyrene is about 380 ° C. to 450 ° C.
  • the thermal decomposition temperature of polyglycidyl methacrylate is about 400 ° C. to 500 ° C.
  • the thermal decomposition temperature of polybutyral is about 550 ° C. to 600 ° C. in the atmosphere. It is.
  • the resin-retained partially exfoliated exfoliated graphite can be obtained by thermal decomposition of the polymer because of the reasons described above. That is, it is considered that when the polymer grafted on the graphite is baked, a large stress acts on the graft point, thereby increasing the distance between the graphenes.
  • the heating for polymerizing the radical polymerizable monomer and the thermal decomposition of the polymer may be carried out continuously in the same heating step, but in the second method, Alternatively, a heating step for grafting the polymer onto graphite or primary exfoliated graphite and a heating step for pyrolyzing the polymer may be performed continuously.
  • the raw material composition containing the resin-retained partially exfoliated exfoliated graphite prepared as described above and fine particles is heated, thereby A fine particle-exfoliated graphite composite is obtained by incorporating fine particles in partially exfoliated exfoliated graphite.
  • the thermal decomposition temperature of the fine particles is preferably higher than the thermal decomposition temperature of the resin.
  • the raw material composition is preferably heated at a temperature higher than the thermal decomposition temperature of the resin and lower than the thermal decomposition temperature of the fine particles. This is because by heating in this range, fine particles can be included in the partially exfoliated exfoliated graphite more efficiently. More specifically, the heating temperature is preferably in the range of about 370 ° C. to 500 ° C.
  • the fine particles are not particularly limited, but powdery fine particles can be used.
  • the average particle diameter of the fine particles is not particularly limited, but is preferably about 20 nm to 50000 nm. Within such an average particle diameter range, fine particles can be easily introduced into the partially exfoliated exfoliated graphite.
  • the mixing ratio of the fine particles is not particularly limited, but is preferably in the range of 1 to 800 parts by weight with respect to 100 parts by weight of partially exfoliated graphite.
  • materials such as inorganic compounds or metals can be used.
  • a material at least one selected from the group consisting of Co, Mn, Ni, P, Sn, Ge, Si, Ti, Zr, V, Al, and these compounds is used.
  • a material that can occlude and release lithium can be used.
  • a raw material composition containing partially exfoliated graphite exfoliated graphite and fine particles of Si particles is heated, whereby the Si particles are partially exfoliated.
  • the exfoliated graphite is preferably doped, that is, included.
  • the heating temperature is not particularly limited, but is preferably in the range of about 400 ° C to 550 ° C.
  • the Si particles are not particularly limited, and various commercially available Si powders can be used.
  • the average particle size of the Si particles is not particularly limited, but is preferably about 20 nm to 500 nm. If it is in the range of such an average particle diameter, Si particle
  • the mixing ratio of the Si particles is not particularly limited, but is preferably in the range of 5 to 80 parts by weight with respect to 100 parts by weight of partially exfoliated graphite.
  • Si particles By heating a raw material composition containing Si particles and partially exfoliated exfoliated graphite to the above temperature by an appropriate method, Si particles can be doped into partially exfoliated exfoliated graphite as described above.
  • the method for producing a negative electrode material for a lithium ion secondary battery according to the present invention comprises a step of obtaining a fine particle-exfoliated graphite composite according to the production methods (1) and (2), and (3) the fine particle-exfoliation method.
  • the binder resin is not particularly limited.
  • a binder resin preferably, at least one selected from the group consisting of styrene butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyimide resin, acrylic resin, and butyral resin is used. That is, an aqueous binder resin may be used, or a non-aqueous binder resin may be used.
  • the aqueous binder resin the styrene butadiene rubber (SBR) or carboxymethyl cellulose (CMC) is preferably used.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the non-aqueous binder resin at least one of the above-mentioned polyvinylidene fluoride (PVDF), polyimide resin, acrylic resin, and butyral resin is preferably used.
  • an appropriate solvent is added to facilitate shaping of the composition and to facilitate kneading.
  • a solvent is not particularly limited, and an organic solvent such as tetrahydrofuran (THF), ethanol, N-methylpyrrolidone (NMP), or water can be used.
  • the blending ratio of the partially exfoliated exfoliated graphite doped with Si particles and the binder resin in the composition is not particularly limited, but the binder resin is used with respect to 100 parts by weight of the partially exfoliated exfoliated graphite doped with Si particles. Is preferably blended at a ratio of about 2 to 20 parts by weight. Within this range, a negative electrode material for a lithium ion secondary battery that exhibits a sufficient effect as a negative electrode can be provided. If the blending ratio of the binder resin is too low, molding may be difficult.
  • the negative electrode material for lithium ion secondary batteries is obtained by shaping the composition prepared as mentioned above. This shaping may be performed by using various molding methods, or by applying the composition and drying.
  • the negative electrode material for a lithium ion secondary battery according to the present invention can be used alone as a negative electrode material for a lithium ion secondary battery without using a metal foil such as a Cu foil. Therefore, for example, the negative electrode for a lithium ion secondary battery can be easily formed by applying the composition to one side of the separator and drying the composition.
  • a conductive dope aid is further mixed.
  • Si particles can be more easily doped with partially exfoliated exfoliated graphite.
  • Examples of conductive dope aids include ketjen black and acetylene black. Preferably, at least one selected from the group consisting of ketjen black and acetylene black is used.
  • the dope amount of Si particles can be increased.
  • the addition ratio of the conductive doping aid is not particularly limited, and is preferably about 50 to 300 parts by weight with respect to 100 parts by weight of the Si particles. Within this range, the partially exfoliated graphite can be easily doped with Si particles without causing deterioration of characteristics as the negative electrode of the lithium ion secondary battery.
  • the fine particle-exfoliated graphite composite according to the present invention fine particles are included between the graphene layers in the partially exfoliated graphite. Therefore, unlike the graphite, the fine particle-exfoliated graphite composite according to the present invention has high thermal conductivity in the thickness direction. In particular, when boron nitride, silicon carbide, or various metals are used as the fine particles, higher thermal conductivity can be obtained. Therefore, it is generally preferable to use a material having high thermal conductivity as the material constituting the fine particles.
  • the fine particle-exfoliated graphite composite according to the present invention when used as a constituent material of an electrode for a lithium ion secondary battery (positive electrode, negative electrode), the lithium ion secondary battery has high battery efficiency and is unlikely to deteriorate in performance due to repetition. A secondary battery is obtained.
  • the material constituting the fine particles lithium transition metal oxides (Co-based, Mn-based, Ni-based, P-based and their composite systems) capable of occluding and releasing lithium, Sn, Ge, Si, It is preferable to use at least one selected from the group consisting of Ti, Zr, V, Al, and these compounds. As these compounds, for example, Si or SiO 2 can be used for Si, and TiO 2 or the like can be used for Ti.
  • the negative electrode material for a lithium ion secondary battery can be obtained by the manufacturing process described above.
  • the negative electrode material for a lithium ion secondary battery according to the present invention is encapsulated in the resin-retained partially exfoliated graphite having a structure in which graphene is partially exfoliated, and partially exfoliated graphite.
  • Fine particles and a binder resin are used as the fine particles, Si can bind to more Li than carbon. That is, when Si is used, the theoretical capacity is much higher than when a carbon material is used.
  • Si conventionally, when Si is used, there is a problem that the volume change due to charge / discharge is large, and the life characteristics, that is, the charge / discharge cycle characteristics are deteriorated.
  • the charge / discharge cycle characteristics are unlikely to deteriorate. This is considered to be due to the following reasons.
  • fine particles such as Si particles are doped, that is, included between graphene of partially exfoliated exfoliated graphite. Therefore, fine particles inserted in close contact between highly conductive graphene are protected by graphene having a stable structure against volume changes when Li ion intercalation and deintercalation occur. Therefore, it is considered that the charge / discharge cycle characteristics are less deteriorated. Therefore, according to the present invention, it is possible to provide a lithium ion secondary battery using fine particles such as Si particles having a high theoretical capacity, excellent charge / discharge characteristics, and excellent life characteristics.
  • the negative electrode material for a lithium ion secondary battery desirably contains the conductive doping aid, so that Si particles are surely doped.
  • the binder resin when the above preferred resin is used as the binder resin, the amount of Si particles doped can be increased.
  • a lithium ion secondary battery which concerns on this invention is equipped with the said negative electrode material for lithium ion secondary batteries as a negative electrode. Therefore, deterioration of charge / discharge cycle characteristics is unlikely to occur.
  • a lithium ion secondary battery includes a negative electrode, a positive electrode, and a separator disposed between the negative electrode and the positive electrode. As this negative electrode, the negative electrode material for a lithium ion secondary battery according to the present invention is suitably used.
  • the negative electrode material for a lithium ion secondary battery expresses a scale that constitutes the negative electrode alone. Therefore, it is also possible to constitute a negative electrode made of only the negative electrode material for a lithium ion secondary battery without having a metal foil. In that case, the manufacturing process can be simplified and the cost can be reduced. In particular, in the structure in which the negative electrode material for a lithium ion secondary battery is formed as a coating on one side of the separator, the manufacturing process can be further simplified and the cost can be reduced.
  • the raw material composition was irradiated with ultrasonic waves at 100 W and an oscillation frequency of 28 kHz for 5 hours using an ultrasonic treatment apparatus (manufactured by Honda Electronics Co., Ltd.).
  • Polypropylene glycol was adsorbed on the expanded graphite by ultrasonic treatment. In this way, a composition in which polypropylene glycol was adsorbed on expanded graphite was prepared.
  • the composition is formed by a solution casting method, maintained at a drying temperature of 80 ° C. for 2 hours, then maintained at 110 ° C. for 1 hour, and further maintained at 150 ° C. for 1 hour. And maintained at a temperature of 230 ° C. for 2 hours.
  • the ADCA was thermally decomposed and foamed in the composition.
  • the obtained resin-retained partially exfoliated graphite was subjected to a combustion test in which it was heated from 30 ° C. to 1000 ° C. at a rate of 10 ° C./min in an air atmosphere.
  • FIG. 1 shows the TG / DTA measurement results when this combustion test was performed.
  • Inflection points appear in the TG curve near 570 ° C. indicated by arrow A in FIG. It is considered that polypropylene glycol remains even at a temperature higher than this inflection point.
  • the XRD spectrum of a sample obtained by heating the resin-retained partially exfoliated graphite obtained as described above at a temperature of 450 ° C. for 30 minutes is shown by a solid line D in FIG.
  • an XRD spectrum of a sample obtained by heat-treating the partially exfoliated exfoliated graphite at a temperature of 500 ° C. for 30 minutes is shown in FIG.
  • an XRD spectrum of expanded graphite PF powder which is raw material graphite
  • the solid line D shows that the peak derived from graphite around 26 ° is significantly smaller. Therefore, it can be seen that the graphene layer is open.
  • the resin is completely lost by the heat treatment at 500 ° C., and the graphene is stacked again.
  • FIG. 3 is a scanning electron micrograph at a magnification of 10,000 times of the resin residual type partially exfoliated graphite specified as described above. As can be seen from FIG. 3, the graphene layer is open.
  • Example 1 Resin-retained partially exfoliated graphite 100 mg obtained as described above, Si particles having an average particle size of 50 nm (NM-0020-HP; ⁇ 50 nm, manufactured by Ionic Liquids Technologies), and Ketjen Black (Lion Corporation) EC600JD (20 mg) was added to 20 g of ethanol as a dispersion solvent and dispersed. Next, using an ultrasonic processing apparatus (manufactured by Honda Electronics Co., Ltd.), ultrasonic waves were irradiated for 4 hours at 100 W and an oscillation frequency of 28 kHz. By this ultrasonic treatment, Si particles were adsorbed on the partially exfoliated exfoliated graphite.
  • an ultrasonic processing apparatus manufactured by Honda Electronics Co., Ltd.
  • composition treated as described above was maintained at a drying temperature of 80 ° C., and ethanol as a dispersion medium was removed. Furthermore, it heated at 110 degreeC for 1 hour, 150 degreeC for 1 hour, and 500 degreeC for 2 hours. Thereby, partially exfoliated exfoliated graphite doped with Si particles was obtained.
  • FIG. 4 is a scanning electron micrograph at a magnification of 1000 times of the partially exfoliated exfoliated graphite in which the Si particles obtained in this example are doped, that is, included. As can be seen from FIG. 4, in this material, Si particles are inserted between the graphenes.
  • FIG. 22 is a scanning electron micrograph at a magnification of 20000 times of the cross section along the thickness direction of the edge portion of the partially exfoliated exfoliated graphite doped with Si particles obtained in this example. As is apparent from FIG. 22, it can be seen that Si particles are doped between the graphene layers at the edge of the partially exfoliated graphite.
  • FIG. 2 is a diagram showing an XRD spectrum of the negative electrode material for secondary battery on the sheet obtained as described above. As is clear from the solid line F, it can be seen that a peak derived from graphite appears around 26 °, and a peak derived from Si particles appears around 28 °.
  • FIG. 6 a scanning electron micrograph of the negative electrode material for a secondary battery obtained as described above at a magnification of 10,000 times is shown in FIG. As is clear from FIG. 6, it can be seen that a sheet containing partially exfoliated exfoliated graphite in which Si particles are doped between graphenes is obtained.
  • the negative electrode material for a lithium ion secondary battery obtained as described above was punched into a circular sheet having a diameter of 25 mm.
  • a coin-type secondary battery was manufactured using the negative electrode material for a lithium ion secondary battery on the circular sheet. All subsequent experiments were performed in an argon gas sprayed glove box.
  • the dried circular sheet made of the negative electrode material for a secondary battery was carried into a glove box while maintaining a vacuum.
  • a coin-type battery (HS cell Li-ion secondary battery experimental battery cell) dried in an oven at 120 ° C. was carried into the glove box.
  • the structure of the coin-type battery (HS cell) is schematically shown in an exploded perspective view in FIG.
  • the collector electrode 7 and the spring 8 were laminated.
  • the positive electrode is the metal lithium piece 5.
  • a Li foil having a thickness of 0.2 mm and a diameter of 16 mm was used.
  • a separator 4 (Esfino (25 ⁇ m) manufactured by Sekisui Chemical Co., Ltd.) punched out to a diameter of 24 mm was used.
  • an electrolyte solution of 1 mol / L LiPF6 / EC: DMC (1.2 v / v%) manufactured by Kishida Chemical Co. was used.
  • the cycle consisting of the above charging and discharging was repeated.
  • the charge / discharge test results are shown in FIG.
  • the horizontal axis in FIG. 8 indicates the number of charge / discharge cycles, and the vertical axis indicates the capacity (mAh / g), that is, the charge / discharge characteristics.
  • FIG. 9 is a diagram showing the life characteristics of Coulomb efficiency. As can be seen from FIG. 9, the initial efficiency is good and maintained.
  • Example 2 In the production of partially exfoliated exfoliated graphite doped with Si particles, Si particles were doped in the same manner as in Example 1 except that tetrahydrofuran (THF) was used instead of ethanol as a dispersion medium. Partially exfoliated exfoliated graphite was obtained. Thereafter, a negative electrode material for a lithium ion secondary battery was produced in the same manner as in Example 1, and further evaluated in the same manner as in Example 1.
  • THF tetrahydrofuran
  • FIG. 10 is a view showing a TG / DTA analysis result of the sheet-like negative electrode material for a lithium ion secondary battery obtained in Example 2. Also in this example, an inflection point appears in the vicinity of 780 ° C. in the TG curve, and it can be seen that Si particles remain in the high sound range.
  • FIG. 11 is a scanning electron micrograph of the sheet-like negative electrode material for a lithium ion secondary battery obtained in this example at a magnification of 10,000.
  • FIGS. 12 and 13 are diagrams showing the charge / discharge characteristics and the Coulomb efficiency life characteristics of the assembled lithium ion secondary battery using a coin-type battery for evaluation. Also in this example, it can be seen that even if the charge / discharge cycle is repeated, the charge / discharge characteristics and the coulomb efficiency are not deteriorated.
  • Example 3 In obtaining partially exfoliated graphite exfoliated graphite doped with Si particles, partially exfoliated graphite exfoliated with Si particles doped in the same manner as in Example 1 except that ketjen black was not blended. In the same manner as in Example 1, a negative electrode material for a lithium ion secondary battery was obtained and evaluated.
  • FIG. 14 is a scanning electron micrograph of the sheet-like negative electrode material for a lithium ion secondary battery obtained in this manner at a magnification of 20000 times.
  • FIG. 15 is a diagram showing a TG / DTA analysis result of the sheet-like negative electrode material for a lithium ion secondary battery.
  • Si particles are also doped between graphenes in this example. Further, as is apparent from FIG. 15, it can be seen that also in this example, an inflection point appears in the vicinity of 780 ° C. of the TG curve. And it turns out that Si particle
  • FIGS. 16 and 17 are diagrams showing the charge / discharge test results.
  • FIG. 16 is a graph showing the life characteristics of charge / discharge characteristics
  • FIG. 17 is a chart showing the life characteristics of coulomb efficiency. As is apparent from FIGS. 16 and 17, in Example 3, even when the charge / discharge cycle is repeated, it is understood that the charge / discharge characteristics are not deteriorated and the Coulomb efficiency is hardly changed.
  • Example 4 A partially exfoliated graphite doped with Si particles was obtained in the same manner as in Example 3 except that tetrahydrofuran (THF) was used instead of ethanol as a dispersion medium, and the Si particles were doped.
  • THF tetrahydrofuran
  • a sheet-like negative electrode material for a lithium ion secondary battery was obtained using partially exfoliated graphite.
  • evaluation was performed in the same manner as in Example 3.
  • FIG. 18 is a scanning electron micrograph of the sheet-like negative electrode material for a lithium ion secondary battery thus obtained at a magnification of 10,000.
  • FIG. 19 is a figure which shows the TG / DTA analysis result of this negative electrode material for lithium ion secondary batteries.
  • Si particles are also doped between the graphenes in this example.
  • an inflection point appears in the vicinity of 780 ° C. of the TG curve.
  • grains remain
  • FIGS. 20 and 21 are diagrams showing the results of the charge / discharge test.
  • FIG. 21 is a graph showing life characteristics of charge / discharge characteristics
  • FIG. 21 is a chart showing life characteristics of coulomb efficiency. As is apparent from FIGS. 20 and 21, in Example 4, even when the charge / discharge cycle is repeated, it is understood that the charge / discharge characteristics are not deteriorated and the Coulomb efficiency is hardly changed.
  • Example 5 500 mg of the resin-retained partially exfoliated graphite obtained as described above and 500 mg of TiO 2 particles having an average particle diameter of 200 nm (product name CR-90; rutile titanium oxide) having an average particle diameter of 200 nm were used as a dispersion solvent.
  • 500 mg of the resin-retained partially exfoliated graphite obtained as described above and 500 mg of TiO 2 particles having an average particle diameter of 200 nm (product name CR-90; rutile titanium oxide) having an average particle diameter of 200 nm were used as a dispersion solvent.
  • CR-90 rutile titanium oxide
  • the composition treated as described above was maintained at a drying temperature of 80 ° C. for 1 hour, further at 110 ° C. for 1 hour, and further at 150 ° C. for 1 hour to remove tetrahydrofuran as a dispersion medium. Furthermore, it heated at 500 degreeC for 2 hours. Thereby, partially exfoliated exfoliated graphite containing TiO 2 particles was obtained.
  • the XRD spectrum was measured for the partially exfoliated exfoliated graphite in which TiO 2 particles obtained by heat-treating the partially exfoliated exfoliated graphite on which the TiO 2 particles were adsorbed.
  • the result is shown by a solid line B in FIG.
  • the solid line A was expanded graphite as a raw material graphite
  • the broken line C was TiO 2 particles
  • the solid line E was partially exfoliated exfoliated graphite
  • the dashed line D was heated to partially exfoliated exfoliated graphite at 500 ° C. for 2 hours.
  • the XRD spectrum is shown.
  • the peak around 26 ° is larger than the partially exfoliated graphite in the solid line E. This is considered to be because the resin completely disappeared by the heat treatment at 500 ° C. and the graphene was stacked again.
  • the partially exfoliated exfoliated graphite in which TiO 2 particles of the solid line B are included does not have a peak around 26 ° as large as that of the partially exfoliated graphite of the solid line D due to heat treatment. Further, a peak derived from TiO 2 particles was observed around 25 °.
  • the mixture was subjected to ultrasonic treatment for 120 minutes at 100 W and an oscillation frequency of 28 kHz using an ultrasonic treatment device (manufactured by Honda Electronics Co., Ltd.).
  • an ultrasonic treatment device manufactured by Honda Electronics Co., Ltd.
  • the composition in which the expanded graphite was dispersed in the vinyl acetate polymer was obtained.
  • the composition was dried at 80 ° C. for 2 hours, further heated to a temperature of 110 ° C., and the THF solution was completely dried. The temperature was further maintained at 230 ° C. for 2 hours. Thereby, the ADCA was thermally decomposed and foamed in the composition. Thereafter, the composition was further heated to a temperature of 500 ° C. and maintained for 2 hours.
  • the XRD spectrum was measured on the partially exfoliated graphite doped with Si particles obtained by heat-treating the partially exfoliated graphite adsorbed with Si particles.
  • the result is shown by a solid line B in FIG.
  • the XRD spectrum of is shown.
  • the partially exfoliated graphite doped with Si particles in the solid line B does not have a peak near 26 ° as large as that of the partially exfoliated graphite in the solid line D due to heat treatment. Moreover, a peak derived from Si particles was observed around 28 °. From these facts, it can be seen that when the partially exfoliated exfoliated graphite on which Si particles are adsorbed is subjected to heat treatment, Si particles are inserted between the graphene layers instead of the resin, and the graphene is not restacked. Therefore, it was confirmed that resin-retained partially exfoliated graphite in which Si particles were doped in partially exfoliated exfoliated graphite could be produced.
  • Example 7 A partially exfoliated exfoliated graphite containing TiO 2 particles was obtained in the same manner as in Example 5 except that the partially exfoliated exfoliated graphite used in Example 6 was used.
  • the XRD spectrum was measured for the partially exfoliated exfoliated graphite doped with TiO 2 particles obtained by heat-treating the partially exfoliated exfoliated graphite on which the TiO 2 particles were adsorbed as described above.
  • the result is shown by a solid line B in FIG.
  • the solid line A was expanded graphite as a raw material graphite
  • the broken line C was TiO 2 particles
  • the solid line E was partially exfoliated exfoliated graphite
  • the dashed line D was heated to partially exfoliated exfoliated graphite at 500 ° C. for 2 hours.
  • the XRD spectrum is shown.
  • the partially exfoliated exfoliated graphite in which the solid line B TiO 2 particles are included does not have a peak near 26 ° as large as that of the partially exfoliated graphite of the solid line D due to heat treatment. Further, a peak derived from TiO 2 particles was observed around 25 °. From these facts, it is understood that when partially exfoliated graphite with adsorbed TiO 2 particles is subjected to heat treatment, TiO 2 particles are inserted between graphene layers instead of resin, and graphene is not restacked. . Therefore, it was confirmed that a resin-retained partially exfoliated graphite in which TiO 2 particles were included in the partially exfoliated graphite was produced.

Abstract

 製造が容易であり、充放電サイクル特性の劣化が生じ難いリチウムイオン二次電池用負極材の製造方法を提供する。 樹脂が黒鉛または一次薄片化黒鉛に固定されている組成物中の樹脂を熱分解し、上記樹脂の一部を残存させつつ、黒鉛または一次薄片化黒鉛を剥離して得られた、部分的にグラフェンが剥離している構造を有する樹脂残存型の部分剥離型薄片化黒鉛と、Si粒子とを含む原料組成物を加熱し、Si粒子を部分剥離型薄片化黒鉛にドープする工程と、上記Si粒子がドープされた部分剥離型薄片化黒鉛と、バインダー樹脂と、溶剤とを含む組成物を用意する工程と、上記組成物を賦形する工程とを備える、リチウムイオン二次電池用負極材の製造方法。

Description

微粒子-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池
 本発明は、微粒子-薄片化黒鉛複合体、リチウムイオン二次電池に用いられる負極材及びそれらの製造方法に関し、より詳細には、微粒子が包摂された炭素系材料からなる微粒子-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法に関する。また、本発明は、このリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池に関する。
 従来、小型化及び大容量化を図り得るため、リチウムイオン二次電池が広く用いられている。リチウムイオン二次電池では、正極及び負極において、リチウムがインターカレーション及びデインターカレーションされる。従って、正極及び負極を構成する材料すなわち活物質として、Liをインターカレーション及びデインターカレーションし得る材料が用いられている。
 ところで、リチウムイオン二次電池の負極活物質として、従来炭素系材料が広く用いられている。もっとも、近年、炭素に比べ、理論容量が高いため、Siを用いた負極が注目されている。もっとも、リチウムイオンのインターカレーション及びデインターカレーションにより、Siの体積が大きく変化する。そのため、使用するうちに、充放電性能が低下するという問題があった。
 下記の特許文献1にはこのような問題を解決するために、板状のSi系材料が結合して構成されている球状の組み立て体であって、組み立て体の内部に気孔が形成されている負極材料が開示されている。
特開2009-129914号公報
 しかしながら、特許文献1に記載のような板状のSiを結合してなる球状の組み立て体では構造が複雑にならざるを得なかった。そのため、製造工程が煩雑であった。
 加えて、このような負極材料を用いたとしても、使用しているうちに充放電性能が低下する減少を充分に抑制することはできなかった。
 本発明の目的は、製造が容易であり、充放電サイクル特性の劣化が生じ難い、リチウムイオン二次電池用負極材、該リチウムイオン二次電池用負極材に用いられる微粒子-薄片化黒鉛複合体及びそれらの製造方法を提供することにある。
 本発明の他の目的は、上記リチウムイオン二次電池用負極材を用いたリチウムイオンニ次電池を提供することである。
 本発明に係る微粒子-薄片化黒鉛複合体の製造方法は、樹脂が黒鉛または一次薄片化黒鉛に固定されている組成物中の樹脂を熱分解し、上記樹脂の一部を残存させつつ、黒鉛または一次薄片化黒鉛を剥離して得られた、部分的にグラフェンが剥離している構造を有する樹脂残存型の部分剥離型薄片化黒鉛を用意する工程と、上記部分剥離型薄片化黒鉛と、微粒子とを含む原料組成物を加熱し、上記部分剥離型薄片化黒鉛内に上記微粒子を包摂することにより微粒子-薄片化黒鉛複合体を得る工程とを備える。
 本発明に係る微粒子-薄片化黒鉛複合体の製造方法では、好ましくは、上記微粒子の熱分解温度が、上記樹脂の熱分解温度より高い。
 本発明に係る微粒子-薄片化黒鉛複合体の製造方法では、好ましくは、上記原料組成物の加熱が、上記樹脂の熱分解温度より高く、上記微粒子の熱分解温度より低い温度で行われる。
 本発明に係る微粒子-薄片化黒鉛複合体の製造方法では、好ましくは、上記微粒子が粉体状である。
 本発明に係る微粒子-薄片化黒鉛複合体の製造方法では、好ましくは、上記微粒子が無機化合物又は金属である。より好ましくは、上記無機化合物又は金属が、リチウムを吸蔵し、放出できる材料である。さらに好ましくは、上記無機化合物又は金属が、Co、Mn、Ni、P、Sn、Ge、Si、Ti、Zr、V、Al及びこれらの化合物からなる群から選択された少なくとも1種である。
 本発明に係るリチウムイオン二次電池用負極材の製造方法は、本発明に従って微粒子-薄片化黒鉛複合体を得る工程と、上記微粒子-薄片化黒鉛複合体と、バインダー樹脂と、溶剤とを含む組成物を用意する工程と、上記組成物を賦形する工程とを備える。
 本発明に係るリチウムイオン二次電池用負極材の製造方法では、好ましくは、上記微粒子がSi粒子であって、上記微粒子-薄片化黒鉛複合体を得る工程における上記微粒子の部分剥離型薄片化黒鉛内への包摂が、Si粒子を部分剥離型薄片化黒鉛にドープすることにより行われる。
 本発明に係るリチウムイオン二次電池用負極材の製造方法では、好ましくは、上記Si粒子をドープする工程において、上記部分剥離型薄片化黒鉛と、Si粒子とを含む組成物にさらに導電性ドープ助剤を混合する。
 本発明に係るリチウムイオン二次電池用負極材の製造方法では、より好ましくは、上記導電性ドープ助剤として、ケッチェンブラック、アセチレンブラックからなる群から選択された少なくとも1種を用いる。
 本発明に係るリチウムイオン二次電池用負極材の製造方法では、上記バインダー樹脂としてスチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド樹脂、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種を用いる。
 本発明に係る微粒子-薄片化黒鉛複合体は、部分的にグラフェンが剥離している構造を有する部分剥離型薄片化黒鉛内に、微粒子が包摂されている。好ましくは、上記微粒子がSi粒子であり、上記部分剥離型薄片化黒鉛にドープされている。
 本発明に係るリチウムイオン二次電池用負極材は、本発明に従って構成された微粒子-薄片化黒鉛複合体と、バインダー樹脂とを含む。好ましくは、リチウムイオン二次電池用負極材は、導電性ドープ助剤をさらに含む。
 本発明に係るリチウムイオン二次電池用負極材は、好ましくは、上記バインダー樹脂が、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド樹脂、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種である。
 本発明に係るリチウムイオン二次電池は、本発明に従って構成されたリチウムイオン二次電池用負極材を負極として備える。
 本発明に係るリチウムイオン二次電池は、好ましくは、上記リチウムイオン二次電池用負極材からなる負極と、正極と、上記負極と正極との間に配置されたセパレータとを備える。より好ましくは、上記負極が、金属箔を有せず、上記リチウムイオン二次電池用負極材からなる。
 また、本発明に係るリチウムイオン二次電池では、上記負極が、上記セパレータの片面に上記リチウムイオン二次電池用負極材を片面に設けられた塗膜として形成されていてもよい。
 本発明に係るリチウムイオン二次電池用負極材の製造方法によれば、製造が容易であり、充放電サイクル特性の劣化が生じ難いリチウムイオン二次電池用負極材を提供することが可能となる。
 また、本発明に係るリチウムイオン二次電池用負極材は、製造が容易であり、充放電サイクル特性の劣化が生じ難い。
図1は、実施例1で用意したSiがドープされた樹脂残存型の部分剥離型薄片化黒鉛のTG/DTA分析結果を示す図である。 図2は、実施例1で用いた原料黒鉛としての膨張化黒鉛、部分剥離型薄片化黒鉛、Si粒子がドープされた部分剥離型薄片化黒鉛及び実施例1のシート状のリチウムイオン二次電池用負極材のXRDスペクトルを示す図である。 図3は、実施例1で用いた樹脂残存型の部分剥離型薄片化黒鉛の10000倍の倍率の走査型電子顕微鏡写真を示す図である。 図4は、実施例1で作製した、Si粒子がドープされた部分剥離型薄片化黒鉛の倍率1000倍の走査型電子顕微鏡写真を示す図である。 図5は、実施例1で得たリチウムイオン二次電池用負極材としてのシートのTG/DTA測定結果を示す図である。 図6は、実施例1で得たリチウムイオン二次電池用負極材の倍率10000倍の走査型電子顕微鏡写真を示す図である。 図7は、実施例1において評価用電池として組み立てたコイン型電池(Li二次電池実験用電池セル)の概略構成を示す分解斜視図である。 図8は、実施例1で得たリチウムイオン二次電池の充放電特性を示す図である。 図9は、実施例1で得たリチウムイオン二次電池のクーロン効率の寿命特性を示す図である。 図10は、実施例2で得たリチウムイオン二次電池用負極材としてのシートのTG/DTA測定結果を示す図である。 図11は、実施例2で得たシート状のリチウムイオン二次電池用負極材の倍率10000倍の走査型電子顕微鏡写真を示す図である。 図12は、実施例2で得たリチウムイオン二次電池の充放電特性を示す図である。 図13は、実施例2で得たリチウムイオン二次電池のクーロン効率のサイクル特性を示す図である。 図14は、実施例3で得たシート状のリチウムイオン二次電池用負極材の倍率20000倍の走査型電子顕微鏡写真を示す図である。 図15は、実施例3で得たリチウムイオン二次電池用負極材としてのシートのTG/DTA測定結果を示す図である。 図16は、実施例3で得たリチウムイオン二次電池の充放電特性を示す図である。 図17は、実施例3で得たリチウムイオン二次電池のクーロン効率のサイクル特性を示す図である。 図18は、実施例4で得たシート状のリチウムイオン二次電池用負極材の倍率10000倍の走査型電子顕微鏡写真を示す図である。 図19は、実施例4で得たリチウムイオン二次電池用負極材のTG/DTA測定結果を示す図である。 図20は、実施例4で得たリチウムイオン二次電池の充放電特性を示す図である。 図21は、実施例4で得たリチウムイオン二次電池のクーロン効率のサイクル特性を示す図である。 図22は、実施例1で作製した、Si粒子がドープされた部分剥離型薄片化黒鉛のエッジ部分の厚み方向に沿った断面の倍率20000倍の走査型電子顕微鏡写真を示す図である。 図23は、実施例5で用いた原料黒鉛としての膨張化黒鉛、熱処理前後の部分剥離型薄片化黒鉛、TiO粒子、TiO粒子が包摂された部分剥離型薄片化黒鉛のXRDスペクトルを示す図である。 図24は、実施例6で用いた原料黒鉛としての膨張化黒鉛、熱処理前後の部分剥離型薄片化黒鉛、Si粒子、Si粒子がドープされた部分剥離型薄片化黒鉛のXRDスペクトルを示す図である。 図25は、実施例7で用いた原料黒鉛としての膨張化黒鉛、熱処理前後の部分剥離型薄片化黒鉛、TiO粒子、TiO粒子が包摂された部分剥離型薄片化黒鉛のXRDスペクトルを示す図である。
 以下、本発明の詳細を具体的な実施形態に基づき説明する。また、本発明は以下の実施形態に限定されるものではない。
 本発明に係る微粒子-薄片化黒鉛複合体の製造方法は、(1)部分的にグラフェン間の距離が広げられている、樹脂残存型の部分剥離型薄片化黒鉛を得る工程と、(2)上記部分剥離型薄片化黒鉛と、微粒子とを含む原料組成物を加熱し、上記部分剥離型薄片化黒鉛内に上記微粒子を包摂することにより微粒子-薄片化黒鉛複合体を得る工程とを備える。
 (1)樹脂残存型の部分剥離型薄片化黒鉛
 樹脂残存型の部分剥離型薄片化黒鉛とは、グラフェン間の層間距離が広げられている部分と、グラフェン間が残存している樹脂により結合されている部分とを含む複合材料である。このような樹脂残存型の部分剥離型薄片化黒鉛は、黒鉛または一次薄片化黒鉛と、樹脂とを含み、樹脂が黒鉛または一次薄片化黒鉛に固定されている原料組成物を用意する工程と、上記原料組成物中に含まれている樹脂を熱分解することにより、樹脂の一部を残存させながら黒鉛または一次薄片化黒鉛を剥離する工程とを備える製造方法により得ることができる。
 黒鉛は、複数のグラフェン層の積層体であり、例えば、天然黒鉛、人造黒鉛、膨張黒鉛などが挙げられる。原料として用いられる黒鉛としては、膨張黒鉛が好ましい。膨張黒鉛は、通常の黒鉛よりもグラフェン層の層間が大きいため、容易に剥離され得る。そのため、原料黒鉛として膨張黒鉛を用いることにより、樹脂残存型の部分剥離型薄片化黒鉛を容易に製造することができる。
 上記黒鉛では、グラフェンの積層数は10万層以上~100万層程度であり、BETによる比表面積は20m/g以下の値を有する。また、本発明の樹脂残存型の部分剥離型薄片化黒鉛とは、グラフェンの積層数が3000層以下のものをいう。樹脂残存型の部分剥離型薄片化黒鉛のBET比表面積は、40m/g以上であることが好ましく、100m/g以上であることがより好ましい。なお、樹脂残存型の部分剥離型薄片化黒鉛のBET比表面積の上限値は、通常、2500m/g以下となる。
 原料として、黒鉛の代わりに一次薄片化黒鉛を用いてもよい。一次薄片化黒鉛とは、黒鉛を剥離することにより得られた薄片化黒鉛や、樹脂残存型の薄片化黒鉛のほか、後述の各種方法により黒鉛を剥離することにより得られた薄片化黒鉛を広く含むものとする。一次薄片化黒鉛は、黒鉛を剥離することにより得られるものであるため、その比表面積は、黒鉛よりも大きいものであればよい。
 上記樹脂残存型の部分剥離型薄片化黒鉛に含まれる樹脂としては、特に限定されるわけではないが、ラジカル重合性モノマーの重合体であることが好ましい。この場合、一種のラジカル重合性モノマーの単独重合体であってもよく、複数種のラジカル重合性モノマーの共重合体であってもよい。上記ラジカル重合性モノマーは、ラジカル重合性の官能基を有するモノマーである限り、特に限定されない。
 上記ラジカル重合性モノマーとしては、例えば、スチレン、α-エチルアクリル酸メチル、α-ベンジルアクリル酸メチル、α-[2,2-ビス(カルボメトキシ)エチル]アクリル酸メチル、イタコン酸ジブチル、イタコン酸ジメチル、イタコン酸ジシクロヘキシル、α-メチレン-δ-バレロラクトン、α-メチルスチレン、α-アセトキシスチレンからなるα-置換アクリル酸エステル、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、4-ヒドロキシブチルメタクリレートなどのグリシジル基や水酸基を持つビニルモノマー;アリルアミン、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートのようなアミノ基を有するビニルモノマー;メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸、アクリル酸、クロトン酸、2-アクリロイルオキシエチルサクシネート、2-メタクリロイルオキシエチルサクシネート、2-メタクリロイロキシエチルフタル酸などのカルボキシル基を有するモノマー;ユニケミカル社製、ホスマーM、ホスマーCL、ホスマーPE、ホスマーMH、ホスマーPPなどのリン酸基を有するモノマー;ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランなどのアルコキシシリル基を有するモノマー;アルキル基やベンジル基などを有する(メタ)アクリレート系モノマーなどが挙げられる。
 本発明では、上記樹脂残存型の部分剥離型薄片化黒鉛に含まれる樹脂として、好ましくは、ポリプロピレングリコール、スチレンポリマー、酢酸ビニルポリマー、ポリグリシジルメタクリレート、ブチラール樹脂などが好適に用いられる。その理由は、ケイ素粉末をグラフェン層間へ挿入する際に、残存樹脂を焼成工程により除去することが必要であり、該部分剥離型薄片化黒鉛より残存樹脂の分解温度が低いことが重要であることによる。
 上記樹脂残存型の部分剥離型薄片化黒鉛における樹脂の含有量は、1質量%~60質量%であることが好ましい。より好ましくは、5質量%~30質量%であり、さらに好ましくは10質量%~20質量%である。樹脂に含有量が少なすぎると、取り扱い性が低下したり、ケイ素粉末のグラフェン層間への挿入が充分に行い得ないことがある。樹脂の含有量が高すぎると、十分な量のケイ素粉末をグラフェン層間に挿入することが困難となることがある。
 本発明において、樹脂残存型の部分剥離型薄片化黒鉛における樹脂の熱分解開始温度及び熱分解終了温度は、それぞれ、複合化前の樹脂の熱分解開始温度及び熱分解終了温度よりも高い。なお、本発明において、熱分解開始温度及び熱分解終了温度は、それぞれ、TGA測定依存の分解開始温度及び分解終点温度をいう。
 上記樹脂残存型の部分剥離型薄片化黒鉛の最大の特徴は、グラフェンが酸化されていないことにある。従って、優れた導電性を発現する。また、グラフェンが酸化されていないため、高温及び不活性ガス存在下における煩雑な還元処理を必要としない。樹脂残存型の薄片化黒鉛は、比較的飛散し難いという特徴も有する。これは、後述の通り、上記ラジカル重合性モノマーが重合してなるポリマーが熱分解工程において、完全に分解されず残存しているためと考えられる。言い換えれば、薄片化黒鉛におけるグラフェン層間に挟まれている部分に位置しているポリマーは、両側のグラフェンに挟まれているため、熱分解温度付近では完全に分解しないと考えられる。そのため、樹脂残存型の部分剥離型薄片化黒鉛は、取り扱いが容易である。
 また、樹脂残存型の部分剥離型薄片化黒鉛では、グラフェン間の層間距離が広げられており、その比表面積が大きい。さらに、樹脂残存型の部分剥離型薄片化黒鉛は、中心部分がグラファイト構造を有し、エッジ部分が薄片化している構造である。このため、従来の薄片化黒鉛よりも取り扱いが容易である。また、樹脂残存型の部分剥離型薄片化黒鉛は、樹脂を含むため、他の樹脂への分散性が高い。特に、他の樹脂が、樹脂残存型の薄片化黒鉛に含まれる樹脂と親和性の高い樹脂である場合、樹脂残存型の部分剥離型薄片化黒鉛の他の樹脂への分散性は、より高い。
 上記樹脂残存型の部分剥離型薄片化黒鉛の製造に際しては、まず、黒鉛または一次薄片化黒鉛と、上記樹脂とを含み、樹脂が黒鉛または一次薄片化黒鉛に固定されている組成物を用意する。
 この組成物を用意する工程としては、例えば、ポリマーを黒鉛または一次薄片化黒鉛にグラフト化することにより、ポリマーを黒鉛または一次薄片化黒鉛に固定する以下の第1及び第2の方法や、ポリマーを黒鉛または一次薄片化黒鉛を吸着させることにより、ポリマーを黒鉛または一次薄片化黒鉛に固定する第3の方法を用いることができる。
 (第1の方法)
 第1の方法では、まず、原料として、上記の黒鉛または一次薄片化黒鉛と、上記のラジカル重合性モノマーとを含む混合物を用意する。次に、混合物に含まれているラジカル重合性モノマーを重合することにより、混合物中に上記ラジカル重合性モノマーが重合しているポリマーを生成させるとともに、該ポリマーを黒鉛または一次薄片化黒鉛にグラフト化させる。
 第1の方法では、まず、黒鉛または一次薄片化黒鉛と、ラジカル重合性モノマーとを含む組成物を用意する。
 黒鉛とラジカル重合性モノマーとの配合割合は特に限定されないが、質量比で1:1~1:100の割合とすることが望ましい。配合割合を上記範囲とすることで、黒鉛または一次薄片化黒鉛を効果的に剥離し、樹脂残存型の部分剥離型薄片化黒鉛をより一層効果的に得ることができる。
 上記組成物を用意する工程では、好ましくは、熱分解する際にガスを発生する熱分解性発泡剤をさらに含む組成物を用意する。その場合には、後述する加熱により黒鉛または一次薄片化黒鉛をより一層効果的に剥離することができる。
 上記熱分解性発泡剤としては、加熱により自発的に分解し、分解時にガスを発生する化合物である限り、特に限定されない。上記熱分解性発泡剤としては、例えば、分解時に窒素ガスを発生するアゾカルボン酸系、ジアゾアセトアミド系、アゾニトリル化合物系、ベンゼンスルホヒドラジン系またはニトロソ化合物系等の発泡剤や、分解時に一酸化炭素、二酸化炭素、メタンまたはアルデヒド等を発生する発泡剤などを用いることができる。上記熱分解性発泡剤は単独で用いてもよく、複数の種類の発泡剤を組み合わせて用いてもよい。
 好ましくは、上記熱分解性発泡剤としては、下記の式(1)に示される構造を有するアゾジカルボンアミド(ADCA)や、下記の式(2)~(4)に示される構造を有する発泡剤を用いることができる。これらの発泡剤は、加熱により自発的に分解し、分解時に窒素ガスを発生する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 なお、上記熱分解性発泡剤の熱分解温度は特に限定されず、上記ラジカル重合性モノマーが自発的に重合を開始する温度より低くてもよく、高くてもよい。例えば、上記式(1)に示される構造を有するADCAの熱分解温度は210℃であり、上記ラジカル重合性モノマーがスチレンの場合には、スチレンが自発的に重合を開始する温度150℃よりも高い温度である。上記式(2)~(4)に示される構造を有する熱分解性発泡剤の熱分解開始温度は順に88℃、96℃、110℃であり、これらはスチレンが自発的に重合を開始する温度150℃よりも低い温度である。
 上記黒鉛または一次薄片化黒鉛と上記熱分解性発泡剤との配合割合は特に限定されないが、上記黒鉛または一次薄片化黒鉛100重量部に対し、上記熱分解性発泡剤を100重量部~300重量部配合することが好ましい。上記熱分解性発泡剤の配合量を上記範囲とすることで、上記黒鉛または一次薄片化黒鉛をより一層効果的に剥離し、樹脂残存型の部分剥離型薄片化黒鉛を効果的に得ることができる。
 上記組成物を用意する方法は特に限定されないが、例えば、上記ラジカル重合性モノマーを分散媒として使用し、上記黒鉛または一次薄片化黒鉛を上記ラジカル重合性モノマー中に分散させる方法などが挙げられる。また、上記熱分解性発泡剤をさらに含む上記組成物は、上記ラジカル重合性モノマーに上記熱分解性発泡剤を溶解または分散することにより用意することができる。
 次に、上記組成物に含まれる上記ラジカル重合性モノマーを重合することにより、上記組成物中に上記ラジカル重合性モノマーが重合しているポリマーを生成する工程を行う。
 このとき、上記ラジカル重合性モノマーはフリーラジカルを生成し、それによって上記ラジカル重合性モノマーがラジカル重合することにより、上記ラジカル重合性モノマーが重合しているポリマーが生成する。一方、上記組成物中に含まれる黒鉛は、複数のグラフェン層の積層体であるため、ラジカルトラップ性を有する。そのため、上記黒鉛または一次薄片化黒鉛を含む上記組成物中において上記ラジカル重合性モノマーを共存重合させると、上記フリーラジカルが上記黒鉛または一次薄片化黒鉛のグラフェン層の端部及び表面に吸着される。従って、重合時に生じた上記フリーラジカルを有する上記ポリマーまたは上記ラジカル重合性モノマーが、上記黒鉛または一次薄片化黒鉛のグラフェン層の端部及び表面にグラフト化する。
 上記組成物に含まれる上記ラジカル重合性モノマーを重合する方法としては、例えば、上記ラジカル重合性モノマーが自発的に重合を開始する温度以上に上記組成物を加熱する方法が上げられる。上記組成物を上記温度以上に加熱することによって、上記組成物に含まれる上記ラジカル重合性モノマーにフリーラジカルを生成することができる。それによって、上述の重合及びグラフト化を行うことができる。
 上記のように、加熱により上記ラジカル重合性モノマーを重合する場合には、上記組成物を加熱するだけで、上記ラジカル重合性モノマーの重合及び後述する上記ポリマーの熱分解の両方を行うことができる。従って、黒鉛または一次薄片化黒鉛の剥離がより一層容易となる。
 上記加熱方法としては、上記組成物を上記温度以上に加熱できる方法であれば特に限定されず、適宜の方法及び装置により上記組成物を加熱することができる。また、上記加熱の際には、密閉することなく、すなわち常圧下で加熱してもよい。
 また、上記ラジカル重合性モノマーを確実に重合させるために、上記ラジカル重合性モノマーが自発的に重合を開始する温度以上の温度まで加熱した後、上記温度をさらに一定時間維持してもよい。上記温度付近に維持する時間は、使用するラジカル重合性モノマーの種類及び量にもよるが、好ましくは0.5~5時間の範囲である。
 上記ポリマーを生成する工程の後に、上記組成物を上記ポリマーの熱分解温度まで加熱することにより、ポリマーの一部を残存させながら、上記ポリマーを熱分解する工程を行う。それによって、上記組成物に含まれる上記ポリマー及び上記黒鉛または一次薄片化黒鉛のグラフェン層の端部及び表面にグラフト化している上記ポリマー等が熱分解する。なお、本発明において、上記ポリマーの熱分解温度とは、TGA測定依存の分解終点温度をいう。例えば、ポリマーがポリスチレンである場合には、上記ポリマーの熱分解温度は約350℃である。
 このとき、上記黒鉛または一次薄片化黒鉛のグラフェン層の端部及び表面にグラフト化している上記ポリマー等が熱分解する際に、上記グラフェン層間に剥離力が生じる。従って、上記ポリマー等を熱分解することによって、上記黒鉛または一次薄片化黒鉛のグラフェン層間を剥離し、部分剥離型薄片化黒鉛を得ることができる。
 また、この熱分解によっても、一部のポリマーは組成物中に残存している。そして、熱分解によって得られる樹脂残存型の部分剥離型薄片化黒鉛における樹脂の熱分解開始温度及び熱分解終了温度は、それぞれ、複合化前の樹脂の熱分解開始温度及び熱分解終了温度よりも高くなる。
 なお、本発明では、薄片化黒鉛とは、元の黒鉛または一次薄片化黒鉛を剥離処理して得られる剥離後のグラフェン積層体であり、元の黒鉛または一次薄片化黒鉛よりも比表面積の大きいグラフェン積層体または元の黒鉛または一次薄片化黒鉛の分解終点が低温化へシフトしたグラフェン積層体をいう。
 上記加熱方法としては、上記ポリマーの熱分解温度まで加熱できる方法であれば特に限定されず、適宜の方法及び装置により上記組成物を加熱することができる。また、上記加熱の際には、密閉することなく、すなわち常圧下で加熱してもよい。従って、安価にかつ容易に薄片化黒鉛を製造することができる。樹脂を残存させるように熱分解させるには、加熱時間を調整することにより達成することができる。すなわち、加熱時間を短くすることにより残存樹脂量を多くすることができる。また、加熱温度を低めることにより残存樹脂量を増加させることもできる。
 後述の第2の方法及び第3の方法においても、ポリマーの一部を残存させるように加熱する工程においては、加熱温度及び加熱時間を調整すればよい。
 上記ポリマーの一部を組成物中に残存させつつ、ポリマーの一部が残存するようにしてポリマーを熱分解させることができれば、上記ポリマーの熱分解温度以上の温度まで加熱した後、上記温度をさらに一定時間維持してもよい。上記温度付近に維持する時間は、使用するラジカル重合性モノマーの種類及び量にもよるが、好ましくは0.5~5時間の範囲である。
 また、上記ポリマーを生成する工程において、加熱により上記ラジカル重合性モノマーを重合させる場合には、上記ポリマー生成する工程における加熱処理と、後述する上記ポリマーを熱分解する工程における加熱処理とを、同一の方法及び装置により連続して行ってもよい。
 上記加熱の際、上記組成物が熱分解性発泡剤をさらに含む場合には、上記組成物を上記熱分解性発泡剤の熱分解温度まで加熱すると、上記熱分解性発泡剤が上記組成物中で熱分解する。一方、上記熱分解性発泡剤は、熱分解時にはガスを発生して発泡する。このとき、上記黒鉛または一次薄片化黒鉛のグラフェン層間付近で上記熱分解性発泡剤が熱分解すると、上記グラフェン層間に上記熱分解により発生した上記ガスが入り込み、上記グラフェン層の間隔が広げられる。それによって、上記グラフェン層間に剥離力が生じるため、上記黒鉛または一次薄片化黒鉛をさらに剥離することができる。従って、上記熱分解性発泡剤を用いることによって、得られる薄片化黒鉛の比表面積をより一層大きくすることができる。
 上記ラジカル重合性モノマー及び/または上記ポリマーと上記熱分解性発泡剤を併用することによって、黒鉛または一次薄片化黒鉛をより一層効果的に剥離し得る。このような方法により黒鉛または一次薄片化黒鉛をより一層効果的に剥離し得る理由については定かではないが、以下の理由が考えられる。上述のように、上記ラジカル重合性モノマーがフリーラジカルを生成した場合、重合時に生じた上記フリーラジカルを有する上記ポリマーまたは上記ラジカル重合性モノマーが、上記黒鉛または一次薄片化黒鉛のグラフェン層の端部及び表面にグラフト化する。そのため、上記フリーラジカルは上記黒鉛または一次薄片化黒鉛のグラフェン層にトラップされる。一方、上記熱分解性発泡剤はラジカルと親和性が高いという性質を有するため、上記組成物中において上記黒鉛または一次薄片化黒鉛のグラフェン層にトラップされたフリーラジカルに引き寄せられる。従って、上記熱分解性発泡剤は黒鉛または一次薄片化黒鉛のグラフェンシート積層面付近において熱分解し易くなる。よって、上記熱分解性発泡剤の熱分解により、上記黒鉛または一次薄片化黒鉛のグラフェン層間に効果的に剥離力を与えることができる。
 なお、上記熱分解性発泡剤の熱分解は、必ずしも上記ポリマーを熱分解する工程において行わずともよい。例えば、上記熱分解性発泡剤の熱分解温度が、上記ラジカル重合性モノマーが自発的に重合を開始する温度より低い場合には、上記ポリマーを生成する工程において、加熱により上記ラジカル重合性モノマーを重合させる際に、上記熱分解性発泡剤を熱分解してもよい。また、上記熱分解性発泡剤の熱分解は、ラジカル重合性モノマーの重合前でもよく、重合後でもよく、重合と同時でもよい。
 また、上記熱分解性発泡剤を確実に熱分解させるために、上記熱分解性発泡剤の熱分解温度以上の温度まで加熱した後、上記温度をさらに一定時間維持してもよい。上記温度付近に維持する時間は、使用する熱分解性発泡剤の種類及び量にもよるが、好ましくは0.5~5時間の範囲である。
 (第2の方法)
 第2の方法では、黒鉛または一次薄片化黒鉛と、ラジカル重合性モノマーが重合しているポリマーとを含み、ポリマーが黒鉛または一次薄片化黒鉛にグラフト化している組成物を用意する工程において、ポリマーを黒鉛または一次薄片化黒鉛の存在下で、50℃以上かつ400℃以下の温度範囲の温度に加熱することにより、ポリマーを黒鉛または一次薄片化黒鉛にグラフト化させる。すなわち、第1の方法では、黒鉛または一次薄片化黒鉛の存在下でラジカル重合性モノマーを重合してポリマーを生成するとともにポリマーの黒鉛または一次薄片化黒鉛へのグラフト化が図られていたが、これに対して、第2の方法では、予め得られたポリマーを黒鉛または一次薄片化黒鉛の存在下で上記特定の温度範囲に加熱することにより、ポリマーを熱分解することにより生成したポリマーラジカルを直接黒鉛または一次薄片化黒鉛にグラフトさせることができる。
 第2の方法のポリマーとしては、適宜の熱分解ラジカル生成ポリマーを用いることができる。
 ほとんどの有機ポリマーが分解温度でラジカルを発生する。従って、上記分解温度付近でラジカルを形成するポリマーとしては多くの有機ポリマーを用いることができる。
 第2の方法において、上記黒鉛または一次薄片化黒鉛と上記ポリマーとの配合割合は特に限定されないが、重量比で1:5~1:20の割合とすることが望ましい。配合割合をこの範囲内とすることにより、黒鉛または一次薄片化黒鉛をより効果的に剥離し、樹脂残存型の部分剥離型薄片化黒鉛を効果的に得ることができる。
 第2の方法においても、第1の方法の場合と同様に、組成物を用意する工程において、好ましくは、熱分解性発泡剤をさらに組成物に含有させることが望ましい。第1の方法の場合と同様に、後述するポリマーの熱分解を引き起こす加熱により、黒鉛または一次薄片化黒鉛をより一層効果的に剥離することができる。
 使用し得る熱分解性発泡剤としては、第1の方法の場合と同様である。従って、好ましくは、前述した式(1)~(4)で示される構造を有する発泡剤を用いることが望ましい。
 第2の方法においても、黒鉛または一次薄片化黒鉛と熱分解性発泡剤との配合割合は特に限定されないが、黒鉛または一次薄片化黒鉛100重量部に対し、熱分解性発泡剤は100~300重量部の割合で配合することが好ましい。この範囲内であれば、黒鉛または一次薄片化黒鉛をより一層効果的に剥離することができる。
 第2の方法においても、組成物を用意する具体的な方法は限定されないが、例えば、上記ポリマーと黒鉛または一次薄片化黒鉛とを適宜の溶媒もしくは分散媒中に投入し、加熱する方法が挙げられる。
 上記加熱によりポリマーが黒鉛または一次薄片化黒鉛にグラフトされる。この加熱温度については、50℃以上かつ400℃以下の範囲とすることが望ましい。この温度範囲内とすることにより、ポリマーを黒鉛に効果的にグラフトさせることができる。それによって、黒鉛または一次薄片化黒鉛をより一層効果的に剥離することができる。この理由については、以下の通りと考えられる。
 上記ラジカル重合性モノマーを重合して得られたポリマーを加熱することにより、ポリマーの一部が分解し、黒鉛または一次薄片化黒鉛のグラフェン層にラジカルトラップされる。従って、ポリマーが黒鉛または一次薄片化黒鉛にグラフトされることになる。そして、後述する加熱工程においてポリマーを分解し、焼成すると、ポリマーの黒鉛または一次薄片化黒鉛にグラフトされているグラフト面に大きな応力が加わる。そのため、剥離力がグラフト点を起点として作用し、グラフェン層間が効果的に広げられることになると考えられる。
 (第3の方法)
 第3の方法としては、上記黒鉛と、上記ポリマーとを適宜の溶媒に溶解もしくは分散させる方法を挙げることができる。このような溶媒としては、テトラヒドロフラン、メチルエチルケトン、トルエン、酢酸エチルなどを用いることができる。
 また、熱分解性発泡剤を用いる場合には、上記溶媒中に熱分解性発泡剤をさらに添加し分散もしくは溶解させればよい。
 また、第3の方法では、上記組成物として、溶媒中において、ポリマーが黒鉛もしくは一次薄片化黒鉛に吸着されている組成物を用意する。ポリマーを黒鉛もしくは一次薄片化黒鉛に吸着させる方法は特に限定されない。ポリマーが黒鉛に対して吸着性を有するため、上述した溶媒中において、黒鉛もしくは一次薄片化黒鉛をポリマーと混合する方法を用いることができる。好ましくは、ポリマーに黒鉛もしくは一次薄片化黒鉛により効果的に吸着させるために、超音波処理を実施することが望ましい。超音波処理方法は特に限定されない。例えば、適宜の超音波処理装置を用いて、100W、発振周波数28kHz程度の超音波を照射する方法を用いることができる。
 また、超音波処理時間についても特に限定されず、ポリマーが黒鉛に吸着するのに必要な時間以上であればよい。例えば、ポリ酢酸ビニルを黒鉛に吸着させるには、好ましくは、30分~120分程度維持すればよい。
 ポリマーの吸着は、黒鉛の表面エネルギーとポリマーとの相互作用によると考えられる。
 (樹脂の熱分解による黒鉛の剥離工程)
 上記第1の方法、第2の方法、及び第3の方法のいずれにおいても、上記のようにして組成物を用意したのち、組成物中に含まれるポリマーを熱分解する。それによって、ポリマーの一部を残存させながら、黒鉛または一次薄片化黒鉛が剥離され、樹脂残存型の薄片化黒鉛を得ることができる。この場合のポリマーの熱分解を果たすために、上記組成物をポリマーの熱分解温度以上に加熱すればよい。より具体的には、ポリマーの熱分解温度以上に加熱し、さらにポリマーを焼成する。このとき、組成物中にポリマーが残存する程度に焼成する。それによって、樹脂残存型の部分剥離型薄片化黒鉛を得ることができる。例えば、ポリスチレンの熱分解温度を380℃~450℃程度であり、ポリグリシジルメタクリレートの熱分解温度は400℃~500℃程度であり、ポリブチラールの熱分解温度は大気中で550℃~600℃程度である。
 上記ポリマーの熱分解により樹脂残存型の部分剥離型薄片化黒鉛を得ることができるのは、前述した理由によると考えられる。すなわち、黒鉛にグラフトしているポリマーが焼成されると、グラフト点に大きな応力が作用し、それによってグラフェン間の距離が広がるためと考えられる。
 なお、第1の方法では、ラジカル重合性モノマーを重合するための加熱と、上記ポリマーの熱分解とを同じ加熱工程において連続的に実施してもよい旨を説明したが、第2の方法においても、上記ポリマーを黒鉛または一次薄片化黒鉛にグラフトさせるための加熱工程と、上記ポリマーを熱分解する加熱工程とを連続的に実施してもよい。
 また、本熱分解処理では酸化工程がなく、得られた薄片化黒鉛の酸化による劣化が防止されている。よって、黒鉛由来の導電性が保持されている。
 (2)微粒子-薄片化黒鉛複合体を得る工程
 本発明では、上記のようにして用意された樹脂残存型の部分剥離型薄片化黒鉛と、微粒子とを含む原料組成物を加熱し、それによって部分剥離型薄片化黒鉛内に微粒子を包摂させることにより、微粒子-薄片化黒鉛複合体を得る。上記微粒子の熱分解温度は、上記樹脂の熱分解温度より高いことが好ましい。そして、上記原料組成物の加熱は、上記樹脂の熱分解温度より高く、上記微粒子の熱分解温度より低い温度で行われることが好ましい。この範囲で加熱することにより、より一層効率よく部分剥離型薄片化黒鉛内に微粒子を包摂させることができるためである。より詳細には、加熱温度は、370℃~500℃程度の範囲とすることが好ましい。
 上記微粒子としては特に限定されないが、粉体状の微粒子粉末を用いることができる。微粒子の平均粒子径は特に限定されないが、20nm~50000nm程度が好ましい。このような平均粒子径の範囲内であれば、部分剥離型薄片化黒鉛内に微粒子を容易に導入することができる。
 微粒子の配合割合としては、特に限定されないが、部分剥離型薄片化黒鉛100重量部に対して、1~800重量部の範囲が望ましい。
 上記微粒子としては、無機化合物又は金属等の材料を用いることができる。このような材料としては、Co、Mn、Ni、P、Sn、Ge、Si、Ti、Zr、V、Al及びこれらの化合物からなる群から選択された少なくとも1種が用いられる。特に、リチウムイオン二次電池用負極材の構成材料として用いる場合は、リチウムを吸蔵し、放出できる材料を用いることができる。
 なお、リチウムイオン二次電池用負極材の構成材料として用いる場合においては、部分剥離型薄片化黒鉛と、微粒子であるSi粒子とを含む原料組成物を加熱し、それによってSi粒子を部分剥離型薄片化黒鉛にドープすなわち包接させることが好ましい。この加熱温度については特に限定されないが、400℃~550℃程度の範囲とすることが好ましい。このような範囲の温度で加熱することにより、Si粒子が、部分剥離型薄片化黒鉛のグラフェン層間により一層確実に入り込む。すなわち、部分剥離型薄片化黒鉛のグラフェン間が開いている部分にSi粒子が入り込み、Si粒子がドープされることになる。それによって、Si複合炭素質材料を得ることができる。
 上記Si粒子としては特に限定されないが、市販の種々のSi粉末を用いることができる。Si粒子の平均粒子径は特に限定されないが、20nm~500nm程度が好ましい。このような平均粒子径の範囲内であれば、部分剥離型薄片化黒鉛のグラフェン間にSi粒子を容易に導入することができる。
 なお、Si粒子の配合割合は、特に限定されないが、部分剥離型薄片化黒鉛100重量部に対して、5~80重量部の範囲が望ましい。
 Si粒子と部分剥離型薄片化黒鉛とを含む原料組成物を適宜の方法で上記温度に加熱することにより、上記のようにSi粒子を部分剥離型薄片化黒鉛にドープすることができる。
 本発明に係るリチウムイオン二次電池用負極材の製造方法は、上述した製造方法(1)及び(2)に従って、微粒子-薄片化黒鉛複合体を得る工程と、(3)上記微粒子-薄片化黒鉛複合体と、バインダー樹脂と、溶剤とを含む組成物を用意する工程と、(4)該組成物を賦形する工程とを備える。
 (3)賦形用の組成物を用意する工程
 Si粒子がドープされた上記部分剥離型薄片化黒鉛と、バインダー樹脂と、溶剤とを含む組成物を用意する。ここで、バインダー樹脂としては、特に限定されない。このようなバインダー樹脂としては、好ましくは、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド樹脂、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種が用いられる。すなわち、水系バインダー樹脂を用いてもよく、非水系バインダー樹脂を用いてもよい。水系バインダー樹脂としては、上記スチレンブタジエンゴム(SBR)または、カルボキシメチルセルロース(CMC)が好適に用いられる。非水系バインダー樹脂としては、上記ポリフッ化ビニリデン(PVDF)、ポリイミド樹脂、アクリル樹脂、及びブチラール樹脂のうち少なくとも1種が好適に用いられる。
 また、上記組成物の賦形を容易とするために、また混練を容易とするために適宜の溶剤が添加される。このような溶剤としては特に限定されず、テトラヒドロフラン(THF)、エタノール、N-メチルピロリドン(NMP)などの有機溶媒、または水を用いることができる。
 上記組成物におけるSi粒子がドープされた部分剥離型薄片化黒鉛とバインダー樹脂との配合割合については特に限定されないが、Si粒子がドープされた部分剥離型薄片化黒鉛100重量部に対し、バインダー樹脂は2重量部~20重量部程度の割合で配合することが望ましい。この範囲内であれば、負極としての充分な作用を発現するリチウムイオン二次電池用負極材を提供することができる。バインダー樹脂の配合割合が低すぎると、成形が困難となることがある。
 (4)賦形
 本発明では、上記のようにして用意された組成物を賦形することにより、リチウムイオン二次電池用負極材が得られる。この賦形は、様々な成形方法を用いてもよく、あるいは上記組成物を塗工し、乾燥することにより行ってもよい。
 特に、後述するように、本発明に係るリチウムイオン二次電池用負極材は、Cu箔などの金属箔を用いることなく、単独でリチウムイオン二次電池用負極材として用いることができる。従って、例えばセパレータの片面に上記組成物を塗工し乾燥することにより、リチウムイオン二次電池用負極を容易に形成することも可能である。
 (導電性ドープ助剤)
 本発明では、好ましくは、上記Si粒子をドープする工程において、部分剥離型薄片化黒鉛とSi粒子とに加え、さらに、導電性ドープ助剤を混合する。その場合には、Si粒子を部分剥離型薄片化黒鉛により一層容易にドープさせることができる。
 導電性ドープ助剤としては、ケッチェンブラック、アセチレンブラックなどを挙げることができる。好ましくは、ケッチェンブラック、アセチレンブラックからなる群から選択された少なくとも1種を用いることが望ましい。Si粒子のドープ量を増やすことができる。
 上記導電性ドープ助剤の添加割合は特に限定されず、Si粒子100重量部に対し、50~300重量部程度とすることが望ましい。この範囲内であればリチウムイオン二次電池の負極としての特性の劣化を引き起こすことなく、Si粒子を容易に部分剥離型薄片化黒鉛にドープすることができる。
 (微粒子-薄片化黒鉛複合体)
 本発明に係る微粒子-薄片化黒鉛複合体においては、部分剥離型薄片化黒鉛内のグラフェン層間に微粒子が包摂されている。従って、本発明に係る微粒子-薄片化黒鉛複合体は、グラファイトとは異なり、厚み方向においても高い熱伝導性を有する。特に、微粒子として窒化ホウ素、炭化ケイ素、各種金属を用いた場合、より高い熱伝導性が得られる。よって、微粒子を構成する材料としては、一般的に熱伝導性の高い材料を用いることが好ましい。
 また、本発明に係る微粒子-薄片化黒鉛複合体を、リチウムイオン二次電池用電極(正極、負極)の構成材料として用いた場合、電池効率が高く、繰り返しによる性能劣化が起こりにくいリチウムイオン二次電池が得られる。この場合、微粒子を構成する材料としては、リチウムを吸蔵し、放出できる、リチウム遷移金属酸化物(Co系、Mn系、Ni系、P系およびこれらの複合系)や、Sn、Ge、Si、Ti、Zr、V、Al及びこれらの化合物からなる群から選択された少なくとも1種を用いることが好ましい。上記これらの化合物としては、例えばSiであれば、SiOやSiOなどを用いることができ、TiであればTiOなどを用いることができる。
 (リチウムイオン二次電池用負極材)
 本発明によれば、上述した製造工程により、リチウムイオン二次電池用負極材が得られる。本発明に係るリチウムイオン二次電池用負極材は、部分的にグラフェンが剥離している構造を有する樹脂残存型の上記部分剥離型薄片化黒鉛と、部分剥離型薄片化黒鉛内に包接された微粒子と、バインダー樹脂とを含む。特に微粒子としてSiを用いた場合、Siは炭素に比べ、多くのLiと結合し得る。すなわち、Siを用いた場合、理論容量は炭素材料を用いた場合に比べてはるかに高い。もっとも、従来、Siを用いた場合、充放電による体積変化が大きく、寿命特性すなわち充放電サイクル特性が低下するという問題があった。
 これに対して、本発明により提供されるリチウムイオン二次電池用負極材では、充放電サイクル特性が低下し難い。これは、以下の理由によるものと考えられる。
 本発明では、Si粒子等の微粒子が部分剥離型薄片化黒鉛のグラフェン間にドープすなわち包接されている。従って、導電性の高いグラフェン間に密着して挿入されている微粒子がLiイオンのインターカレート及びデインターカレートが起こる際の体積変化に対しても、構造の安定したグラフェンに保護されているため、充放電サイクル特性の劣化が少ないものと考えられる。よって、本発明によれば、理論容量が高いSi粒子等の微粒子を用い、充放電特性に優れ、しかも寿命特性に優れたリチウムイオン二次電池を提供することができる。 
 好ましくは、上記のようにリチウムイオン二次電池用負極材は、上記導電性ドープ助剤を含んでいることが望ましく、それによって、Si粒子が確実にドープされることになる。加えて、バインダー樹脂として上記好ましい樹脂を用いた場合には、Si粒子のドープ量を増やすことができる。
 (リチウムイオン二次電池)
 本発明に係るリチウムイオン二次電池は上記リチウムイオン二次電池用負極材を負極として備える。従って、充放電サイクル特性の劣化が生じ難い。一般に、リチウムイオン二次電池は、負極と、正極と、負極と正極との間に配置されたセパレータとを備える。この負極として、本発明に係るリチウムイオン二次電池用負極材が好適に用いられる。
 特に、上記リチウムイオン二次電池用負極材は、単独で負極を構成する規模を発現する。従って、金属箔を有せず、上記リチウムイオン二次電池用負極材のみからなる負極を構成することも可能である。その場合には、製造工程の簡略化及びコストの低減を果たすことができる。特に、セパレータの片面に上記リチウムイオン二次電池用負極材を塗膜として形成した構造では、製造工程のより一層の簡略化及びコストの低減を果たすことができる。
 上記のように塗膜として形成するには、セパレータの片面に、前述したリチウムイオン二次電池用負極材を製造する際に用意した上記組成物をセパレータの表面に塗工し、乾燥させればよい。よって、簡単な工程で、セパレータ及び負極を構成することができる。
 [実施例及び比較例]
 次に、本発明の具体的な実施例及び比較例を挙げることにより本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
 以下の実施例及び比較例では、下記のようにして用意した樹脂残存型の部分剥離型薄片化黒鉛を用いた。
 (樹脂残存型の部分剥離型薄片化黒鉛の調製)
 膨張化黒鉛(東洋炭素社製、商品名「PFパウダー」、PET表面積=22m/g)20gと、熱分解性発泡剤として、式(1)に示した構造を有するADCA(永和化成社製、商品名「AC♯R-K」、熱分解温度210℃)40gと、ポリプロピレングリコールPPG(三洋化成社製、品番:サンニックスGP-3000、数平均分子量=3000)400gとを、溶媒としてのテトラヒドラフラン400gと混合し、原料組成物を用意した。原料組成物に、超音波処理装置(本多電子社製)を用い、100W、発振周波数28kHzで5時間超音波を照射した。超音波処理により、ポロプロピレングリコールを膨張化黒鉛に吸着させた。このようにして、ポリプロピレングリコールが膨張化黒鉛に吸着されている組成物を用意した。
 上記超音波照射後に、上記組成物を溶液流延法により成形し、乾燥温度80℃の温度で2時間維持し、次に110℃の温度で1時間維持、さらに150℃の温度で1時間維持し、さらに230℃の温度で2時間維持した。それによって、上記組成物中において上記ADCAを熱分解し、発泡させた。
 次に、450℃の温度で1.5時間維持する加熱工程を実施した。それによって、上記ポリプロピレングリコールを熱分解し、樹脂残存型の薄片化黒鉛を得た。この樹脂残存型の薄片化黒鉛では、ポリプロピレングリコールの一部が残存している。
 得られた樹脂残存型の部分剥離型薄片化黒鉛について、空気雰囲気下で30℃~1000℃まで10℃/分の速度で加熱する燃焼試験を行った。この燃焼試験を行った際のTG/DTA測定結果を図1に示す。
 図1の矢印Aで示す570℃付近において、TG曲線に変曲点が表れている。この変曲点よりも高い温度においても、ポリプロピレングリコールが残存していると考えられる。
 また、上記のようにして得た樹脂残存型の部分剥離型薄片化黒鉛を450℃の温度で30分間加熱した試料のXRDスペクトルを図2に実線Dで示す。さらに、上記部分剥離型薄片化黒鉛を500℃での温度で30分間熱処理した試料のXRDスペクトルを二点鎖線Cで図2に示す。さらに、比較のために、原料黒鉛である膨張化黒鉛PFパウダーのXRDスペクトルを図2に破線Bで示す。破線Bに比べ、実線Dでは、26°近辺の黒鉛由来のピークが著しく小さくなっていることがわかる。従って、グラフェン層間が開いていることがわかる。他方、二点鎖線Cでは、500℃の熱処理により樹脂が完全に消失し、グラフェンが再度スタックしたため、26°付近のピークが大きくなっているものと考えられる。
 図3は、上記のように指定された樹脂残存型の部分剥離型薄片化黒鉛の倍率10000倍の走査型電子顕微鏡写真である。図3から明らかなように、グラフェン層間が開いていることがわかる。
 (実施例1)
 上記のようにして得た樹脂残存型の部分剥離型薄片化黒鉛100mgと、平均粒子径50nmのSi粒子(Ionic Liquids Technologies社製NM-0020-HP;φ50nm)10mgと、ケッチェンブラック(ライオン社製EC600JD)20mgとを分散溶媒としてのエタノール20gに投入し、分散させた。次に、超音波処理装置(本多電子社製)を用いて、100W、発振周波数28kHzで4時間超音波を照射した。この超音波処理により、Si粒子を部分剥離型薄片化黒鉛に吸着させた。
 しかる後、上記のようにして処理した組成物を乾燥温度80℃で維持し、分散媒としてのエタノールを除去した。さらに、110℃で1時間、150℃で1時間及び500℃で2時間加熱した。それによって、Si粒子がドープされた部分剥離型薄片化黒鉛を得た。
 上記のようにして得た、Si粒子がドープされた部分剥離型薄片化黒鉛について、XRDスペクトルを測定した。図2に、破線Eに示す。図2の破線Eから明らかなように、得られたSi粒子がドープされた部分剥離型薄片化黒鉛では原料粉末としてのSi粒子由来の28°付近のピークが表れていることがわかる。さらに、上記部分剥離型薄片化黒鉛を500℃×2時間で燃焼させた材料の場合と同様に、26°付近に黒鉛ピークが表れていることがわかる。
 図4は、本実施例で得た上記Si粒子がドープすなわち包摂された部分剥離型薄片化黒鉛の倍率1000倍の走査型電子顕微鏡写真である。図4から明らかなように、この材料では、グラフェン間にSi粒子が挿入されていることがわかる。
 また、図22は、本実施例で得たSi粒子がドープされた部分剥離型薄片化黒鉛のエッジ部分の厚み方向に沿った断面の倍率20000倍の走査型電子顕微鏡写真である。
 図22から明らかなように、部分剥離型薄片化黒鉛のエッジ部分のグラフェン層間には、Si粒子がドープされていることがわかる。
 上記のようにして得たSi粒子がドープされた部分剥離型薄片化黒鉛50mgと、バインダー樹脂としてブチラール樹脂(積水化学社製LB-1)100mgとを5重量%メタノール溶液に投入し、混練した。混練により得られた材料をフッ素系樹脂からなるフィルタを用い減圧濾過し、85℃で1時間、110℃で1時間、さらに150℃で2時間乾燥した。その結果、フィルタ上に、シート状物、すなわち本実施例のリチウムイオン二次電池用負極材が形成されていた。
 上記のようにして得たシート状の二次電池用負極材について、TG/DTA分析を行った。結果を図5に示す。
 図5から明らかなように、TG/DTA分析において、温度が上昇し、最初にブチラール系樹脂が燃焼し、さらに導電性ドープ助剤としてのケッチェンブラックが分解し、最終的に、Si粒子が残存していることがわかる。すなわち、TG曲線の770℃より高温の領域ではSi粒子のみが残存していると考えられる。従って、Si粒子がバインダー樹脂を含む二次電池用負極材中約11重量%程度含有されていることがわかる。
 図2の実線Fは、上記のようにして得たシート上の二次電池用負極材についてのXRDスペクトルを示す図である。実線Fから明らかなように、26°付近に黒鉛由来のピークが表れており、28°付近にSi粒子由来のピークが表れていることがわかる。
 また、上記のようにして得た二次電池用負極材の倍率10000倍の走査型電子顕微鏡写真を図6に示す。図6から明らかなように、グラフェン間にSi粒子がドープされている部分剥離型薄片化黒鉛を含むシートが得られていることがわかる。
 次に、上記のようにして得たリチウムイオン二次電池用負極材を直径25mmの円形のシートに打ち抜いた。この円形のシート上のリチウムイオン二次電池用負極材を用いてコイン型二次電池を作製した。なお、以降の実験は、全てアルゴンガス噴霧のグローブボックス内で行った。
 乾燥された上記二次電池用負極材からなる円形のシートを真空を保ったままグローブボックス内に搬入した。同時に、120℃のオーブンで乾燥された、コイン型電池(HSセルLiイオン二次電池実験用電池セル)をグローブボックス内に搬入した。
 上記コイン型電池(HSセル)の構造を図7に分解斜視図で模式的に示す。
 図7に示すように、対極1と作用極2との間に、作用極2側から順に、二次電池用負極材からなるシート3、セパレータ4、金属リチウム片5、樹脂からなる治具6、集電極7及びばね8を積層した。正極は、上記金属リチウム片5である。金属リチウム片5として、厚み0.2mm、直径16mmのLi箔を用いた。また、セパレータ4(積水化学社製エスフィノ(25μm))を直径24mmに打ち抜いたものを用いた。また、電解液として、1モル/LのLiPF6/EC:DMC(1.2v/v%)のキシダ化学社製電解液を用いた。
 上記のようにして組み立てたコイン型電池において、電圧が0.01Vまで降下した後に1mAの電流を8時間通電し、充電した。充電後1分間休止した。次に、1mAの電流を、電圧が3.0Vになるまで放電した。次に1分間休止した。
 上記充電及び放電からなるサイクルを繰り返した。充放電試験結果を図8に示す。図8の横軸は充放電のサイクル数を示し、縦軸は容量(mAh/g)すなわち充放電特性を示す。
 図8から明らかなように、本実施例によれば、充放電を繰り返しても、充放電特性の劣化が少ないことがわかる。
 また、図9は、クーロン効率の寿命特性を示す図である。図9から明らかなように、初期効率も良く、維持されていることがわかる。
 (実施例2)
 Si粒子がドープされた部分剥離型薄片化黒鉛の製造に際し、分散媒としてエタノールに代えてテトラヒドロフラン(THF)を用いたことを除いては、実施例1と同様にして、Si粒子がドープされた部分剥離型薄片化黒鉛を得た。以下、実施例1と同様にしてリチウムイオン二次電池用負極材を作製し、さらに実施例1と同様にして評価した。
 図10は実施例2で得たシート状のリチウムイオン二次電池用負極材のTG/DTA分析結果を示す図である。本実施例においても、TG曲線において780℃付近に変曲点が表れており、それより高音域においては、Si粒子が残存していることがわかる。
 また、図11は、本実施例で得た上記シート状のリチウムイオン二次電池用負極材の倍率10000倍の走査型電子顕微鏡写真である。
 図12及び図13は、組み立てられたリチウムイオン二次電池が評価用にコイン型電池を用いた充放電特性及びクーロン効率の寿命特性を示す各図である。本実施例においても、充放電サイクルを繰り返したとしても、充放電特性及びクーロン効率が劣化しないことがわかる。
 (実施例3)
 Si粒子がドープされた部分剥離型薄片化黒鉛を得るにあたり、ケッチェンブラックを配合しなかったことを除いては、実施例1と同様にして、Si粒子がドープされた部分剥離型薄片化黒鉛を得、実施例1と同様にしてリチウムイオン二次電池用負極材を得、評価した。
 図14は、このようにして得たシート状のリチウムイオン二次電池用負極材の倍率20000倍の走査型電子顕微鏡写真である。また、図15は、シート状のリチウムイオン二次電池用負極材のTG/DTA分析結果を示す図である。
 図14から明らかなように、本実施例においても、Si粒子が、グラフェン間にドープされていることがわかる。また、図15から明らかなように、本実施例においても、TG曲線の780℃付近に変極点が表れていることがわかる。そして、この780℃より高温の領域においてSi粒子が残存していることがわかる。
 図16及び図17は、充放電試験結果を示す図である。図16は充放電特性の寿命特性を、図17はクーロン効率の寿命特性を示す図である。図16及び図17から明らかなように、実施例3においても、充放電サイクルを繰り返したとしても、充放電特性の劣化及びクーロン効率の変化が生じ難いことがわかる。
 (実施例4)
 分散媒として、エタノールに代えて、テトラヒドロフラン(THF)を用いたことを除いては実施例3と同様にしてSi粒子がドープされた部分剥離型薄片化黒鉛を得、該Si粒子がドープされた部分剥離型薄片化黒鉛を用いてシート状のリチウムイオン二次電池用負極材を得た。以下、実施例3と同様にして評価した。
 図18は、このようにして得たシート状のリチウムイオン二次電池用負極材の倍率10000倍の走査型電子顕微鏡写真である。また、図19は、該シート状のリチウムイオン二次電池用負極材のTG/DTA分析結果を示す図である。
 図18から明らかなように、本実施例においても、Si粒子がグラフェン間にドープされていることがわかる。図19から明らかなように、本実施例においても、TG曲線の780℃付近に変曲点が表れている。そして、この780℃より高温の領域においてSi粒子が残存していることがわかる。
 図20及び図21は、充放電試験結果を示す図である。図21は充放電特性の寿命特性を、図21はクーロン効率の寿命特性を示す図である。図20及び図21から明らかなように、実施例4においても、充放電サイクルを繰り返したとしても、充放電特性の劣化及びクーロン効率の変化が生じ難いことがわかる。
 (実施例5)
 上記のようにして得た樹脂残存型の部分剥離型薄片化黒鉛500mgと、平均粒子径200nmのTiO粒子(石原産業社製、品名CR-90;ルチル型酸化チタン)500mgとを分散溶媒としてのテトラヒドロフラン50gに投入し、分散させた。次に、超音波処理装置(本多電子社製)を用いて、100W、発振周波数28kHzで1時間超音波を照射した。この超音波処理により、TiO粒子を部分剥離型薄片化黒鉛に吸着させた。
 しかる後、上記のようにして処理した組成物を乾燥温度80℃で1時間、さらに110℃で1時間、さらに150℃で1時間維持し、分散媒としてのテトラヒドロフランを除去した。さらに、500℃で2時間加熱した。それによって、TiO粒子が包摂された部分剥離型薄片化黒鉛を得た。
 上記のように、TiO粒子を吸着させた部分剥離型薄片化黒鉛に熱処理を施すことにより得たTiO粒子が包摂された部分剥離型薄片化黒鉛について、XRDスペクトルを測定した。結果を図23の、実線Bに示す。比較のため、実線Aに原料黒鉛としての膨張化黒鉛、破線CにTiO粒子、実線Eに部分剥離型薄片化黒鉛、一点鎖線Dに部分剥離型薄片化黒鉛に500℃、2時間加熱した際のXRDスペクトルを示す。
 図23より、一点鎖線Dでは、実線Eの部分剥離型薄片化黒鉛と比べ、26°近辺のピークが大きくなっている。これは、500℃の熱処理により樹脂が完全に消失し、グラフェンが再度スタックしたためであると考えられる。他方、実線BのTiO粒子が包摂された部分剥離型薄片化黒鉛は、実線Dの部分剥離型薄片化黒鉛ほど熱処理により26°近辺のピークが大きくなっていない。また、25°近辺に、TiO粒子由来のピークが観察された。これらのことから、TiO粒子を吸着させた部分剥離型薄片化黒鉛に熱処理を施した場合は、樹脂の代わりにTiO粒子がグラフェン層間に挿入され、グラフェンが再スタックしていないことがわかる。よって、部分剥離型薄片化黒鉛内にTiO粒子が包摂された樹脂残存型の部分剥離型薄片化黒鉛を作製できていることを確認できた。
 (実施例6)
 膨張化黒鉛(東洋炭素社製、商品名「PFパウダー8」、BET比表面積=22m/g)1000mgと、熱分解性発泡剤として上記式(1)に示される構造を有するADCA(永和化成社製、商品名「AC#R-K3」、熱分解温度210℃)2gと、ラジカル重合性モノマーからなる酢酸ビニルポリマー(デンカ社製、品番:SN-04T)10gとTHF20gを混合し、混合物とした。
 次に、上記混合物に対し、超音波処理装置(本多電子社製)を用いて、100W、発振周波数28kHzで120分間超音波処理した。それによって、上記膨張化黒鉛が上記酢酸ビニルポリマー中に分散している組成物を得た。続いて、上記組成物を80℃、2時間乾燥処理し、110℃の温度となるまでさらに加熱し、THF溶液を完全に乾燥した。さらに230℃の温度で2時間維持した。それによって、上記組成物中において上記ADCAを熱分解し、発泡させた。その後、上記組成物を500℃の温度となるまでさらに加熱し、2時間維持した。それによって、上記組成物中の酢酸ビニルポリマーを熱分解し、上記黒鉛を剥離した。このようにして、樹脂として酢酸ビニルポリマーが残存している部分剥離型薄片化黒鉛を得た。その他の点は、実施例1と同様にして、Si粒子がドープされた部分剥離型薄片化黒鉛を得た。
 上記のように、Si粒子を吸着させた部分剥離型薄片化黒鉛に熱処理を施すことにより得た、Si粒子がドープされた部分剥離型薄片化黒鉛について、XRDスペクトルを測定した。結果を図24の、実線Bに示す。比較のため、実線Aに原料黒鉛としての膨張化黒鉛、破線CにSi粒子、実線Eに部分剥離型薄片化黒鉛、一点鎖線Dに部分剥離型薄片化黒鉛に500℃、2時間加熱した際のXRDスペクトルを示す。
 図24より、実線BのSi粒子がドープ部分剥離型薄片化黒鉛は、実線Dの部分剥離型薄片化黒鉛ほど熱処理により26°近辺のピークが大きくなっていない。また、28°近辺に、Si粒子由来のピークが観察された。これらのことから、Si粒子を吸着させた部分剥離型薄片化黒鉛に熱処理を施した場合は、樹脂の代わりにSi粒子がグラフェン層間に挿入され、グラフェンが再スタックしていないことがわかる。よって、部分剥離型薄片化黒鉛内にSi粒子がドープされた樹脂残存型の部分剥離型薄片化黒鉛を作製できていることを確認できた。
 (実施例7)
 実施例6で使用した部分剥離型薄片化黒鉛を用いたこと以外は、実施例5と同様にして、TiO粒子が包摂された部分剥離型薄片化黒鉛を得た。
 上記のようTiO粒子を吸着させた部分剥離型薄片化黒鉛に熱処理を施すことにより得た、TiO粒子がドープされた部分剥離型薄片化黒鉛について、XRDスペクトルを測定した。結果を図25の、実線Bに示す。比較のため、実線Aに原料黒鉛としての膨張化黒鉛、破線CにTiO粒子、実線Eに部分剥離型薄片化黒鉛、一点鎖線Dに部分剥離型薄片化黒鉛に500℃、2時間加熱した際のXRDスペクトルを示す。
 図25より、実線BのTiO粒子が包摂された部分剥離型薄片化黒鉛は、実線Dの部分剥離型薄片化黒鉛ほど熱処理により26°近辺のピークが大きくなっていない。また、25°近辺に、TiO粒子由来のピークが観察された。これらのことから、TiO粒子を吸着させた部分剥離型薄片化黒鉛に熱処理を施した場合は、樹脂の代わりにTiO粒子がグラフェン層間に挿入され、グラフェンが再スタックしていないことがわかる。よって、部分剥離型薄片化黒鉛内にTiO粒子が包摂された樹脂残存型の部分剥離型薄片化黒鉛を作製できていることを確認できた。
1…対極
2…作用極
3…シート
4…セパレータ
5…金属リチウム片
6…治具
7…集電極
8…ばね

Claims (21)

  1.  樹脂が黒鉛または一次薄片化黒鉛に固定されている組成物中の樹脂を熱分解し、前記樹脂の一部を残存させつつ、黒鉛または一次薄片化黒鉛を剥離して得られた、部分的にグラフェンが剥離している構造を有する樹脂残存型の部分剥離型薄片化黒鉛を用意する工程と、
     前記部分剥離型薄片化黒鉛と、微粒子とを含む原料組成物を加熱し、前記微粒子を前記部分剥離型薄片化黒鉛内に包摂することにより、微粒子-薄片化黒鉛複合体を得る工程とを備える、微粒子-薄片化黒鉛複合体の製造方法。
  2.  前記微粒子の熱分解温度が、前記樹脂の熱分解温度より高い、請求項1に記載の微粒子-薄片化黒鉛複合体の製造方法。
  3.  前記原料組成物の加熱が、前記樹脂の熱分解温度より高く、前記微粒子の熱分解温度より低い温度で行われる、請求項2に記載の微粒子-薄片化黒鉛複合体の製造方法。
  4.  前記微粒子が粉体状である、請求項1~3のいずれか一項に記載の微粒子-薄片化黒鉛複合体の製造方法。
  5.  前記微粒子が無機化合物又は金属である、請求項1~4のいずれか一項に記載の微粒子-薄片化黒鉛複合体の製造方法。
  6.  前記無機化合物又は金属が、リチウムを吸蔵し、放出できる材料である、請求項5に記載の微粒子-薄片化黒鉛複合体の製造方法。
  7.  前記無機化合物又は金属が、Co、Mn、Ni、P、Sn、Ge、Si、Ti、Zr、V、Al及びこれらの化合物からなる群から選択された少なくとも1種である、請求項5または6に記載の微粒子-薄片化黒鉛複合体の製造方法。
  8.  請求項1~7のいずれか一項に記載の微粒子-薄片化黒鉛複合体の製造方法により、微粒子-薄片化黒鉛複合体を得る工程と、
     前記微粒子-薄片化黒鉛複合体と、バインダー樹脂と、溶剤とを含む組成物を用意する工程と、
     前記組成物を賦形する工程とを備える、リチウムイオン二次電池用負極材の製造方法。
  9.  前記微粒子がSi粒子であって、
     前記微粒子-薄片化黒鉛複合体を得る工程における前記微粒子の部分剥離型薄片化黒鉛内への包摂が、Si粒子を部分剥離型薄片化黒鉛にドープすることにより行われる、請求項8に記載のリチウムイオン二次電池用負極材の製造方法。
  10.  前記Si粒子をドープする工程において、前記部分剥離型薄片化黒鉛と、Si粒子とを含む組成物にさらに導電性ドープ助剤を混合する、請求項9に記載のリチウムイオン二次電池用負極材の製造方法。
  11.  前記導電性ドープ助剤として、ケッチェンブラック、アセチレンブラックからなる群から選択された少なくとも1種を用いる、請求項10に記載のリチウムイオン二次電池用負極材の製造方法。
  12.  前記バインダー樹脂が、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド樹脂、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種を用いる、請求項8~11のいずれ1項に記載のリチウムイオン二次電池用負極材の製造方法。
  13.  部分的にグラフェンが剥離している構造を有する部分剥離型薄片化黒鉛内に、微粒子が包摂されている、微粒子-薄片化黒鉛複合体。
  14.  前記微粒子がSi粒子であり、前記部分剥離型薄片化黒鉛にドープされている、請求項13に記載の微粒子-薄片化黒鉛複合体。
  15.  請求項13または14に記載の微粒子-薄片化黒鉛複合体と、バインダー樹脂とを含む、リチウムイオン二次電池用負極材。
  16.  導電性ドープ助剤をさらに含む、請求項15に記載のリチウムイオン二次電池用負極材。
  17.  前記バインダー樹脂が、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド樹脂、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種である、請求項15または16に記載のリチウムイオン二次電池用負極材。
  18.  請求項15~17のいずれか一項に記載のリチウムイオン二次電池用負極材を負極として備える、リチウムイオン二次電池。
  19.  前記リチウムイオン二次電池用負極材からなる前記負極と、正極と、前記負極と前記正極との間に配置されたセパレータとを備える、請求項18に記載のリチウムイオン二次電池。
  20.  前記負極が金属箔を有せず、前記リチウムイオン二次電池用負極材からなる、請求項18または19に記載のリチウムイオン二次電池。
  21.  前記負極が、前記セパレータの片面に前記リチウムイオン二次電池用負極材を片面に設けられた塗膜として形成されている、請求項19または20に記載のリチウムイオン二次電池。
PCT/JP2014/054444 2013-03-04 2014-02-25 微粒子-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池 WO2014136609A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/433,842 US9711786B2 (en) 2013-03-04 2014-02-25 Fine particle-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and methods for producing the same, and lithium ion secondary battery
KR1020157013578A KR102151663B1 (ko) 2013-03-04 2014-02-25 미립자-박편화 흑연 복합체, 리튬 이온 이차 전지용 부극재 및 그들의 제조 방법, 및 리튬 이온 이차 전지
JP2014511643A JP5636135B1 (ja) 2013-03-04 2014-02-25 微粒子−薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池
EP14760126.4A EP2966714B1 (en) 2013-03-04 2014-02-25 Fine grain-flaked graphite composite body, lithium-ion secondary battery negative electrode material, manufacturing method for same, and lithium-ion secondary battery
CN201480011542.7A CN105190965B (zh) 2013-03-04 2014-02-25 微粒‑薄片化石墨复合体、锂离子二次电池用负极材料及其制造方法以及锂离子二次电池
ES14760126T ES2701526T3 (es) 2013-03-04 2014-02-25 Cuerpo de material compuesto de grafito con copos de granos finos, material de electrodo negativo de batería secundaria de iones de litio, método de fabricación de los mismos y batería secundaria de iones de litio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013041737 2013-03-04
JP2013-041737 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014136609A1 true WO2014136609A1 (ja) 2014-09-12

Family

ID=51491130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054444 WO2014136609A1 (ja) 2013-03-04 2014-02-25 微粒子-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池

Country Status (8)

Country Link
US (1) US9711786B2 (ja)
EP (1) EP2966714B1 (ja)
JP (3) JP5636135B1 (ja)
KR (1) KR102151663B1 (ja)
CN (1) CN105190965B (ja)
ES (1) ES2701526T3 (ja)
TW (1) TWI625298B (ja)
WO (1) WO2014136609A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152869A1 (ja) * 2015-03-24 2016-09-29 積水化学工業株式会社 活物質-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びリチウムイオン二次電池
JP6097451B2 (ja) * 2014-09-05 2017-03-15 日立マクセル株式会社 非水二次電池
WO2017090553A1 (ja) * 2015-11-27 2017-06-01 積水化学工業株式会社 キャパシタ用電極材及びキャパシタ
JP2017182913A (ja) * 2016-03-28 2017-10-05 積水化学工業株式会社 複合体及びその製造方法、リチウムイオン二次電池用正極材、並びにリチウムイオン二次電池
JP2018037256A (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
WO2018043481A1 (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 蓄電デバイス用電極材料、蓄電デバイス用電極及び蓄電デバイス
JP2018037255A (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
JP2018041710A (ja) * 2016-08-31 2018-03-15 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
JP2018163756A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用負極、非水電解質二次電池及び炭素材料
JP2018163755A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用負極、非水電解質二次電池及び炭素材料
JP2018200935A (ja) * 2017-05-26 2018-12-20 積水化学工業株式会社 電極材及び蓄電デバイス
WO2019069668A1 (ja) * 2017-10-05 2019-04-11 昭和電工株式会社 リチウムイオン二次電池用負極材料、その製造方法、負極用ペースト、負極シート及びリチウムイオン二次電池
WO2019131519A1 (ja) * 2017-12-27 2019-07-04 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2019240021A1 (ja) * 2018-06-15 2019-12-19 積水化学工業株式会社 二次電池用負極材、二次電池用負極、及び二次電池
US10658126B2 (en) * 2013-12-26 2020-05-19 Sekisui Chemical Co., Ltd. Capacitor electrode material, method for producing same, and electric double layer capacitor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285643B2 (ja) * 2013-03-04 2018-02-28 積水化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、並びにリチウムイオン二次電池
CN104577084A (zh) 2015-01-20 2015-04-29 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用纳米硅复合负极材料、制备方法及锂离子电池
KR101764734B1 (ko) 2015-04-13 2017-08-08 한국과학기술원 0차원, 1차원, 2차원 탄소나노물질이 균일하게 내장된 폴리이미드 필름 제조 및 이를 이용한 유연 보호막 필름
WO2016181952A1 (ja) * 2015-05-14 2016-11-17 積水化学工業株式会社 炭素質材料、炭素質材料-活物質複合体、リチウムイオン二次電池用電極材及びリチウムイオン二次電池
JP6840476B2 (ja) * 2015-07-16 2021-03-10 株式会社半導体エネルギー研究所 蓄電装置の作製方法
WO2017057769A1 (ja) 2015-10-01 2017-04-06 昭和電工株式会社 リチウムイオン二次電池の負電極製造用粒状複合材
KR101956827B1 (ko) * 2015-11-11 2019-03-13 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2018037254A (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
KR20190074322A (ko) 2016-12-15 2019-06-27 쇼와 덴코 가부시키가이샤 입상 복합재, 리튬이온 이차전지용 음극 및 그 제조 방법
CN110651387B (zh) * 2017-06-05 2023-02-17 积水化学工业株式会社 硫-碳材料复合体、锂硫二次电池用正极材料以及锂硫二次电池
JP7148396B2 (ja) * 2017-06-15 2022-10-05 積水化学工業株式会社 炭素材料、蓄電デバイス用電極材料、並びに蓄電デバイス
US10873075B2 (en) * 2017-09-01 2020-12-22 Nanograf Corporation Composite anode material including particles having buffered silicon-containing core and graphene-containing shell
CN109935786B (zh) * 2018-11-20 2020-09-15 万向一二三股份公司 一种水系超级纳米磷酸铁锂电池负极板的制备方法
CN114467197A (zh) 2019-09-26 2022-05-10 积水化学工业株式会社 二次电池用负极材料、二次电池用负极以及二次电池
CN113178569A (zh) * 2021-03-22 2021-07-27 黑龙江工业学院 一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法
KR102653055B1 (ko) * 2021-07-09 2024-04-01 성균관대학교산학협력단 재배열된 층상구조 탄소소재, 이의 제조 방법 및 이를 포함하는 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129914A (ja) 2007-11-27 2009-06-11 Samsung Sdi Co Ltd リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
JP2009146581A (ja) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk リチウムイオン二次電池用シート状負極及びその製造方法
JP2011057541A (ja) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd 炭素材料、電極材料及びリチウムイオン二次電池負極材料
JP2011219318A (ja) * 2010-04-12 2011-11-04 Idemitsu Kosan Co Ltd グラファイト分散液及びその製造方法並びにグラファイト粉末
WO2012087698A1 (en) * 2010-12-23 2012-06-28 Nanotek Instruments, Inc. Surface-mediated lithium ion-exchanging energy storage device
JP2013232403A (ja) * 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 蓄電装置用負極、その製造方法及び蓄電装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359220B2 (ja) * 1996-03-05 2002-12-24 キヤノン株式会社 リチウム二次電池
JPH11176419A (ja) * 1997-12-15 1999-07-02 Tdk Corp リチウム二次電池およびその製造方法
JP2001052753A (ja) * 1999-08-04 2001-02-23 Nissan Motor Co Ltd 電池及びその製造方法
JP3823784B2 (ja) * 2001-09-06 2006-09-20 富士ゼロックス株式会社 ナノワイヤーおよびその製造方法、並びにそれを用いたナノネットワーク、ナノネットワークの製造方法、炭素構造体、電子デバイス
JP3957692B2 (ja) * 2004-02-27 2007-08-15 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用複合黒鉛粒子、負極およびリチウムイオン二次電池
US7658901B2 (en) * 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
CN101755362A (zh) * 2007-07-25 2010-06-23 株式会社Lg化学 电化学装置及其制造方法
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
US8119288B2 (en) * 2007-11-05 2012-02-21 Nanotek Instruments, Inc. Hybrid anode compositions for lithium ion batteries
CN101494286A (zh) * 2007-12-04 2009-07-29 法拉赛斯能源公司 二次电池材料及其制备方法
EP2262034B1 (en) * 2008-02-25 2014-03-12 Panasonic Corporation Battery can, method for manufacturing the same and device for manufacturing the same, and battery using batery can
US8257867B2 (en) * 2008-07-28 2012-09-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
EP4234490A3 (en) * 2008-12-18 2023-10-04 Molecular Rebar Design LLC Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
US20100291438A1 (en) * 2009-05-15 2010-11-18 PDC Energy, LLC Electrode material, lithium-ion battery and method thereof
KR101171835B1 (ko) * 2009-07-03 2012-08-14 한국생산기술연구원 친수성 고분자로 표면개질된 폴리올레핀 미세다공성막, 그의 표면개질방법 및 표면개질된 폴리올레핀 미세다공성막을 구비한 리튬이온폴리머전지
US20110287241A1 (en) * 2009-11-18 2011-11-24 Vorbeck Materials Corp. Graphene Tapes
US9112240B2 (en) * 2010-01-04 2015-08-18 Nanotek Instruments, Inc. Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same
US9640334B2 (en) * 2010-01-25 2017-05-02 Nanotek Instruments, Inc. Flexible asymmetric electrochemical cells using nano graphene platelet as an electrode material
US9884934B2 (en) 2011-02-04 2018-02-06 Sekisui Chemical Co., Ltd. Method for producing exfoliated graphite-polymer composite material
JP2012250880A (ja) * 2011-06-03 2012-12-20 Semiconductor Energy Lab Co Ltd グラフェン、蓄電装置および電気機器
CN105174252B (zh) * 2011-06-24 2018-12-14 株式会社半导体能源研究所 多层石墨烯及蓄电装置
KR101718055B1 (ko) * 2012-02-13 2017-03-20 삼성에스디아이 주식회사 음극 활물질 및 이를 포함하는 리튬 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129914A (ja) 2007-11-27 2009-06-11 Samsung Sdi Co Ltd リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
JP2009146581A (ja) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk リチウムイオン二次電池用シート状負極及びその製造方法
JP2011057541A (ja) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd 炭素材料、電極材料及びリチウムイオン二次電池負極材料
JP2011219318A (ja) * 2010-04-12 2011-11-04 Idemitsu Kosan Co Ltd グラファイト分散液及びその製造方法並びにグラファイト粉末
WO2012087698A1 (en) * 2010-12-23 2012-06-28 Nanotek Instruments, Inc. Surface-mediated lithium ion-exchanging energy storage device
JP2013232403A (ja) * 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 蓄電装置用負極、その製造方法及び蓄電装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658126B2 (en) * 2013-12-26 2020-05-19 Sekisui Chemical Co., Ltd. Capacitor electrode material, method for producing same, and electric double layer capacitor
JP6097451B2 (ja) * 2014-09-05 2017-03-15 日立マクセル株式会社 非水二次電池
JPWO2016035882A1 (ja) * 2014-09-05 2017-04-27 日立マクセル株式会社 非水二次電池
JPWO2016152869A1 (ja) * 2015-03-24 2018-01-11 積水化学工業株式会社 活物質−薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びリチウムイオン二次電池
US10680237B2 (en) 2015-03-24 2020-06-09 Sekisui Chemical Co., Ltd. Active material-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
WO2016152869A1 (ja) * 2015-03-24 2016-09-29 積水化学工業株式会社 活物質-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びリチウムイオン二次電池
WO2017090553A1 (ja) * 2015-11-27 2017-06-01 積水化学工業株式会社 キャパシタ用電極材及びキャパシタ
CN107615428A (zh) * 2015-11-27 2018-01-19 积水化学工业株式会社 电容器用电极材料及电容器
JPWO2017090553A1 (ja) * 2015-11-27 2018-09-13 積水化学工業株式会社 キャパシタ用電極材及びキャパシタ
JP2017182913A (ja) * 2016-03-28 2017-10-05 積水化学工業株式会社 複合体及びその製造方法、リチウムイオン二次電池用正極材、並びにリチウムイオン二次電池
JP2018041710A (ja) * 2016-08-31 2018-03-15 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
JP2018037255A (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
WO2018043481A1 (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 蓄電デバイス用電極材料、蓄電デバイス用電極及び蓄電デバイス
KR102356903B1 (ko) * 2016-08-31 2022-01-28 세키스이가가쿠 고교가부시키가이샤 축전 디바이스용 전극 재료, 축전 디바이스용 전극 및 축전 디바이스
KR20190042487A (ko) * 2016-08-31 2019-04-24 세키스이가가쿠 고교가부시키가이샤 축전 디바이스용 전극 재료, 축전 디바이스용 전극 및 축전 디바이스
JPWO2018043481A1 (ja) * 2016-08-31 2019-06-24 積水化学工業株式会社 蓄電デバイス用電極材料、蓄電デバイス用電極及び蓄電デバイス
US10998551B2 (en) 2016-08-31 2021-05-04 Sekisui Chemical Co., Ltd. Electrode material for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP2018037256A (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
JP2018163756A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用負極、非水電解質二次電池及び炭素材料
JP2018163755A (ja) * 2017-03-24 2018-10-18 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用負極、非水電解質二次電池及び炭素材料
JP2018200935A (ja) * 2017-05-26 2018-12-20 積水化学工業株式会社 電極材及び蓄電デバイス
JPWO2019069668A1 (ja) * 2017-10-05 2019-11-14 昭和電工株式会社 リチウムイオン二次電池用負極材料、その製造方法、負極用ペースト、負極シート及びリチウムイオン二次電池
WO2019069668A1 (ja) * 2017-10-05 2019-04-11 昭和電工株式会社 リチウムイオン二次電池用負極材料、その製造方法、負極用ペースト、負極シート及びリチウムイオン二次電池
US11777082B2 (en) 2017-10-05 2023-10-03 Showa Denko K.K. Negative electrode material for lithium ion secondary batteries, method for manufacturing the same, paste for negative electrode, negative electrode sheet, and lithium ion secondary
JP2020068191A (ja) * 2017-12-27 2020-04-30 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2019131519A1 (ja) * 2017-12-27 2019-07-04 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP7293645B2 (ja) 2017-12-27 2023-06-20 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP7452599B2 (ja) 2017-12-27 2024-03-19 東ソー株式会社 リチウム二次電池用複合活物質
WO2019240021A1 (ja) * 2018-06-15 2019-12-19 積水化学工業株式会社 二次電池用負極材、二次電池用負極、及び二次電池

Also Published As

Publication number Publication date
JPWO2014136609A1 (ja) 2017-02-09
ES2701526T3 (es) 2019-02-22
US9711786B2 (en) 2017-07-18
TW201442953A (zh) 2014-11-16
CN105190965A (zh) 2015-12-23
KR102151663B1 (ko) 2020-09-04
JP2018195590A (ja) 2018-12-06
TWI625298B (zh) 2018-06-01
JP5636135B1 (ja) 2014-12-03
US20150270534A1 (en) 2015-09-24
EP2966714A1 (en) 2016-01-13
JP6431295B2 (ja) 2018-11-28
EP2966714B1 (en) 2018-09-12
CN105190965B (zh) 2018-02-06
JP2014197551A (ja) 2014-10-16
KR20150125640A (ko) 2015-11-09
EP2966714A4 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP6431295B2 (ja) 微粒子−薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びそれらの製造方法並びにリチウムイオン二次電池
WO2016152869A1 (ja) 活物質-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びリチウムイオン二次電池
JP6285643B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、並びにリチウムイオン二次電池
CN106415898B (zh) 石墨烯涂覆的多孔硅-碳复合材料及其制造方法
JP6732300B2 (ja) 硫黄−炭素複合体、この製造方法及びこれを含むリチウム−硫黄電池
JP4974597B2 (ja) リチウムイオン二次電池用負極及び負極活物質
JP6200593B2 (ja) 炭素質材料、炭素質材料−活物質複合体、リチウムイオン二次電池用電極材及びリチウムイオン二次電池
KR101458309B1 (ko) 부피 변화를 완화할 수 있는 Si-블록 공중합체 코어-쉘 나노 입자 및 이를 이용한 리튬 이차전지용 음극활물질
JP6055729B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2015098758A1 (ja) キャパシタ用電極材及びその製造方法、並びに電気二重層キャパシタ
WO2014007161A1 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用複合負極材料、リチウムイオン二次電池負極用樹脂組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN109728288B (zh) 硅碳复合材料及其制备方法、锂电池负极及锂电池
JP7452599B2 (ja) リチウム二次電池用複合活物質
KR101665755B1 (ko) 이차전지용 음극활물질 및 이의 제조 방법
CN111816857A (zh) 一种核壳结构的纳米硅复合材料及其制备方法和应用
KR102104492B1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이를 포함하는 리튬이차전지
JP2017182913A (ja) 複合体及びその製造方法、リチウムイオン二次電池用正極材、並びにリチウムイオン二次電池
WO2022102693A1 (ja) 非水電解質二次電池用導電助剤、非水電解質二次電池用正極、及び非水電解質二次電池
JP2023027672A (ja) 全固体電池用電極及び全固体電池
KR20240065508A (ko) 이차전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011542.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014511643

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14433842

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157013578

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014760126

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE