CN113178569A - 一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法 - Google Patents

一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法 Download PDF

Info

Publication number
CN113178569A
CN113178569A CN202110324768.4A CN202110324768A CN113178569A CN 113178569 A CN113178569 A CN 113178569A CN 202110324768 A CN202110324768 A CN 202110324768A CN 113178569 A CN113178569 A CN 113178569A
Authority
CN
China
Prior art keywords
graphite
lithium battery
negative electrode
pillared
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110324768.4A
Other languages
English (en)
Inventor
马丽阳
房媛媛
周华
刘文婧
王雪微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University of Science and Technology
Original Assignee
Heilongjiang University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University of Science and Technology filed Critical Heilongjiang University of Science and Technology
Priority to CN202110324768.4A priority Critical patent/CN113178569A/zh
Publication of CN113178569A publication Critical patent/CN113178569A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/30Purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明是一种天然石墨复合锂电池负极材料及其制备方法,所述负极材料是通过金红石相TiO2柱撑石墨实现的,具体地说,石墨的层与层之间柱撑有金红石相TiO2。该锂电池负极材料及其制备通过对支撑结构的改进,能够实现对负极材料的石墨和金红石相TiO2的稳定结合,增加了负极材料的稳定性,提高了复合锂电池负极材料的性能。

Description

一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备 方法
技术领域
本发明属于电极材料的技术领域,特别涉及一种柱撑层载半导体型的天然石墨复合锂电池负极材料的制备方法。
背景技术
柱撑层状矿物复合材料是指两种或两种以上的无机、有机柱撑分子或离子均进入层间域环境,共同作用于层状矿物柱撑体并表现出协同作用而具有各种特殊属性的复合材料。我国的瓷器,就是关于层状矿物插层柱撑复合材料的首次出现。这是碱金属离子在天然形成的层状矿物中如长石或高岭石的***柱撑作用。某些具有层状结构的固体如石墨、硅酸盐、过渡金属二硫化物等可以与一些金属、酸或碱之间形成插层柱撑反应。
由于插层柱撑化合物在超导、磁性、催化及电池电极材料等领域显示出许多独特的性质,因此,层间柱撑研究也是当前比较活跃的一个研究方向。
其原理是:原子按层规则排列形成的晶体,称为层状晶体。具有层状晶体结构的矿物称为层状矿物。层状矿物的同层原子间距小,相互作用力强;层与层之间延方向的原子间距大、作用力弱。像石墨就属于这种结构。除了石墨以外,还有大量无机固体,例如层状过渡金属氧化物、硫化物、卤化物、卤氧化物、层状硅酸盐、沸石以及合金都可以用作层间反应的基质。
在石墨晶体结构中,片层内的原子以共价键金属键相连,而层间则以较弱的分子键相结合,决定了层状石墨的可插层柱撑物性,2014年3月清华大学化工系张强、魏飞教授研究组成功制备出一种具有自分散、不堆叠特性的柱撑石墨烯,可用于高速放电,高容量的锂硫电池。该柱撑石墨烯用于锂硫电池正极时,其材料的能量密度、功率密度显著优于商用锂离子电池所用正极材料,在电动汽车、个人电子产品、以及大规模储能中具有潜在的应用前景。
然而,该项研究是通过催化气相生长调变石墨烯的拓扑结构,获得了具有突起结构的石墨烯。虽然是插层柱撑反应,但是,反应造成了石墨烯层之间的结构发生变化,产生了突起结构,此其一;其二,该项研究的成果应用于电池的正极材料,并不符合负极材料的使用,因此,亟需一种新的电池负极材料,以满足电池负极的需求。
发明内容
为解决上述问题,本发明的首要目的在于提供一种天然石墨复合锂电池负极材料及其制备方法,该锂电池负极材料及其制备通过对支撑结构的改进,能够实现对负极材料的石墨和金红石相TiO2的稳定结合,增加了负极材料的稳定性,提高了复合锂电池负极材料的性能。
为实现上述目的,本发明的技术方案如下。
一种天然石墨复合锂电池负极材料,所述材料是通过金红石相TiO2柱撑石墨实现的,石墨的层与层之间柱撑有金红石相TiO2
一种天然石墨复合锂电池负极材料的制备方法,所述方法包括如下步骤:
S1、石墨悬浮液的制备;
将石墨研细,然后通过蒸馏水进行分散,配置成石墨悬浮液;
具体地说,将2g的石墨研磨过200目筛后,置于400ml的烧杯中,缓慢加入200ml的二次蒸馏水,常温下搅拌5h,使其均匀分散,配置成浓度为1wt%的石墨悬浮液。
S2、柱撑材料的制备;
采用液相合成法,以钛酸丁酯为前驱体,在不断搅拌的条件下,将同比例的钛酸丁酯加入无水乙醇中;待钛酸丁酯和无水乙醇混合均匀后,缓慢加入一定量(钛酸丁酯重量1/2-1)的氨水后,将溶液离心洗涤数次,使钛酸丁酯充分反应后得到钛离子复合液;再加入分别溶(或未溶)有石墨的HNO3;
当加入溶有石墨的HNO3时,先将石墨悬浮液和HNO3按照1∶1.2-1.5的重量比配制,混合均匀后加入到钛离子复合液中,进行复合;当加入未溶有石墨的HNO3时,分别将石墨和HNO3 1∶1.2-1.5的重量比按照加入到钛离子复合液中。
再于一定温度(20-30℃)下回流3-4h;再经老化24h后于65℃干燥即得金红石相TiO 2柱撑石墨。
所述石墨采用石墨烯,具体地说,石墨烯纯度均高于80%,主要为蒙脱石、累托石、皂石中其中的一种或几种的混合石墨烯,经破碎、研磨至颗粒180-220 目后得到的层状石墨烯粉体。
本发明和现有技术相比,具有如下优点和有益效果:
(1)利用掺杂柱撑的手段对层状矿物进行改性,可以复合锂电池负极材料的稳定性,大大提高了复合锂电池负极材料的性能。
(2)在室温条件下,以低成本的钛酸丁酯作前驱剂,用石墨和HNO3形成柱撑层状矿物,其柱撑复合材料的热稳定性高。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
天然经常用于锂电池的负极材料,目前主流的负极仍然是天然石墨和人造石墨。天然石墨由于具有完整的石墨片层结构,适合于锂离子在其中拖嵌和穿梭,但是天然石墨未经改性循环性能差,初始库仑效率低,且倍率性能不好。
TiO2是一种具有优异的光电活性、化学稳定性及无毒等物化性能的型半导体,作为一种同质多形变体,常温下具有金红石相、锐钛矿相及板钛矿相三种晶相。晶相不同,其带隙及晶体结构都有差异,因此,其光催化活性也不相同。板钛矿较不稳定,研究价值较小。金红石相的带隙高于锐钛矿相,所以金红石相的光催化活性高于锐钛矿相。金红石中的二氧化钛其内部孔隙的孔径在0.27-0.98 纳米之间,呈晶体排列,带弱电性,由此可以极大地促进锂离子的拖嵌和穿梭。因此,发明人创造性地将金红石相TiO2和石墨结合在一起,将石墨层之间柱撑金红石相TiO2,利用金红石相TiO2改进石墨的结构,从而大大提高石墨的性能。
基于此,本发明所实现的天然石墨复合锂电池负极材料,是通过金红石相 TiO2柱撑石墨实现的,其核心的结构是石墨的层与层之间柱撑有金红石相TiO2
为了达到上述石墨层之间柱撑金红石相TiO2的效果,本发明也提供了天然石墨复合锂电池负极材料的制备方法,所述方法包括如下步骤:
S1、石墨悬浮液的制备;
将石墨研细,然后通过蒸馏水进行分散,配置成悬浮液;
具体地说,将2g的石墨研磨过200目筛后,置于400ml的烧杯中,缓慢加入200ml的二次蒸馏水,常温下搅拌5h,使其均匀分散,配置成浓度为1wt%的石墨悬浮液。
S2、柱撑材料的制备;
采用液相合成法,以钛酸丁酯为前驱体,在不断搅拌的条件下,将同比例的钛酸丁酯加入无水乙醇中;待钛酸丁酯和无水乙醇混合均匀后,缓慢加入一定量(钛酸丁酯重量1/2-1)的氨水后,将溶液离心洗涤数次,使钛酸丁酯充分反应后得到钛离子复合液;再加入分别溶(或未溶)有石墨的HNO3;
当加入溶有石墨的HNO3时,先将石墨悬浮液和HNO3按照1∶1.2-1.5的重量比配制,混合均匀后加入到钛离子复合液中,进行复合;当加入未溶有石墨的HNO3时,分别将石墨和HNO3 1∶1.2-1.5的重量比按照加入到钛离子复合液中。
再于一定温度(20-30℃)下回流3-4h;再经老化24h后于65℃干燥即得金红石相TiO 2柱撑石墨。
通常,所述石墨采用石墨烯,石墨烯纯度均高于80%,主要为蒙脱石、累托石、皂石中其中的一种或几种的混合石墨烯,经破碎、研磨至颗粒180-220 目后得到的层状石墨烯粉体。
总之,本发明具有如下优点和有益效果:
(1)利用掺杂柱撑的手段对层状矿物进行改性,可以复合锂电池负极材料的稳定性,大大提高了复合锂电池负极材料的性能。
(2)在室温条件下,以低成本的钛酸丁酯作前驱剂,用石墨和HNO3形成柱撑层状矿物,其柱撑复合材料的热稳定性高。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种天然石墨复合锂电池负极材料,其特征在于所述材料是通过金红石相TiO2柱撑石墨实现的,石墨的层与层之间柱撑有金红石相TiO2
2.一种天然石墨复合锂电池负极材料的制备方法,其特征在于所述方法包括如下步骤:
S1、石墨悬浮液的制备;
将石墨研细,然后通过蒸馏水进行分散,配置成悬浮液;
S2、柱撑材料的制备;
采用液相合成法,以钛酸丁酯为前驱体,在不断搅拌的条件下,将同比例的钛酸丁酯加入无水乙醇中;待钛酸丁酯和无水乙醇混合均匀后,缓慢加入氨水后,将溶液离心洗涤数次;再加入分别溶(或未溶)有和石墨的HNO3;
再于常温下回流3-4h;再经老化24h后于65℃干燥即得金红石相TiO2柱撑石墨。
3.如权利要求2所述的天然石墨复合锂电池负极材料的制备方法,其特征在于S1步骤中,石墨研磨过200目筛后,加入二次蒸馏水,常温下搅拌,使其均匀分散,配置成浓度为0.8-1.5wt%的石墨悬浮液。
4.如权利要求2所述的天然石墨复合锂电池负极材料的制备方法,其特征在于S2步骤中,当加入溶有石墨的HNO3时,先将石墨悬浮液和HNO3按照1∶1.2-1.5的重量比配制,混合均匀后加入到钛离子复合液中,进行复合;当加入未溶有石墨的HNO3时,分别将石墨和HNO31∶1.2-1.5的重量比按照加入到钛离子复合液中。
5.如权利要求2所述的天然石墨复合锂电池负极材料的制备方法,其特征在于所述石墨采用石墨烯,石墨烯纯度均高于80%,为蒙脱石、累托石、皂石中其中的一种或几种的混合石墨烯,经破碎、研磨至颗粒180-220目后得到的层状石墨烯粉体。
CN202110324768.4A 2021-03-22 2021-03-22 一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法 Pending CN113178569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110324768.4A CN113178569A (zh) 2021-03-22 2021-03-22 一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110324768.4A CN113178569A (zh) 2021-03-22 2021-03-22 一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN113178569A true CN113178569A (zh) 2021-07-27

Family

ID=76922937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110324768.4A Pending CN113178569A (zh) 2021-03-22 2021-03-22 一种柱撑层载半导体型天然石墨复合锂电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN113178569A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178243A (zh) * 2013-03-27 2013-06-26 北京大学 锂离子电池用石墨烯/金属复合负极材料及其制备方法
CN104009238A (zh) * 2014-06-20 2014-08-27 福州大学 一种原位合成金红石TiO2介晶与石墨烯复合物的方法
CN104577131A (zh) * 2015-01-16 2015-04-29 上海大学 一种石墨烯-TiO2-B复合材料的制备方法
CN104815637A (zh) * 2015-04-02 2015-08-05 西北师范大学 水热法制备石墨烯负载花状二氧化钛复合材料的方法
US20150270534A1 (en) * 2013-03-04 2015-09-24 Sekisui Chemical Co., Ltd. Fine particle-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and methods for producing the same, and lithium ion secondary battery
CN111048754A (zh) * 2019-11-30 2020-04-21 桂林理工大学 一种锡掺杂金红石TiO2复合材料的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150270534A1 (en) * 2013-03-04 2015-09-24 Sekisui Chemical Co., Ltd. Fine particle-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and methods for producing the same, and lithium ion secondary battery
CN103178243A (zh) * 2013-03-27 2013-06-26 北京大学 锂离子电池用石墨烯/金属复合负极材料及其制备方法
CN104009238A (zh) * 2014-06-20 2014-08-27 福州大学 一种原位合成金红石TiO2介晶与石墨烯复合物的方法
CN104577131A (zh) * 2015-01-16 2015-04-29 上海大学 一种石墨烯-TiO2-B复合材料的制备方法
CN104815637A (zh) * 2015-04-02 2015-08-05 西北师范大学 水热法制备石墨烯负载花状二氧化钛复合材料的方法
CN111048754A (zh) * 2019-11-30 2020-04-21 桂林理工大学 一种锡掺杂金红石TiO2复合材料的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIN CHEN等: "Three-dimensional titanium dioxide/graphene hybrids with improved performance for photocatalysis and energy storage", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
TONGBIN LAN等: "Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries", 《SCIENTIFIC REPORTS》 *
XF ZENG等: "Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation", 《INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS》 *

Similar Documents

Publication Publication Date Title
Xu et al. Advanced oxygen‐vacancy Ce‐doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density
Meng et al. MoSe2 nanosheets as a functional host for lithium-sulfur batteries
Zhu et al. Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate
Sephra et al. Size controlled synthesis of SnO2 and its electrostatic self-assembly over reduced graphene oxide for photocatalyst and supercapacitor application
CN102130334B (zh) 石墨烯基纳米铁氧化物复合材料及其制备方法
Zhou et al. Preparation of 3D porous g-C3N4@ V2O5 composite electrode via simple calcination and chemical precipitation for supercapacitors
CN102921443B (zh) 可见光响应的镍钛水滑石与石墨烯复合光催化剂及其制备方法
Wei et al. Metal-organic framework derived binary-metal oxide/MXene composite as sulfur host for high-performance lithium-sulfur batteries
CN103787328A (zh) 一种改性石墨烯的制备方法
CN104538200A (zh) 一种石墨烯/Fe-MOFs复合材料及其制备方法
Zhang et al. Supercapacitance of-MnO2 electrode materials: Influence of inorganic ions
Lv et al. Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: a design strategy from oxygen defect engineering and K+ pre-intercalation
CN106783201B (zh) 一种硫化钼/三氧化二铁复合材料及其制备方法和应用
CN103680996B (zh) 一种聚吡咯/石墨型氮化碳纳米复合材料及其制备方法
Liu et al. Magnetic-field-assisted preparation of one-dimensional (1-D) wire-like NiO/Co3O4 composite for improved specific capacitance and cycle ability
Sharma et al. Growth and characterization of carbon-supported MnO2 nanorods for supercapacitor electrode
CN103022445A (zh) 一种动力锂离子电池负极材料的制备方法
CN111584804A (zh) 一种基于二维纳米粘土的锂硫电池隔膜阻挡层的制备方法
CN108054020A (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
Siburian et al. Performance of graphite and graphene as electrodes in primary cell battery
Cao et al. Boosting Zn2+ diffusion via tunnel-type hydrogen vanadium bronze for high-performance zinc ion batteries
Luo et al. Visible-light-driven HSr2Nb3O10/CdS heterojunctions for high hydrogen evolution activity
CN103985846A (zh) 一种碳负载的纳米硅颗粒结构及其制备方法和应用
CN107601557A (zh) 一种制备1T@2H‑MoS2/黑色TiO2的方法
Yan et al. Carbon-mediated electron transfer channel between SnO2 QDs and g-C3N4 for enhanced photocatalytic H2 production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210727