WO2014080560A1 - クラッチ機構 - Google Patents

クラッチ機構 Download PDF

Info

Publication number
WO2014080560A1
WO2014080560A1 PCT/JP2013/005865 JP2013005865W WO2014080560A1 WO 2014080560 A1 WO2014080560 A1 WO 2014080560A1 JP 2013005865 W JP2013005865 W JP 2013005865W WO 2014080560 A1 WO2014080560 A1 WO 2014080560A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
movable member
attraction
magnetic circuit
clutch mechanism
Prior art date
Application number
PCT/JP2013/005865
Other languages
English (en)
French (fr)
Inventor
亨 大隈
上田 元彦
洋介 山上
悠一郎 奥田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112013005635.6T priority Critical patent/DE112013005635T5/de
Priority to US14/646,413 priority patent/US10030716B2/en
Publication of WO2014080560A1 publication Critical patent/WO2014080560A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/76Friction clutches specially adapted to incorporate with other transmission parts, i.e. at least one of the clutch parts also having another function, e.g. being the disc of a pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/004Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets combined with electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs

Definitions

  • This disclosure relates to a clutch mechanism.
  • an electromagnetic clutch mechanism that performs intermittent transmission of a rotational driving force from a driving side rotating body to a driven side rotating body by intermittently energizing an electromagnet.
  • the electromagnet is energized to connect the driving side rotating body and the driven side rotating body to transmit the rotational driving force.
  • the drive-side rotator and the driven-side rotator are separated from each other to interrupt transmission of the rotational driving force.
  • Patent Document 1 when the driving side rotating body and the driven side rotating body are coupled by using a permanent magnet, and when the driving side rotating body and the driven side rotating body are separated from each other, There has been proposed a so-called self-holding type clutch mechanism aiming at reducing power consumption without energizing an electromagnet.
  • the self-holding type clutch mechanism includes an electromagnetic coil including first and second coil portions that are formed in a ring shape centered on a rotation shaft of a compressor and arranged in the axial direction of the rotation shaft, A hollow cylindrical permanent magnet sandwiched between the second coil portions, and a movable member that is formed in a ring shape centered on the rotating shaft and configured to be movable in the axial direction.
  • the movable member is disposed on the outer side in the radial direction of the rotating shaft with respect to the first and second coil portions and the permanent magnet.
  • the permanent magnet generates an attractive magnetic circuit that generates an attractive magnetic force that connects the driving-side rotator and the driven-side rotator, and a non-attractive magnetic circuit that does not generate the attractive magnetic force.
  • An elastic member is provided that applies an elastic force in a direction separating the drive-side rotator and the driven-side rotator.
  • a current is passed in the first direction with respect to the first and second coil portions.
  • the magnetic force generated from the attraction magnetic circuit by the electromagnetic force generated from the first coil portion is reduced, and the magnetic force generated from the non-attraction magnetic circuit is increased by the electromagnetic force generated from the second coil portion.
  • the magnetic force generated from the non-attraction magnetic circuit is larger than the magnetic force generated from the attraction magnetic circuit.
  • the movable member moves to one side in the axial direction by the magnetic force generated from the non-attraction magnetic circuit.
  • the elastic force of the elastic member becomes larger than the attractive magnetic force generated from the magnetic circuit for attraction, and the driving side rotating body and the driven side rotating body are separated by the elastic force of the elastic member. That is, the clutch mechanism is turned off.
  • a current is supplied to the first and second coil portions in a second direction different from the first direction.
  • the magnetic force generated from the magnetic circuit for attraction becomes larger than the magnetic force generated from the magnetic circuit for non-attraction.
  • the movable member moves to the other side in the axial direction by the magnetic force generated from the magnetic circuit for suction.
  • the magnetic force generated from the attraction magnetic circuit is larger than the elastic force of the elastic member, and the driving side rotating body and the driven side rotating body are connected. That is, the clutch mechanism is turned on.
  • the movable member is moved to one side in the axial direction or the other side in the axial direction.
  • the clutch mechanism can be turned ON / OFF.
  • a driving force for moving the movable member in the axial direction is generated by the magnetic force generated from the first and second coil portions, and the movable member is moved in the axial direction by the driving force to
  • the mechanism can be turned ON / OFF.
  • various factors affect the movement of the movable member, and there is a possibility that the reliable operation of the movable member may be hindered.
  • the permanent magnet and the first and second coil parts There is a step between the two. For this reason, even if a driving force is applied to the movable member based on the magnetic force generated by the first and second coil portions, the movable member may be caught by a step. In that case, the movable member cannot be moved, and the clutch mechanism may malfunction.
  • the rotational driving force is transmitted by being connected to the driving side rotating body that is rotated by the rotational driving force output from the driving source, and the driving side rotating body.
  • a suction magnetic circuit for generating a magnetic force for connecting the driven-side rotating body, the driving-side rotating body and the driven-side rotating body together with the driving-side rotating body and the driven-side rotating body, and the suction A permanent magnet constituting a magnetic circuit for non-attraction different from the magnetic circuit for magnetic, an electromagnetic coil for changing a magnetic force generated from the magnetic circuit for attraction and a magnetic force generated from the magnetic circuit for non-attraction, and a magnetic material.
  • the drive-side rotator and the driven-side rotator are connected, the drive-side rotator and the driven-side rotator are separated from each other.
  • the driving-side rotating body and the driven-side rotating body are separated from each other.
  • a second control device that moves the movable member from the first position side to the second position side by a magnetic force, and the movable member between the first position side and the second position side. And a guide portion for guiding the movement of the.
  • the movable member is guided by the guide portion and can move between the first position side and the second position side. For this reason, a movable member can be reliably moved between the 1st position side and the 2nd position side. Along with this, the connection or separation between the driving side rotating body and the driven side rotating body can be reliably performed, so that a reliable operation of the clutch mechanism can be obtained.
  • the guide portion is disposed on the first coil portion side and configured by a magnetic material, and the guide portion is disposed on the second coil portion side.
  • a non-magnetic portion made of a magnetic material, and the first magnetic portion constitutes the magnetic circuit for attraction and the magnetic circuit for non-attraction, and magnetic flux leaks from the side of the magnetic circuit for attraction. The nonmagnetic part suppresses.
  • the non-magnetic portion prevents the magnetic flux from leaking from the attraction magnetic circuit side when the movable member is positioned on the first position side, so that the driving side rotating body and the driven side rotating body It can suppress that the magnetic force which connects these becomes small. As a result, the drive-side rotator and the driven-side rotator can be reliably connected.
  • a film that enables smooth sliding of the movable member is formed on the surface of the guide portion on the movable member side by surface treatment.
  • the sliding state of the guide portion can be maintained well over the product life and its operability can be maintained.
  • the movable member side of the guide portion is subjected to heat treatment for suppressing wear on the movable member.
  • the sliding state of the guide portion can be maintained well over the product life and its operability can be maintained.
  • a film that allows smooth sliding with respect to the guide portion is formed by a surface treatment on the surface of the movable member on the guide portion side.
  • the sliding state of the movable member can be maintained well over the life of the product, and its operability can be maintained.
  • the guide member side of the movable member is subjected to heat treatment for suppressing wear on the movable member.
  • the sliding state of the movable member can be maintained well over the life of the product, and its operability can be maintained.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • A is a diagram showing a state in which the pulley and the armature are connected
  • (b) is a diagram for explaining the operation of separating the pulley and the armature
  • (c) a diagram showing a state in which the pulley and the armature are separated
  • (D) is a figure for demonstrating the operation
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus 1 of a vehicle air conditioner to which a clutch mechanism 20 of the present embodiment is applied.
  • the refrigeration cycle apparatus 1 has a compressor 2, a radiator 3, an expansion valve 4, and an evaporator 5 connected thereto.
  • the compressor 2 sucks and compresses the refrigerant.
  • the radiator 3 radiates the refrigerant discharged from the compressor 2.
  • the expansion valve 4 decompresses and expands the refrigerant flowing out of the radiator 3.
  • the evaporator 5 evaporates the refrigerant depressurized by the expansion valve 4 and exhibits an endothermic effect.
  • the compressor 2 is installed in the engine room of the vehicle.
  • the compressor 2 draws refrigerant from the evaporator 5 and compresses it by driving the compression mechanism by the rotational driving force applied from the engine 10 as the driving source for driving through the clutch mechanism 20.
  • the compression mechanism either a fixed capacity type compression mechanism with a fixed discharge capacity or a variable capacity type compression mechanism configured so that the discharge capacity can be adjusted by a control signal from the outside may be adopted.
  • the clutch mechanism 20 of this embodiment is a pulley-integrated clutch mechanism connected to the compressor 2.
  • the clutch mechanism 20 transmits the rotational driving force of the engine 10 given from the engine side pulley 11 via the V belt 12 to the compressor 2.
  • the engine-side pulley 11 is connected to the rotational drive shaft of the engine 10.
  • the clutch mechanism 20 includes a pulley 30 and an armature 40.
  • the pulley 30 constitutes a driving-side rotating body that rotates by a rotational driving force applied from the engine 10 via the V-belt 12.
  • the armature 40 constitutes a driven side rotating body connected to the rotating shaft 2 a of the compressor 2.
  • the clutch mechanism 20 intermittently transmits the rotational driving force from the engine 10 to the compressor 2 by connecting or separating between the pulley 30 and the armature 40.
  • FIG. 2 is an axial sectional view of the clutch mechanism 20.
  • This axial sectional view is a sectional view including the axis of the rotating shaft 2a of the compressor 2 in the clutch mechanism 20 and along the axis.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 2 illustrates a state where the pulley 30 and the armature 40 are connected.
  • FIG. 4 is a partial view of region B in FIG.
  • one side (left side in FIG. 2) in the axial direction (rotational axis direction) of the clutch mechanism 20 is referred to as a first side
  • the other side (right side in FIG. 2) is referred to as a second side.
  • a first side one side (left side in FIG. 2) in the axial direction (rotational axis direction) of the clutch mechanism 20
  • second side There is a case.
  • the clutch mechanism 20 includes a stator 50 together with a pulley 30 and an armature 40.
  • the pulley 30 has an outer cylindrical part 31, an inner cylindrical part 32, and an end face part 33.
  • the outer cylindrical portion 31 is formed in a cylindrical shape with the axis of the rotating shaft 2a (the chain line in FIG. 2) as the center line.
  • a V groove (specifically, a poly V groove) on which the V belt 12 is hung is formed on the outer peripheral side of the outer cylindrical portion 31.
  • the outer race of the ball bearing 34 is fixed to the inner peripheral side of the inner cylindrical portion 32.
  • the ball bearing 34 fixes the pulley 30 to the housing 2c forming the outer shell of the compressor 2 so that the pulley 30 can rotate about the axis of the rotation shaft 2a of the compressor 2 as a center line. Therefore, the inner race of the ball bearing 34 is fixed to the housing 2 c of the compressor 2 by a fixing member such as a snap ring 100.
  • the inner race of the ball bearing 34 is disposed on the outer side in the radial direction with respect to the housing boss portion 2 b provided on the housing 2 c of the compressor 2.
  • the housing boss 2b is formed in a cylindrical shape with the axis of the rotation shaft 2a of the compressor 2 as the center line.
  • the inner cylindrical portion 32 is disposed on the inner peripheral side of the outer cylindrical portion 31 and is formed in a cylindrical shape having the axis of the rotation shaft 2a of the compressor 2 as an axis.
  • the outer cylindrical portion 31 and the inner cylindrical portion 32 of the present embodiment are both made of a magnetic material (for example, iron), and constitute an attraction magnetic circuit MCa (see FIG. 4) described later.
  • a magnetic material for example, iron
  • the end surface portion 33 extends in the direction perpendicular to the rotation axis (radial direction) so as to connect the end portions on one side in the axial direction of the outer cylindrical portion 31 and the inner cylindrical portion 32, and passes through the front and back of the central portion.
  • a through hole having a shape is formed.
  • the end surface portion 33 includes ring members 33c, 33d, and 33e formed of a magnetic material (for example, iron).
  • a magnetic material for example, iron.
  • Each of the ring members 33c, 33d, and 33e is formed in a ring shape centered on the axis of the rotating shaft 2a.
  • the ring members 33c, 33d, 33e are arranged offset in the radial direction.
  • the ring member 33c is disposed on the radially outer side with respect to the ring member 33d.
  • the ring member 33d is disposed on the radially outer side with respect to the ring member 33e.
  • a non-magnetic portion 33a is provided between the ring members 33c and 33d.
  • the nonmagnetic portion 33a is formed in a ring shape centered on the axis of the rotating shaft 2a.
  • the nonmagnetic part 33a is composed of a gap part (air gap) and a bridge part arranged in the circumferential direction.
  • the bridge portion is made of a magnetic material (for example, iron) or a nonmagnetic metal material, and connects the ring member 33c and the ring member 33d.
  • a nonmagnetic portion 33b is provided between the ring members 33d and 33e.
  • the nonmagnetic portion 33b is formed in a ring shape centered on the axis of the rotating shaft 2a.
  • the nonmagnetic portion 33b is composed of a gap portion and a bridge portion arranged in the circumferential direction.
  • the bridge portion is made of a magnetic material (for example, iron) or a nonmagnetic metal material, and is used to connect the ring member 33d and the ring member 33e.
  • the outer cylindrical portion 31, the inner cylindrical portion 32, and the end surface portion 33 are integrally formed.
  • the ring member 33 e is connected to the inner cylindrical portion 32.
  • the ring member 33 c is connected to the outer cylindrical portion 31.
  • the surface on the first side of the end surface portion 33 forms a friction surface that comes into contact with the armature 40 when the pulley 30 and the armature 40 are connected. Therefore, in the present embodiment, the friction member 35 for increasing the friction coefficient of the end surface portion 33 is disposed on the first side of the end surface portion 33.
  • the friction member 35 is formed of a non-magnetic material. Specifically, a material obtained by solidifying alumina with a resin or a sintered material of metal powder (for example, aluminum powder) can be employed.
  • the armature 40 is a disk-shaped member that extends in a direction perpendicular to the rotation axis 2a and has a through hole formed through the front and back at the center, and constitutes a suction magnetic circuit MCa as will be described later. .
  • the center of rotation of the armature 40 of this embodiment is coincident with the axis of the rotation shaft 2a.
  • the armature 40 includes ring members 40b and 40c formed of a magnetic material (for example, iron).
  • the ring members 40b and 40c are each formed in a ring shape centered on the axis of the rotating shaft 2a.
  • the ring member 40b is disposed on the radially outer side with respect to the ring member 40c.
  • a nonmagnetic portion 40a is provided between the ring members 40b and 40c.
  • the nonmagnetic part 40a is composed of a gap part and a bridge part arranged in the circumferential direction.
  • the bridge portion is made of a magnetic material (for example, iron) or a nonmagnetic metal material, and connects the ring member 40b and the ring member 40c.
  • the nonmagnetic part 40a of the armature 40 of this embodiment and the nonmagnetic parts 33a and 33b of the pulley 30 are arranged offset in the radial direction.
  • the plane on the second side of the armature 40 faces the end face portion 33 of the pulley 30 and forms a friction surface that comes into contact with the pulley 30 when the pulley 30 and the armature 40 are connected.
  • a disc-shaped hub 42 is disposed on the first side of the armature 40.
  • the hub 42 constitutes a connecting member that connects the armature 40 and the rotating shaft 2a of the compressor 2.
  • the hub 42 includes a cylindrical portion 42a extending in the rotation axis direction, and a flange portion 42b extending in a direction perpendicular to the rotation axis from the first side end portion of the cylindrical portion 42a.
  • a leaf spring 45 extending in a direction perpendicular to the rotation axis is disposed.
  • the leaf spring 45 is fixed to the flange portion 42b of the hub 42 by a rivet 41a.
  • the leaf spring 45 is fixed to the armature 40 by a rivet 41b.
  • the leaf spring 45 applies an elastic force to the hub 42 in a direction in which the armature 40 is separated from the pulley 30.
  • a predetermined gap S3 between the armature 40 connected to the hub 42 and the end surface portion 33 of the pulley 30 Is formed.
  • the hub 42 is fixed by tightening the cylindrical portion 42 a with a bolt 44 with respect to the rotating shaft 2 a of the compressor 2.
  • fastening means such as a spline (serration) or a keyway may be used.
  • the armature 40, the hub 42, the leaf spring 45, and the rotating shaft 2a of the compressor 2 are fixed.
  • the pulley 30 and the armature 40 are connected, the pulley 30, the armature 40, the hub 42, the leaf spring 45, and the rotation shaft 2a of the compressor 2 rotate about the axis thereof as a center line.
  • the stator 50 is a stator assembly including a permanent magnet 51, an electromagnetic coil 53, a stopper portion 54, a movable member 55, a stator housing 56, and a yoke 57.
  • the permanent magnet 51 is formed in a ring shape centered on the axis of the rotating shaft 2a of the compressor 2.
  • the outer peripheral side of the permanent magnet 51 constitutes an N pole, and the inner peripheral side of the permanent magnet 51 constitutes an S pole.
  • the permanent magnet 51 generates a magnetic circuit for attraction MCa and a magnetic circuit for non-attraction MCb.
  • neodymium neodymium
  • samarium cobalt can be adopted as the permanent magnet 51 of the present embodiment.
  • the permanent magnet 51, the electromagnetic coil 53, the stopper portion 54, the stator housing 56, and the yoke 57 are fitted and fastened to constitute a structure 52 formed in a ring shape.
  • the electromagnetic coil 53 includes a first coil part 53a and a second coil part 53b.
  • the first and second coil portions 53a and 53b are connected in series or in parallel.
  • the first coil portion 53 a and the second coil portion 53 b are each formed in a ring shape centered on the axis of the rotation shaft 2 a of the compressor 2.
  • the first coil portion 53a is disposed on the first side in the axial direction with respect to the permanent magnet 51.
  • the second coil portion 53 b is disposed on the second side in the axial direction with respect to the permanent magnet 51. That is, the permanent magnet 51 is sandwiched between the first and second coil portions 53a and 53b.
  • the first and second coil portions 53a and 53b of the present embodiment are configured by winding coil wires made of copper, aluminum, or the like, for example, on a resin-molded spool in a double row or a multiple layer.
  • the movable member 55 is disposed on the outer side in the axial direction of the rotating shaft 2 a with respect to the permanent magnet 51 and the electromagnetic coil 53. Specifically, the movable member 55 is disposed via a clearance with respect to the yoke 57 on the axially outer side of the rotation shaft 2 a of the yoke 57.
  • the movable member 55 is formed in a cylindrical shape centered on the axis of the rotating shaft 2a.
  • the movable member 55 is disposed on the radially inner side of the rotation shaft 2 a with respect to the outer cylindrical portion 31.
  • a gap S ⁇ b> 2 is formed between the movable member 55 and the outer cylindrical portion 31.
  • the movable member 55 is configured to be movable relative to the yoke 57 in the axial direction (thrust direction) of the rotation shaft 2a.
  • the movable member 55 of this embodiment is formed of a magnetic material (for example, iron).
  • the total length of the movable member 55 in the rotation axis direction is shorter than the total length of the structure 52 in the rotation axis direction.
  • a gap air gap
  • the air gap increases the magnetic resistance of the non-attraction magnetic circuit MCb formed by the permanent magnet 51 on the opposite side of the end surface portion 33 of the pulley 30.
  • the movable member 55 when the movable member 55 is located at a position on the second side in the axial direction (hereinafter referred to as the second position), a gap is formed on the first side in the axial direction.
  • the air gap increases the magnetic resistance of the attraction magnetic circuit MCa formed by the permanent magnet 51 on the end face 33 side of the pulley 30.
  • the magnetic resistance of the attracting magnetic circuit MCa and the magnetic resistance of the non-attracting magnetic circuit MCb can be changed as described later.
  • the movable member 55 of this embodiment is subjected to heat treatment (for example, quenching and tempering) for increasing the hardness of the movable member 55 and suppressing wear of the movable member 55 itself.
  • heat treatment for example, quenching and tempering
  • the stopper portion 54 is disposed on the first side in the axial direction with respect to the movable member 55 and the coil portion 53 a of the electromagnetic coil 53.
  • the stopper portion 54 causes the movable member 55 to collide and stop the first side in the axial direction of the movable member 55.
  • the stator housing 56 includes a cylindrical portion 56a and a wall portion 56b.
  • the cylindrical portion 56 a is disposed on the radially inner side of the rotating shaft 2 a with respect to the permanent magnet 51 and the electromagnetic coil 53.
  • the cylindrical portion 56a is formed in a cylindrical shape centered on the axis of the rotating shaft 2a.
  • the wall portion 56b is formed in a ring shape that extends from the second side of the cylindrical portion 56a to the radially outer side of the rotating shaft 2a.
  • the cylindrical portion 56a and the wall portion 56b are integrally formed of a magnetic material (for example, iron), and constitute a magnetic circuit for attraction MCa and a magnetic circuit for non-attraction MCb, respectively.
  • the wall 56b of the stator housing 56 is provided with a through hole 56c through which the electric wire 53c that connects the electromagnetic coil 53 and the control device 6 (first control device, second control device) passes. Yes.
  • the stator housing 56 of this embodiment is fixed to the housing 2c of the compressor 2 by fixing means such as a snap ring 101.
  • the structure 52 is fixed to the housing 2 c of the compressor 2.
  • a gap S ⁇ b> 1 is provided between the cylindrical portion 56 a of the stator housing 56 and the inner cylindrical portion 32 of the pulley 30.
  • the yoke 57 includes a guide portion 57a and an intermediate magnetic portion 57b.
  • the guide portion 57a is formed in a cylindrical shape centered on the axis of the rotation shaft 2a.
  • the outer peripheral surface of the guide part 57a is smoothly formed over the axial direction of the rotating shaft 2a.
  • a solid lubricating film is formed by surface treatment on the outer peripheral surface of the guide portion 57a (that is, the surface on the movable member 55 side).
  • the surface treatment ensures a good sliding state with the movable member 55.
  • the surface treatment is to form a solid lubricating film for reducing the friction coefficient ⁇ and thus improving the wear resistance between the movable member 55 and the guide portion 57a.
  • the surface treatment material used for the surface treatment for forming the solid lubricating film for example, a material mainly composed of a material having a solid lubricating effect such as molybdenum, fluorine, or graphite is desirable. It is desirable that the solid lubricant film has a thickness of about 10 to 20 ⁇ m.
  • the guide portion 57a of this embodiment guides the movement of the movable member 55 in the axial direction, as will be described later.
  • the intermediate magnetic part 57b is sandwiched between the first and second coil parts 53a and 53b.
  • the guide portion 57a and the intermediate magnetic portion 57b are integrally formed of a magnetic material (for example, iron), and constitute an attraction magnetic circuit MCa and a non-attraction magnetic circuit MCb.
  • control device 6 in FIG. 1 controls energization to the first and second coil portions 53a and 53b based on a control signal output from an air conditioner ECU (electronic control device).
  • air conditioner ECU electronic control device
  • FIG. 4 is an explanatory diagram using a cross-sectional view of a portion B in FIG.
  • the movable member 55 is located at the first position.
  • the magnetic resistance of the attracting magnetic circuit MCa formed by the permanent magnet 51 is smaller than that when the movable member 55 is located at the second position, and the magnetic force generated by the attracting magnetic circuit MCa is large. It has become.
  • the magnetic force generated by the attraction magnetic circuit MCa shown by the thick solid line in FIG. 4A acts as an attraction magnetic force that connects the pulley 30 and the armature 40.
  • the magnetic circuit for attraction MCa includes the yoke 57 ⁇ the movable member 55 ⁇ the outer cylindrical portion 31 of the pulley 30 ⁇ the armature 40 ⁇ the end surface portion 33 ⁇ the armature 40 ⁇ the inner cylindrical portion 32 ⁇
  • the magnetic flux passes through the nonmagnetic portion 40a of the armature 40 and the nonmagnetic portions 33a and 33b of the pulley 30. For this reason, the boundary between the pulley 30 and the armature 40 passes four times. Therefore, a large force as the attraction magnetic force can be applied between the pulley 30 and the armature 40.
  • the non-attraction magnetic circuit MCb is a magnetic circuit formed by the permanent magnet 51 and different from the attraction magnetic circuit MCa.
  • the non-attraction magnetic circuit MCb is a magnetic circuit through which the magnetic flux passes in the order of the movable member 55, the stator plate 56, the permanent magnet 51, and the yoke 57, as shown by a thin broken line in FIG.
  • the magnetic force generated by the non-attraction magnetic circuit MCb does not function as an attraction force that connects the pulley 30 and the armature 40.
  • the movable member 55 when the movable member 55 is located at the first position, the amount of magnetic flux of the magnetic circuit for attraction MCa increases compared to when the movable member 55 is located at the second position. Therefore, the movable member 55 is maintained on the first position side.
  • the elastic force of the leaf spring 45 is set to be smaller than the attractive magnetic force generated in the attractive magnetic circuit MCa when the movable member 55 is located at the first position. Therefore, the state in which the pulley 30 and the armature 40 are connected is maintained without supplying power to the electromagnetic coil 53. That is, the rotational driving force from the engine 10 is transmitted to the compressor 2.
  • the control device 6 starts energizing the electromagnetic coil 53 in the first direction.
  • a current flows through the first coil 53a from the back of the paper to the front of the paper
  • a current flows through the second coil 53b from the back of the paper to the front of the paper. Therefore, the first coil 53a reduces the amount of magnetic flux passing through the attraction magnetic circuit MCa, and the second coil 53b increases the amount of magnetic flux passing through the non-attraction magnetic circuit MCb. Accordingly, the magnetic force generated by the non-attraction magnetic circuit MCb indicated by the thick broken line in FIG. 4B is stronger than the attractive magnetic force generated by the attractive magnetic circuit MCa indicated by the thin solid line in FIG. 4B.
  • the control device 6 starts energizing the electromagnetic coil 53 in the second direction.
  • the second direction is a direction opposite to the first direction.
  • a current flows from the front to the back of the paper in the first coil portion 53a
  • a current flows from the front to the back of the paper in the second coil portion 53b. Therefore, the first coil portion 53a increases the amount of magnetic flux passing through the attraction magnetic circuit MCa, and the second coil portion 53b decreases the amount of magnetic flux passing through the non-attraction magnetic circuit MCb.
  • the magnetic attraction generated by the magnetic circuit for attraction MCa is stronger than the magnetic force generated by the non-attraction magnetic circuit MCb.
  • a driving force is applied to the movable member 55 to move it to the first side in the axial direction by the magnetic force generated from the magnetic circuit for attraction MCa.
  • the movable member 55 is guided by the guide portion 57a of the yoke 57 and moves from the second position side to the first position side.
  • the control device 6 ends energization of the electromagnetic coil 53.
  • the first coil 53a decreases the amount of magnetic flux passing through the attraction magnetic circuit MCa. Further, the amount of magnetic flux passing through the non-attraction magnetic circuit MCb by the second coil 53b is increased. Thereby, the magnetic force generated by the non-attraction magnetic circuit MCb is stronger than the attractive magnetic force generated by the attraction magnetic circuit MCa.
  • a driving force is applied to the movable member 55 on the second side in the axial direction by the magnetic force generated by the non-attraction magnetic circuit MCb. Along with this, it is guided by the guide portion 57a and moves from the first position side to the second position side.
  • the first coil portion 53a increases the amount of magnetic flux passing through the attraction magnetic circuit MCa and the second coil portion 53b An electromagnetic force that reduces the amount of magnetic flux passing through the magnetic circuit for attraction MCb is generated.
  • the magnetic force generated by the attraction magnetic circuit MCa is stronger than the magnetic force generated by the non-attraction magnetic circuit MCb.
  • a driving force is applied to the movable member 55 on the first side in the axial direction by the magnetic force generated by the attraction magnetic circuit MCa.
  • the movable member 55 is guided by the guide portion 57a and moves from the second position side to the first position side.
  • the movable member 55 when the control device 6 energizes the electromagnetic coil 53, the movable member 55 is guided by the guide portion 57a and reliably moves between the first position side and the second position side. be able to. That is, the movable member 55 can reliably perform the moving process when the clutch mechanism 20 is turned on and off while sliding with the yoke 57.
  • the frictional force generated between the movable member 55 and the electromagnetic coil 53, the permanent magnet 51, etc. is indeterminate. Therefore, in order to obtain a reliable operation of the movable member 55, it is necessary to design redundantly the electromagnetic force generated from the electromagnetic coil 53, which sacrifices cost, physique, and power consumption during ON-OFF. The need has arisen.
  • the movable member 55 can move while always sliding with the guide portion 57a of the yoke 57. Therefore, it is possible to predict the frictional force due to sliding, and hence the electromagnetic force necessary to move the movable member 55 against the frictional force, and the electromagnetic coil 53 can be designed for that purpose. As a result, it is possible to ensure the reliable operation of the movable member 55 and thus the ON-OFF operation of the clutch mechanism 20.
  • the movable member 55 is made of a ring-shaped magnetic material. For this reason, the movable member 55 can be easily manufactured.
  • the outer peripheral surface of the guide portion 57a (that is, the surface on the movable member 55 side) is a solid for ensuring a good sliding state with the movable member 55 and reducing the friction coefficient ⁇ .
  • a lubricating film is formed by surface treatment.
  • the frictional force generated on the contact surface between the movable member 55 and the guide portion 57a causes the wear of the sliding surface to proceed according to the number of operations.
  • the magnetic force that is, the attractive force between the pulley 30 and the armature 40
  • the clearance between the movable member 55 and the guide portion 57a increases, and an excessive inclination of the movable member 55 may occur, causing the movable member 55 to be caught in the moving space, resulting in malfunctions and the like. is there.
  • a solid lubricating film is formed on the outer peripheral surface of the guide portion 57a by surface treatment. For this reason, it becomes unnecessary to supply lubricating oil to the sliding surfaces of the movable member 55 and the guide portion 57a, or to enclose grease. For this reason, there is an effect that the structure of the stator 50 can be simplified by sliding the movable member 55 without lubrication as in the present embodiment.
  • the movable member 55 is subjected to heat treatment in order to cure the movable member 55. For this reason, the movable member 55 can be hardened. Along with this, it is possible to suppress wear on the surface of the movable member 55 on the guide portion 57a side. Thereby, even if the movable member 55 slides and moves with respect to the guide part 57a, it becomes difficult to wear. Therefore, the sliding of the movable member 55 with respect to the guide part 57a is possible.
  • the soft guide portion 57a can always be worn. This makes it easier to grasp the prediction of wear extension over time.
  • the example in which the movable member 55 is heat-treated in order to cure the movable member 55 has been described, but instead of this, the guide portion 57a of the movable member 55 in order to cure the movable member 55.
  • Hard plating may be applied to the surface on the side.
  • the example in which the movable member 55 is heat-treated to suppress the wear of the movable member 55 and the solid lubricant film is formed on the guide portion 57a has been described.
  • the guide portion 57a may be heat-treated and a solid lubricating film may be formed on the movable member 55.
  • hard plating may be applied to the surface of the guide portion 57a on the movable member 55 side.
  • the yoke 57 is made of a magnetic material.
  • a composite member made of a magnetic material and a non-magnetic material is used. explain.
  • FIG. 5 shows a partially enlarged view of the clutch mechanism 20 of the present embodiment.
  • FIG. 5 is a view corresponding to the portion B in FIG.
  • the guide part 57a of the yoke 57 is composed of guide parts 57c and 57d.
  • the guide portion 57d (nonmagnetic portion) is formed on the second coil portion 53b side. Specifically, the guide portion 57d is located on the radially outer side of the rotation shaft 2a with respect to the second coil portion 53b.
  • the guide portion 57d is formed in a ring shape centered on the axis of the rotating shaft 2a.
  • the guide part 57c (first magnetic part) is arranged on the first side in the axial direction (that is, the first coil part 53a side) with respect to the guide part 57d.
  • the guide part 57c is located on the radially outer side of the rotating shaft 2a with respect to the intermediate magnetic part 57b and the first coil part 53a.
  • the guide portion 57c is formed in a ring shape centered on the axis of the rotation shaft 2a.
  • the guide portion 57d is made of a nonmagnetic material such as SUS304 (stainless steel).
  • a material integrally formed from a magnetic material such as iron is used together with the intermediate magnetic portion 57b.
  • the guide portions 57c and 57d are joined by friction welding (rotational friction welding).
  • the guide portions 57c and 57d are joined by friction welding.
  • the yoke 57 it can be set as the structure without a clearance gap, a joint, and a level
  • the friction coefficient ⁇ between the movable member 55 and the yoke 57 can be lowered.
  • surface treatment for forming a solid lubricating film is possible in the yoke 57 in order to make the sliding of the movable member 55 good.
  • a nonmagnetic portion made of stainless steel or the like is disposed as the guide portion 57d on the second side in the axial direction of the yoke 57
  • a gap 57e instead of the guide portion 57d may be formed as a nonmagnetic portion. That is, a gap 57e containing air as a nonmagnetic material is provided as a nonmagnetic part on the second side in the axial direction of the guide part 57a.
  • the gap 57e is formed in a ring shape centered on the axis of the rotation shaft 2a.
  • FIG. 8A is a side view of the yoke 57 of the present embodiment
  • FIG. 8B is a front view of the yoke 57 of the present embodiment
  • FIG. 9 is a perspective view of the yoke 57 of the present embodiment.
  • the magnetic part 57f of the present embodiment is integrally formed of a magnetic material such as iron together with the guide part 57c and the intermediate part 57d.
  • the yoke 57 is formed in a comb shape in which the second side in the axial direction is formed with a plurality of gaps 57e and a plurality of magnetic portions 57f.
  • the gaps 57e and the magnetic parts 57f are alternately formed one by one in the circumferential direction. Therefore, the guide function of the movable member 55 can be ensured while suppressing the magnetic leakage, and a reliable operation of the movable member 55 can be obtained.
  • the gap portion 57e is formed as the non-magnetic portion on the second side in the axial direction of the yoke 57 has been described. Instead, the second portion in the axial direction of the yoke 57 is described.
  • a nonmagnetic portion on the side a nonmagnetic metal material or a nonmagnetic resin material may be used.
  • FIG. 10 is a partial cross-sectional view of the clutch mechanism 20 of the present embodiment. In FIG. 10, hatching other than the movable member 55 is omitted in order to clarify the illustrated contents.
  • the cross section in the axial direction of the movable member 55 is a circle that protrudes in the orthogonal direction perpendicular to the outer peripheral surface of the guide portion 57a on the radially inner side of the rotary shaft 2a of the movable member 55. It has a shape having an arc portion 55a formed in an arc shape.
  • the outer peripheral surface of the guide portion 57a is a surface on the movable member 55 side with respect to the guide portion 57a.
  • the movable member 55 has a shape having the arc portion 55a as described above. For this reason, the contact surface pressure between the movable member 55 and the yoke 57 when the movable member 55 moves while sliding with respect to the yoke 57 can be reduced.
  • the movable member 55 is formed in a ring shape having a corner on the guide portion 57a side. Therefore, the corner portion of the movable member 55 comes into contact with the yoke 57 and an excessive edge load is generated, which may prevent smooth sliding and cause early wear.
  • the movable member 55 since the movable member 55 has a cross-sectional shape having the arc portion 55a as shown in FIG. 10, the movable member 55 does not come into contact with the yoke 57 at its corners. When the member 55 moves, generation
  • FIG. 11A is a partially enlarged view of the movable member 55 and the yoke 57 of the present embodiment as viewed from the first side in the axial direction.
  • FIG.11 (b) is an enlarged view of C part in Fig.11 (a).
  • the movable member 55 is provided with a plurality of rows of convex portions 60 (first engaging portions) that are convex toward the guide portion 57 a of the yoke 57.
  • the plurality of convex portions 60 are formed in the movable member 55 between the first coil portion 53a side and the second coil portion 53b side (that is, in the axial direction).
  • the plurality of rows of convex portions 60 are arranged in the circumferential direction around the axis of the rotation shaft 2a.
  • a plurality of rows of groove portions 61 (second engagement portions) into which the plurality of rows of convex portions 60 are fitted (engaged) are formed between the first and second positions. That is, the groove part 61 is formed in the guide part 57a between the 1st coil part 53a and the 2nd coil part 53b (namely, axial direction).
  • the movable member 55 is provided with a plurality of rows of convex portions 60, and the guide portion 57a is formed with a plurality of rows of groove portions 61.
  • the convex portion 60 and the groove portion 61 are engaged with each other so as to be slidable in the axial direction. Therefore, the movable member 55 moves in the axial direction with the plurality of convex portions 60 guided by the plurality of rows of groove portions 61 in the guide portion 57a.
  • the guide part 57a can reliably guide the movement of the movable member 55 between the first and second positions.
  • first engaging portion and the second engaging portion the convex portion 60 and the groove portion as shown in FIG.
  • the configuration is not limited to 61. That is, various guide mechanisms including a first engaging portion and a second engaging portion that can be engaged while sliding on the first engaging portion can be employed.
  • the example in which the compressor 2 is used as the transmission destination for transmitting the rotational driving force from the engine 10 has been described. Instead, the transmission for transmitting the rotational driving force from the engine 10 is described. A device other than the compressor 2 may be used as the destination.
  • the surface on the movable member 55 side of the guide portion 57a is a surface for ensuring a good sliding state with the movable member 55 and reducing the friction coefficient ⁇ .
  • the surface on the guide member 57a movable member 55 side may be subjected to heat treatment for suppressing wear.
  • the moving direction of the movable member 55 is the axial direction of the rotating shaft 2a
  • the moving direction of the movable member 55 is other than the axial direction of the rotating shaft 2a. It is good also as a direction.
  • the movable member 55 may be disposed on the radially inner side with respect to the permanent magnet 51 and the electromagnetic coil 53.
  • the guide portion 57 a may be arranged radially inside with respect to the permanent magnet 51 and the electromagnetic coil 53 and radially outside with respect to the movable member 55.
  • the permanent magnet 51 and the electromagnetic coil 53 may be arranged on the radially inner side with respect to the movable member 55, and the permanent magnet 51 and the electromagnetic coil 53 may be arranged on the radially outer side with respect to the movable member 55.
  • the guide portion may be disposed radially inward with respect to the permanent magnet 51 and the electromagnetic coil 53, and the guide portion may be disposed radially outward with respect to the permanent magnet 51 and the electromagnetic coil 53.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

 制御装置(6)が電磁コイル(53)に対して第1方向への通電を開始すると、吸引用磁気回路(MCa)によって生じる吸引磁力よりも、非吸引用磁気回路(MCb)によって生じる磁力が強くなる。これに伴い、可動部材(55)が、ヨーク(57)のガイド部(57a)によってガイドされて、第1の位置側から第2の位置側へ移動する。制御装置(6)が電磁コイル(53)に対して第2方向への通電を開始すると、非吸引用磁気回路(MCb)によって生じる磁力よりも、吸引用磁気回路(MCa)によって生じる吸引磁力が強くなる。これに伴い、可動部材(55)がガイド部(57a)によってガイドされて、第2の位置側から第1の位置側へ移動する。これにより、可動部材(55)のON-OFF時の移動工程を確実に行うことができる。

Description

クラッチ機構 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年11月23日に出願された日本特許出願2012-256962を基にしている。
 本開示は、クラッチ機構に関するものである。
 従来、駆動側回転体から従動側回転体への回転駆動力の伝達の断続を、電磁石への通電の断続によって行う電磁式のクラッチ機構が知られている。この種のクラッチ機構では、一般的に、電磁石に通電することで、駆動側回転体と従動側回転体とを連結させて回転駆動力を伝達する。また、電磁石を非通電とすることで、駆動側回転体と従動側回転体とを離して回転駆動力の伝達を遮断する。
 しかしながら、この種の電磁式クラッチ機構では、駆動側回転体と従動側回転体とを連結させて回転駆動力を伝達する際に、常時、電磁石に通電しなければならないため、動力伝達時の消費電力(エネルギ消費)が大きくなる恐れがある。
 これに対して、特許文献1には、永久磁石を用いることで駆動側回転体と従動側回転体とを連結させるとき、および駆動側回転体と従動側回転体とが離れるとき以外には、電磁石への通電を不要として消費電力の低減を狙った、いわゆる自己保持型のクラッチ機構が提案されている。
 この自己保持型のクラッチ機構は、コンプレッサの回転軸を中心とするリング状に形成されて回転軸の軸方向に配置されている第1、第2のコイル部を備える電磁コイルと、第1、第2のコイル部で挟持されている中空円筒状の永久磁石と、回転軸を中心とするリング状に形成されて軸線方向に移動可能に構成されている可動部材とを備える。
 このものにおいて、可動部材は、第1、第2のコイル部および永久磁石に対して回転軸の径方向外側に配置されている。そして、永久磁石は、駆動側回転体と従動側回転体とを連結させる吸引磁力を生じる吸引用磁気回路と、吸引磁力を生じさせない非吸引用磁気回路とを発生させる。駆動側回転体と従動側回転体との間を離す方向に弾性力を作用させる弾性部材を備える。
 例えば、第1、第2のコイル部に対して第1方向に電流を流す。これにより、第1コイル部から発生する電磁力によって吸引用磁気回路から生じる磁力が小さくなり、かつ第2コイル部から発生する電磁力によって非吸引用磁気回路から生じる磁力が大きくなる。
 これに伴い、吸引用磁気回路から生じる磁力よりも非吸引用磁気回路から生じる磁力の方が大きくなる。このとき、非吸引用磁気回路から生じる磁力によって、可動部材が軸線方向一方側に移動する。このことにより、弾性部材の弾性力の方が吸引用磁気回路から生じる吸引磁力よりも大きくなり、駆動側回転体と従動側回転体とが弾性部材の弾性力により離れる。すなわち、クラッチ機構がOFF状態になる。
 一方、第1、第2のコイル部に対して第1方向とは異なる第2方向に電流を流す。これにより、第1コイル部から発生する電磁力によって吸引用磁気回路から生じる磁力が大きくなり、かつ第2コイル部から発生する電磁力によって非吸引用磁気回路から生じる磁力が小さくなる。
 これに伴い、吸引用磁気回路から生じる磁力の方が非吸引用磁気回路から生じる磁力よりも大きくなる。このとき、吸引用磁気回路から生じる磁力によって可動部材が軸線方向他方側に移動する。このことにより、弾性部材の弾性力よりも吸引用磁気回路から生じる磁力の方が大きくなり、駆動側回転体と従動側回転体とが連結される。すなわち、クラッチ機構がON状態になる。
 このように、第1、第2のコイル部に対して、第1方向、或いは第2方向に電流を流すことにより、可動部材を軸線方向の一方側、或いは軸線方向の他方側に移動させて、クラッチ機構をON/OFFさせることができる。
特開2011-80579号公報
 上記自己保持型のクラッチ機構では、第1、第2のコイル部から生じる磁力により可動部材を軸線方向に移動させる駆動力を発生させ、この駆動力により可動部材を軸線方向に移動させて、クラッチ機構をON/OFFさせることができる。しかしながら、本願の発明者の検討によると、可動部材の運動には様々な要因が影響し、可動部材の確実な作動を阻害する恐れがある。
 例えば、可動部材が永久磁石に直接に接触すると、強力なラジアル荷重による摩擦力が生じる。この際、第1、第2のコイル部の発生磁力に基づいて可動部材に働く駆動力よりも摩擦力の方が大きくなり、可動部材を移動させることができないという可能性がある。
 また、製造上の寸法誤差が起因して永久磁石の外径寸法と第1、第2コイル部の外径寸法との間に寸法差が生じると、永久磁石と第1、第2コイル部との間に段差が生じる。このため、第1、第2のコイル部の発生磁力に基づいて可動部材に駆動力が働いても、可動部材が段差に引っかかる可能性がある。その場合、可動部材を移動させることができなくなり、クラッチ機構が誤作動を起こすという恐れがあった。
 本開示は上記点に鑑みて、可動部材の移動によってクラッチON-OFFを切り替えるクラッチ機構において、可動部材のガイド部の追加によって可動部材の確実な移動を達成することを目的とする。
 上記目的を達成するため、本開示の第1態様では、駆動源から出力される回転駆動力によって回転する駆動側回転体と、前記駆動側回転体に連結されることによって前記回転駆動力が伝達される従動側回転体と、前記駆動側回転体と前記従動側回転体とを連結させる磁力を生じる吸引用磁気回路を、前記駆動側回転体および前記従動側回転体とともに構成し、かつ前記吸引用磁気回路とは異なる非吸引用磁気回路を構成する永久磁石と、前記吸引用磁気回路から生じる磁力と前記非吸引用磁気回路から生じる磁力とを変化させる電磁コイルと、磁性材で形成されて、かつ変位可能に構成される部材であって、前記駆動側回転体と前記従動側回転体とが連結しているときには、前記駆動側回転体および前記従動側回転体の間が分離しているときよりも、前記吸引用磁気回路の磁気抵抗が小さくなる第1の位置に位置し、前記駆動側回転体および前記従動側回転体の間が分離しているときには、前記駆動側回転体と前記従動側回転体が連結しているときよりも、前記非吸引用磁気回路の磁気抵抗が小さくなる第2の位置に位置する可動部材と、前記吸引用磁気回路から生じる磁力が前記非吸引用磁気回路から生じる磁力よりも大きくなるように前記電磁コイルに通電することにより、前記吸引用磁気回路から生じる磁力によって前記第2の位置側から前記第1の位置側に前記可動部材を移動させる第1の制御装置と、前記非吸引用磁気回路から生じる磁力が前記吸引用磁気回路から生じる磁力よりも大きくなるように前記電磁コイルに通電することにより、前記非吸引用磁気回路から生じる磁力によって前記第1の位置側から前記第2の位置側に前記可動部材を移動させる第2の制御装置と、前記第1の位置側と前記第2の位置側との間における前記可動部材の移動をガイドするガイド部と、を備える。
 第1態様によれば、可動部材がガイド部にガイドされて第1の位置側と第2の位置側との間を移動することができる。このため、第1の位置側と第2の位置側との間を可動部材が確実に移動させることができる。これに伴い、駆動側回転体および従動側回転体の間の連結、或いは分離を確実に行うことができるので、クラッチ機構の確実な作動を得られる。
 また、本開示の第2態様では、前記ガイド部は、前記第1コイル部側に配置されて磁性材で構成されている第1の磁性部と、前記第2コイル部側に配置されて非磁性材で構成されている非磁性部とを備え、前記第1の磁性部は、前記吸引用磁気回路および前記非吸引用磁気回路を構成し、前記吸引用磁気回路側から磁束が漏れることを前記非磁性部が抑制する。
 ここで、例えば、吸引用磁気回路側から磁束が漏れると、駆動側回転体と前記従動側回転体とを連結させる磁力が小さくなる。
 そこで、第2態様では、可動部材が第1の位置側に位置するときに吸引用磁気回路側から磁束が漏れることを非磁性部が抑制することにより、駆動側回転体と従動側回転体とを連結させる磁力が小さくなることを抑制することができる。これにより、駆動側回転体と従動側回転体との間を確実に連結することができる。
 さらに、本開示の第3態様では、前記ガイド部の前記可動部材側の面には、前記可動部材の円滑な摺動を可能にする膜が表面処理によって形成されている。
 したがって、ガイド部の摺動状態を製品寿命に渡って良好に維持し、その作動性を維持することができる。
 本開示の第4態様では、前記ガイド部のうち前記可動部材側は、前記可動部材に対して摩耗を抑制する熱処理がなされているものである。
 したがって、ガイド部の摺動状態を製品寿命に渡って良好に維持し、その作動性を維持することができる。
 本開示の第5態様では、前記可動部材のうち前記ガイド部側の面には、前記ガイド部に対する円滑な摺動を可能にする膜が表面処理によって形成されている。
 したがって、可動部材の摺動状態を製品寿命に渡って良好に維持し、その作動性を維持することができる。
 本開示の第6態様では、前記可動部材のうち前記ガイド部側は、前記可動部材に対して摩耗を抑制する熱処理がなされているものである。
 したがって、可動部材の摺動状態を製品寿命に渡って良好に維持し、その作動性を維持することができる。
本開示のクラッチ構造が適用される第1実施形態の冷凍サイクル装置の全体構成を示す図である。 第1実施形態のクラッチ構造の断面図である。 図2におけるIII-III断面図である。 (a)はプーリおよびアーマチャが連結した状態を示す図、(b)はプーリおよびアーマチャの間を離す作動を説明するための図、(c)プーリおよびアーマチャの間が分離した状態を示す図、(d)はプーリおよびアーマチャが連結する作動を説明するための図である。 本開示の第2実施形態のクラッチ構造の一部を示す図である。 第2実施形態の比較例であるクラッチ構造の一部を示す図である。 本開示の第3実施形態のクラッチ構造の一部を示す図である。 本開示の第4実施形態のヨークの側面図、および正面図である。 第4実施形態のヨークの斜視図である。 本開示の第5実施形態のクラッチ構造の一部を示す図である。 本開示の第6実施形態のヨーク、および可動部材の一部を示す図である。
 以下、本開示の実施形態について図に基づいて説明する。各実施形態において先行する形態で説明した事項に対応する部分には、同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1は、本実施形態のクラッチ機構20が適用された車両用空調装置の冷凍サイクル装置1の全体構成図である。
 冷凍サイクル装置1は、コンプレッサ2、放熱器3、膨張弁4、および、蒸発器5を接続したものである。コンプレッサ2は、冷媒を吸入して圧縮する。放熱器3は、コンプレッサ2の吐出冷媒を放熱させる。膨張弁4は、放熱器3から流出される冷媒を減圧膨張させる。蒸発器5は、膨張弁4にて減圧された冷媒を蒸発させて吸熱作用を発揮させる。
 コンプレッサ2は、車両のエンジンルームに設置されている。コンプレッサ2は、走行用駆動源としてのエンジン10からクラッチ機構20を介して与えられる回転駆動力によって圧縮機構を駆動させることにより、蒸発器5から冷媒を吸入して圧縮する。
 なお、圧縮機構としては、吐出容量が固定された固定容量型圧縮機構、あるいは、外部からの制御信号によって吐出容量を調整可能に構成された可変容量型圧縮機構のいずれを採用してもよい。
 本実施形態のクラッチ機構20は、コンプレッサ2に連結されたプーリ一体型のクラッチ機構である。クラッチ機構20は、エンジン側プーリ11からVベルト12を介して与えられるエンジン10の回転駆動力をコンプレッサ2に伝達する。エンジン側プーリ11は、エンジン10の回転駆動軸に連結されているものである。
 クラッチ機構20は、プーリ30およびアーマチャ40を備える。プーリ30はエンジン10からのVベルト12を介して与えられる回転駆動力によって回転する駆動側回転体を構成する。アーマチャ40は、コンプレッサ2の回転軸2aに連結された従動側回転体を構成する。クラッチ機構20は、プーリ30とアーマチャ40との間を連結、あるいは離すことで、エンジン10からコンプレッサ2への回転駆動力の伝達を断続するものである。
 つまり、クラッチ機構20がプーリ30とアーマチャ40とを連結すると、エンジン10の回転駆動力がコンプレッサ2に伝達されて、冷凍サイクル装置1が作動する。一方、クラッチ機構20がプーリ30とアーマチャ40とを離すと、エンジン10の回転駆動力がコンプレッサ2に伝達されることはなく、冷凍サイクル装置1も作動しない。
 次に、本実施形態のクラッチ機構20の詳細構成について図2、図3、図4を用いて説明する。
 図2は、クラッチ機構20の軸方向断面図である。この軸方向断面図は、クラッチ機構20においてコンプレッサ2の回転軸2aの軸線を含んで、かつ軸線に沿う断面図である。図3は図2のIII-III断面図である。図2では、プーリ30とアーマチャ40とを連結させた状態を図示している。図4は、図2中のB領域部分図である。なお、以下の説明では、クラッチ機構20の軸線方向(回転軸方向)における一方側(図2では、左側)を第1の側、他方側(図2では、右側)を第2の側と称する場合がある。
 図2に示すように、クラッチ機構20は、プーリ30、アーマチャ40とともに、ステータ50を備える。
 まず、プーリ30は、外側円筒部31、内側円筒部32、および、端面部33を有している。
 外側円筒部31は、回転軸2aの軸線(図2における一点鎖線)を中心線とする円筒状に形成されている。外側円筒部31の外周側には、Vベルト12が掛けられるV溝(具体的には、ポリV溝)が形成されている。
 内側円筒部32の内周側には、ボールベアリング34の外側レースが固定されている。ボールベアリング34は、コンプレッサ2の外殻を形成するハウジング2cに対して、コンプレッサ2の回転軸2aの軸線を中心線としてプーリ30を回転自在に固定するものである。そのため、ボールベアリング34の内側レースは、コンプレッサ2のハウジング2cにスナップリング100等の固定部材によって固定されている。ボールベアリング34の内側レースは、コンプレッサ2のハウジング2cに設けられたハウジングボス部2bに対して径方向外側に配置されている。ハウジングボス部2bは、コンプレッサ2の回転軸2aの軸線を中心線とする円筒状に形成されている。
 内側円筒部32は、外側円筒部31の内周側に配置されてコンプレッサ2の回転軸2aの軸線を軸線とする円筒状に形成されている。
 本実施形態の外側円筒部31、および内側円筒部32は、いずれも磁性材(例えば、鉄)にて形成され、後述する吸引用磁気回路MCa(図4参照)を構成する。
 端面部33は、外側円筒部31および内側円筒部32の軸線方向における一方の側の端部同士を結ぶように回転軸垂直方向(径方向)に広がるとともに、中央部にその表裏を貫通する円形状の貫通穴が形成されている。
 具体的には、端面部33は、磁性材(例えば、鉄)にて形成されるリング部材33c、33d、33eを備える。リング部材33c、33d、33eは、それぞれ、回転軸2aの軸線を中心とするリング状に形成されている。リング部材33c、33d、33eは、径方向にオフセットして配置されている。リング部材33cは、リング部材33dに対して径方向外側に配置されている。リング部材33dは、リング部材33eに対して径方向外側に配置されている。
 リング部材33c、33dの間には、非磁性部33aが設けられている。非磁性部33aは、回転軸2aの軸線を中心とするリング状に形成されている。非磁性部33aは、円周方向に並べられている空隙部(エアギャップ)とブリッジ部とから構成されている。ブリッジ部は、磁性材(例えば、鉄)もしくは非磁性の金属材料からなるもので、リング部材33cとリング部材33dとを接続するためのものである。
 リング部材33d、33eの間には、非磁性部33bが設けられている。非磁性部33bは、回転軸2aの軸線を中心とするリング状に形成されている。非磁性部33bは、円周方向に並べられている空隙部とブリッジ部とから構成されている。ブリッジ部は、磁性材(例えば、鉄)もしくは非磁性の金属材料からなるもので、リング部材33dとリング部材33eとを接続するためのものである。
 本実施形態では、外側円筒部31、内側円筒部32、および端面部33は、一体に成形されているものである。このため、リング部材33eは、内側円筒部32に繋がっている。リング部材33cは、外側円筒部31に繋がっている。
 端面部33の第1の側の面は、プーリ30とアーマチャ40が連結された際に、アーマチャ40と接触する摩擦面を形成している。そこで、本実施形態では、端面部33の第1の側に、端面部33の摩擦係数を増加させるための摩擦部材35を配置している。この摩擦部材35は、非磁性材で形成されており、具体的には、アルミナを樹脂で固めたものや、金属粉末(例えば、アルミニウム粉末)の焼結材を採用できる。
 アーマチャ40は、回転軸2aに直交する方向に広がるとともに、中央部にその表裏を貫通する貫通穴が形成された円板状部材であって、後述するように、吸引用磁気回路MCaを構成する。本実施形態のアーマチャ40の回転中心は、回転軸2aの軸心に一致している。
 具体的には、アーマチャ40は、磁性材(例えば、鉄)にて形成されるリング部材40b、40cを備える。リング部材40b、40cは、それぞれ、回転軸2aの軸線を中心とするリング状に形成されている。リング部材40bは、リング部材40cに対して径方向外側に配置されている。リング部材40b、40cの間には、非磁性部40aが設けられている。非磁性部40aは、円周方向に並べられている空隙部とブリッジ部とから構成されている。ブリッジ部は、磁性材(例えば、鉄)もしくは非磁性の金属材料からなるもので、リング部材40bとリング部材40cとを接続するためのものである。
 本実施形態のアーマチャ40の非磁性部40aとプーリ30の非磁性部33a、33bとは径方向にオフセットして配置されている。
 アーマチャ40の第2の側の平面は、プーリ30の端面部33に対向しており、プーリ30とアーマチャ40が連結された際に、プーリ30と接触する摩擦面を形成している。アーマチャ40の第1の側には、円盤状のハブ42が配置されている。
 ハブ42は、アーマチャ40とコンプレッサ2の回転軸2aとを連結する連結部材を構成している。具体的には、ハブ42は、回転軸方向に延びる円筒部42aと、この円筒部42aの第1の側の端部から回転軸に対する垂直方向に広がるフランジ部42bとを備えている。
 ハブ42とアーマチャ40との間には、回転軸に対する垂直方向に広がる板バネ45が配置されている。板バネ45は、ハブ42のフランジ部42bに対してリベット41aによって固定されている。
 ここで、板バネ45は、リベット41bによってアーマチャ40に固定されている。板バネ45は、ハブ42に対してプーリ30からアーマチャ40が離れる方向に弾性力を作用させている。この弾性力により、プーリ30とアーマチャ40が離された状態では、ハブ42に連結されたアーマチャ40とプーリ30の端面部33との間に予め定めた所定間隔の隙間S3(後述する図4参照)が形成される。
 ハブ42は、その円筒部42aがコンプレッサ2の回転軸2aに対してボルト44によって締め付けられることによって固定されている。なお、ハブ42とコンプレッサ2の回転軸2aとの固定には、スプライン(セレーション)あるいはキー溝などの締結手段を用いてもよい。
 このように、アーマチャ40、ハブ42、板バネ45、コンプレッサ2の回転軸2aが固定されている。そして、プーリ30とアーマチャ40が連結されると、プーリ30、アーマチャ40、ハブ42、板バネ45、コンプレッサ2の回転軸2aがその軸心を中心線として回転する。
 また、ステータ50は、永久磁石51、電磁コイル53、ストッパ部54、可動部材55、ステータハウジング56、およびヨーク57を備えるステータアッセンブリである。
 永久磁石51は、コンプレッサ2の回転軸2aの軸線を中心とするリング状に形成されている。永久磁石51はその外周側がN極を構成し、永久磁石51の内周側がS極を構成している。永久磁石51は、後述するように、吸引用磁気回路MCaおよび非吸引用磁気回路MCbを発生させる。
 なお、本実施形態の永久磁石51として、ネオジウム(ネオジム)やサマリウムコバルトを採用することができる。永久磁石51、電磁コイル53、ストッパ部54、ステータハウジング56、およびヨーク57がそれぞれ嵌合締結されて、リング状に形成されている構造体52を構成する。
 電磁コイル53は、第1コイル部53aおよび第2のコイル部53bを備える。第1、第2のコイル部53a、53bは、直列、もしくは並列に接続されている。第1コイル部53aおよび第2コイル部53bは、それぞれ、コンプレッサ2の回転軸2aの軸線を中心とするリング状に形成されている。
 第1コイル部53aは、永久磁石51に対して軸線方向における第1の側に配置されている。第2コイル部53bは、永久磁石51に対して軸線方向における第2の側に配置されている。つまり、永久磁石51は、第1、第2コイル部53a、53bの間に挟まれている。
 本実施形態の第1、第2コイル部53a、53bは、銅やアルミ等からなるコイル線が例えば樹脂成形されたスプールに複列・複層に巻きつけられていることにより構成されている。
 可動部材55は、永久磁石51および電磁コイル53に対して回転軸2aの軸方向外側に配置されている。具体的には、可動部材55は、ヨーク57の回転軸2aの軸方向外側においてヨーク57に対してクリアランスを介して配置されている。
 可動部材55は、回転軸2aの軸線を中心とする円筒状に形成されている。可動部材55は、外側円筒部31に対して回転軸2aの径方向内側に配置されている。可動部材55と外側円筒部31との間には、隙間S2が形成されている。これにより、可動部材55は、ヨーク57に対して回転軸2aの軸方向(スラスト方向)に相対移動可能に構成されていることになる。本実施形態の可動部材55は、磁性材(例えば、鉄)にて形成されている。
 ここで、可動部材55の回転軸方向の全長は、構造体52の回転軸方向の全長よりも短く形成されている。これにより、可動部材55が、軸線方向の第1の側の位置(以下、第1の位置という)に位置する場合には、軸線方向の第2の側に空隙(エアギャップ)が形成される。空隙は、永久磁石51がプーリ30の端面部33の反対側に形成する非吸引用磁気回路MCbの磁気抵抗を増加させる。
 逆に、可動部材55が、軸線方向の第2の側の位置(以下、第2の位置という)に位置する場合には、軸線方向の第1の側に空隙が形成される。空隙は、永久磁石51がプーリ30の端面部33側に形成する吸引用磁気回路MCaの磁気抵抗を増加させる。
 このような可動部材55の軸線方向の移動によって、後述するように、吸引用磁気回路MCaの磁気抵抗、および非吸引用磁気回路MCbの磁気抵抗をそれぞれ変化させることができる。
 本実施形態の可動部材55には、可動部材55の硬度を大きくして可動部材55自体の摩耗を抑制するための熱処理(例えば、焼き入れ、焼き戻し)が施されている。
 ストッパ部54は、可動部材55および電磁コイル53のコイル部53aに対して軸線方向の第1の側に配置されている。ストッパ部54は、可動部材55を衝突させて可動部材55の軸線方向における第1の側を停止させる。
 ステータハウジング56は、筒部56a、および壁部56bを備える。筒部56aは、永久磁石51および電磁コイル53に対して回転軸2aの径方向内側に配置されている。筒部56aは、回転軸2aの軸心を中心とする円筒状に形成されている。壁部56bは、筒部56aの第2の側から回転軸2aの径方向外側に広がるリング状に形成されている。筒部56aおよび壁部56bは、磁性材(例えば、鉄)により一体に形成され、吸引用磁気回路MCa、および非吸引用磁気回路MCbをそれぞれ構成する。
 なお、ステータハウジング56の壁部56bには、電磁コイル53と制御装置6(第1の制御装置、第2の制御装置)との間を接続する電線53cを貫通させる貫通穴56cが設けられている。
 本実施形態のステータハウジング56は、コンプレッサ2のハウジング2cにスナップリング101等の固定手段によって固定されている。このことにより、構造体52がコンプレッサ2のハウジング2cに固定されていることになる。そして、ステータハウジング56の筒部56aとプーリ30の内側円筒部32との間には隙間S1が設けられている。
 ヨーク57は、ガイド部57aおよび中間磁性部57bを備える。ガイド部57aは、回転軸2aの軸心を中心とする円筒状に形成されている。ガイド部57aの外周面は、回転軸2aの軸線方向に亘って滑らかに形成されている。
 ガイド部57aの外周面(すなわち、可動部材55側の面)には、固体潤滑膜が表面処理により形成されている。当該表面処理は、可動部材55との間の良好な摺動状態を確保する。そして、当該表面処理は、摩擦係数μの低減ひいては可動部材55とガイド部57aとの間の摩耗耐力を向上するための固体潤滑膜を形成するものである。
 ここで、固体潤滑膜を形成するための表面処理に用いる表面処理材としては、例えば、モリブデン、フッ素、グラファイト等の固体潤滑効果がある材料を主成分としたものが望ましい。固体潤滑膜の膜厚寸法が10~20μ程度であることが望ましい。
 本実施形態のガイド部57aは、後述するように、可動部材55の軸線方向の移動をガイドする。
 中間磁性部57bは、第1、第2コイル部53a、53bの間に挟まれている。ガイド部57a、および中間磁性部57bは、磁性材(例えば、鉄)により一体に形成され、吸引用磁気回路MCa、および非吸引用磁気回路MCbをそれぞれ構成する。
 また、図1の制御装置6は、エアコンECU(電子制御装置)から出力される制御信号に基づいて、第1、第2コイル部53a、53bへの通電を制御する。
 次に、本実施形態のクラッチ機構20の作動について図4を参照して説明する。図4は、図2のB部の断面図を用いた説明図である。
 まず、図4(a)に示すように、プーリ30とアーマチャ40が連結された状態では、可動部材55が、第1の位置に位置している。
 この際、永久磁石51によって形成される吸引用磁気回路MCaの磁気抵抗が、可動部材55が第2の位置に位置している場合よりも減少して、吸引用磁気回路MCaによって生じる磁力が大きくなっている。
 図4(a)の太実線に示す吸引用磁気回路MCaによって生じる磁力は、プーリ30とアーマチャ40とを連結させる吸引磁力として作用する。
 吸引用磁気回路MCaは、図4(a)の太実線に示すように、ヨーク57→可動部材55→プーリ30の外側円筒部31→アーマチャ40→端面部33→アーマチャ40→内側円筒部32→ステータハウジング56の筒部56a、および磁石51の順で磁束が通過する磁気回路である。
 このように本実施形態の吸引用磁気回路MCaでは、アーマチャ40の非磁性部40aとプーリ30の非磁性部33a、33bを避けて磁束が通過する。このため、プーリ30とアーマチャ40との間の境界を4回通過する。よって、上記吸引磁力として大きな力をプーリ30とアーマチャ40との間に作用させることができる。
 また、可動部材55が、第1の位置に位置している場合には、可動部材55とステータプレート56の壁部56bとの間に空隙が形成される。この空隙は、非吸引用磁気回路MCbの磁気抵抗を増加させ、非吸引用磁気回路MCbによって生じる磁力を減少させる。非吸引用磁気回路MCbは、永久磁石51によって形成されて、かつ吸引用磁気回路MCaとは異なる磁気回路である。
 非吸引用磁気回路MCbは、図4(a)の細破線に示すように、可動部材55、ステータプレート56、永久磁石51、およびヨーク57の順に磁束が通過する磁気回路である。非吸引用磁気回路MCbによって生じる磁力は、プーリ30とアーマチャ40とを連結させる吸引力として機能しない。
 さらに、可動部材55が、第1の位置に位置している場合には、可動部材55が、第2の位置に位置している場合に比べて、吸引用磁気回路MCaの磁束量が増加しているので、可動部材55は、第1の位置側に維持される。
 本実施形態では、板バネ45の弾性力が、可動部材55が第1の位置に位置する場合の吸引用磁気回路MCaに生じる吸引磁力よりも小さくなるように設定されている。したがって、電磁コイル53に電力を供給しなくても、プーリ30とアーマチャ40が連結された状態が維持される。すなわち、エンジン10からの回転駆動力がコンプレッサ2へ伝達される。
 次に、制御装置6が電磁コイル53に対して第1方向への通電を開始する。このとき、図4(b)に示すように、第1のコイル53aには紙面裏から紙面表に電流が流れ、かつ第2のコイル53bには紙面裏から紙面表に電流が流れる。このため、第1のコイル53aが、吸引用磁気回路MCaを通過する磁束量を減少させるとともに、第2のコイル53bが、非吸引用磁気回路MCbを通過する磁束量を増加させる。これにより、図4(b)の細実線で示す吸引用磁気回路MCaによって生じる吸引磁力よりも、図4(b)の太破線で示す非吸引用磁気回路MCbによって生じる磁力が強くなる。
 これに伴い、可動部材55には、非吸引用磁気回路MCbから生じる磁力によって第2の側に移動させる駆動力が働く。このため、可動部材55が、ヨーク57のガイド部57aによってガイドされて、第1の位置側から第2の位置側へ移動する。その後、制御装置6が電磁コイル53に対する通電を終了する。
 このような可動部材55の移動に伴って、図4(c)に示すように、可動部材55とステータプレート56の壁部56bとの間の空隙が無くなる。このため、プーリ30とアーマチャ40が連結されているときよりも、非吸引用磁気回路MCbの磁気抵抗が減少して、非吸引用磁気回路MCbを通過する磁束量が増加する。その結果、可動部材55は第2の位置に維持されることになる。
 ここで、図4(c)に示すように、可動部材55が第2の位置に位置するときには、可動部材55とプーリ30の端面部33との間に空隙が形成される。この空隙によって、プーリ30とアーマチャ40が連結されているときよりも、吸引用磁気回路MCaの磁気抵抗が増加するので、吸引用磁気回路MCaから生じる吸引磁力が減少する。その結果、板バネ45による反発力の方が吸引用磁気回路MCaから生じる吸引磁力よりも大きくなり、プーリ30とアーマチャ40が離れる。すなわち、プーリ30とアーマチャ40との間が分離されて、エンジン10からの回転駆動力がコンプレッサ2へ伝達されなくなる。
 次に、制御装置6が電磁コイル53に対して第2方向への通電を開始する。第2方向とは、上記第1方向とは逆の方向のことである。このため、図4(d)に示すように、第1コイル部53aには紙面表から紙面裏に電流が流れ、かつ第2コイル部53bには紙面表から紙面裏に電流が流れる。このため、第1コイル部53aが、吸引用磁気回路MCaを通過する磁束量を増加させるとともに、第2コイル部53bが、非吸引用磁気回路MCbを通過する磁束量を減少させる。これにより、非吸引用磁気回路MCbによって生じる磁力よりも、吸引用磁気回路MCaによって生じる吸引磁力が強くなる。
 これに伴い、可動部材55には、吸引用磁気回路MCaから生じる磁力によって軸線方向における第1の側に移動させる駆動力が働く。このため、可動部材55がヨーク57のガイド部57aによってガイドされて、第2の位置側から第1の位置側へ移動する。その後、制御装置6が電磁コイル53に対する通電を終了する。
 このような可動部材55の移動に伴って、可動部材55とプーリ30の端面部33との間に空隙がなくなり、図4(a)の状態になる。このため、プーリ30とアーマチャ40が離れているときよりも、吸引用磁気回路MCaの磁気抵抗が減少して、吸引用磁気回路MCaの磁束量が増加する。その結果、上記吸引磁力が板バネ45による反発力を上回り、プーリ30とアーマチャ40とが連結される。すなわち、エンジン10からコンプレッサ2への回転駆動力の伝達が開始される。
 以上説明した本実施形態によれば、制御装置6が電磁コイル53に対して第1方向への通電を開始すると、第1のコイル53aが吸引用磁気回路MCaを通過する磁束量を減少させる。また、第2のコイル53bが非吸引用磁気回路MCbを通過する磁束量を増加させる。これにより、吸引用磁気回路MCaによって生じる吸引磁力よりも、非吸引用磁気回路MCbによって生じる磁力の方が強くなる。このとき、可動部材55には、非吸引用磁気回路MCbによって生じる磁力によって軸線方向における第2の側に駆動力が作用する。これに伴い、ガイド部57aによってガイドされて、第1の位置側から第2の位置側へ移動する。
 制御装置6が電磁コイル53に対して第2方向への通電を開始すると、第1コイル部53aが、吸引用磁気回路MCaを通過する磁束量を増加させるとともに、第2コイル部53bが、非吸引用磁気回路MCbを通過する磁束量を減少させる電磁力を発生させる。これにより、非吸引用磁気回路MCbによって生じる磁力よりも吸引用磁気回路MCaによって生じる磁力の方が強くなる。このとき、可動部材55には、吸引用磁気回路MCaによって生じる磁力によって軸線方向における第1の側に駆動力が作用する。これに伴い、可動部材55は、ガイド部57aによってガイドされて、第2の位置側から第1の位置側へ移動する。
 このように制御装置6が電磁コイル53に対して通電を実施することにより、可動部材55はガイド部57aにガイドされて第1の位置側と第2の位置側との間を確実な移動することができる。つまり、可動部材55はヨーク57と摺動しながら、クラッチ機構20のON-OFF時の移動工程を確実に行うことができる。
 ここで、ガイド部57aが用いられていないクラッチ機構(比較例)では、可動部材55と電磁コイル53や永久磁石51等との間に生じる摩擦力は不確定となる。従って、確実な可動部材55の作動を得るためには電磁コイル53から発生させる電磁力を冗長的に設計しておく必要があり、コスト・体格・ON-OFF時の消費電力などを犠牲にする必要が生じてしまっていた。
 ここで、可動部材55とヨーク57との間の摺動における摩擦力Fは下記のようにあらわされる。
      F=μ・N
 μ:摩擦係数
 つまり、比較例のクラッチ機構では、可動部材55が移動する際、電磁コイル53と接触したり、永久磁石51に直接接触したり、またはそれら両方と接触するケースがあり、摩擦力Fを安定させることができないという課題があった。
 これに対して、本実施形態では、可動部材55がヨーク57のガイド部57aと常に摺動しながら移動することができる。従って、摺動による摩擦力、ひいては可動部材55を摩擦力に抗して移動せしめるために必要な電磁力を予測でき、そのための電磁コイル53の設計が可能になる。これにより、確実な可動部材55の作動、ひいてはクラッチ機構20のON-OFF作動を保証することができる。
 本実施形態では、可動部材55はリング状の磁性材からなる。このため、可動部材55の製作を容易に行うことができる。
 本実施形態では、ガイド部57aの外周面(すなわち、可動部材55側の表面)には、可動部材55との間の良好な摺動状態を確保し、かつ摩擦係数μを低減するための固体潤滑皮膜が表面処理により形成されている。
 ここで、可動部材55とガイド部57aとが互いに接触面に生じる摩擦力により、作動回数に応じて摺動面の摩耗が進行する。接触面において著しい摩耗に至った場合、吸引用磁気回路MCa中の空隙の増大により磁力(すなわち、プーリ30およびアーマチャ40の間の吸引力)が低下する恐れがある。或いは、可動部材55およびガイド部57aの間のクリアランスが増大して、可動部材55の過大な傾きが発生して可動部材55が移動空間内で引っかかり、作動不良を起こす等の不都合が生じる恐れがある。
 一方、可動部材55およびヨーク57における摺動面の摩耗抑制のため、潤滑油を供給したり、或いはグリスを封入したりするといったことも考えられる。
 しかし、本実施形態のような乾式単板のクラッチ機構20において、潤滑油等を用いた場合、万が一にも動力伝達を行う摩擦面に該油らが漏洩した場合、滑り等の原因となり必要な伝達トルク性能が得られないことから、冗長的なシール構造が必要となる。
 そこで、本実施形態では、ガイド部57aには、上述の如く、外周面には、固体潤滑皮膜が表面処理により形成されている。このため、可動部材55およびガイド部57aにおける摺動面への潤滑油の供給、或いはグリスの封入等が必要なくなる。このため、本実施形態のように無潤滑で可動部材55の摺動を行うことにより、ステータ50の構造の簡素化を図れるという効果がある。
 本実施形態では、可動部材55を硬化するために可動部材55に対して熱処理が施されている。このため、可動部材55を硬くすることができる。これに伴い、可動部材55のうちガイド部57a側の面に摩耗が生じることを抑制することができる。これにより、可動部材55がガイド部57aに対して摺動して移動しても、摩耗し難くなる。したがって、ガイド部57aに対する可動部材55の円滑な摺動が可能になる。
 ここで、可動部材55に対して熱処理を施して可動部材55を硬化し、ガイド部57aに対して柔らかい固体潤滑皮膜を形成することで、柔らかいガイド部57aを常に摩耗させることができる。これにより、経時的な摩耗伸展の予測が把握し易くなる。
 なお、上記第1実施形態では、可動部材55を硬化すために可動部材55を熱処理した例について説明したが、これに代えて、可動部材55を硬化すために可動部材55のうちガイド部57a側の表面に硬質メッキを施してもよい。
 さらに、上記第1実施形態では、可動部材55の摩耗を抑制するために可動部材55を熱処理して、かつ固体潤滑被膜をガイド部57aに形成した例について説明したが、これに代えて、ガイド部57aの摩耗を抑制するためにガイド部57aを熱処理して、かつ固体潤滑被膜を可動部材55に形成してもよい。
 この場合、ガイド部57aに対する熱処理に代えて、ガイド部57aのうち可動部材55側の表面に硬質メッキを施してもよい。
 (第2実施形態)
 上記第1実施形態では、ヨーク57として磁性材からなるものを示したが、これに代えて、本第2実施形態では、ヨーク57として、磁性材および非磁性材からなる複合部材を用いる例について説明する。
 図5に本実施形態のクラッチ機構20の部分拡大図を示す。図5は図2におけるB部分に相当する図である。
 本実施形態では、ヨーク57のガイド部57aは、ガイド部57c、57dから構成されている。ガイド部57d(非磁性部)は、第2コイル部53b側に形成されている。具体的には、ガイド部57dは、第2コイル部53bに対して回転軸2aの径方向外側に位置する。ガイド部57dは、回転軸2aの軸線を中心とするリング状に形成されている。
 ガイド部57c(第1の磁性部)は、ガイド部57dに対して軸線方向の第1の側(すなわち、第1コイル部53a側)に配置されている。ガイド部57cは、中間磁性部57bおよび第1コイル部53aに対して回転軸2aの径方向外側に位置する。ガイド部57cは、回転軸2aの軸線を中心とするリング状に形成されている。
 ここで、ガイド部57dとしては、SUS304(ステンレス鋼)などの非磁性材からなる。ガイド部57cとして、中間磁性部57bとともに、鉄などの磁性材から一体成形されているものが用いられている。
 本実施形態では、ガイド部57c、57dの間が摩擦圧接(回転摩擦圧接)により接合されている。
 ここで、ガイド部57c、57dの間の接合を部分溶接等で行った場合、両者の間には隙間が生じる。このため、ヨーク57において、可動部材55の摺動を良好とするために固体潤滑膜を形成するための表面処理を実施しても、当該隙間により固体潤滑膜に亀裂が入り、固体潤滑膜が容易に剥がれるという恐れがある。
 これに対して、本実施形態では、上述の如く、ガイド部57c、57dの間が摩擦圧接により接合されている。このため、ヨーク57において、ガイド部57c、57dの間にて隙間、継ぎ目、段差が無い構造とすることができる。このため、可動部材55とヨーク57との間の摩擦係数μを下げることができる。これに伴い、ヨーク57において、可動部材55の摺動を良好とするために固体潤滑膜を形成するための表面処理が可能となる。
 上記第1実施形態では、図6に示すように、可動部材55が第1の位置(クラッチON側)に位置する際、永久磁石51→ヨーク57→可動部材55→プーリ30→アーマチャ40→プーリ30→永久磁石51の順に磁束が通過する吸引用磁気回路MCaが形成される。このとき、吸引用磁気回路MCa側から磁気(磁束)がヨーク57のガイド部57aを通じてステータハウジング56の壁部56b側へ漏洩するという背反が生じる恐れがある。この磁気漏洩はアーマチャ40の吸引力の低下、つまりはクラッチ機構20の伝達トルク性能の低下を招いてしまう。
 そこで、本実施形態では、ヨーク57のコンプレッサ側(OFF磁気回路側)端部のみガイド部57dとしての非磁性部を設けることによって、上記磁気漏洩が防止され、十分な伝達トルク性能を得られるという効果がある。
 (第3実施形態)
 上記第2実施形態では、ヨーク57の軸方向における第2の側において、ガイド部57dとしてステンレス鋼などからなる非磁性部を配置した例について説明した。これに代えて、図7に示すように、ヨーク57の軸方向における第2の側において、ガイド部57dに代わる空隙57eを非磁性部として形成してもよい。すなわち、ガイド部57aのうち軸方向における第2の側に非磁性材としての空気を含む空隙57eを非磁性部として設ける。空隙部57eは、回転軸2aの軸線を中心とするリング状に形成されている。
 (第4実施形態)
 上記第3実施形態では、ヨーク57の軸方向の第2の側において、空隙部57eを非磁性部として形成した例について説明した。これに代えて、本第4実施形態では、ヨーク57の軸方向における第2の側において、空隙部57eおよび磁性部57f(第2の磁性部)が回転軸2aの軸線を中心とする円周方向に交互に形成された例について説明する。
 図8(a)は本実施形態のヨーク57の側面図、図8(b)は本実施形態のヨーク57の正面、図9は本実施形態のヨーク57の斜視図である。
 本実施形態の磁性部57fは、図8、図9に示すように、ガイド部57cおよび中間部57dとともに、鉄等の磁性材により一体成形されている。このことにより、ヨーク57はその軸方向の第2の側が複数の空隙部57eおよび複数の磁性部57fが形成されたくし状に形成されることになる。
 本実施形態によれば、ヨーク57の軸方向における第2の側において、空隙部57eおよび磁性部57fが円周方向に1つずつ交互に形成されている。従って、上記磁気漏れを抑えつつ、可動部材55のガイド機能を確保でき、可動部材55の確実な作動を得ることができる。
 なお、上記第4実施形態では、ヨーク57の軸方向における第2の側の非磁性部として、空隙部57eを形成した例について説明したが、これに代えて、ヨーク57の軸方向における第2の側の非磁性部として、非磁性金属材料、或いは非磁性の樹脂材料を用いてもよい。
 (第5実施形態)
 上記第1実施形態では、可動部材55の軸方向断面が長方形になる例について説明した。これに代えて、本第5実施形態では、図10に示すように、可動部材55が軸方向断面において樽型形状にした例について説明する。可動部材55の軸方向断面とは、回転軸2aの軸線を含んで、かつ軸線に沿う断面図である。図10は本実施形態のクラッチ機構20の部分断面図である。図10において、図示した内容の明確化のために可動部材55以外のハッチングを省略している。
 本実施形態では、可動部材55の軸方向断面は、可動部材55のうち回転軸2aの径方向内側において、ガイド部57a側でかつガイド部57aの外周面に直交する直交方向に凸となる円弧状に形成される円弧部55aを有する形状になっている。ガイド部57aの外周面とは、ガイド部57aに対して可動部材55側の面のことである。
 本実施形態では、このように可動部材55が円弧部55aを有する形状になっている。このため、可動部材55がヨーク57に対して摺動しながら移動する際の、可動部材55およびヨーク57の間の接触面圧を低減することができる。
 上記第1実施形態では、可動部材55としては、ガイド部57a側に角部を有するリング状に形成されている。従って、可動部材55の角部がヨーク57と接触し過大なエッジ荷重が発生して、円滑な摺動を妨げると共に早期の摩耗等を引き起こす恐れがある。
 これに対して、本実施形態では、可動部材55を図10のような円弧部55aを有する断面形状とすることで、可動部材55はその角部でヨーク57に接触することがないため、可動部材55が移動する際に過大な接触荷重の発生を防ぐことができる。
 (第6実施形態)
 本第6実施形態では、図11に示すように、可動部材55およびヨーク57がセレーションにより嵌合されている例について説明する。
 図11(a)は、本実施形態の可動部材55およびヨーク57を軸線方向の第1の側から視た部分拡大図である。図11(b)は、図11(a)におけるC部分の拡大図である。
 可動部材55には、ヨーク57のガイド部57aに向けて凸となる凸部60(第1係合部)が複数列設けられている。複数の凸部60は、可動部材55において第1コイル部53a側と第2コイル部53b側との間(すなわち、軸線方向)に亘って形成されている。複数列の凸部60は、回転軸2aの軸線を中心とする円周方向に並べられている。
 ガイド部57aには、複数列の凸部60が嵌る(係合する)溝部61(第2係合部)が第1、第2の位置の間に亘って複数列形成されている。つまり、ガイド部57aには、第1コイル部53aと第2コイル部53bとの間(すなわち、軸線方向)に亘って溝部61が形成されている。
 このように構成される本実施形態では、可動部材55には複数列の凸部60が設けられ、ガイド部57aには、複数列の溝部61が形成されている。そして、凸部60および溝部61は、互いに軸線方向に摺動自在に係合している。このため、可動部材55はその複数の凸部60がガイド部57aにおける複数列の溝部61にガイドされて、軸線方向に移動する。これにより、ガイド部57aが可動部材55の第1、第2の位置の間の移動を確実にガイドすることができる。
 (他の実施形態)
 上記第6実施形態では、可動部材55に凸部60を設け、かつガイド部57aに溝部61を設けた例について説明したが、これに代えて、可動部材55に溝部61(第1係合部)を設け、かつガイド部57aに凸部60(第2係合部)を設けてもよい。
 また、第1係合部および第2係合部としては、可動部材55の移動方向に沿って互いに摺動自在に係合する構成であれば、図11に示したような凸部60および溝部61の構成に限定されるものではない。すなわち、第1係合部と、第1係合部に摺動しつつ係合可能な形状とされた第2係合部とを備えた各種のガイド機構を採用することができる。
 上記第1~6の実施形態では、駆動源としてエンジン10を用いた例について説明したが、これに代えて、エンジン10以外の機器を駆動源としてもよい。
 上記第1~6の実施形態では、エンジン10からの回転駆動力の伝達する伝達先としてコンプレッサ2を用いた例について説明したが、これに代えて、エンジン10からの回転駆動力の伝達する伝達先としてコンプレッサ2以外の機器を用いてもよい。
 上記第1~第6実施形態では、ガイド部57aのうち可動部材55側の表面には、可動部材55との間の良好な摺動状態を確保し、かつ摩擦係数μを低減するための表面処理が成されているものを用いた例について説明したが、これに代えて、ガイド部57a可動部材55側の表面には、摩耗を抑制するための熱処理がなされているものを用いもよい。
 上記第1~第6実施形態では、可動部材55の移動方向を回転軸2aの軸線方向とした例について説明したが、これに代えて、可動部材55の移動方向を回転軸2aの軸線方向以外の方向としてもよい。
 上記第1~第6実施形態では、永久磁石51および電磁コイル53に対して径方向外側に可動部材55を配置した例について説明したが、これに加えて、次の(1)、(2)のようにしてもよい。
 (1)可動部材55を永久磁石51および電磁コイル53に対して径方向内側に配置してもよい。この場合、永久磁石51および電磁コイル53に対して径方向内側で、かつ可動部材55に対して径方向外側にガイド部57aを配置してもよい。
 (2)可動部材55に対して径方向内側に永久磁石51および電磁コイル53を配置し、かつ可動部材55に対して径方向外側に永久磁石51および電磁コイル53を配置してもよい。この場合、永久磁石51および電磁コイル53に対して径方向内側にガイド部を配置し、かつ永久磁石51および電磁コイル53に対して径方向外側にガイド部を配置してもよい。
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。

Claims (19)

  1.  駆動源(10)から出力される回転駆動力によって回転する駆動側回転体(30)と、
     前記駆動側回転体に連結されることによって前記回転駆動力が伝達される従動側回転体(40)と、
     前記駆動側回転体と前記従動側回転体とを連結させる磁力を生じる吸引用磁気回路(MCa)を、前記駆動側回転体および前記従動側回転体とともに構成し、かつ前記吸引用磁気回路とは異なる非吸引用磁気回路(MCb)を構成する永久磁石(51)と、
     前記吸引用磁気回路から生じる磁力と前記非吸引用磁気回路から生じる磁力とを変化させる電磁コイル(53)と、
     磁性材で形成されて、かつ変位可能に構成され、前記駆動側回転体と前記従動側回転体とが連結しているときには、前記駆動側回転体および前記従動側回転体の間が分離しているときよりも、前記吸引用磁気回路の磁気抵抗が小さくなる第1の位置に位置し、前記駆動側回転体および前記従動側回転体の間が分離しているときには、前記駆動側回転体と前記従動側回転体が連結しているときよりも、前記非吸引用磁気回路の磁気抵抗が小さくなる第2の位置に位置する可動部材(55)と、
     前記吸引用磁気回路から生じる磁力が前記非吸引用磁気回路から生じる磁力よりも大きくなるように前記電磁コイルに通電することにより、前記吸引用磁気回路から生じる磁力によって前記第2の位置側から前記第1の位置側に前記可動部材を移動させる第1の制御装置(6)と、
     前記非吸引用磁気回路から生じる磁力が前記吸引用磁気回路から生じる磁力よりも大きくなるように前記電磁コイルに通電することにより、前記非吸引用磁気回路から生じる磁力によって前記第1の位置側から前記第2の位置側に前記可動部材を移動させる第2の制御装置(6)と、
     前記第1の位置側と前記第2の位置側との間における前記可動部材の移動をガイドするガイド部(57a)と、を備えるクラッチ機構。
  2.  前記電磁コイルは、前記吸引用磁気回路(MCa)から生じる磁力を増減させる第1コイル部(53a)と、前記非吸引用磁気回路(MCb)から生じる磁力を増減させる第2コイル部(53b)とから構成されている請求項1に記載のクラッチ機構。
  3.  前記ガイド部は、磁性材で形成されて、かつ前記吸引用磁気回路および前記非吸引用磁気回路を構成する請求項2に記載のクラッチ機構。
  4.  前記第1コイル部および第2コイル部の間に配置されて磁性材で構成されている中間磁性部(57b)を備え、
     前記中間磁性部および前記ガイド部は、前記吸引用磁気回路および前記非吸引用磁気回路を構成するヨーク(57)をなす請求項3に記載のクラッチ機構。
  5.  前記ガイド部は、前記第1コイル部側に配置されて磁性材で構成されている第1の磁性部(57c)と、前記第2コイル部側に配置されて非磁性材で構成されている非磁性部(57d、57e)とを備え、
     前記第1の磁性部は、前記吸引用磁気回路および前記非吸引用磁気回路を構成し、
     前記吸引用磁気回路側から磁束が漏れることを前記非磁性部が抑制する請求項2に記載のクラッチ機構。
  6.  前記第1の磁性部および前記非磁性部(57d)の間が摩擦圧接によって接合されて前記ガイド部が構成されている請求項5に記載のクラッチ機構。
  7.  前記第1の磁性部は、リング状に形成されており、
     前記非磁性部は、前記第1の磁性部の軸心を中心とするリング状に形成されている請求項5または6に記載のクラッチ機構。
  8.  前記ガイド部は、前記第1の磁性部に対して前記第2コイル部側にて磁性材で構成された第2の磁性部(57f)を備え、
     前記第2の磁性部は、前記非磁性部に対して前記第1の磁性部の軸心を中心とする円周方向に配置されている請求項5または6に記載のクラッチ機構。
  9.  前記ガイド部は、複数の前記非磁性部(57e)と複数の前記第2の磁性部(57f)とを備え、
     前記複数の非磁性部と前記複数の第2の磁性部とは、前記円周方向に1つずつ交互に並べられている請求項8に記載のクラッチ機構。
  10.  前記ガイド部には、前記非磁性材としての空気を含む空隙(57e)が前記非磁性部として形成されている請求項8または9に記載のクラッチ機構。
  11.  前記ガイド部の前記可動部材側の面には、前記可動部材の円滑な摺動を可能にする膜が表面処理によって形成されている請求項1ないし10のいずれか1つに記載のクラッチ機構。
  12.  前記ガイド部のうち前記可動部材側は、前記可動部材に対して摩耗を抑制する熱処理がなされているものである請求項1ないし10のいずれか1つに記載のクラッチ機構。
  13.  前記可動部材のうち前記ガイド部側の面には、前記ガイド部に対する円滑な摺動を可能にする膜が表面処理によって形成されている請求項1ないし12のいずれか1つに記載のクラッチ機構。
  14.  前記可動部材のうち前記ガイド部側は、前記可動部材に対して摩耗を抑制する熱処理がなされているものである請求項1ないし12のいずれか1つに記載のクラッチ機構。
  15.  前記可動部材には、第1係合部(60,61)が設けられ、
     前記ガイド部には、前記第1係合部に摺動自在に係合して前記可動部材の移動をガイドする第2係合部(61,60)が設けられている請求項1ないし14のいずれか1つに記載のクラッチ機構。
  16.  前記第1係合部は、前記ガイド部に向けて凸となる凸部(60)であり、
     前記第2係合部は、前記ガイド部において前記第1の位置側と前記第2の位置側との間に亘って設けられ、前記凸部が入る溝部(61)である請求項15に記載のクラッチ機構。
  17.  前記第2係合部は、前記可動部材に向けて凸となる凸部(60)であり、
     前記第1係合部は、前記可動部材において前記第1の位置側と前記第2の位置側との間に亘って設けられ、前記凸部が入る溝部(61)である請求項15に記載のクラッチ機構。
  18.  前記可動部材は、前記駆動側回転体の回転中心を中心とするリング状に形成されている請求項1ないし17のいずれか1つに記載のクラッチ機構。
  19.  前記可動部材は、前記駆動側回転体の軸線を含んで、かつ前記軸線に沿う断面が前記ガイド部側に凸となる円弧状に形成されている円弧部(55a)を有する形状になっており、
     前記可動部材の前記円弧部が前記ガイド部に摺動して前記第1の位置側と前記第2の位置側との間を移動可能に構成されている請求項18に記載のクラッチ機構。
PCT/JP2013/005865 2012-11-23 2013-10-02 クラッチ機構 WO2014080560A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013005635.6T DE112013005635T5 (de) 2012-11-23 2013-10-02 Kupplungsmechanismus
US14/646,413 US10030716B2 (en) 2012-11-23 2013-10-02 Clutch mechanism with guide portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012256962A JP5910472B2 (ja) 2012-11-23 2012-11-23 クラッチ機構
JP2012-256962 2012-11-23

Publications (1)

Publication Number Publication Date
WO2014080560A1 true WO2014080560A1 (ja) 2014-05-30

Family

ID=50775758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005865 WO2014080560A1 (ja) 2012-11-23 2013-10-02 クラッチ機構

Country Status (4)

Country Link
US (1) US10030716B2 (ja)
JP (1) JP5910472B2 (ja)
DE (1) DE112013005635T5 (ja)
WO (1) WO2014080560A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020304B2 (ja) * 2013-03-29 2016-11-02 株式会社デンソー クラッチ機構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271404A (ja) * 1986-05-20 1987-11-25 Mitsubishi Mining & Cement Co Ltd 電磁アクチュエ−タ
JPH0650357A (ja) * 1992-08-03 1994-02-22 Nippondenso Co Ltd 電磁クラッチ
JP2000283031A (ja) * 1999-03-30 2000-10-10 Denso Corp 電磁クラッチ付き回転機械
JP2006336745A (ja) * 2005-06-01 2006-12-14 Shinko Electric Co Ltd 電磁クラッチ/ブレーキ
JP2011080579A (ja) * 2009-10-12 2011-04-21 Denso Corp クラッチ機構

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006008131U1 (de) * 2006-01-25 2006-09-28 Getrag Innovations Gmbh Schaltkupplungsanordnung für Kraftfahrzeuggetriebe
JP2010032035A (ja) * 2008-06-25 2010-02-12 Toyota Industries Corp 変速電磁クラッチ
EP2151573B1 (en) * 2008-08-07 2015-04-15 Denso Corporation A starting device for combustion engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271404A (ja) * 1986-05-20 1987-11-25 Mitsubishi Mining & Cement Co Ltd 電磁アクチュエ−タ
JPH0650357A (ja) * 1992-08-03 1994-02-22 Nippondenso Co Ltd 電磁クラッチ
JP2000283031A (ja) * 1999-03-30 2000-10-10 Denso Corp 電磁クラッチ付き回転機械
JP2006336745A (ja) * 2005-06-01 2006-12-14 Shinko Electric Co Ltd 電磁クラッチ/ブレーキ
JP2011080579A (ja) * 2009-10-12 2011-04-21 Denso Corp クラッチ機構

Also Published As

Publication number Publication date
DE112013005635T5 (de) 2015-09-10
JP2014105720A (ja) 2014-06-09
US20150292574A1 (en) 2015-10-15
JP5910472B2 (ja) 2016-04-27
US10030716B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
EP2446162B1 (en) Ball ramp clutch
JP6020304B2 (ja) クラッチ機構
WO2014076867A1 (ja) クラッチ機構
KR20170063864A (ko) 전자 클러치
JP5983385B2 (ja) クラッチ
WO2014080560A1 (ja) クラッチ機構
KR102476896B1 (ko) 전자 클러치
JP6645414B2 (ja) 動力伝達装置
JP6645415B2 (ja) 動力伝達装置
US9835205B2 (en) Friction clutch
JP5949500B2 (ja) クラッチ機構
JP6597746B2 (ja) 動力伝達装置
JP6569600B2 (ja) クラッチおよびその製造方法
JP5974864B2 (ja) クラッチ機構
WO2018088234A1 (ja) 動力伝達装置
WO2014087846A1 (ja) 電磁クラッチ
WO2019239837A1 (ja) 動力伝達装置
JP2017198304A (ja) クラッチ
JP2020118183A (ja) クラッチの製造方法
US20180058516A1 (en) Clutch
JP5958322B2 (ja) クラッチ機構
JP2019027490A (ja) 動力伝達装置
WO2016103665A1 (ja) 電磁クラッチおよびその製造方法
JP2010014149A (ja) 電磁クラッチ
JPS59231222A (ja) 電磁スプリングクラツチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14646413

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130056356

Country of ref document: DE

Ref document number: 112013005635

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856092

Country of ref document: EP

Kind code of ref document: A1