WO2013084738A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2013084738A1
WO2013084738A1 PCT/JP2012/080471 JP2012080471W WO2013084738A1 WO 2013084738 A1 WO2013084738 A1 WO 2013084738A1 JP 2012080471 W JP2012080471 W JP 2012080471W WO 2013084738 A1 WO2013084738 A1 WO 2013084738A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
valve
control
heat absorber
Prior art date
Application number
PCT/JP2012/080471
Other languages
English (en)
French (fr)
Inventor
竜 宮腰
鈴木 謙一
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112012005151.3T priority Critical patent/DE112012005151T5/de
Priority to US14/363,911 priority patent/US9784486B2/en
Priority to JP2013548178A priority patent/JP5984842B2/ja
Publication of WO2013084738A1 publication Critical patent/WO2013084738A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2521On-off valves controlled by pulse signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Definitions

  • the present invention relates to a vehicle air conditioner applicable to, for example, an electric vehicle.
  • this type of vehicle air conditioner includes a compressor driven by an engine as a power source of the vehicle, a radiator provided outside the passenger compartment, and a heat absorber provided inside the passenger compartment, and is compressed.
  • the refrigerant discharged from the machine dissipates heat in the radiator, absorbs heat in the heat absorber, and supplies the air that has exchanged heat with the refrigerant in the heat absorber into the passenger compartment to perform the cooling operation.
  • a heater core is provided in the vehicle interior, the exhaust heat of the cooling water used for cooling the engine is radiated in the heater core, and the air that has exchanged heat with the cooling water in the heater core is directed toward the vehicle interior. Heating operation is performed by blowing out.
  • the air supplied to the passenger compartment is dehumidified by cooling to the absolute humidity required in the heat absorber, and the air dehumidified by the heat absorber is dehumidified to a desired temperature in the heater core.
  • a dehumidifying and heating operation is performed in which the air is heated toward the passenger compartment after heating.
  • the vehicle air conditioner uses exhaust heat of the engine as a heat source for heating air in heating operation and dehumidifying heating operation.
  • An electric vehicle in which the power source of the vehicle is an electric motor does not generate exhaust heat that can sufficiently heat air like an engine, and thus the vehicle air conditioner cannot be applied.
  • a compressor that compresses and discharges a refrigerant
  • a radiator that is provided on the vehicle interior side, and that dissipates the refrigerant
  • a heat absorber that absorbs heat and an outdoor heat exchanger that is provided outside the passenger compartment and dissipates or absorbs heat from a refrigerant are known (for example, see Patent Document 1).
  • the refrigerant discharged from the compressor is radiated by the radiator, and the refrigerant radiated by the radiator is decompressed by the expansion valve and absorbed by the outdoor heat exchanger, thereby performing the heating operation.
  • the refrigerant discharged from the compressor is dissipated in the radiator, a part of the refrigerant dissipated in the radiator is decompressed by the expansion valve, and the heat absorber absorbs heat, and the other refrigerant is removed.
  • the dehumidifying heating operation is performed by reducing the pressure by the expansion valve and absorbing heat in the outdoor heat exchanger.
  • a temperature expansion valve is provided as an expansion valve on the upstream side in the refrigerant flow direction of each of the heat absorber and the outdoor heat exchanger, and the evaporation temperature of each refrigerant Is made constant.
  • the heat absorption capability cannot be adjusted in each of the heat absorber and the outdoor heat exchanger, when the temperature outside the vehicle compartment becomes low, the evaporation temperature of the refrigerant in the outdoor heat exchanger also decreases, and the heat absorber becomes There is a risk of frost formation.
  • the present invention provides a compressor that compresses and discharges a refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and a heat absorption that is provided on the vehicle interior side and absorbs the refrigerant.
  • an outdoor heat exchanger that is provided outside the vehicle compartment and radiates or absorbs the refrigerant, an indoor expansion valve that depressurizes the refrigerant flowing into the heat absorber, and an outdoor side that depressurizes the refrigerant flowing into the outdoor heat exchanger
  • An expansion valve wherein the refrigerant discharged from the compressor dissipates heat in the radiator, a part of the refrigerant dissipated in the radiator is decompressed by the indoor expansion valve, and the heat absorber absorbs heat, and the other refrigerant is stored in the chamber.
  • the heat absorber is adjusted by adjusting the valve opening degree of the outdoor expansion valve during the dehumidifying heating operation.
  • Cold in The evaporating temperature of the refrigerant in the heat absorber is adjusted by adjusting the flow rate of the refrigerant that is provided in the outdoor expansion valve controller that adjusts the evaporation temperature of the refrigerant and the refrigerant flow passage on the refrigerant outflow side of the heat absorber.
  • the heat absorber when the adjustable evaporation temperature adjustment valve, the temperature detector for detecting the temperature of the refrigerant in the heat absorber, the valve opening degree of the outdoor expansion valve and the temperature detected by the temperature detection means respectively satisfy predetermined conditions.
  • a control valve switching unit that switches the control of the evaporation temperature of the refrigerant from the control by adjusting the valve opening of the outdoor expansion valve to the control by adjusting the valve opening of the evaporation temperature adjusting valve.
  • the present invention during the dehumidifying and heating operation, it is possible to prevent the refrigerant evaporation temperature in the heat absorber from being lowered not only by controlling the valve opening degree of the outdoor expansion valve but also by controlling the valve opening degree of the evaporation temperature adjusting valve. Therefore, even when the temperature outside the passenger compartment is low, frost formation does not occur in the heat absorber, and it is possible to secure the necessary heat absorption amount of the refrigerant in the heat absorber.
  • FIG. 1 is a schematic configuration diagram of a vehicle air conditioner showing an embodiment of the present invention. It is a block diagram which shows a control system. It is a schematic block diagram of the vehicle air conditioner which shows a cooling operation and a dehumidification cooling operation. It is a schematic block diagram of the vehicle air conditioner which shows heating operation. It is a schematic block diagram of the vehicle air conditioner which shows 1st dehumidification heating operation. It is a schematic block diagram of the air conditioning apparatus for vehicles which shows 2nd dehumidification heating operation. It is a flowchart which shows an expansion means control process. It is a flowchart which shows a 2nd control valve control process. It is a flowchart which shows an evaporation temperature control switching process.
  • the vehicle air conditioner of the present invention includes an air conditioning unit 10 provided in a vehicle interior, and a refrigerant circuit 20 configured to extend between the vehicle interior and the exterior of the vehicle interior.
  • the air conditioning unit 10 has an air flow passage 11 for circulating the air supplied to the vehicle interior.
  • an outside air intake port 11 a for allowing the air outside the vehicle interior to flow into the air flow passage 11
  • an inside air intake port 11 b for allowing the air inside the vehicle interior to flow into the air flow passage 11, Is provided.
  • a foot outlet 11 c that blows out air flowing through the air flow passage 11 toward the feet of the passengers in the passenger compartment, and air flowing through the air flow passage 11 are supplied to the vehicle.
  • a vent outlet 11d that blows out toward the upper body of the passenger in the room, and a differential outlet 11e that blows out the air flowing through the air flow passage 11 toward the surface of the vehicle windshield toward the vehicle interior side. ing.
  • An indoor blower 12 such as a sirocco fan for circulating air from one end side to the other end side of the air flow passage 11 is provided on one end side in the air flow passage 11.
  • This indoor blower 12 is driven by an electric motor 12a.
  • an inlet switching damper 13 that can open one of the outside air inlet 11a and the inside air inlet 11b and close the other is provided.
  • the suction port switching damper 13 is driven by an electric motor 13a.
  • an outside air supply mode in which air flows from the outside air suction port 11a into the air flow passage 11 is set.
  • the inside air circulation mode in which air flows from the inside air suction port 11b into the air flow passage 11 is set.
  • the suction port switching damper 13 when the suction port switching damper 13 is positioned between the outside air suction port 11a and the inside air suction port 11b, and the outside air suction port 11a and the inside air suction port 11b are opened, the outside air suction port 11a by the suction port switching damper 13 is opened.
  • an outside / inside air suction mode in which air flows into the air flow passage 11 from the outside air inlet 11a and the inside air inlet 11b at a ratio corresponding to the respective opening ratios of the inside air inlet 11b.
  • the outlet switching dampers 13b, 13c, and 13d for opening and closing the outlets 11c, 11d, and 11e are provided at the foot outlet 11c, the vent outlet 11d, and the differential outlet 11e on the other end side of the air flow passage 11, respectively. Is provided.
  • the outlet switching dampers 13b, 13c, and 13d are configured to be interlocked by a link mechanism (not shown), and are opened and closed by an electric motor 13e.
  • the foot outlet 11c is opened by the outlet switching dampers 13b, 13c, and 13d
  • the vent outlet 11d is closed, and the differential outlet 11e is slightly opened, the air flowing through the air flow passage 11 is reduced. Most of the air is blown from the foot outlet 11c and the remaining air is blown from the differential outlet 11e.
  • the air flow passage 11 and the foot blowing are such that the temperature difference between the air blown from the foot blower outlet 11c is higher than the temperature of the air blown from the vent blower outlet 11d.
  • the positional relationship and structure of the outlet 11c, the vent outlet 11d, a heat absorber and a radiator described later are provided.
  • the air flow passage 11 on the downstream side in the air flow direction of the indoor blower 12 is provided with a heat absorber 14 for cooling and dehumidifying the air flowing through the air flow passage 11.
  • a heat radiator 15 for heating the air flowing through the air flow passage 11 is provided in the air flow passage 11 on the downstream side in the air flow direction of the heat absorber 14.
  • the heat absorber 14 and the heat radiator 15 are heat exchangers including fins and tubes for exchanging heat between the refrigerant flowing through the interior and the air flowing through the air flow passage 11.
  • the air flow path 11 between the heat absorber 14 and the heat radiator 15 is provided with an air mix damper 16 for adjusting the rate of heating in the heat radiator 15 of the air flowing through the air flow path 11.
  • the air mix damper 16 is driven by an electric motor 16a. Since the air mix damper 16 is positioned upstream of the radiator 15 in the air flow passage 11, the ratio of air to be heat exchanged in the radiator 15 is reduced, and the air mix damper 16 is disposed on a portion other than the radiator 15 in the air flow passage 11. By moving, the ratio of the air that exchanges heat in the radiator 15 increases.
  • the air mix damper 16 closes the upstream side of the radiator 15 in the air flow passage 11 and opens the portion other than the radiator 15 so that the opening degree becomes 0%, and the upstream side of the radiator 15 in the air flow passage 11. Is opened and the opening is 100% with the portion other than the radiator 15 closed.
  • the refrigerant circuit 20 includes the heat absorber 14, the radiator 15, a compressor 21 for compressing the refrigerant, an outdoor heat exchanger 22 for exchanging heat between the refrigerant and air outside the passenger compartment, the radiator 15, and outdoor heat.
  • An internal heat exchanger 23 for exchanging heat between at least the refrigerant flowing out of the radiator 15 and the refrigerant flowing out of the heat absorber 14 of the exchanger 22, and for depressurizing the refrigerant flowing into the outdoor heat exchanger 22 during heating operation.
  • a first control valve 24 having an expansion means and a condensation pressure adjusting means for controlling the condensation pressure of the refrigerant in the radiator during the dehumidifying and cooling operation, and an evaporation temperature adjusting valve for adjusting the refrigerant evaporation temperature in the heat absorber 14
  • Second control valve 25 first to third solenoid valves 26a, 26b, 26c, first to second check valves 27a, 27b, an expansion valve 28 as an indoor expansion valve, gaseous refrigerant and liquid Divide refrigerant
  • the liquid refrigerant has an accumulator 29 for preventing sucked into the compressor 21, which are connected by a copper pipe and aluminum pipe.
  • the refrigerant flow path 20 a is provided by connecting the refrigerant inflow side of the radiator 15 to the refrigerant discharge side of the compressor 21. Further, a refrigerant flow passage 20 b is provided on the refrigerant outflow side of the radiator 15 by connecting the refrigerant inflow side of the first control valve 24. A refrigerant flow passage 20c is provided on the refrigerant outflow side of the first control valve 24 on the expansion means side by connecting one end side of the outdoor heat exchanger 22. A first check valve 27a is provided in the refrigerant flow passage 20c.
  • the refrigerant flow passage 20d is provided on the refrigerant outflow side of the first control valve 24 on the side of the condensation pressure adjusting means by connecting the other end side of the outdoor heat exchanger 22.
  • the refrigerant heat passage 20e is provided on the other end side of the outdoor heat exchanger 22 by connecting the refrigerant suction side of the compressor 21 in parallel with the refrigerant flow passage 20d.
  • the refrigerant flow passage 20e is provided with a first electromagnetic valve 26a and an accumulator 29 in order from the upstream side in the refrigerant flow direction.
  • the refrigerant flow passage 20b is provided with a refrigerant flow passage 20f by connecting the high-pressure refrigerant inflow side of the internal heat exchanger 23 to the refrigerant flow passage 20b.
  • a second electromagnetic valve 26b is provided in the refrigerant flow passage 20f.
  • a refrigerant flow passage 20 g is provided on the high-pressure refrigerant outflow side of the internal heat exchanger 23 by being connected to the refrigerant inflow side of the heat absorber 14.
  • An expansion valve 28 is provided in the refrigerant flow passage 20g.
  • a refrigerant flow passage 20 h is provided on the refrigerant outflow side of the heat absorber 14 by connecting the low-pressure refrigerant inflow side of the internal heat exchanger 23.
  • a second control valve 25 is provided in the refrigerant flow passage 20h.
  • a refrigerant flow passage 20 i is provided on the low-pressure refrigerant outflow side of the internal heat exchanger 23 by connecting the first electromagnetic valve 26 a of the refrigerant flow passage 20 e and the accumulator 29.
  • a refrigerant flow passage 20j is provided on one end side of the outdoor heat exchanger 22 in parallel with the refrigerant flow passage 20c by connecting the downstream side of the second electromagnetic valve 26b of the refrigerant flow passage 20f in the refrigerant flow direction. Yes.
  • the refrigerant flow passage 20j is provided with a third electromagnetic valve 26c and a second check valve 27b in order from the upstream side in the refrigerant flow direction.
  • the compressor 21 and the outdoor heat exchanger 22 are disposed outside the passenger compartment.
  • the compressor 21 is driven by an electric motor 21a.
  • the outdoor heat exchanger 22 is provided with an outdoor blower 30 for exchanging heat between air outside the passenger compartment and the refrigerant when the vehicle is stopped.
  • the outdoor blower 30 is driven by an electric motor 30a.
  • the first control valve 24 is formed with a refrigerant flow path on the expansion means side and a refrigerant flow path on the condensation pressure adjustment means side.
  • the refrigerant flow paths on the expansion means side and the condensation pressure adjustment means side are each configured to be completely closed by a valve that adjusts the opening of the refrigerant flow path.
  • the second control valve 25 is configured such that the valve opening can be set in two stages, and the flow rate of the refrigerant flowing through the refrigerant flow passage 20h can be adjusted in two stages.
  • the expansion valve 28 is a temperature type expansion valve for appropriately maintaining the degree of superheat of the refrigerant flowing through the refrigerant flow passage 20h (the refrigerant outflow side of the heat absorber 14).
  • the vehicle air conditioner includes a controller 40 for controlling the temperature and humidity in the passenger compartment to the set temperature and the set humidity.
  • the controller 40 has a CPU, ROM, and RAM.
  • the CPU reads a program stored in the ROM based on the input signal, and stores a state detected by the input signal in the RAM.
  • the output signal is transmitted to a device connected to the output side.
  • an electric motor 12a for driving the indoor fan 12 On the output side of the controller 40, as shown in FIG. 2, an electric motor 12a for driving the indoor fan 12, an electric motor 13a for driving the inlet switching damper 13, and an electric motor for driving the outlet switching dampers 13b, 13c, 13d.
  • Motor 13e, electric motor 16a for driving air mix damper 16 electric motor 21a for driving compressor 21, first control valve 24, second control valve 25, first to third electromagnetic valves 26a, 26b, 26c, outdoor
  • An electric motor 30a for driving the blower 30 is connected.
  • an outside air temperature sensor 41 for detecting the temperature Tam outside the passenger compartment, an inside air temperature sensor 42 for detecting the temperature Tr inside the passenger compartment, and the amount of solar radiation Ts are detected.
  • a photo-sensor type solar radiation sensor 43, a heat absorber temperature sensor 44 as temperature detecting means for detecting the refrigerant evaporation temperature Te in the heat absorber 14, and the pressure of the refrigerant sucked into the compressor 21 are detected.
  • a cooling operation In the vehicle air conditioner configured as described above, a cooling operation, a dehumidifying and cooling operation, a heating operation, a first dehumidifying and heating operation, and a second dehumidifying and heating operation are performed.
  • a cooling operation In the vehicle air conditioner configured as described above, a cooling operation, a dehumidifying and cooling operation, a heating operation, a first dehumidifying and heating operation, and a second dehumidifying and heating operation are performed.
  • each operation will be described.
  • the flow path on the expansion means side of the first control valve 24 is closed, the flow path on the condensation pressure adjustment means side is opened, and the third electromagnetic valve 26c is opened.
  • the first and second electromagnetic valves 26a and 26b are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG.
  • the high pressure side of the heat exchanger 23, the refrigerant flow passage 20 g, the heat absorber 14, the refrigerant flow passage 20 h, the low pressure side of the internal heat exchanger 23, and the refrigerant flow passages 20 i and 20 e flow in order and are sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the outdoor heat exchanger 22 and absorbs heat in the heat absorber 14.
  • the air mix damper 16 is opened as shown in the one-dot chain line in FIG. 3 in the dehumidifying and cooling operation, the refrigerant flowing through the refrigerant circuit 20 also radiates heat in the radiator 15.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is cooled by exchanging heat with the refrigerant in the heat absorber 14, and the temperature in the vehicle interior is set as a target.
  • the temperature Tset the air is blown into the vehicle interior as the target air temperature TAO, which is the temperature of the air to be blown out from the air outlets 11c, 11d, and 11e.
  • the target blowing temperature TAO is obtained by detecting environmental conditions such as a temperature Tam outside the passenger compartment, a temperature Tr inside the passenger compartment, and a solar radiation amount Ts by the outside air temperature sensor 41, the inside air temperature sensor 42, the solar radiation sensor 43, and the like. And the target set temperature Tset.
  • the air in the air flow passage 11 circulated by operating the indoor fan 12 is dehumidified by being cooled by exchanging heat with the refrigerant that absorbs heat in the heat absorber 14. .
  • the air dehumidified in the heat absorber 14 is heated by exchanging heat with the refrigerant that dissipates heat in the radiator 15 and is blown into the passenger compartment as air at the target blowing temperature TAO.
  • the refrigerant flow path on the expansion means side of the first control valve 24 is opened, the refrigerant flow path on the condensation pressure adjustment means side is closed, the first electromagnetic valve 26a is opened, The second and third electromagnetic valves 26b and 26c are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 flows in the order of the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passages 20b and 20c, the outdoor heat exchanger 22, and the refrigerant flow passage 20e as shown in FIG. And sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the outdoor heat exchanger 22.
  • the air in the air flow passage 11 circulated by operating the indoor fan 12 is heated by exchanging heat with the refrigerant in the radiator 15 without exchanging heat with the refrigerant in the heat absorber 14. Then, the air becomes the target blowing temperature TAO and is blown into the passenger compartment.
  • the refrigerant circuit 20 opens the refrigerant flow path on the expansion means side of the first control valve 24 and closes the refrigerant flow path on the condensation pressure adjustment means side, so that the first and second electromagnetic valves While opening 26a, 26b, the 3rd solenoid valve 26c is closed, and the compressor 21 is drive
  • coolant discharged from the compressor 21 distribute
  • a part of the refrigerant flowing through the refrigerant flow passage 20b flows through the first control valve 24, the refrigerant flow passage 20c, the outdoor heat exchanger 22, and the refrigerant flow passage 20e in this order, and is sucked into the compressor 21.
  • Other refrigerants flowing through the refrigerant flow passage 20b include the refrigerant flow passage 20f, the high pressure side of the internal heat exchanger 23, the refrigerant flow passage 20g, the heat absorber 14, the refrigerant flow passage 20h, and the low pressure side of the internal heat exchanger 23. Then, the refrigerant flows in the order of the refrigerant flow passage 20 i and is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 radiates heat in the radiator 15 and absorbs heat in the heat absorber 14 and the outdoor heat exchanger 22.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is dehumidified by being cooled by heat exchange with the refrigerant in the heat absorber 14.
  • the air dehumidified in the heat absorber 14 is heated when a part of the air exchanges heat with the refrigerant in the radiator 15, and is blown into the vehicle interior as air at the target blowing temperature TAO.
  • the refrigerant circuit 20 closes both the refrigerant flow paths on the expansion means side and the condensation pressure adjustment means side of the first control valve 24, opens the second electromagnetic valve 26b, The third solenoid valves 26a and 26c are closed, and the compressor 21 is operated. Thereby, the refrigerant discharged from the compressor 21 is, as shown in FIG.
  • the heat absorber 14, the refrigerant flow passage 20 h, the low-pressure side of the internal heat exchanger 23, and the refrigerant flow passages 20 i and 20 e are circulated in this order and sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the heat absorber 14.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is cooled by exchanging heat with the refrigerant in the heat absorber 14 as in the first dehumidifying heating operation. Is dehumidified.
  • the air dehumidified in the heat absorber 14 is heated when a part of the air exchanges heat with the refrigerant in the radiator 15, and is blown into the vehicle interior at the target blowing temperature TAO.
  • the controller 40 performs the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, and the second dehumidifying and heating operation when the auto air conditioner switch is set to the on state.
  • the operation switching control process for switching based on environmental conditions such as the temperature Tr of the vehicle, the humidity outside the vehicle compartment, the humidity Th inside the vehicle compartment, and the amount of solar radiation Ts is performed.
  • the controller 40 switches the mode of the air outlets 11c, 11d, and 11e by the air outlet switching dampers 13b, 13c, and 13d, and sets the temperature of the air that is blown out from the air outlets 11c, 11d, and 11e as the target air temperature TAO. Therefore, the opening degree of the air mix damper 16 is controlled.
  • the controller 40 performs switching between the foot mode, the vent mode, and the bi-level mode according to the target blowing temperature TAO in each operation that is switched by the operation switching control process.
  • the foot mode is set when the target blowing temperature TAO is a high temperature such as 40 ° C. or higher.
  • the controller 40 sets the vent mode when the target blowing temperature TAO becomes a low temperature such as less than 25 ° C., for example.
  • the controller 40 sets the bi-level mode when the target blowing temperature TAO is a temperature between the target blowing temperature TAO for which the foot mode is set and the target blowing temperature TAO for which the vent mode is set.
  • controller 40 performs expansion means control processing for controlling the valve opening degree of the first control valve 24 on the expansion means side in the heating operation and the first dehumidifying heating operation in accordance with the operation state.
  • expansion means control processing for controlling the valve opening degree of the first control valve 24 on the expansion means side in the heating operation and the first dehumidifying heating operation in accordance with the operation state. The operation of the controller 40 at this time will be described with reference to the flowchart of FIG.
  • Step S1 the CPU determines whether the operation is a heating operation or a first dehumidifying heating operation. When it is determined that the heating operation or the first dehumidifying and heating operation is performed, the process proceeds to step S2, and when it is not determined that the heating operation or the first dehumidifying and heating operation is performed, the expansion means control process is ended.
  • Step S2 When it is determined in step S1 that the operation is the heating operation or the first dehumidifying heating operation, in step S2, the CPU determines the superheat degree SH of the refrigerant based on the detected pressure of the suction pressure sensor 45 and the detected temperature of the suction temperature sensor 46. Is calculated.
  • step S3 the CPU determines whether or not the degree of superheat SH calculated in step S2 is greater than or equal to a predetermined value. If it is determined that the degree of superheat SH is equal to or greater than a predetermined value, the process proceeds to step S9. If the degree of superheat SH is not equal to or greater than the predetermined value, the process proceeds to step S4.
  • Step S4 If the degree of superheat SH is not determined to be greater than or equal to the predetermined value in step S3, the CPU sets the target supercooling degree SCt based on the target blowing temperature TAO in step S4.
  • the first target supercooling degree SCt1 (for example, 15 ° C.) is set when the target blowing temperature TAO is equal to or higher than a predetermined value (for example, 60 ° C.), and the first blowing temperature TAO is less than the predetermined value.
  • a predetermined value for example, 60 ° C.
  • the target supercooling degree SCt2 for example, 12 ° C.
  • step S5 the CPU calculates a correction amount H1 based on the air volume Qa of the indoor blower 12 and a correction amount H2 based on the flow rate Qr of the refrigerant flowing through the refrigerant circuit 20 with respect to the target subcooling degree SCt set in step S4.
  • the correction amount H1 is set to zero when the air volume Qa of the indoor blower 12 is equal to or greater than a predetermined air volume, and when the air volume Qa is less than the predetermined air volume, the correction amount that decreases the supercooling degree SC according to the air volume Qa. It is assumed that H1 (for example, ⁇ 10 ⁇ H1 ⁇ 0).
  • a correction amount H2 (for example, 0 ⁇ H2 ⁇ 5) that increases the degree of supercooling according to the flow rate Qr is set. Is less than the predetermined flow rate, the correction amount H2 (for example, ⁇ 5 ⁇ H2 ⁇ 0) is set so that the degree of supercooling SC decreases as the flow rate Qr decreases.
  • Step S7 In step S ⁇ b> 7, the CPU calculates the subcooling degree SC of the refrigerant based on the detected pressure of the high pressure sensor 49 and the detected temperature of the high pressure sensor 50.
  • step S8 the CPU controls the opening degree of the first control valve 24 on the expansion means side so that the supercooling degree SC becomes the corrected target supercooling degree SCtc, and ends the expansion means control processing.
  • Step S9 When it is determined in step S3 that the superheat degree SH is equal to or greater than a predetermined value, in step S9 the CPU opens the valve opening on the expansion means side of the first control valve 24 so that the superheat degree SH of the low-pressure refrigerant becomes the target superheat degree SHt.
  • a superheat degree control process is performed to control the expansion means control process.
  • the controller 40 prevents a decrease in the evaporation temperature of the refrigerant in the heat absorber 14 by setting the valve opening of the second control valve 25 to be equal to or less than the valve opening in the other operation during the first dehumidifying heating operation.
  • the second control valve control process is performed. The operation of the controller 40 at this time will be described with reference to the flowchart of FIG.
  • step S11 the CPU determines whether or not the operating state is the first dehumidifying and heating operation. If it is determined to be the first dehumidifying and heating operation, the process proceeds to step S12. If it is not determined to be the first dehumidifying and heating operation, the second control valve control process is terminated.
  • Step S12 When it determines with it being the 1st dehumidification heating operation in step S11, CPU calculates the target evaporation temperature Tet of the refrigerant
  • step S13 the CPU adjusts the valve opening degree of the second control valve 25 based on the target evaporation temperature Tet and the detected temperature Te of the heat absorber temperature sensor 44, and ends the second control valve control process. Specifically, when the detected temperature Te of the heat absorber temperature sensor 44 is lower than the target evaporation temperature Tet, the valve opening of the second control valve 25 is set to a smaller one of the two stages, and the target evaporation temperature is set. When the detected temperature Te is higher than Tet, the opening degree is set to be large.
  • the controller 40 adjusts the evaporation temperature of the refrigerant in the heat absorber 14 during the first dehumidifying and heating operation, or adjusts the valve opening on the expansion means side of the first control valve 24 or the second control valve 25.
  • the control is performed by adjusting the valve opening degree, and the evaporation temperature control switching process for switching to is performed. The operation of the controller 40 at this time will be described using the flowchart of FIG. 9 and the timing charts of FIGS. 10 and 11.
  • step S21 the CPU determines whether or not the operation state is the first dehumidifying heating operation. If it is determined to be the first dehumidifying and heating operation, the process proceeds to step S22, and if it is not determined to be the first dehumidifying and heating operation, the process proceeds to step S28.
  • Step S22 If it is determined in step S21 that the operation is the first dehumidifying and heating operation, in step S22, the CPU is controlling the evaporation temperature of the refrigerant in the heat absorber 14 by adjusting the valve opening on the expansion means side of the first control valve 24. It is determined whether or not. If it is determined that control is being performed by adjusting the valve opening of the first control valve 24, the process proceeds to step S23, and if it is not determined that control is being performed by adjusting the valve opening of the first control valve 24, step S23 is performed. The process moves to S27.
  • Step S23 When it is determined in step S22 that the control by adjusting the valve opening degree of the first control valve 24 is in progress, the CPU determines in step S23 whether or not a frosting avoidance condition is satisfied. If it is determined that the frosting avoidance condition is satisfied, the process proceeds to step S30. If it is not determined that the frosting avoidance condition is satisfied, the process proceeds to step S24. Specifically, a state in which the temperature detected by the heat absorber temperature sensor 44 is lower than a temperature obtained by adding a predetermined temperature ⁇ d (for example, 1 ° C.) to an estimated frost temperature at which frost formation can occur in the heat absorber 14 is a predetermined time ( It is determined that the frosting avoidance condition is satisfied when the operation is continued for 0 to 3 seconds.
  • the estimated frost formation temperature is calculated from the humidity or dew point temperature of the air flowing through the air flow passage 11 and the air volume of the indoor blower 12.
  • Step S24 When it is determined in step S23 that the frosting avoidance condition is not satisfied, in step S24, the CPU determines whether a condition for performing control by adjusting the valve opening of the second control valve 25 is satisfied. . If it is determined that the condition for starting control by the second control valve 25 is satisfied, the process proceeds to step S25. If the condition for starting control by the second control valve 25 is not determined, step is performed. The processing is moved to S28. Specifically, as shown in FIG.
  • the valve opening on the expansion means side of the first control valve 24 is not less than a predetermined opening (for example, fully open), and the temperature detected by the heat absorber temperature sensor 44 is A state in which the temperature becomes less than a temperature (Tet ⁇ T1) obtained by subtracting a predetermined temperature ⁇ T1 (for example, 0.5 to 2 ° C.) from a target evaporation temperature Tet (for example, 1.5 to 12 ° C.) of the refrigerant in the heat absorber 14 for a predetermined time.
  • T (0 to 3 seconds) is continued, it is determined that the condition for starting the control by the second control valve 25 is satisfied.
  • Step S25 When it is determined in step S24 that a condition for starting control by the second control valve 25 is satisfied, or when a condition for releasing control by the second control valve 25 is not satisfied in step S27 described later.
  • the CPU decreases the valve opening degree of the second control valve 25 as shown in FIG. 10, and the process proceeds to step S26.
  • Step S26 the CPU sets the valve opening on the expansion means side of the first control valve 24 to a predetermined valve opening (fully opened in FIG. 10), and ends the evaporation temperature control switching process.
  • Step S27 When it is determined in step S22 that the control by the second control valve 25 is being performed, in step S27, the CPU determines whether a condition for canceling the control by the second control valve 25 is satisfied. If it is determined that the condition for releasing the control by the second control valve 25 is satisfied, the process proceeds to step S28, and it is not determined that the condition for releasing the control by the second control valve 25 is satisfied. In that case, the process proceeds to step S25. Specifically, as shown in FIG. 11, the temperature detected by the heat absorber temperature sensor 44 is equal to the target evaporation temperature Tet (for example, 1.5 to 12 ° C.) of the refrigerant in the heat absorber 14 and a predetermined temperature ⁇ T2 (for example, 0.5).
  • Tet target evaporation temperature
  • the condition for canceling the control by the second control valve 25 by the second control valve control process is satisfied when the temperature becomes equal to or higher than the applied temperature (Tet + ⁇ T2). Further, when the detection pressure of the suction pressure sensor 45 is a predetermined pressure (0 to 0.05 MPaG) or less, when the detection pressure of the discharge pressure sensor 47 is a predetermined pressure (2 to 3 MPaG) or more, and the detection of the discharge temperature sensor 48. When any of the cases where the temperature is equal to or higher than the predetermined temperature (120 to 130 ° C.) is established, the control by the second control valve 25 by the second control valve control process is canceled for the purpose of protecting the refrigerant circuit 20. It is determined that the condition is satisfied.
  • the second control valve 25 is used for the purpose of preventing an insufficient amount of lubricating oil from flowing into the compressor 21. It is determined that the condition for releasing the control by is established. The determination on whether the condition for the inflow amount of the lubricating oil in the compressor 21 is insufficient may be made based on the temperature (superheat degree) of the refrigerant on the outflow side of the accumulator 29.
  • Step S28 If it is not determined in step S21 that the first dehumidifying and heating operation is being performed, if it is not determined in step S24 that the condition for starting control by the second control valve 25 is satisfied, or if the second control valve is determined in step S27. When it is determined that the condition for releasing the control by the control 25 is satisfied, in step S28, the CPU increases the opening of the second control valve 25 as shown in FIG. 11, and the process proceeds to step S29. .
  • Step S29 In step S29, as shown in FIG. 11, the CPU starts the first control valve heat absorber temperature control process for controlling the evaporation temperature of the refrigerant in the heat absorber 14 by the first control valve 24, and ends the evaporation temperature control switching process. To do.
  • Step S30 If it is determined in step S23 that the frosting avoidance condition has been established, in step S30, the CPU decreases the valve opening of the second control valve 25, and the process proceeds to step S31.
  • Step S31 the CPU starts the first control valve heat absorber temperature control process for controlling the evaporation temperature of the refrigerant in the heat absorber 14 by the first control valve 24, and ends the evaporation temperature control switching means.
  • step S41 the CPU determines whether the operation state is the first dehumidifying heating operation. If it is determined to be the first dehumidifying and heating operation, the process proceeds to step S42, and if it is not determined to be the first dehumidifying and heating operation, the first control valve heat absorber temperature control process is terminated.
  • Step S42 When it is determined in step S41 that the operation state is the first dehumidifying and heating operation, in step S42, the CPU determines whether or not there is an oil return request. If it is determined that there is an oil return request, the process proceeds to step S43. If it is not determined that there is an oil return request, the process proceeds to step S45. Specifically, when the refrigerant temperature (superheat degree) SH_SUC on the suction side of the compressor 21 becomes larger than a predetermined value (for example, 1 to 2 ° C.), it is determined that there is an oil return request.
  • a predetermined value for example, 1 to 2 ° C.
  • the power consumption of the compressor 21 decreases as the valve opening decreases, while the superheat degree SH_SUC tends to increase. Therefore, in order to prevent a shortage of the amount of lubricating oil flowing into the compressor 21, the superheat degree of the refrigerant sucked into the compressor 21 needs to be set to a predetermined value or less, and the upper limit value of the refrigerant temperature (superheat degree) SH_SUC is set. Set.
  • Step S43 If it is determined in step S42 that there is an oil return request, in step S44, the CPU determines whether there is a COP improvement request. If it is determined that there is a COP improvement request, the process proceeds to step S44. If it is not determined that there is a COP improvement request, the process proceeds to step S45. Specifically, when the pressure P_ODhex on the inflow side of the outdoor heat exchanger 22 becomes larger than the refrigerant saturation pressure Psato_Tam corresponding to the outside air temperature, it is determined that there is a COP improvement request.
  • the pressure P_ODhex needs to be equal to or lower than the refrigerant saturation pressure Psato_Tamb corresponding to the outside air temperature.
  • Step S44 When it is determined in step S43 that there is a COP improvement request, in step S44, the CPU calculates the target value of the valve opening on the expansion means side of the first control valve 24 to adjust the valve opening, and the first control valve End the heat absorber temperature control process. Specifically, the target value TGECCV of the valve opening on the expansion means side of the first control valve 24 is based on the proportional operation amount P_ECCV of the feedback target value, the integral operation amount I_EECCV of the feedback target value, and the feedforward target value FF_ECCV.
  • TGECCV P_ECCV + I_ECCV + FF_ECCV
  • P_ECCV Gp_ECCV ⁇ (TEO ⁇ Te)
  • I_ECCV Gi_ECCV ⁇ (TEO-Te) + I_ECCVz
  • Gp constant as proportional gain
  • Gi constant as integral gain
  • I_ECCVz previous value of integral manipulated variable
  • Step S45 If it is not determined that there is an oil return request in step S42, or if it is not determined that there is a COP improvement request in step S43, the CPU opens the valve on the expansion means side of the first control valve in step S45. The first control valve heat absorber temperature control process is terminated while holding the target value.
  • controller 40 performs a radiator temperature control process for controlling the condensation temperature of the refrigerant in the radiator 15 by adjusting the rotation speed of the compressor 21 in the heating operation or the first dehumidifying heating operation. The operation of the controller 40 at this time will be described with reference to the flowchart of FIG.
  • Step S51 the CPU determines whether the operation state is the heating operation or the first dehumidifying heating operation. When it determines with heating operation or 1st dehumidification heating operation, a process is moved to step S52, and when it does not determine with heating operation or 1st dehumidification heating operation, a compressor heat absorber temperature control process is complete
  • Step S52 When it is determined in step S51 that the operation state is the heating operation or the first dehumidifying heating operation, in step S52, the CPU calculates the target value of the rotation speed of the compressor 21 and adjusts the rotation speed, and the radiator temperature The control process ends. Specifically, the target value TGNCh of the rotation speed of the compressor 21 is obtained as follows based on the proportional manipulated variable P_TGNCh of the feedback target value, the integral manipulated variable I_TGNCh of the feedback target value, and the feedforward target value FF_TGNCh. .
  • TGNCh P_TGNCh + I_TGNCh + FF_TGNCh
  • P_TGNCh Gp_TGNCh ⁇ (TCO ⁇ Th)
  • I_TGNCh Gi_TGNCh ⁇ (TCO ⁇ Th) + I_TGNChz
  • Gp_TGN constant as proportional gain
  • Gi_TGNCh constant as integral gain
  • I_TGNChz previous value of integral manipulated variable
  • the evaporation of the refrigerant in the heat absorber 14 based on the valve opening on the expansion means side of the first control valve 24 and the temperature detected by the heat absorber temperature sensor 44.
  • the temperature is switched from control by adjusting the valve opening of the first control valve 24 on the expansion means side to control by adjusting the valve opening of the second control valve 25.
  • a condition for switching the evaporation temperature of the refrigerant in the heat absorber 14 from the control by adjusting the valve opening degree of the first control valve 24 on the expansion means side to the control by adjusting the valve opening degree of the second control valve 25 is set to the first condition.
  • the valve opening on the expansion means side of the control valve 24 is not less than a predetermined opening (for example, fully open) and the temperature detected by the heat absorber temperature sensor 44 is less than the predetermined temperature (Tet ⁇ T1).
  • the valve opening on the expansion means side of the first control valve 24 is set to a predetermined valve opening.
  • the refrigerant evaporating temperature in the heat absorber 14 is controlled by adjusting the valve opening of the second control valve 25 to open the valve on the expansion means side of the first control valve 24. Switching to control by adjusting the degree. Accordingly, since the evaporation temperature of the refrigerant in the heat absorber 14 can be controlled by controlling the first control valve 24 except when necessary, the control configuration is simplified, and the manufacturing cost can be reduced. Become.
  • the refrigerant evaporation temperature in the heat absorber 14 is controlled by adjusting the valve opening of the second control valve 25.
  • the first control valve 24 is switched to control by adjusting the valve opening on the expansion means side. Accordingly, since the evaporating temperature of the refrigerant in the heat absorber 14 can be controlled by controlling the first control valve 24 except when necessary, the control configuration is simplified and the manufacturing cost can be reduced. Become.
  • the detection pressure of the suction pressure sensor 45 is a predetermined pressure (0 to 0.05 MPaG) or less
  • the detection pressure of the discharge pressure sensor 47 is a predetermined pressure (2 to 3 MPaG) or more
  • the detection of the discharge temperature sensor 48 If any of the cases where the temperature is equal to or higher than the predetermined temperature (120 to 130 ° C.) is established, the evaporation temperature of the refrigerant in the heat absorber 14 is controlled from the control by adjusting the valve opening of the second control valve 25 to the first control. The control is switched to adjustment by adjusting the valve opening of the valve 24 on the expansion means side. Thereby, since the generation of abnormal high pressure or low pressure in the refrigerant circuit 20 can be prevented, it is possible to prevent failure or breakage of the components constituting the refrigerant circuit 20.
  • the refrigerant flowing out of the compressor 21 is shown to flow through the outdoor heat exchanger 22 from one end side to the other end side during the heating operation and the first dehumidifying heating operation. Is not limited to this.
  • the refrigerant flowing out from the compressor 21 may flow through the outdoor heat exchanger 22 from the other end side toward the one end side during the heating operation and the first dehumidifying heating operation. .
  • the vehicle air conditioner of FIG. 14 is a refrigerant that connects the refrigerant outflow side on the expansion means side of the first control valve 24 and the other end side of the outdoor heat exchanger 22 instead of the refrigerant flow passage 20c in the embodiment.
  • a flow passage 20k is provided.
  • the vehicle air conditioner is provided with a refrigerant flow passage 20l that connects one end side of the outdoor heat exchanger 22 and the refrigerant suction side of the compressor 21 instead of the refrigerant flow passage 20e in the embodiment. .
  • the refrigerant flowing out of the radiator 15 is different from the embodiment in the heating operation and the first dehumidifying heating operation, and the outdoor heat exchanger 22 is connected to the other end side. Circulates from one end to the other. For other operations, the refrigerant flows in the same manner as in the above embodiment.
  • a temperature type expansion valve is used as the expansion valve 28.
  • the present invention is not limited to this, and an electronic expansion valve with a variable opening may be used.
  • valve opening on the expansion means side of the first control valve 24 is set to be fully open during the control of the valve opening of the second control valve 25.
  • the present invention is not limited to this. is not.
  • the valve opening on the expansion means side of the first control valve 24 may be set to 90%.
  • valve opening on the expansion means side of the first control valve 24, which is a condition for starting the control of the valve opening of the second control valve 25, is not limited to fully open, and may be, for example, 90% valve opening. .
  • the valve opening on the expansion means side of the first control valve 24 is set to a predetermined valve opening during the control of the valve opening of the second control valve 25. It is not limited to.
  • the valve opening degree on the expansion means side of the first control valve 24 is determined according to the operating conditions such as the temperature Tam outside the passenger compartment or the target outlet temperature TAO. You may make it set to the valve opening degree. In this case, since the control of the evaporation temperature of the refrigerant in the heat absorber 14 can be performed with higher accuracy, the control performance can be improved.
  • the valve opening degree of the expansion means side of the 1st control valve 24 is a state more than predetermined opening degree
  • the detection temperature of the heat absorber temperature sensor 44 is the target evaporation temperature Tet of the refrigerant
  • FIG. 1 When the temperature becomes less than the temperature (Tet ⁇ T1) obtained by subtracting the predetermined temperature ⁇ T1 from the initial temperature for a predetermined time T, the evaporation temperature of the refrigerant in the heat absorber 14 is set to the valve opening degree on the expansion means side of the first control valve 24.
  • the control by the control is switched from the control by the control to the control by adjusting the valve opening degree of the second control valve 25, the control by the predetermined time T of 0 second is also included.
  • the second control valve control process is performed when the temperature detected by the heat absorber temperature sensor 44 is equal to or higher than the temperature (Tet + ⁇ T2) obtained by adding the predetermined temperature ⁇ T2 to the target evaporation temperature Tet of the refrigerant in the heat absorber 14.
  • the control of the second control valve 25 is canceled, the present invention is not limited to this.
  • the control of the second control valve 25 by the second control valve control process may be canceled when the temperature detected by the heat absorber temperature sensor 44 becomes equal to or higher than the refrigerant target evaporation temperature Tet in the heat absorber 14.
  • the first control valve 24 is integrally provided, the present invention is not limited to this.
  • the electronic expansion valve as the expansion means and the condensation pressure adjustment valve as the condensation pressure adjustment means may be connected in parallel to each other upstream of the outdoor heat exchanger 22 in the refrigerant flow direction. It is possible to obtain an operational effect.
  • valve opening degree of the 2nd control valve 25 was comprised so that setting to 2 steps
  • the opening degree of the second control valve 25 may be set to an arbitrary opening degree. In this case, since the heat absorption amount in the heat absorber 14 can be set arbitrarily, it is possible to improve the accuracy of control of the heat absorption amount in the heat absorber 14.
  • the valve opening degree of the second control valve 25 is adjusted based on the target evaporation temperature Tet and the detected temperature Te of the heat absorber temperature sensor 44.
  • the present invention is not limited to this. is not.
  • the temperature of the air after heat exchange in the heat absorber 14 or the pressure of the refrigerant in the heat absorber 14 is detected, and the valve opening degree of the second control valve 25 is adjusted based on the detection result. It becomes possible to obtain the effect.
  • coolant in the heat absorber 14 by the 1st control valve 24 and the 2nd control valve 25 at the time of 1st dehumidification heating operation is shown.
  • the first control valve 24 may control the refrigerant condensation temperature in the radiator 15, and the second control valve 25 may control the refrigerant evaporation temperature in the heat absorber 14.
  • control of the condensation temperature of the refrigerant in the radiator 15 and control of the evaporation temperature of the refrigerant in the heat absorber 14 are performed by feedback control based on the difference between each target temperature and the detected temperature.
  • the rotational speed of the compressor 21 is set based on at least one state of the temperature of the refrigerant discharged from the compressor 21, the valve opening degree of the second control valve 25, and the valve opening degree of the first control valve 24.
  • the refrigerant condensing temperature in the radiator 15 may be controlled by adjusting the rotation speed of the compressor 21, and the refrigerant evaporating temperature in the heat absorber 14 may be controlled by the second control valve 25.
  • control of the condensation temperature of the refrigerant in the radiator 15 and control of the evaporation temperature of the refrigerant in the heat absorber 14 are performed by feedback control based on the difference between each target temperature and the detected temperature.
  • the opening degree of the first control valve 24 is set based on at least one state of a predetermined set value, the refrigerant condensation temperature in the radiator 15, and the amount of air blown from the indoor blower 12.
  • SYMBOLS 10 Air-conditioning unit, 14 ... Heat absorber, 15 ... Radiator, 20 ... Refrigerant circuit, 21 ... Compressor, 22 ... Outdoor heat exchanger, 24 ... 1st control valve, 25 ... 2nd control valve, 26a-26c ... First to third solenoid valves, 27a and 26b ... First to second check valves, 28 ... Expansion valve, 29 ... Accumulator, 40 ... Controller, 41 ... Outside temperature sensor, 42 ... Inside temperature sensor, 43 ... Solar radiation sensor , 44 ... endothermic temperature sensor, 45 ... suction pressure sensor, 46 ... suction temperature sensor, 47 ... discharge pressure sensor, 48 ... discharge temperature sensor, 51 ... operation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 除湿暖房運転時において、車室外の温度が低温の場合等、環境条件にかかわらず、吸熱器において必要な冷媒の吸熱量を確保することが可能な車両用空気調和装置を提供する。 第1制御弁24の膨張手段側の弁開度および吸熱器温度センサ44の検出温度に基づいて、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換えている。これにより、第1除湿暖房運転時において、第1制御弁24の制御のみならず第2制御弁25の制御によって吸熱器14における冷媒の蒸発温度が低下することを防止することができるので、車室外の温度が低温の場合においても吸熱器14に着霜が生じることはなく、吸熱器14において必要な冷媒の吸熱量を確保することが可能となる。

Description

車両用空気調和装置
 本発明は、例えば、電気自動車に適用可能な車両用空気調和装置に関するものである。
 従来、この種の車両用空気調和装置では、車両の動力源としてのエンジンによって駆動する圧縮機と、車室外に設けられた放熱器と、車室内に設けられた吸熱器と、を備え、圧縮機が吐出した冷媒を放熱器において放熱させるとともに、吸熱器において吸熱させ、吸熱器において冷媒と熱交換した空気を車室内に供給することで冷房運転を行っている。また、従来の車両用空気調和装置では、車室内にヒータコアを備え、エンジンの冷却に用いた冷却水の排熱をヒータコアにおいて放熱させ、ヒータコアにおいて冷却水と熱交換した空気を車室内に向かって吹出すことで暖房運転を行っている。さらに、従来の車両用空気調和装置では、車室内に供給する空気を吸熱器において要求される絶対湿度まで冷却して除湿し、吸熱器において冷却して除湿された空気をヒータコアにおいて所望の温度まで加熱した後に車室内に向かって吹出す除湿暖房運転を行っている。
 前記車両用空気調和装置では、暖房運転及び除湿暖房運転において空気を加熱する熱源としてエンジンの排熱を利用している。車両の動力源が電動モータである電気自動車は、エンジンのように空気を十分に加熱可能な排熱が発生しないため、前記車両用空気調和装置を適用することができない。
 そこで、電気自動車に適用可能な車両用空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられ、冷媒を放熱させる放熱器と、車室内側に設けられ、冷媒を吸熱させる吸熱器と、車室外側に設けられ、冷媒を放熱または吸熱させる室外熱交換器と、を備えたものが知られている(例えば、特許文献1参照)。この車両用空気調和装置では、圧縮機が吐出した冷媒を放熱器において放熱させ、放熱器において放熱させた冷媒を膨張弁によって減圧して室外熱交換器において吸熱させることで暖房運転を行う。また、この車両用空気調和装置では、圧縮機が吐出した冷媒を放熱器において放熱させ、放熱器において放熱させた冷媒の一部を膨張弁によって減圧して吸熱器において吸熱させ、その他の冷媒を膨張弁によって減圧して室外熱交換器において吸熱させることで除湿暖房運転を行う。
特開2009-264661号公報
 前記電気自動車に適用可能な車両用空気調和装置の除湿暖房運転では、吸熱器および室外熱交換器のそれぞれの冷媒流通方向上流側に膨張弁として温度膨張弁が設けられ、それぞれの冷媒の蒸発温度を一定にするように構成されている。この場合には、吸熱器および室外熱交換器のそれぞれにおいて吸熱能力を調整することができないため、車室外の温度が低温になると、室外熱交換器における冷媒の蒸発温度も低下し、吸熱器に着霜を生じるおそれがある。吸熱器に着霜が生じると、吸熱器における冷媒の吸熱量が減少することから、放熱器における放熱能力が不足し、車室内の温度および湿度を設定温度および設定湿度とすることが困難となる。
 本発明の目的とするところは、除湿暖房運転時において、車室外の温度が低温の場合等、環境条件にかかわらず、吸熱器において必要な冷媒の吸熱量を確保することが可能な車両用空気調和装置を提供することにある。
 本発明は、前記目的を達成するために、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられ、冷媒を放熱させる放熱器と、車室内側に設けられ、冷媒を吸熱させる吸熱器と、車室外側に設けられ、冷媒を放熱または吸熱させる室外熱交換器と、吸熱器に流入する冷媒を減圧する室内側膨張弁と、室外熱交換器に流入する冷媒を減圧する室外側膨張弁と、を備え、圧縮機から吐出した冷媒を放熱器において放熱させ、放熱器において放熱させた冷媒の一部を室内側膨張弁によって減圧して吸熱器において吸熱させ、その他の冷媒を室外側膨張弁によって減圧して室外熱交換器において吸熱させる除湿暖房運転を行うことが可能な車両用空気調和装置において、除湿暖房運転時に、室外側膨張弁の弁開度を調整することで吸熱器における冷媒の蒸発温度を調整する室外側膨張弁制御部と、吸熱器の冷媒流出側の冷媒流通路に設けられ、冷媒流通路を流通する冷媒の流量を調整することで吸熱器における冷媒の蒸発温度を調整可能な蒸発温度調整弁と、吸熱器における冷媒の温度を検出する温度検出部と、室外側膨張弁の弁開度および温度検出手段の検出温度がそれぞれ所定の条件を満たす場合に、吸熱器における冷媒の蒸発温度を、室外側膨張弁の弁開度の調整による制御から蒸発温度調整弁の弁開度の調整による制御に切換える制御弁切換部と、を備えている。
 これにより、除湿暖房運転時に、室外側膨張弁の弁開度の制御によっても吸熱器における冷媒の蒸発温度が低下する場合に、蒸発温度調整弁によって吸熱器における冷媒の蒸発温度の制御が可能となることから、室外側膨張弁の弁開度の制御のみならず蒸発温度調整弁の弁開度の制御によって吸熱器における冷媒の蒸発温度が低下することを防止することができる。
 本発明によれば、除湿暖房運転時に、室外側膨張弁の弁開度の制御のみならず蒸発温度調整弁の弁開度の制御によって吸熱器における冷媒の蒸発温度が低下することを防止することができるので、車室外の温度が低温の場合においても吸熱器に着霜が生じることはなく、吸熱器において必要な冷媒の吸熱量を確保することが可能となる。
本発明の一実施形態を示す車両用空気調和装置の概略構成図である。 制御系を示すブロック図である。 冷房運転及び除湿冷房運転を示す車両用空気調和装置の概略構成図である。 暖房運転を示す車両用空気調和装置の概略構成図である。 第1除湿暖房運転を示す車両用空気調和装置の概略構成図である。 第2除湿暖房運転を示す車両用空気調和装置の概略構成図である。 膨張手段制御処理を示すフローチャートである。 第2制御弁制御処理を示すフローチャートである。 蒸発温度制御切換処理を示すフローチャートである。 第2制御弁の弁開度の制御を開始する際のタイミングチャートである。 第2制御弁の弁開度の制御を解除する際のタイミングチャートである。 第1制御弁吸熱器温度制御処理を示すフローチャートである。 放熱器温度制御処理を示すフローチャートである。 本発明のその他の車両用空気調和装置の概略構成図である。
 図1乃至図13は、本発明の一実施形態を示すものである。
 本発明の車両用空気調和装置は、図1に示すように、車室内に設けられた空調ユニット10と、車室内および車室外に亘って構成された冷媒回路20と、を備えている。
 空調ユニット10は、車室内に供給する空気を流通させるための空気流通路11を有している。空気流通路11の一端側には、車室外の空気を空気流通路11に流入させるための外気吸入口11aと、車室内の空気を空気流通路11に流入させるための内気吸入口11bと、が設けられている。また、空気流通路11の他端側には、空気流通路11を流通する空気を車室内の搭乗者の足元に向かって吹き出させるフット吹出口11cと、空気流通路11を流通する空気を車室内の搭乗者の上半身に向かって吹き出させるベント吹出口11dと、空気流通路11を流通する空気を車両のフロントガラスの車室内側の面に向かって吹き出させるデフ吹出口11eと、が設けられている。
 空気流通路11内の一端側には、空気を空気流通路11の一端側から他端側に向かって流通させるためのシロッコファン等の室内送風機12が設けられている。この室内送風機12は電動モータ12aによって駆動される。
 空気流通路11の一端側には、外気吸入口11a及び内気吸入口11bの一方を開放して他方を閉鎖することが可能な吸入口切換えダンパ13が設けられている。この吸入口切換えダンパ13は電動モータ13aによって駆動される。吸入口切換えダンパ13によって内気吸入口11bが閉鎖されて外気吸入口11aが開放されると、外気吸入口11aから空気が空気流通路11に流入する外気供給モードとなる。また、吸入口切換えダンパ13によって外気吸入口11aが閉鎖されて内気吸入口11bが開放されると、内気吸入口11bから空気が空気流通路11に流入する内気循環モードとなる。さらに、吸入口切換えダンパ13が外気吸入口11aと内気吸入口11bとの間に位置し、外気吸入口11aと内気吸入口11bがそれぞれ開放されると、吸入口切換えダンパ13による外気吸入口11a及び内気吸入口11bのそれぞれの開口率に応じた割合で、外気吸入口11aと内気吸入口11bとから空気が空気流通路11に流入する外内気吸入モードとなる。
 空気流通路11の他端側のフット吹出口11c、ベント吹出口11d及びデフ吹出口11eのそれぞれには、各吹出口11c,11d,11eを開閉するための吹出口切換えダンパ13b,13c,13dが設けられている。この吹出口切換えダンパ13b,13c,13dは、図示しないリンク機構によって連動するように構成され、電動モータ13eによってそれぞれ開閉される。ここで、吹出口切換えダンパ13b,13c,13dによってフット吹出口11cが開放されてベント吹出口11dが閉鎖され、デフ吹出口11eが僅かに開放されると、空気流通路11を流通する空気の大部分がフット吹出口11cから吹き出されると共に残りの空気がデフ吹出口11eから吹き出されるフットモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びデフ吹出口11eが閉鎖されてベント吹出口11dが開放されると、空気流通路11を流通する空気の全てがベント吹出口11dから吹き出されるベントモードとなる。さらに、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが開放されてデフ吹出口11eが閉鎖されると、空気流通路11を流通する空気がフット吹出口11c及びベント吹出口11dから吹き出されるバイレベルモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが閉鎖されてデフ吹出口11eが開放されると、空気流通路11を流通する空気がデフ吹出口11eから吹き出されるデフモードとなる。また、吹出口切換えダンパ13b,13c,13dによってベント吹出口11dが閉鎖されてフット吹出口11c及びデフ吹出口11eが開放されると、空気流通路11を流通する空気がフット吹出口11c及びデフ吹出口11eから吹き出されるデフフットモードとなる。尚、バイレベルモードにおいては、フット吹出口11cから吹き出される空気の温度がベント吹出口11dから吹き出される空気の温度よりも高温となる温度差が生じるような、空気流通路11、フット吹出口11c、ベント吹出口11d、後述する吸熱器及び放熱器の互いの位置関係や構造となっている。
 室内送風機12の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を冷却及び除湿するための吸熱器14が設けられている。また、吸熱器14の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を加熱するための放熱器15が設けられている。吸熱器14及び放熱器15は、それぞれ内部を流通する冷媒と空気流通路11を流通する空気とを熱交換させるためのフィンとチューブ等からなる熱交換器である。
 吸熱器14と放熱器15との間の空気流通路11には、空気流通路11を流通する空気の放熱器15において加熱される割合を調整するためのエアミックスダンパ16が設けられている。エアミックスダンパ16は電動モータ16aによって駆動される。エアミックスダンパ16は、空気流通路11の放熱器15の上流側に位置することによって、放熱器15において熱交換する空気の割合が減少し、空気流通路11の放熱器15以外の部分側に移動させることによって、放熱器15において熱交換する空気の割合が増加する。エアミックスダンパ16は、空気流通路11の放熱器15の上流側を閉鎖して放熱器15以外の部分を開放した状態で開度が0%となり、空気流通路11の放熱器15の上流側を開放し、放熱器15以外の部分を閉鎖した状態で開度が100%となる。
 冷媒回路20は、前記吸熱器14、前記放熱器15、冷媒を圧縮するための圧縮機21、冷媒と車室外の空気とを熱交換するための室外熱交換器22、放熱器15および室外熱交換器22の少なくとも放熱器15から流出する冷媒と吸熱器14から流出する冷媒とを熱交換させるための内部熱交換器23、暖房運転時に室外熱交換器22に流入する冷媒を減圧するための膨張手段と除湿冷房運転時に放熱器における冷媒の凝縮圧力を制御するための凝縮圧力調整手段とを有する第1制御弁24と、吸熱器14における冷媒の蒸発温度を調整するための蒸発温度調整弁としての第2制御弁25と、第1~第3電磁弁26a,26b,26c、第1~第2逆止弁27a,27b、室内側膨張弁としての膨張弁28、気体の冷媒と液体の冷媒を分離して液冷媒が圧縮機21に吸入されることを防止するためのアキュムレータ29を有し、これらは銅管やアルミニウム管によって接続されている。
 具体的には、圧縮機21の冷媒吐出側に放熱器15の冷媒流入側が接続されることによって、冷媒流通路20aが設けられている。また、放熱器15の冷媒流出側には、第1制御弁24の冷媒流入側が接続されることによって、冷媒流通路20bが設けられている。第1制御弁24の膨張手段側の冷媒流出側には、室外熱交換器22の一端側が接続されることによって、冷媒流通路20cが設けられている。冷媒流通路20cには、第1逆止弁27aが設けられている。また、第1制御弁24の凝縮圧力調整手段側の冷媒流出側には、室外熱交換器22の他端側が接続されることによって、冷媒流通路20dが設けられている。室外熱交換器22の他端側には、冷媒流通路20dと並列に、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20eが設けられている。冷媒流通路20eには、冷媒流通方向の上流側から順に、第1電磁弁26a、アキュムレータ29が設けられている。冷媒流通路20bには、内部熱交換器23の高圧冷媒流入側が接続されることによって、冷媒流通路20fが設けられている。冷媒流通路20fには、第2電磁弁26bが設けられている。内部熱交換器23の高圧冷媒流出側には、吸熱器14の冷媒流入側接続されることによって、冷媒流通路20gが設けられている。冷媒流通路20gには、膨張弁28が設けられている。吸熱器14の冷媒流出側には、内部熱交換器23の低圧冷媒流入側が接続されることによって、冷媒流通路20hが設けられている。冷媒流通路20hには、第2制御弁25が設けられている。内部熱交換器23の低圧冷媒流出側には、冷媒流通路20eの第1電磁弁26aとアキュムレータ29との間が接続されることによって、冷媒流通路20iが設けられている。室外熱交換器22の一端側には、冷媒流通路20cと並列に、冷媒流通路20fの第2電磁弁26bの冷媒流通方向の下流側が接続されることによって、冷媒流通路20jが設けられている。冷媒流通路20jには、冷媒流通方向の上流側から順に、第3電磁弁26c、第2逆止弁27bが設けられている。
 圧縮機21及び室外熱交換器22は、車室外に配置されている。また、圧縮機21は電動モータ21aによって駆動される。室外熱交換器22には、車両の停止時に車室外の空気と冷媒とを熱交換させるための室外送風機30が設けられている。室外送風機30は、電動モータ30aによって駆動される。
 第1制御弁24には、膨張手段側の冷媒流路と凝縮圧力調整手段側の冷媒流路がそれぞれ形成されている。膨張手段側および凝縮圧力調整手段側の冷媒流路は、それぞれ冷媒流路の開度を調整する弁によって完全に閉鎖可能に構成されている。
 第2制御弁25は、弁開度が2段階に設定可能に構成され、冷媒流通路20hを流通する冷媒の流量を2段階に調整することが可能である。
 膨張弁28は、冷媒流通路20h(吸熱器14の冷媒流出側)を流通する冷媒の過熱度を適正に保つための温度式膨張弁である。
 さらに、車両用空気調和装置は、車室内の温度及び湿度を設定された温度及び設定された湿度とする制御を行うためのコントローラ40を備えている。
 コントローラ40は、CPU、ROM,RAMを有している。コントローラ40は、入力側に接続された装置からの入力信号を受信すると、CPUが、入力信号に基づいてROMに記憶されたプログラムを読み出すとともに、入力信号によって検出された状態をRAMに記憶したり、出力側に接続された装置に出力信号を送信したりする。
 コントローラ40の出力側には、図2に示すように、室内送風機12駆動用の電動モータ12a、吸入口切換えダンパ13駆動用の電動モータ13a、吹出口切換えダンパ13b,13c,13d駆動用の電動モータ13e、エアミックスダンパ16駆動用の電動モータ16a、圧縮機21駆動用の電動モータ21a、第1制御弁24、第2制御弁25、第1~第3電磁弁26a,26b,26c、室外送風機30駆動用の電動モータ30aが接続されている。
 コントローラ40の入力側には、図2に示すように、車室外の温度Tamを検出するための外気温度センサ41、車室内の温度Trを検出するための内気温度センサ42、日射量Tsを検出するための例えばフォトセンサ式の日射センサ43、吸熱器14における冷媒の蒸発温度Teを検出するための温度検出手段としての吸熱器温度センサ44、圧縮機21に吸入される冷媒の圧力を検出するための吸入圧力センサ45、圧縮機21に吸入される冷媒の温度を検出するための吸入温度センサ46、圧縮機21から吐出される冷媒の圧力を検出するための吐出圧力センサ47、圧縮機21から吐出される冷媒の温度を検出するための吐出温度センサ48、冷媒流通路20bを流通する高圧冷媒の圧力を検出するための高圧圧力センサ49、冷媒流通路20bを流通する高圧冷媒の温度を検出するための高圧温度センサ50、目標設定温度Tsetや運転の切換えに関するモードを設定するための操作部51が接続されている。
 以上のように構成された車両用空気調和装置では、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転が行われる。以下、それぞれの運転について説明する。
 冷房運転及び除湿冷房運転において、冷媒回路20では、第1制御弁24の膨張手段側の流路を閉鎖するとともに、凝縮圧力調整手段側の流路を開放し、第3電磁弁26cを開放するとともに、第1及び第2電磁弁26a,26bを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図3に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b,20d、室外熱交換器22、冷媒流通路20j,20f、内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器23の低圧側、冷媒流通路20i,20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、冷房運転において、室外熱交換器22において放熱して吸熱器14において吸熱する。除湿冷房運転として図3の一点鎖線に示すようにエアミックスダンパ16が開放されると、冷媒回路20を流通する冷媒は放熱器15においても放熱する。
 このとき、冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却され、車室内の温度を目標設定温度Tsetとするために吹出口11c,11d,11eから吹き出すべき空気の温度である目標吹出温度TAOとなって車室内に吹き出される。
 目標吹出温度TAOは、車室外の温度Tam、車室内の温度Tr、日射量Ts等の環境条件を、外気温度センサ41、内気温度センサ42、日射センサ43等によって検出し、検出された環境条件と目標設定温度Tsetに基づいて算出されるものである。
 また、除湿冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において吸熱する冷媒と熱交換して冷却されることによって除湿される。吸熱器14において除湿された空気は、放熱器15おいて放熱する冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 暖房運転において、冷媒回路20では、第1制御弁24の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第1電磁弁26aを開放するとともに、第2および第3電磁弁26b,26cを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図4に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、20c、室外熱交換器22、冷媒流通路20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、室外熱交換器22において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換することなく、放熱器15において冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 第1除湿暖房運転において、冷媒回路20では、第1制御弁24の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第1及び第2電磁弁26a,26bを開放するとともに、第3電磁弁26cを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図5に示すように、冷媒流通路20a、放熱器15、冷媒流通路20bを順に流通する。冷媒流通路20bを流通する冷媒の一部は、第1制御弁24、冷媒流通路20c、室外熱交換器22、冷媒流通路20eの順に流通して圧縮機21に吸入される。また、冷媒流通路20bを流通するその他の冷媒は、冷媒流通路20f、内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器23の低圧側、冷媒流通路20iの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14及び室外熱交換器22において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 第2除湿暖房運転において、冷媒回路20では、第1制御弁24の膨張手段側および凝縮圧力調整手段側の両方の冷媒流路を閉鎖し、第2電磁弁26bを開放するとともに、第1及び第3電磁弁26a,26cを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図6に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b,20f、内部熱交換器23の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器23の低圧側、冷媒流通路20i,20eの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、前記第1除湿暖房運転と同様に、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOとなって車室内に吹き出される。
 コントローラ40は、オートエアコンスイッチがオンの状態に設定されている場合に、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転を、車室外の温度Tam、車室内の温度Tr、車室外の湿度、車室内の湿度Th、日射量Ts等の環境条件に基づいて切換える運転切換え制御処理を行う。
 また、コントローラ40は、吹出口切換えダンパ13b,13c,13dによって吹出口11c,11d,11eのモードを切換えるとともに、吹出口11c,11d,11eから吹出される空気の温度を目標吹出温度TAOとするために、エアミックスダンパ16の開度を制御する。
 また、コントローラ40は、運転切換え制御処理によって切り換えられる各運転において、目標吹出温度TAOに応じてフットモード、ベントモード、バイレベルモードの切り替えを行う。具体的には、目標吹出温度TAOが例えば40℃以上など、高温となる場合にフットモードに設定する。また、コントローラ40は、目標吹出温度TAOが例えば25℃未満など、低温となる場合にベントモードに設定する。さらに、コントローラ40は、目標吹出温度TAOが、フットモードが設定される目標吹出温度TAOとベントモードが設定される目標吹出温度TAOとの間の温度の場合にバイレベルモードに設定する。
 また、コントローラ40は、暖房運転および第1除湿暖房運転において、運転状態に応じて第1制御弁24の膨張手段側の弁開度を制御する膨張手段制御処理を行う。このときのコントローラ40の動作を図7のフローチャートを用いて説明する。
(ステップS1)
 ステップS1においてCPUは、運転が暖房運転または第1除湿暖房運転であるか否かを判定する。暖房運転または第1除湿暖房運転であると判定した場合にはステップS2に処理を移し、暖房運転または第1除湿暖房運転であると判定しなかった場合には膨張手段制御処理を終了する。
(ステップS2)
 ステップS1において運転が暖房運転または第1除湿暖房運転であると判定した場合に、ステップS2においてCPUは、吸入圧力センサ45の検出圧力および吸入温度センサ46の検出温度に基づいて冷媒の過熱度SHを算出する。
(ステップS3)
 ステップS3においてCPUは、ステップS2において算出された過熱度SHが所定値以上か否かを判定する。過熱度SHが所定値以上と判定した場合にはステップS9に処理を移し、過熱度SHが所定値以上と判定しなかった場合にはステップS4に処理を移す。
(ステップS4)
 ステップS3において過熱度SHが所定値以上と判定しなかった場合に、ステップS4においてCPUは、目標吹出温度TAOに基づいて目標過冷却度SCtを設定する。例えば、目標吹出温度TAOが所定値(例えば、60℃)以上の場合には第1目標過冷却度SCt1(例えば、15℃)に設定し、目標吹出温度TAOが所定値未満の場合には第2目標過冷却度SCt2(例えば、12℃)に設定する。
(ステップS5)
 ステップS5においてCPUは、ステップS4において設定された目標過冷却度SCtに対して、室内送風機12の風量Qaに基づく補正量H1および冷媒回路20を流通する冷媒の流量Qrに基づく補正量H2を算出する。
 具体的には、室内送風機12の風量Qaが所定風量以上の場合には補正量H1をゼロとし、風量Qaが所定風量未満の場合には風量Qaに応じて過冷却度SCが小さくなる補正量H1(例えば、-10≦H1≦0)とする。また、冷媒回路20の高圧側を流通する冷媒の流量Qrが所定流量以上の場合には流量Qrに応じて過冷却度が大きくなる補正量H2(例えば、0≦H2≦5)とし、流量Qrが所定流量未満の場合には流量Qrの減少に応じて過冷却度SCが小さくなる補正量H2(例えば、-5≦H2<0)とする。冷媒回路20の高圧側を流通する冷媒の流量Qrは、冷媒回路20の高圧側の圧力の上昇に従って多くなり、圧力の下降に従って少なくなる関係にあることから、高圧圧力センサ49の検出圧力に基づいて算出される。
(ステップS6)
 ステップS6においてCPUは、目標過冷却度SCtに補正量H1,H2を加えることで補正目標過冷却度SCtc(SCtc=SCt-(H1+H2))を算出する。
(ステップS7)
 ステップS7においてCPUは、高圧圧力センサ49の検出圧力および高圧温度センサ50の検出温度およびに基づいて冷媒の過冷却度SCを算出する。
(ステップS8)
 ステップS8においてCPUは、過冷却度SCが補正目標過冷却度SCtcとなるように第1制御弁24の膨張手段側の弁開度を制御し、膨張手段制御処理を終了する。
(ステップS9)
 ステップS3において過熱度SHが所定値以上と判定した場合に、ステップS9においてCPUは、低圧冷媒の過熱度SHを目標過熱度SHtとなるように第1制御弁24の膨張手段側の弁開度を制御する過熱度制御処理を行い、膨張手段制御処理を終了する。
 また、コントローラ40は、第1除湿暖房運転のときに第2制御弁25の弁開度を他の運転のときの弁開度以下とすることで吸熱器14における冷媒の蒸発温度の低下を防止するための第2制御弁制御処理を行う。このときのコントローラ40の動作を図8のフローチャートを用いて説明する。
(ステップS11)
 ステップS11においてCPUは、運転状態が第1除湿暖房運転か否かを判定する。第1除湿暖房運転と判定した場合にはステップS12に処理を移し、第1除湿暖房運転と判定しなかった場合には第2制御弁制御処理を終了する。
(ステップS12)
 ステップS11において第1除湿暖房運転であると判定した場合に、ステップS12においてCPUは、目標吹出温度TAOに基づいて吸熱器14における冷媒の目標蒸発温度Tetを算出する。
(ステップS13)
 ステップS13においてCPUは、目標蒸発温度Tetと吸熱器温度センサ44の検出温度Teに基づいて第2制御弁25の弁開度を調整し、第2制御弁制御処理を終了する。
 具体的には、目標蒸発温度Tetよりも吸熱器温度センサ44の検出温度Teが低い場合には第2制御弁25の弁開度を2段階のうちの開度小に設定し、目標蒸発温度Tetよりも検出温度Teが高い場合には開度大に設定する。
 また、コントローラ40は、第1除湿暖房運転のときに、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度を調整する制御、または、第2制御弁25の弁開度の調整による制御と、に切換えるための蒸発温度制御切換処理を行う。このときのコントローラ40の動作を図9のフローチャート、図10および図11のタイミングチャートを用いて説明する。
(ステップS21)
 ステップS21においてCPUは、運転状態が第1除湿暖房運転か否かを判定する。第1除湿暖房運転と判定した場合にはステップS22に処理を移し、第1除湿暖房運転と判定しなかった場合にはステップS28に処理を移す。
(ステップS22)
 ステップS21において第1除湿暖房運転であると判定した場合に、ステップS22においてCPUは、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御中であるか否かを判定する。第1制御弁24の弁開度の調整による制御中と判定した場合にはステップS23に処理を移し、第1制御弁24の弁開度の調整による制御中と判定しなかった場合にはステップS27に処理を移す。
(ステップS23)
 ステップS22において第1制御弁24の弁開度の調整による制御中と判定した場合に、ステップS23においてCPUは、着霜回避条件が成立したか否かを判定する。着霜回避条件が成立したと判定した場合にはステップS30に処理を移し、着霜回避条件が成立したと判定しなかった場合にはステップS24に処理を移す。
 具体的には、吸熱器温度センサ44の検出温度が吸熱器14において着霜が生じ得る推定着霜温度に所定温度Δd(例えば、1℃)を加算した温度未満となる状態が、所定時間(0~3秒間)継続したときに着霜回避条件が成立したと判定する。推定着霜温度は、空気流通路11を流通する空気の湿度または露点温度と、室内送風機12の風量から算出される。
(ステップS24)
 ステップS23において着霜回避条件が成立しなかったと判定した場合に、ステップS24においてCPUは、第2制御弁25の弁開度の調整による制御を行うための条件が成立したか否かを判定する。第2制御弁25による制御を開始する条件が成立したと判定した場合にはステップS25に処理を移し、第2制御弁25による制御を開始する条件が成立したと判定しなかった場合にはステップS28に処理を移す。
 具体的には、図10に示すように、第1制御弁24の膨張手段側の弁開度が所定開度以上(例えば、全開)の状態で、且つ、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tet(例えば、1.5~12℃)から所定温度ΔT1(例えば、0.5~2℃)減じた温度(Tet-ΔT1)未満となる状態が、所定時間T(0~3秒間)継続したときに第2制御弁25による制御を開始するための条件が成立したと判定する。
(ステップS25)
 ステップS24において第2制御弁25による制御を開始するための条件が成立したと判定した場合、または、後述するステップS27において第2制御弁25による制御を解除するための条件が成立しなかった場合に、ステップS25においてCPUは、図10に示すように、第2制御弁25の弁開度を小さくし、ステップS26に処理を移す。
(ステップS26)
 ステップS26においてCPUは、第1制御弁24の膨張手段側の弁開度を所定の弁開度に設定し(図10では全開)、蒸発温度制御切換処理を終了する。
(ステップS27)
 ステップS22において第2制御弁25による制御中と判定した場合に、ステップS27においてCPUは、第2制御弁25による制御を解除するための条件が成立したか否かを判定する。第2制御弁25による制御を解除するための条件が成立したと判定した場合にはステップS28に処理を移し、第2制御弁25による制御を解除するための条件が成立したと判定しなかった場合にはステップS25に処理を移す。
 具体的には、図11に示すように、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tet(例えば、1.5~12℃)に所定温度ΔT2(例えば0.5~2℃)加えた温度(Tet+ΔT2)以上の状態となったときに第2制御弁制御処理による第2制御弁25による制御を解除するための条件が成立したと判定する。
 また、吸入圧力センサ45の検出圧力が所定圧力(0~0.05MPaG)以下の場合、吐出圧力センサ47の検出圧力が所定圧力(2~3MPaG)以上の場合、および、吐出温度センサ48の検出温度が所定温度(120~130℃)以上の場合のいずれかが成立する場合には、冷媒回路20の保護を目的として、第2制御弁制御処理による第2制御弁25による制御を解除するための条件が成立したと判定する。
 さらに、吸入温度センサ46の検出温度が所定温度(1~2℃)未満の状態となったときには、圧縮機21の潤滑油の流入量の不足を防止することを目的として、第2制御弁25による制御を解除するための条件が成立したと判定する。圧縮機21の潤滑油の流入量の不足の条件の成立の判定は、アキュムレータ29の流出側の冷媒の温度(過熱度)に基づいて行ってもよい。
(ステップS28)
 ステップS21において第1除湿暖房運転であると判定しなかった場合、ステップS24において第2制御弁25による制御を開始する条件が成立したと判定しなかった場合、または、ステップS27において第2制御弁25による制御を解除するための条件が成立したと判定した場合に、ステップS28においてCPUは、図11に示すように、第2制御弁25の弁開度を大きくし、ステップS29に処理を移す。
(ステップS29)
 ステップS29においてCPUは、図11に示すように、第1制御弁24によって吸熱器14における冷媒の蒸発温度を制御する第1制御弁吸熱器温度制御処理を開始し、蒸発温度制御切換処理を終了する。
(ステップS30)
 ステップS23において着霜回避条件が成立したと判定した場合に、ステップS30においてCPUは、第2制御弁25の弁開度を小さくし、ステップS31に処理を移す。
(ステップS31)
 ステップS31においてCPUは、第1制御弁24によって吸熱器14における冷媒の蒸発温度を制御する第1制御弁吸熱器温度制御処理を開始し、蒸発温度制御切換手段を終了する。
 次に、第1制御弁吸熱器温度制御処理を、図12のフローチャートを用いて説明する。
(ステップS41)
 ステップS41においてCPUは、運転状態が第1除湿暖房運転か否かを判定する。第1除湿暖房運転と判定した場合にはステップS42に処理を移し、第1除湿暖房運転と判定しなかった場合には第1制御弁吸熱器温度制御処理を終了する。
(ステップS42)
 ステップS41において運転状態が第1除湿暖房運転であると判定した場合に、ステップS42においてCPUは、オイル戻り要求があるか否かを判定する。オイル戻り要求があると判定した場合にはステップS43に処理を移し、オイル戻り要求があると判定しなかった場合にはステップS45に処理を移す。
 具体的には、圧縮機21の吸入側の冷媒温度(過熱度)SH_SUCが所定値(例えば、1~2℃)より大きくなった場合を、オイル戻り要求があると判定する。即ち、第1制御弁24の膨張手段側は、弁開度を小さくするに従って圧縮機21の消費電力が低下する一方、過熱度SH_SUCが高くなる傾向がある。したがって、圧縮機21に対する潤滑油の流入量の不足を防止するためには、圧縮機21の吸入冷媒の過熱度を所定値以下とする必要があり、冷媒温度(過熱度)SH_SUCの上限値を設定する。
(ステップS43)
 ステップS42においてオイル戻り要求があると判定した場合に、ステップS44においてCPUは、COP向上要求があるか否かを判定する。COP向上要求があると判定した場合にはステップS44に処理を移し、COP向上要求があると判定しなかった場合にはステップS45に処理を移す。
 具体的には、室外熱交換器22の流入側の圧力P_ODhexが外気温に対応する冷媒飽和圧力Psatu_Tambより大きくなった場合を、COP向上要求が有ると判定する。即ち、第1制御弁24の膨張手段側は、弁開度を大きくするに従って圧縮機21の回転数が高くなるとともに、室外熱交換器22の流入側の圧力P_ODhexも高くなる。したがって、第1除湿暖房運転において吸熱器14において吸熱量を確保するためには、圧力P_ODhexを外気温に対応する冷媒飽和圧力Psatu_Tamb以下とする必要がある。
(ステップS44)
 ステップS43においてCOP向上要求がある判定した場合に、ステップS44においてCPUは、第1制御弁24の膨張手段側の弁開度の目標値を算出して弁開度を調整し、第1制御弁吸熱器温度制御処理を終了する。
 具体的には、第1制御弁24の膨張手段側の弁開度の目標値TGECCVは、フィードバック目標値の比例操作量P_ECCV、フィードバック目標値の積分操作量I_EECCVおよびフィードフォワード目標値FF_ECCV基づいて、次式のように求められる。
  TGECCV=P_ECCV+I_ECCV+FF_ECCV
 ここで、比例操作量P_ECCV、積分操作量I_ECCVは、それぞれ目標吸熱器温度TEOおよび実際の吸熱器14の温度Teに基づいて算出される(P_ECCV=Gp_ECCV×(TEO-Te)、I_ECCV=Gi_ECCV×(TEO-Te)+I_ECCVz、Gp:比例ゲインとしての定数、Gi:積分ゲインとしての定数、I_ECCVz:積分操作量の前回値)。
(ステップS45)
 ステップS42においてオイル戻り要求があると判定しなかった場合、または、ステップS43においてCOP向上要求があると判定しなかった場合に、ステップS45においてCPUは、第1制御弁の膨張手段側の弁開度の目標値を保持して第1制御弁吸熱器温度制御処理を終了する。
 また、コントローラ40は、暖房運転または第1除湿暖房運転において、圧縮機21の回転数を調整することによって放熱器15における冷媒の凝縮温度を制御する放熱器温度制御処理を行う。このときのコントローラ40の動作を図13のフローチャートを用いて説明する。
(ステップS51)
 ステップS51においてCPUは、運転状態が暖房運転または第1除湿暖房運転か否かを判定する。暖房運転または第1除湿暖房運転と判定した場合にはステップS52に処理を移し、暖房運転または第1除湿暖房運転と判定しなかった場合には圧縮機吸熱器温度制御処理を終了する。
(ステップS52)
 ステップS51において運転状態が暖房運転または第1除湿暖房運転であると判定した場合に、ステップS52においてCPUは、圧縮機21の回転数の目標値を算出して回転数を調整し、放熱器温度制御処理を終了する。
 具体的には、圧縮機21の回転数の目標値TGNChは、フィードバック目標値の比例操作量P_TGNCh、フィードバック目標値の積分操作量I_TGNChおよびフィードフォワード目標値FF_TGNCh基づいて、次式のように求められる。
  TGNCh=P_TGNCh+I_TGNCh+FF_TGNCh
 ここで、比例操作量P_TGNCh、積分操作量I_TGNChは、それぞれ目標放熱器温度TCOおよび実際の放熱器15の温度Thに基づいて算出される(P_TGNCh=Gp_TGNCh×(TCO-Th)、I_TGNCh=Gi_TGNCh×(TCO-Th)+I_TGNChz、Gp_TGN:比例ゲインとしての定数、Gi_TGNCh:積分ゲインとしての定数、I_TGNChz:積分操作量の前回値)。
 このように、本実施形態の車両用空気調和装置によれば、第1制御弁24の膨張手段側の弁開度および吸熱器温度センサ44の検出温度に基づいて、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換えている。これにより、第1除湿暖房運転時において、第1制御弁24の制御のみならず第2制御弁25の制御によって吸熱器14における冷媒の蒸発温度が低下することを防止することができるので、車室外の温度が低温の場合においても吸熱器14に着霜が生じることはなく、吸熱器14において必要な冷媒の吸熱量を確保することが可能となる。
 また、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換える条件を、第1制御弁24の膨張手段側の弁開度が所定開度(例えば、全開)以上および吸熱器温度センサ44の検出温度が所定温度(Tet-ΔT1)未満としている。これにより、第1制御弁24の膨張手段側の弁開度の制御によって吸熱器14における冷媒の蒸発温度の低下を防ぐことができない状態を検知することができるので、第2制御弁25の制御を正確なタイミングで開始することが可能となる。
 また、第2制御弁25による吸熱器における冷媒の蒸発温度の制御中に、第1制御弁24の膨張手段側の弁開度を所定の弁開度に設定している。これにより、第1制御弁24の膨張手段側の弁開度の制御と第2制御弁25の弁開度の制御をそれぞれ同時に行うことによる例えばハンチング等の制御不能に陥ることはなく、必要な制御性能を確保することが可能となる。
 また、吸熱器温度センサ44の検出温度に基づいて、吸熱器14における冷媒の蒸発温度を、第2制御弁25の弁開度の調整による制御から第1制御弁24の膨張手段側の弁開度の調整による制御に切換えている。これにより、必要な時を除いて第1制御弁24の制御によって吸熱器14における冷媒の蒸発温度を制御することができるので、制御の構成が簡単となり、製造コストの低減を図ることが可能となる。
 また、吸熱器温度センサ44の検出温度と吸熱器14における冷媒の目標蒸発温度Tetとに基づいて、吸熱器14における冷媒の蒸発温度を、第2制御弁25の弁開度の調整による制御から第1制御弁24の膨張手段側の弁開度の調整による制御に切換えている。これにより、必要な時を除いて第1制御弁24の制御によって吸熱器14における冷媒の蒸発温度を制御することができるので、制御の構成が簡単となり、製造コストの低減を図ることが可能となる。
 また、吸入圧力センサ45の検出圧力が所定圧力(0~0.05MPaG)以下の場合、吐出圧力センサ47の検出圧力が所定圧力(2~3MPaG)以上の場合、および、吐出温度センサ48の検出温度が所定温度(120~130℃)以上の場合のいずれかが成立する場合には、吸熱器14における冷媒の蒸発温度を、第2制御弁25の弁開度の調整による制御から第1制御弁24の膨張手段側の弁開度の調整による制御に切換えている。これにより、冷媒回路20の異常な高圧や低圧の発生を防止することができるので、冷媒回路20を構成する部品の故障や破損を防ぐことが可能となる。
 尚、前記実施形態では、圧縮機21から流出する冷媒が、暖房運転および第1除湿暖房運転時に、室外熱交換器22を一端側から他端側に向かって流通するようにしたものを示したがこれに限られるものではない。例えば、図14に示すように、圧縮機21から流出する冷媒が、暖房運転および第1除湿暖房運転時に、室外熱交換器22を他端側から一端側に向かって流通するようにしてもよい。
 図14の車両用空気調和装置は、前記実施形態における冷媒流通路20cの代わりに、第1制御弁24の膨張手段側の冷媒流出側と室外熱交換器22の他端側とを接続する冷媒流通路20kが設けられている。また、車両用空気調和装置は、前記実施形態における冷媒流通路20eの代わりに、室外熱交換器22の一端側と圧縮機21の冷媒吸入側とを接続する冷媒流通路20lが設けられている。
 以上のように構成された車両用空気調和装置において、放熱器15から流出する冷媒は、暖房運転および第1除湿暖房運転時に、前記実施形態の場合と異なり、室外熱交換器22を他端側から一端側に向かって流通する。その他の運転については、前記実施形態と同様に冷媒が流通する。
 また、前記実施形態では、膨張弁28として温度式膨張弁を用いたものを示したがこれに限られるものではなく、開度可変の電子式膨張弁を用いてもよい。
 また、前記実施形態では、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を全開に設定したものを示したが、これに限られるものではない。例えば、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を90%に設定してもよい。
 また、第2制御弁25の弁開度の制御を開始する条件である第1制御弁24の膨張手段側の弁開度は全開に限られず、例えば90%の弁開度を条件としてもよい。
 また、前記実施形態では、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を所定の弁開度に設定したものを示したが、これに限られるものではない。例えば、第2制御弁25の弁開度の制御中に、第1制御弁24の膨張手段側の弁開度を、車室外の温度Tamや目標吹出温度TAO等に運転条件に応じて決定される弁開度に設定するようにしてもよい。この場合、吸熱器14における冷媒の蒸発温度の制御をより高精度に行うことができるので、制御性能を向上させることが可能となる。
 また、前記実施形態では、第1制御弁24の膨張手段側の弁開度が所定開度以上の状態で、且つ、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tetから所定温度ΔT1減じた温度(Tet-ΔT1)未満となる状態が、所定時間T継続したときに、吸熱器14における冷媒の蒸発温度を、第1制御弁24の膨張手段側の弁開度の調整による制御から第2制御弁25の弁開度の調整による制御に切換えるようにしたものを示したが、所定時間Tを0秒としたものも含まれる。
 また、前記実施形態では、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tetに所定温度ΔT2加えた温度(Tet+ΔT2)以上の状態となったときに第2制御弁制御処理による第2制御弁25の制御を解除するようにしたものを示したが、これに限られるものではない。例えば、吸熱器温度センサ44の検出温度が吸熱器14における冷媒の目標蒸発温度Tet以上の状態となったときに第2制御弁制御処理による第2制御弁25の制御を解除してもよい。
 また、前記実施形態では、暖房運転時に室外熱交換器22に流入する冷媒を減圧するための膨張手段と、除湿冷房運転時に放熱器における冷媒の凝縮圧力を調整するための凝縮圧力調整手段と、が一体に設けられた第1制御弁24を示したが、これに限られるものではない。例えば、膨張手段としての電子式膨張弁と、凝縮圧力調整手段としての凝縮圧力調整弁を互いに並列に室外熱交換器22の冷媒流通方向上流側に接続するようにしても前記実施形態と同様の作用効果を得ることが可能である。
 また、前記実施形態では、第2制御弁25の弁開度を2段階に設定可能に構成し、冷媒流通路20hを流通する冷媒の流量を2段階に調整するようにしたものを示したが、これに限られるものではない。例えば、第2制御弁25の弁開度を、任意の開度に設定可能に構成してもよい。この場合には、吸熱器14における吸熱量を任意に設定することができるので、吸熱器14における吸熱量の制御の精度を向上させることが可能となる。
 また、前記実施形態では、目標蒸発温度Tetと吸熱器温度センサ44の検出温度Teに基づいて第2制御弁25の弁開度を調整するようにしたものを示したが、これに限られるものではない。例えば、吸熱器14において熱交換した後の空気の温度や、吸熱器14の冷媒の圧力を検出し、その検出結果に基づいて第2制御弁25の弁開度を調整するようにしても同様の効果を得ることが可能となる。
 また、前記実施形態では、第1除湿暖房運転時に、第1制御弁24および第2制御弁25によって吸熱器14における冷媒の蒸発温度を制御するようにしたものを示している。
 一方、除湿冷房運転時においては、第1制御弁24によって放熱器15における冷媒の凝縮温度を制御し、第2制御弁25によって吸熱器14における冷媒の蒸発温度を制御すればよい。このとき、放熱器15における冷媒の凝縮温度の制御、および、吸熱器14における冷媒の蒸発温度の制御は、それぞれの目標温度と検出温度との差に基づくフィードバック制御によって行う。また、圧縮機21の回転数は、圧縮機21から吐出される冷媒の温度、第2制御弁25の弁開度および第1制御弁24の弁開度の少なくとも1つの状態に基づいて設定される。
 また、除湿冷房運転時においては、圧縮機21の回転数の調整によって放熱器15における冷媒の凝縮温度を制御し、第2制御弁25によって吸熱器14における冷媒の蒸発温度を制御してもよい。このとき、放熱器15における冷媒の凝縮温度の制御、および、吸熱器14における冷媒の蒸発温度の制御は、それぞれの目標温度と検出温度との差に基づくフィードバック制御によって行う。また、第1制御弁24の開度は、予め決められた設定値、放熱器15における冷媒の凝縮温度、および、室内送風機12の送風量の少なくとも1つの状態に基づいて設定される。
 10…空調ユニット、14…吸熱器、15…放熱器、20…冷媒回路、21…圧縮機、22…室外熱交換器、24…第1制御弁、25…第2制御弁、26a~26c…第1~第3電磁弁、27a,26b…第1~第2逆止弁、28…膨張弁、29…アキュムレータ、40…コントローラ、41…外気温度センサ、42…内気温度センサ、43…日射センサ、44…吸熱器温度センサ、45…吸入圧力センサ、46…吸入温度センサ、47…吐出圧力センサ、48…吐出温度センサ、51…操作部。

Claims (11)

  1.  冷媒を圧縮して吐出する圧縮機と、
     車室内側に設けられ、冷媒を放熱させる放熱器と、
     車室内側に設けられ、冷媒を吸熱させる吸熱器と、
     車室外側に設けられ、冷媒を放熱または吸熱させる室外熱交換器と、
     吸熱器に流入する冷媒を減圧する室内側膨張弁と、
     室外熱交換器に流入する冷媒を減圧する室外側膨張弁と、を備え、
     圧縮機から吐出した冷媒を放熱器において放熱させ、放熱器において放熱させた冷媒の一部を室内側膨張弁によって減圧して吸熱器において吸熱させ、その他の冷媒を室外側膨張弁によって減圧して室外熱交換器において吸熱させる除湿暖房運転を行うことが可能な車両用空気調和装置において、
     除湿暖房運転時に、室外側膨張弁の弁開度を調整することで吸熱器における冷媒の蒸発温度を調整する室外側膨張弁制御部と、
     吸熱器の冷媒流出側の冷媒流通路に設けられ、冷媒流通路を流通する冷媒の流量を調整することで吸熱器における冷媒の蒸発温度を調整可能な蒸発温度調整弁と、
     吸熱器における冷媒の温度を検出する温度検出部と、
     室外側膨張弁の弁開度および温度検出手段の検出温度がそれぞれ所定の条件を満たす場合に、吸熱器における冷媒の蒸発温度を、室外側膨張弁の弁開度の調整による制御から蒸発温度調整弁の弁開度の調整による制御に切換える制御弁切換部と、を備えた
     ことを特徴とする車両用空気調和装置。
  2.  制御切換部による吸熱器における冷媒の蒸発温度の制御を蒸発温度調整弁の弁開度の調整に切換える所定の条件は、室外側膨張弁の弁開度が所定開度以上、且つ、温度検出部の検出温度が所定温度以下である
     ことを特徴とする請求項1記載の車両用空気調和装置。
  3.  蒸発温度調整弁による吸熱器における冷媒の蒸発温度の制御中に、室外側膨張弁を所定の弁開度に設定する弁開度設定部を備えた
     ことを特徴とする請求項1または2に記載の車両用空気調和装置。
  4.  蒸発温度調整弁による吸熱器における冷媒の蒸発温度の制御中に、室外側膨張弁を、所定の条件から決定される弁開度に設定する弁開度設定部を備えた
     ことを特徴とする請求項1または2に記載の車両用空気調和装置。
  5.  温度検出部の検出温度に基づいて、吸熱器における冷媒の蒸発温度を、蒸発温度調整弁の弁開度の調整による制御から室外側膨張弁の弁開度の調整による制御に切換える制御弁切換部を備えた
     ことを特徴とする請求項1乃至4のいずれかに記載の車両用空気調和装置。
  6.  吸熱器における冷媒の蒸発温度の目標値である目標蒸発温度を算出する目標蒸発温度算出部と、
     温度検出部の検出温度と目標蒸発温度算出部の算出温度とに基づいて、吸熱器における冷媒の蒸発温度を、蒸発温度調整弁の弁開度の調整による制御から室外側膨張弁の弁開度の調整による制御に切換える制御弁切換部と、を備えた
     ことを特徴とする請求項1乃至4のいずれかに記載の車両用空気調和装置。
  7.  圧縮機の運転状態を検出する運転状態検出部と、
     運転状態検出部によって検出された圧縮機の運転状態に基づいて、吸熱器における冷媒の蒸発温度を、蒸発温度調整弁の弁開度の調整による制御から室外側膨張弁の弁開度の調整による制御に切換える制御弁切換部と、を備えた
     ことを特徴とする請求項1乃至6のいずれかに記載の車両用空気調和装置。
  8.  放熱器における冷媒の温度を圧縮機の回転数の調整によって制御する放熱器温度制御部を備えた
     ことを特徴とする請求項1乃至7のいずれかに記載の車両用空気調和装置。
  9.  温度検出部の検出温度と目標蒸発温度算出部の算出温度とに基づいて室外側膨張弁の弁開度を制御する弁開度制御部を備えた
     ことを特徴とする請求項6に記載の車両用空気調和装置。
  10.  吸熱器において着霜が生じる温度を推定する着霜温度推定部と、
     温度検出部の検出温度と着霜温度推定部の推定温度とに基づいて、吸熱器における冷媒の蒸発温度を、蒸発温度調整弁の弁開度の調整によって制御する制御部と、を備えた
     ことを特徴とする請求項1乃至9のいずれかに記載の車両用空気調和装置。
  11.  圧縮機に吸入される冷媒の温度を検出する吸入冷媒温度検出部と、
     吸入冷媒温度検出部の検出温度に基づいて、吸熱器における冷媒の蒸発温度を、蒸発温度調整弁の弁開度の調整による制御から室外側膨張弁の弁開度の調整による制御に切換える制御弁切換部と、を備えた
     ことを特徴とする請求項1乃至10のいずれかに記載の車両用空気調和装置。
PCT/JP2012/080471 2011-12-09 2012-11-26 車両用空気調和装置 WO2013084738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012005151.3T DE112012005151T5 (de) 2011-12-09 2012-11-26 Klimaanlage eines Fahrzeugs
US14/363,911 US9784486B2 (en) 2011-12-09 2012-11-26 Mechanism for controlling refrigerant in a vehicle air conditioning apparatus
JP2013548178A JP5984842B2 (ja) 2011-12-09 2012-11-26 車両用空気調和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011270686 2011-12-09
JP2011-270686 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084738A1 true WO2013084738A1 (ja) 2013-06-13

Family

ID=48574112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080471 WO2013084738A1 (ja) 2011-12-09 2012-11-26 車両用空気調和装置

Country Status (4)

Country Link
US (1) US9784486B2 (ja)
JP (1) JP5984842B2 (ja)
DE (1) DE112012005151T5 (ja)
WO (1) WO2013084738A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020030A1 (ja) * 2013-08-07 2015-02-12 サンデン株式会社 車両用空気調和装置
WO2015025905A1 (ja) * 2013-08-23 2015-02-26 サンデン株式会社 車両用空気調和装置
WO2015170513A1 (ja) * 2014-05-08 2015-11-12 サンデンホールディングス株式会社 車両用空気調和装置
CN106232400A (zh) * 2014-04-18 2016-12-14 三电控股株式会社 车用空气调节装置
WO2019215812A1 (ja) * 2018-05-08 2019-11-14 三菱電機株式会社 空気調和機
JP2020015414A (ja) * 2018-07-25 2020-01-30 三菱重工サーマルシステムズ株式会社 車両用空調装置
JP2021134940A (ja) * 2020-02-21 2021-09-13 パナソニックIpマネジメント株式会社 冷凍装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012001074B4 (de) * 2011-03-03 2022-02-24 Sanden Holdings Corporation Fahrzeugklimatisierungseinrichtung
JP6277888B2 (ja) * 2014-06-27 2018-02-14 株式会社デンソー 冷凍サイクル装置
US20160223239A1 (en) * 2015-01-31 2016-08-04 Trane International Inc. Indoor Liquid/Suction Heat Exchanger
FR3043759B1 (fr) * 2015-11-13 2017-11-24 Valeo Systemes Thermiques Circuit de conditionnement thermique et procede d'utilisation d'un tel circuit de conditionnement thermique
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11268740B2 (en) 2016-09-30 2022-03-08 Daikin Industries, Ltd. Refrigeration apparatus
CN106895597A (zh) * 2017-03-08 2017-06-27 江西清华泰豪三波电机有限公司 风冷调温热泵型除湿机组
CN108312805B (zh) * 2018-01-04 2019-12-24 英格索兰(中国)工业设备制造有限公司 空调机组的控制方法及其控制装置
CN110345705B (zh) * 2018-04-03 2021-05-07 合肥华凌股份有限公司 用于制冷***的温控阀的优化控制方法、装置及制冷***
US11654747B2 (en) * 2020-02-07 2023-05-23 GM Global Technology Operations LLC System and method for controlling fluid temperature in a thermal system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251164A (ja) * 1991-01-08 1992-09-07 Toshiba Corp 冷凍サイクル装置
JPH07139827A (ja) * 1993-11-18 1995-06-02 Nippondenso Co Ltd 冷房冷凍装置
JPH07266860A (ja) * 1994-02-14 1995-10-17 Calsonic Corp 車両用ヒートポンプ式空気調和装置
JPH0840058A (ja) * 1994-07-29 1996-02-13 Toyota Motor Corp 車両用デュアルエアコン装置
JP2004189213A (ja) * 2002-11-28 2004-07-08 Matsushita Electric Ind Co Ltd 冷媒サイクルの運転装置、冷媒サイクルの運転方法
JP2009264633A (ja) * 2008-04-23 2009-11-12 Calsonic Kansei Corp 空気調和システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909190B2 (ja) * 1990-11-02 1999-06-23 株式会社東芝 空気調和機
US5526650A (en) * 1993-09-21 1996-06-18 Nippondenso Co., Ltd. Air-conditioning apparatus
JP3373326B2 (ja) * 1995-04-17 2003-02-04 サンデン株式会社 車両用空気調和装置
US5704219A (en) * 1995-08-01 1998-01-06 Nippondenso Co., Ltd. Air conditioning apparatus
JP3781147B2 (ja) * 1997-04-09 2006-05-31 カルソニックカンセイ株式会社 ヒートポンプ式自動車用空気調和装置
JP3890713B2 (ja) * 1997-11-27 2007-03-07 株式会社デンソー 冷凍サイクル装置
JP3841039B2 (ja) * 2002-10-25 2006-11-01 株式会社デンソー 車両用空調装置
EP1695849A1 (en) * 2005-02-28 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle unit
JP2009264661A (ja) 2008-04-24 2009-11-12 Calsonic Kansei Corp 空気調和システム
US9250001B2 (en) * 2009-06-17 2016-02-02 Emerson Electric Co. Control of an expansion valve regulating refrigerant to an evaporator of a climate control system
JP5663849B2 (ja) * 2009-07-09 2015-02-04 株式会社デンソー 車両用空調装置
DE102012205200B4 (de) * 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251164A (ja) * 1991-01-08 1992-09-07 Toshiba Corp 冷凍サイクル装置
JPH07139827A (ja) * 1993-11-18 1995-06-02 Nippondenso Co Ltd 冷房冷凍装置
JPH07266860A (ja) * 1994-02-14 1995-10-17 Calsonic Corp 車両用ヒートポンプ式空気調和装置
JPH0840058A (ja) * 1994-07-29 1996-02-13 Toyota Motor Corp 車両用デュアルエアコン装置
JP2004189213A (ja) * 2002-11-28 2004-07-08 Matsushita Electric Ind Co Ltd 冷媒サイクルの運転装置、冷媒サイクルの運転方法
JP2009264633A (ja) * 2008-04-23 2009-11-12 Calsonic Kansei Corp 空気調和システム

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020030A1 (ja) * 2013-08-07 2015-02-12 サンデン株式会社 車両用空気調和装置
JP2015030450A (ja) * 2013-08-07 2015-02-16 サンデン株式会社 車両用空気調和装置
US10040337B2 (en) 2013-08-07 2018-08-07 Sanden Holdings Corporation Vehicle air conditioner
CN105452029A (zh) * 2013-08-07 2016-03-30 三电控股株式会社 车用空调装置
WO2015025905A1 (ja) * 2013-08-23 2015-02-26 サンデン株式会社 車両用空気調和装置
JP2015040019A (ja) * 2013-08-23 2015-03-02 サンデン株式会社 車両用空気調和装置
US10047988B2 (en) 2013-08-23 2018-08-14 Sanden Holdings Corporation Vehicle air conditioner
CN106232400A (zh) * 2014-04-18 2016-12-14 三电控股株式会社 车用空气调节装置
CN106461277A (zh) * 2014-05-08 2017-02-22 三电控股株式会社 车用空调装置
JP2015215101A (ja) * 2014-05-08 2015-12-03 サンデンホールディングス株式会社 車両用空気調和装置
WO2015170513A1 (ja) * 2014-05-08 2015-11-12 サンデンホールディングス株式会社 車両用空気調和装置
CN106461277B (zh) * 2014-05-08 2019-05-17 三电控股株式会社 车用空调装置
US10427495B2 (en) 2014-05-08 2019-10-01 Sanden Holdings Corporation Vehicle air conditioning device
US10538144B2 (en) 2014-05-08 2020-01-21 Sanden Holdings Corporation Vehicle air conditioning device
WO2019215812A1 (ja) * 2018-05-08 2019-11-14 三菱電機株式会社 空気調和機
JPWO2019215812A1 (ja) * 2018-05-08 2021-02-25 三菱電機株式会社 空気調和機
JP2020015414A (ja) * 2018-07-25 2020-01-30 三菱重工サーマルシステムズ株式会社 車両用空調装置
JP7099899B2 (ja) 2018-07-25 2022-07-12 三菱重工サーマルシステムズ株式会社 車両用空調装置
JP2021134940A (ja) * 2020-02-21 2021-09-13 パナソニックIpマネジメント株式会社 冷凍装置

Also Published As

Publication number Publication date
US9784486B2 (en) 2017-10-10
JP5984842B2 (ja) 2016-09-06
JPWO2013084738A1 (ja) 2015-04-27
DE112012005151T5 (de) 2014-10-16
US20140338382A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5984842B2 (ja) 車両用空気調和装置
JP5944135B2 (ja) 車両用空気調和装置
WO2012108240A1 (ja) 車両用空気調和装置
JP5944154B2 (ja) 車両用空気調和装置
WO2018193770A1 (ja) 車両用空気調和装置
JP5851703B2 (ja) 車両用空気調和装置
WO2012118198A1 (ja) 車両用空気調和装置
JP5750797B2 (ja) 車両用空気調和装置
WO2017104588A1 (ja) 車両用空気調和装置
JP6683076B2 (ja) 冷凍サイクル装置
WO2018139342A1 (ja) 車両用空気調和装置
JP5713316B2 (ja) 車両用空気調和装置
WO2018211958A1 (ja) 車両用空気調和装置
WO2018147039A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
JP2006029715A (ja) 冷凍サイクル装置
US10933719B2 (en) Vehicle air-conditioning apparatus
WO2018110212A1 (ja) 車両用空気調和装置
WO2018101095A1 (ja) 車両用空気調和装置
JP5935714B2 (ja) 冷凍サイクル装置
JP5851697B2 (ja) 車両用空気調和装置
WO2018061785A1 (ja) 車両用空気調和装置
JP2019073053A (ja) 車両用空気調和装置
JP6369237B2 (ja) 空調装置
JP5984544B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548178

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14363911

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005151

Country of ref document: DE

Ref document number: 1120120051513

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855974

Country of ref document: EP

Kind code of ref document: A1