WO2015020030A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2015020030A1
WO2015020030A1 PCT/JP2014/070575 JP2014070575W WO2015020030A1 WO 2015020030 A1 WO2015020030 A1 WO 2015020030A1 JP 2014070575 W JP2014070575 W JP 2014070575W WO 2015020030 A1 WO2015020030 A1 WO 2015020030A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
refrigerant
target
compressor
high pressure
Prior art date
Application number
PCT/JP2014/070575
Other languages
English (en)
French (fr)
Inventor
竜 宮腰
鈴木 謙一
耕平 山下
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN201480044308.4A priority Critical patent/CN105452029B/zh
Priority to US14/909,353 priority patent/US10040337B2/en
Priority to DE112014003652.8T priority patent/DE112014003652T5/de
Publication of WO2015020030A1 publication Critical patent/WO2015020030A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3239Cooling devices information from a variable is obtained related to flow
    • B60H2001/3241Cooling devices information from a variable is obtained related to flow of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3244Cooling devices information from a variable is obtained related to humidity
    • B60H2001/3245Cooling devices information from a variable is obtained related to humidity of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/3251Cooling devices information from a variable is obtained related to pressure of the refrigerant at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3258Cooling devices information from a variable is obtained related to temperature of the air at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side to dissipate the refrigerant
  • the refrigerant discharged from the compressor is provided with a refrigerant circuit comprising an endothermic device (evaporator) that absorbs heat from the refrigerant and an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb heat.
  • evaporator endothermic device
  • Have been developed e.g., see Patent Document 1).
  • an upper limit value for control is set for the rotation speed of the compressor (control upper limit value). That is, the rotational speed of the compressor cannot be set to exceed this control upper limit value.
  • the high pressure of the refrigerant circuit has a control upper limit for protecting the compressor. If the refrigerant has a high degree of supercooling in the radiator and the high pressure exceeds the control upper limit, Control is performed to reduce the number of rotations and suppress high pressure.
  • the present invention has been made to solve the conventional technical problem, and appropriately controls the refrigerant subcooling degree of the radiator that satisfies both the high pressure and the refrigerant flow rate during heating, thereby improving the heating capacity.
  • An object of the present invention is to provide a vehicle air conditioner that can be improved.
  • the vehicle air conditioner of the present invention includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant and heats the air supplied to the vehicle interior, and an outdoor heat that is provided outside the vehicle cabin and absorbs the refrigerant.
  • An exchanger an expansion valve that depressurizes the refrigerant flowing into the outdoor heat exchanger, and a control means.
  • the control means causes the refrigerant discharged from the compressor to radiate heat by the radiator, and the radiated refrigerant. After the pressure is reduced by the expansion valve, the vehicle interior is heated by absorbing heat with the outdoor heat exchanger, and the control means controls the supercooling degree of the refrigerant in the radiator by the expansion valve, and is based on the high pressure.
  • the high-speed priority mode for increasing the target radiator subcooling degree in the direction in which the high-pressure pressure is set to a predetermined high value and the high-pressure pressure to a predetermined high value The target radiator's subcooling degree in the direction And having a rotational speed priority mode in which made.
  • a vehicular air conditioning apparatus wherein the control means switches between the high pressure priority mode and the rotation speed priority mode and executes the compressor while maintaining the high pressure at a predetermined high value.
  • the target radiator subcooling degree of the radiator is changed so as to keep the number of rotations high.
  • the control means increases the target radiator subcooling degree of the radiator in a direction in which the high pressure priority mode is executed and the high pressure is set to a predetermined high value.
  • the mode shifts to the rotation speed priority mode, and the target radiator subcooling degree of the radiator is lowered in a direction to set the rotation speed of the compressor to a predetermined high value. It is characterized by.
  • the control means increases the target radiator subcooling degree of the radiator in a direction in which the high pressure is set to the control upper limit value in the high pressure priority mode, and rotates. In the number priority mode, the target radiator subcooling degree of the radiator is lowered in a direction in which the rotation speed of the compressor is set to the control upper limit value.
  • a vehicle air conditioner according to the above invention, wherein, in the high pressure priority mode, the control means is based on a deviation between a control upper limit value of the high pressure and the actual high pressure.
  • the target radiator subcooling degree of the radiator is feedback corrected based on the deviation between the upper limit value of the compressor rotation speed and the actual rotation speed.
  • an air conditioning apparatus for a vehicle, wherein the control means includes efficiency priority control and capacity priority control.
  • the target heat dissipation of the radiator is based on the amount of air passing through the radiator.
  • the process shifts to the capacity priority control, and in this capacity priority control, the high pressure priority mode and the rotation speed priority mode are executed.
  • the target radiator subcooling degree of the radiator is corrected.
  • a vehicle air conditioner includes an injection circuit that diverts a part of the refrigerant that has exited the radiator in the above invention and returns it to the compressor, and the control means exits the radiator by the injection circuit.
  • the condition for shifting to the capacity priority control is changed depending on whether or not a part of the refrigerant is returned to the compressor.
  • the target radiator subcooling degree of the radiator so as to keep the compressor speed high while maintaining a high value, the refrigerant flow rate can be secured while maintaining the high pressure during heating. It becomes possible to improve the heating capacity.
  • the high pressure priority mode is executed as in the third aspect of the invention to increase the target radiator subcooling degree of the radiator in a direction in which the high pressure is set to a predetermined high value, and the high pressure is set to a predetermined high value.
  • both the high pressure and the refrigerant flow rate are reduced by shifting to the rotation speed priority mode and reducing the target radiator subcooling degree of the radiator in a direction in which the rotation speed of the compressor is set to a predetermined high value. It becomes possible to appropriately control the refrigerant supercooling degree of the radiator to be satisfied.
  • the target radiator subcooling degree of the radiator is increased in the direction in which the high pressure is set to the control upper limit value, and in the rotation speed priority mode, the compressor rotation speed is increased to the control upper limit value. If the target radiator subcooling degree of the radiator is lowered in the direction of the value, the compressor is controlled while appropriately controlling the refrigerant subcooling degree of the radiator and suppressing the high-pressure pressure below the control upper limit value. The number of rotations can be increased, the refrigerant flow rate can be maintained, and the heating capacity can be improved.
  • the target radiator subcooling degree of the radiator is feedback-corrected based on the deviation between the control upper limit value of the high pressure and the actual high pressure, and the rotation speed priority mode is set. Then, based on the deviation between the upper limit control value of the compressor speed and the actual speed, feedback correction of the target radiator subcooling degree of the radiator makes stable correction of the refrigerant subcooling degree of the radiator constantly. It can be realized.
  • the control means has efficiency priority control and capacity priority control, and in the efficiency priority control, the target radiator subcooling degree of the radiator is determined based on the amount of air passing through the radiator.
  • the system shifts to the capacity priority control.
  • the high pressure priority mode and the rotation speed priority mode are executed, and the target radiator overload of the radiator is exceeded. If the degree of cooling is corrected, the efficiency priority control is always executed, and the capacity priority control for executing the high pressure priority mode and the rotation speed priority mode can be executed only when the heating capacity of the radiator is insufficient. .
  • heating capacity can be improved while minimizing a decrease in operating efficiency, and therefore, in a vehicle that drives a compressor with electric power charged in a battery, such as an electric vehicle or a hybrid vehicle. This is preferable.
  • the control means removes a part of the refrigerant exiting the radiator by the injection circuit.
  • radiator refrigerant that takes into account the improvement in heating capacity by increasing the amount of refrigerant discharged from the compressor by injection by changing the conditions for shifting to capacity priority control depending on whether it is returned to the compressor or not It is possible to correct the degree of supercooling.
  • FIG. 2 is a Ph diagram during injection of the vehicle air conditioner of FIG. 1. It is a control block diagram at the time of heating of the controller of FIG. It is a figure explaining determination of the target blowing temperature by the controller of FIG.
  • FIG. 5 is a control block diagram of a compressor rotation speed calculation unit in FIG. 4. It is a control block diagram regarding the target radiator subcooling degree determination by the controller of FIG. It is a figure explaining the determination method of the target radiator subcooling degree at the time of the efficiency priority control by the controller of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) that does not have an engine (internal combustion engine), and travels by driving an electric motor for traveling with electric power charged in a battery.
  • the vehicle air conditioner 1 of the present invention is also driven by battery power. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Are provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and a radiator 4 that radiates the high-temperature and high-pressure refrigerant discharged from the compressor 2 into the passenger compartment, and an electric valve that decompresses and expands the refrigerant during heating.
  • An outdoor expansion valve 6 that functions as a radiator during cooling, an outdoor heat exchanger 7 that performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating, and an electric valve that expands the refrigerant under reduced pressure.
  • An indoor expansion valve 8, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and an evaporation capacity control valve 11 for adjusting the evaporation capacity in the heat absorber 9; Accumulator 12 etc. are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15 for exchanging heat between the outside air and the refrigerant.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
  • a bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel.
  • the bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (open / close valve) for bypassing the outdoor expansion valve 6 and flowing refrigerant. ) 20 is interposed.
  • the refrigerant pipe 13E immediately after exiting the radiator 4 (before branching to the refrigerant pipes 13F and 13I) is branched, and the branched refrigerant pipe 13K is provided with an injection expansion valve 30 comprising an electric valve for injection control.
  • the compressor 2 is in communication with the compressor 2 during compression.
  • coolant piping 13K between the exit side of this injection expansion valve 30 and the compressor 2 is provided in the refrigerant
  • the refrigerant circuit 13K, the injection expansion valve 30, and the discharge side heat exchanger 35 constitute an injection circuit 40.
  • the injection circuit 40 is a circuit for diverting a part of the refrigerant from the radiator 4 and returning it to the middle of compression of the compressor 2 (gas injection).
  • the injection expansion valve 30 is a refrigerant that has flowed into the refrigerant pipe 13K. After the pressure is reduced, it is caused to flow into the discharge side heat exchanger 35.
  • the refrigerant flowing into the discharge side heat exchanger 35 is discharged from the compressor 2 to the refrigerant pipe 13G, exchanges heat with the refrigerant before flowing into the radiator 4, and absorbs heat from the refrigerant flowing through the refrigerant pipe 13G to evaporate. It is said that.
  • Gas refrigerant to the compressor 2 is performed by evaporating the refrigerant diverted to the refrigerant pipe 13K in the discharge side heat exchanger 35.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means constituted by a microcomputer, and an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
  • ECU controller
  • an input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and an outside air humidity is detected.
  • An outside air humidity sensor 34 an HVAC suction temperature sensor 36 that detects the temperature of air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, and the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air in the vehicle
  • the indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
  • the blowout temperature sensor 41 that detects the temperature of the air blown from the blowout port 29 into the vehicle interior.
  • a discharge pressure sensor 42 for detecting the discharge refrigerant pressure of the compressor 2 for detecting the discharge refrigerant pressure of the compressor 2, a discharge temperature sensor 43 for detecting the discharge refrigerant temperature of the compressor 2, and a compression
  • An endothermic temperature sensor 48 for detecting the temperature of the endothermic device 9 (the temperature immediately after exiting the endothermic device 9, or the endothermic device 9 itself, or the temperature of air immediately after being cooled by the endothermic device 9);
  • a heat absorber pressure sensor 49 for detecting the refrigerant pressure of the heat absorber 9 (the pressure of the refrigerant in the heat absorber 9 or immediately after leaving the heat absorber 9) and, for example, a photosensor for detecting the amount of solar radiation into the vehicle interior Type solar radiation sensor 51 and a vehicle speed sensor for detecting the moving speed (vehicle speed) of the vehicle Sensor 52, air-conditioning (air conditioner) operation unit 53 for setting the set temperature and operation mode, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the outdoor
  • the outdoor heat exchanger temperature sensor 54 for detecting the temperature of the heat exchanger 7 itself, and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat
  • the input of the controller 32 further includes an injection pressure sensor 50 that detects the pressure of the injection refrigerant that flows into the refrigerant pipe 13K of the injection circuit 40 and returns to the middle of the compression of the compressor 2 via the discharge side heat exchanger 35;
  • an injection temperature sensor 55 that detects the temperature of the injection refrigerant is also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor fan 15, the indoor fan (blower fan) 27, the suction switching damper 26, the air mix damper 28, the suction port switching damper 31, and the outdoor expansion.
  • the valve 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the injection expansion valve 30, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • the controller 32 opens the solenoid valve 21, and the solenoid valve 17, the solenoid valve 22, and the solenoid valve. 20 is closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 after passing through the discharge-side heat exchanger 35.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4, a part of the refrigerant is diverted to the refrigerant pipe 13K of the injection circuit 40, and mainly reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the functional operation of the injection circuit 40 will be described later.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and pumps heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat pump).
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13D and the electromagnetic valve 21, and after being gas-liquid separated there, the gas refrigerant is sucked into the compressor 2. repeat. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the radiator pressure sensor 47 (or the discharge pressure sensor 42) as will be described later in the embodiment.
  • the valve opening degree of the outdoor expansion valve 6 is controlled on the basis of the passing air volume and a target blowing temperature described later, and the supercooling degree of the refrigerant at the outlet of the radiator 4 is controlled.
  • the valve opening degree of the outdoor expansion valve 6 may be controlled based on the temperature of the radiator 4 or the outside air temperature instead of or in addition to them.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 and adjusts the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Based on this, the valve opening degree of the outdoor expansion valve 6 is controlled. In this dehumidifying and heating mode, gas injection by the injection circuit 40 is not performed, so the injection expansion valve 30 is fully closed (fully closed position).
  • coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure. Even in this internal cycle mode, gas injection by the injection circuit 40 is not performed, so the injection expansion valve 30 is fully closed (fully closed position).
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 sets the air blown out from the indoor blower 27 to the heat radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the number of revolutions of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above.
  • the refrigerant pressure of the radiator 4 Radiator pressure PCI.
  • the injection expansion valve 30 is fully closed (fully closed position).
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is controlled to an upper limit)).
  • the air mix damper 28 is in a state in which no air is passed through the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the discharge-side heat exchanger 35. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 ⁇ / b> E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. In this cooling mode, since the gas injection by the injection circuit 40 is not performed, the injection expansion valve 30 is fully closed (fully closed position).
  • the controller 32 selects the operation mode based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blowing temperature TAO and the set conditions. In this case, the controller 32 basically shifts from the heating mode to the dehumidifying heating mode, or from the dehumidifying heating mode to the heating mode, and from the dehumidifying heating mode to the dehumidifying cooling mode, or from the dehumidifying cooling mode to the dehumidifying heating mode.
  • shifting to the transition is made via the internal cycle mode.
  • the cooling mode is changed to the internal cycle mode, and the internal cycle mode is changed to the cooling mode.
  • FIG. 3 shows a Ph diagram of the vehicle air conditioner 1 of the present invention in the heating mode.
  • the refrigerant exiting the radiator 4 and entering the refrigerant pipe 13E, and then being diverted and flowing into the refrigerant pipe 13K of the injection circuit 40 is decompressed by the injection expansion valve 30, and then enters the discharge side heat exchanger 35 where it is compressed. It exchanges heat with the refrigerant discharged from the machine 2 (the refrigerant discharged from the compressor 2 and before flowing into the radiator 4), absorbs heat and evaporates.
  • the evaporated gas refrigerant then returns to the middle of compression of the compressor 2 and is further compressed together with the refrigerant sucked and compressed from the accumulator 12, and then discharged from the compressor 2 to the refrigerant pipe 13G again.
  • the line indicated by 13K is the refrigerant returned to the compressor 2 by the injection circuit 40.
  • the controller 32 monitors the degree of superheat of the refrigerant toward the middle of compression of the compressor 2 from the pressure and temperature of the refrigerant after the discharge-side heat exchanger 35 detected by the injection pressure sensor 50 and the injection temperature sensor 55, respectively.
  • the valve opening degree of the injection expansion valve 30 is controlled so that a predetermined degree of superheat is obtained by heat exchange with the discharged refrigerant.
  • the discharge side heat exchanger 35 discharges from the compressor 2. Since the extremely high-temperature refrigerant before flowing into the radiator 4 and the refrigerant flowing through the injection circuit 40 are subjected to heat exchange, a large amount of heat exchange can be obtained. Therefore, even if the valve opening degree of the injection expansion valve 30 is increased to increase the injection amount, the refrigerant can be sufficiently evaporated in the discharge side heat exchanger 35, and a necessary degree of superheat can be obtained.
  • the heating capacity can be improved.
  • FIG. 4 shows a control block diagram of the compressor 2, the outdoor expansion valve 6, and the injection expansion valve 30 by the controller 32 in the heating mode.
  • the controller 32 inputs the target blowing temperature TAO to the target radiator temperature calculation unit 57, the target radiator subcooling degree calculation unit 58, and the target injection refrigerant superheat degree calculation unit 59.
  • This target blowing temperature TAO is a target value of the air temperature blown into the vehicle compartment from the blowout port 29, and is calculated by the controller 32 from the following formula (I).
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (1)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, as shown in FIG. 5, and it falls as the outside temperature Tam rises.
  • the target radiator temperature calculating unit 57 of the controller 32 calculates the target radiator temperature TCO from the target blowing temperature TAO. Next, based on the target radiator temperature TCO, the controller 32 uses the target radiator temperature calculating unit 61. Calculate the target radiator pressure PCO. Then, based on the target radiator pressure PCO and the pressure (radiator pressure) Pci of the radiator 4 which is the high pressure of the refrigerant circuit R detected by the radiator pressure sensor 47, the controller 32 calculates the compressor rotation speed calculation unit. At 62, the target compressor speed TGNCh of the compressor 2 in the heating mode is calculated, and the compressor 2 is operated at this target compressor speed TGNCh.
  • FIG. 6 is a control block diagram of the compressor rotational speed calculation unit 62.
  • the compressor rotation speed calculation unit 62 includes an F / F (feed forward) operation amount calculation unit 71, an F / B (feedback) operation amount calculation unit 72, an adder 73, and a limit setting unit 74.
  • the target radiator temperature TCO calculated by the target radiator temperature calculator 57 in FIG. 4 is input to the target radiator pressure calculator 61 and the F / F manipulated variable calculator 71.
  • the target radiator pressure calculating unit 61 calculates the target radiator pressure PCO as described above, and the calculated target radiator pressure PCO is calculated using the F / F manipulated variable calculating unit 71 and the F / F manipulated variable calculating unit 71 of the compressor rotation number calculating unit 62.
  • / B is input to the operation amount calculation unit 72.
  • TH is the temperature of the radiator 4 (heatsink temperature) obtained from the radiator temperature sensor 46
  • Te is the temperature of the heat absorber 9 (heatsink temperature) obtained from the heat absorber temperature sensor 48.
  • the air mix damper opening SW changes in the range of 0 ⁇ SW ⁇ 1, and when 0, the air mix is in a fully closed state where no air is ventilated to the radiator 4; 4 is in the fully open state of the air mix.
  • the F / B operation amount calculation unit 72 calculates the F / B operation amount TGNChfb of the target compressor speed based on the target radiator pressure PCO and the radiator pressure Pci.
  • the F / F manipulated variable TGNChff calculated by the F / F manipulated variable calculator 71 and the F / B manipulated variable TGNChfb calculated by the F / B manipulated variable calculator 72 are added by the adder 73, and the limit setting unit 74 After the limits of the control upper limit value (ECNpdLimHi) and the control lower limit value (ECNpdLimLo) are set, the target compressor speed TGNCh is determined.
  • the controller 32 controls the rotational speed of the compressor 2 based on the target compressor rotational speed TGNCh.
  • the target compressor speed TGNCh of the compressor 2 based on the target radiator pressure PCO (target value of high pressure). To decide.
  • the controller 32 determines the superheat degree of the injection refrigerant returned from the injection circuit 40 during the compression of the compressor 2 based on the target blowout temperature TAO in the target injection refrigerant superheat degree calculation unit 59 of FIG. A target value (target injection refrigerant superheat degree TGSH) is calculated. On the other hand, the controller 32 is based on the pressure of the injection refrigerant detected by the injection pressure sensor 50 (injection refrigerant pressure Pinj) and the temperature of the injection refrigerant detected by the injection temperature sensor 55 (injection refrigerant temperature Tinj). At 66, the superheat degree INJSH of the injection refrigerant is calculated.
  • the target injection expansion valve opening degree calculation unit 67 calculates the target valve opening degree of the injection expansion valve 30 (target injection expansion valve opening degree TGINJCV). . And the controller 32 controls the valve opening degree of the injection expansion valve 30 to this target injection expansion valve opening degree TGINJCV.
  • the target injection refrigerant superheat degree calculation unit 59 lowers the target injection refrigerant superheat degree TGSH (with hysteresis), for example, as the target blowing temperature TAO increases. Reducing the target injection refrigerant superheat degree TGSH means increasing the valve opening of the injection expansion valve 30 to increase the injection amount. That is, the controller 32 increases the amount of injection returned to the compressor 2 by the injection expansion valve 30 and increases the amount of refrigerant discharged from the compressor 2 to increase the heating capacity as the target blowing temperature TAO increases.
  • the controller 32 supplies a target heating capacity (required heating capacity) TGQ, which is the heating capacity of the radiator 4 required using the formulas (II), (III), and (IV), and refrigerant to the injection circuit 40.
  • TGQ target heating capacity
  • the refrigerant is flowing through the injection circuit 40, that is, when the gas injection is performed, that is, when the gas is not flowing, that is, when the gas is not injected, that is, the HP maximum heating capacity estimated value QmaxHP that can be generated by the radiator 4
  • the maximum heating capacity estimated value QmaxINJ during INJ in which 4 can be generated is calculated.
  • TGQ (TCO ⁇ Te) ⁇ Cpa ⁇ ⁇ ⁇ Qair (II)
  • QmaxHP f1 (Tam, Nc, BLV, VSP, Te)
  • QmaxINJ f2 (Tam, Nc, BLV, VSP, Te)
  • Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48
  • Cpa is the specific heat [kj / kg ⁇ K] of the air flowing into the radiator 4
  • is the density of the air flowing into the radiator 4 ( Specific volume) [kg / m 3 ]
  • Qair is the air volume [m 3 / h] passing through the radiator 4 (the passing air volume Qair is estimated from the blower voltage BLV of the indoor blower 27)
  • VSP is obtained from the vehicle speed sensor 52. The vehicle speed.
  • the temperature of air flowing into the radiator 4 or the temperature of air flowing out of the radiator 4 may be adopted instead of or in addition to Qair.
  • the rotational speed Nc of the compressor 2 in the formulas (III) and (IV) is an example of an index indicating the refrigerant flow rate
  • the blower voltage BLV is an example of an index indicating the air volume in the air flow passage 3
  • the estimated values QmaxHP and QmaxINJ are calculated from these functions. In addition, it is calculated from any one or a combination of these, the outlet refrigerant pressure of the radiator 4, the outlet refrigerant temperature of the radiator 4, the inlet refrigerant pressure of the radiator 4, and the inlet refrigerant temperature of the radiator 4. Also good.
  • the controller 32 is set to control without injection when the target heating capacity TGQ is equal to or less than the HP maximum heating capacity estimation value QmaxHP. In this case, the controller 32 fully closes the injection expansion valve 30 (fully closed position) and does not allow the refrigerant to flow through the injection circuit 40.
  • the control with injection is performed. Execute gas injection.
  • the controller 32 opens the valve opening of the injection expansion valve 30 as a predetermined value, and performs gas injection to the compressor 2. That is, the controller 32 controls the valve opening of the injection expansion valve 30 to the target injection expansion valve opening TGINJCV as described above.
  • the controller 32 calculates the target radiator subcool degree TGSC of the radiator 4 based on the target blowout temperature TAO in the target radiator subcool degree calculator 58.
  • the target radiator subcool degree computing unit 58 will be described in detail later.
  • the controller 32 uses the radiator supercooling degree calculation unit 63 based on the radiator pressure Pci and the temperature of the radiator 4 (the radiator temperature Tci) detected by the radiator temperature sensor 46 to exceed the amount of refrigerant in the radiator 4.
  • the cooling degree (radiator supercooling degree SC) is calculated.
  • the target outdoor expansion valve opening calculator 64 calculates the target valve opening degree of the outdoor expansion valve 6 (target outdoor expansion valve opening degree TGECCV). calculate. And the controller 32 controls the valve opening degree of the outdoor expansion valve 6 to this target outdoor expansion valve opening degree TGECCV.
  • the target radiator subcool degree calculator 58 includes an SC target basic value calculator 76, a target radiator subcool degree correction value calculator 77, a correction enable / disable switching unit 78, and an adder 79.
  • the controller 32 has two control states of efficiency priority control and capacity priority control, and the switching is switched depending on whether the capacity priority flag fPRIability is “1” (set) or “0” (reset). .
  • the adder 79 adds the target radiator subcooling degree basic value TGSCbase calculated by the SC target basic value calculation unit 76 as described later and the target radiator subcooling degree correction value TGSChos from the correction enable / disable switching unit 78.
  • the target radiator subcool degree correction value calculation unit 77 calculates a target radiator subcool degree correction value TGSChos and “0”, which are calculated by the target radiator subcool degree correction value calculation unit 77, and the above-described capability priority flag fPRIability is input to the correction possibility switching unit 78.
  • “1” (set) the target radiator subcooling degree correction value TGSChos calculated by the target radiator subcooling degree correction value calculation unit 77 is output from the correction enable / disable switching unit 78 to the adder 79, and the capability priority flag is set.
  • fPRIability is “0” (reset)
  • “0” normal control without correction
  • the target radiator subcooling degree correction value calculation is performed on the target radiator subcooling degree basic value TGSCbase calculated by the SC target basic value calculation unit 76.
  • the SC target basic value calculation unit 76 calculates the target radiator subcooling basic value TGSCbase aiming at the point at which this COP is maximized in order to give priority to the operation efficiency. This is shown in FIG.
  • the SC target basic value calculation unit 76 performs the target heat dissipation at all target blowing temperatures TAO regardless of whether the outside air temperature Tam is 0 ° C. (L1) or ⁇ 10 ° C. (L2).
  • the supercooling degree basic value TGSCbase is set to 10 (deg). In addition, 0 degrees C or less shall be 10 deg.
  • the SC target basic value calculation unit 76 is set to all 30 (deg) to 30 ° C. regardless of whether the outside air temperature Tam is 0 ° C. (L3) or ⁇ 10 ° C. (L4).
  • the target radiator supercooling degree basic value TGSCbase is set to 25 (deg) at a target blowout temperature TAO of 80 (deg), but gradually 30 (deg) in a heat-up region where the target blowout temperature TAO is higher than 80 (deg). Raise to. Note that -10 ° C or lower is the same as -10 ° C.
  • the SC target basic value calculation unit 76 sets the target radiator subcooling basic value TGSCbase to 16.8 (deg. L5) at all target blowing temperatures TAO.
  • the SC target basic value calculation unit 76 calculates the target radiator subcooling basic value TGSCbase aiming at the maximum efficiency based on the passing air amount Qair of the radiator 4.
  • the calculated target radiator subcooling basic value TGSCbase becomes the target radiator subcooling degree TGSC, and this target heat dissipation
  • the target outdoor expansion valve opening TGECCV of the outdoor expansion valve 6 is calculated as described above.
  • the valve opening degree of the outdoor expansion valve 6 is controlled to the calculated target outdoor expansion valve opening degree TGECCV.
  • TGQ> QmaxHP for example, 4 kW
  • Tam ⁇ A1 eg -10 ° C
  • the state of (TCO ⁇ TH) ⁇ ⁇ T1 has elapsed for a predetermined time or more.
  • TGNCmax is the target compressor rotational speed upper limit value, ECNpdLimHi described above, and the control upper limit value of the rotational speed NC of the compressor 2 is there.
  • the controller 32 sets the capability priority flag fPRIability to “1” on condition that the outside air temperature Tam is low and the radiator temperature TH is continuously lower than the target radiator temperature TCO by a predetermined value or more. , Shift to ability priority control.
  • the heating capacity by the radiator 4 is different as described above, and the INJ maximum heating capacity estimation value QmaxINJ is also larger than the HP maximum heating capacity estimation value QmaxHP, so the transition condition is also changed, The outside air temperature Tam is established at a lower value.
  • the capacity priority flag fPRIability may be set unconditionally.
  • the condition for resetting the capability priority flag fPRIability to “0” is as follows. That is, in the case of non-injection control, all of the following conditions (capability priority cancellation conditions) are satisfied, and when a predetermined time elapses, the capability priority flag fPRIability is reset to “0”, the capability priority control is canceled, and priority is given to efficiency. Transition to control. That is, TGQ ⁇ QmaxHP (for example, 4 kW) -0.5 kW (TCO-TH) ⁇ T2 (for example, 2 deg) ⁇ TGSChos ⁇ SC (eg 3deg)
  • control with injection is as follows.
  • TGQ ⁇ QmaxINJ for example, 5 kW
  • TCO-TH 0.5 kW
  • T2 for example, 2 deg
  • TGSChos ⁇ SC eg 3deg
  • the controller 32 resets the capability priority flag fPRIability to “0” and continues the capability priority control on the condition that the difference between the values is reduced to less than the predetermined value and the target radiator subcool degree correction value TGSChos continues to decrease. Cancel and return to efficiency priority control.
  • the target radiator supercooling degree correction value calculation unit 77 includes a target compressor rotational speed upper limit value TGNCmax (control upper limit value of the rotational speed of the compressor 2), a rotational speed NC of the compressor 2, and a target radiator pressure PCO ( High pressure target value) and radiator pressure Pci are input.
  • FIG. 9 shows a control block diagram of the target radiator supercooling degree correction value calculation unit 77.
  • the controller 32 has a high pressure priority mode and a rotation speed priority mode, and switches between these two modes.
  • the execution block in the number priority mode, the subtractor 84, the dead zone processing unit 86, and the amplifier 87 constitute an execution block in the high voltage priority mode.
  • the outputs of the amplifiers 83 and 87 are input to the priority mode switching unit 88, which are switched by the set “1” and reset “0” of the priority mode flag fTGSCNCfb and output to the adder 91.
  • the previous value is added to the adder 91, and the limit setting unit 89 creates a limit of the control upper limit value (TGSChosHi) and the control lower limit value (TGSChosLo), and then determines the target radiator subcooling correction value TGSChos.
  • TGSChosHi control upper limit value
  • TGSChosLo control lower limit value
  • the target compressor rotation speed upper limit value TGNCmax (control upper limit value of the rotation speed of the compressor 2) is minus ( ⁇ ), the rotation speed NC of the compressor 2 is plus (+), and the subtractor 81
  • the deviation e is amplified by the amplifier 83 via the dead zone processing unit 82 (for example, the dead zone is 100 rpm) and is input to the priority mode switching unit 88. That is, the target compressor rotational speed upper limit value TGNCmax is feedback (I minutes) controlled with respect to the rotational speed NC.
  • the output value of the amplifier 83 decreases the supercooling degree SC of the radiator 2 in the direction of increasing the rotational speed NC of the compressor 2, and finally sets the rotational speed NC of the compressor 2 to the target compressor rotational speed upper limit value (control upper limit value).
  • Value) TGNCmax is the target radiator subcool degree correction value TGSChos.
  • the radiator pressure Pci is minus ( ⁇ ) and the target radiator pressure PCO (target value of the high pressure) is plus (+) and is input to the subtractor 84, and the deviation e is the dead band processing unit 86.
  • the amplifier 87 After passing through (for example, 0.05 MPa is a dead zone), it is amplified by the amplifier 87 and input to the priority mode switching unit 88. That is, the radiator pressure Pci is feedback (I) controlled with respect to the target radiator pressure PCO.
  • the output value of the amplifier 87 increases the radiator subcool degree SC in the direction of increasing the radiator pressure Pci (high pressure), and finally sets the radiator pressure Pci (high pressure) to the control upper limit of the target radiator pressure PCO.
  • the target radiator subcool degree correction value TGSChos is set to the value PCOmax.
  • the target radiator subcooling is based on the deviation e between the control upper limit value PCOmax of the target radiator pressure PCO (target value of the high pressure) and the actual radiator pressure (high pressure) Pci.
  • the degree correction value TGSChos is calculated, and the target radiator subcooling degree TGSC is feedback-corrected.
  • the controller 32 reads each data (temperature data, pressure data) in step S1 of FIG. 10, and determines whether the current mode is the heating mode in step S2. In the heating mode, the controller 32 proceeds from step S2 to step S3, and the SC target basic value calculation unit 76 calculates the target radiator subcooling degree basic value TGSCbase as described above.
  • step S6 If all the conditions are not satisfied in step S6, it is determined that there is no request for capability priority control, the capability priority flag fPRIability is reset to “0”, and the process proceeds to step S9, where the target radiator subcool degree correction value is set.
  • TGSChos 0. In this case, the efficiency priority control is performed, and the target radiator subcool degree basic value TGSCbase becomes the target radiator subcool degree TGSC.
  • the controller 32 sets the priority mode switching flag fTGSCNCfb to “0” and sets the high pressure priority mode.
  • the target radiator subcool degree correction value TGSChos is a value that increases the target radiator subcool degree TGSC as described above, and therefore the radiator subcool degree SC increases as shown in FIG.
  • the radiator pressure Pci (high pressure) increases to the control upper limit value PCOmax.
  • the controller 32 sets the priority mode switching flag fTGSCNCfb to “1”, so that the mode shifts to the rotation speed priority mode.
  • the target radiator subcool degree correction value TGSChos is a value that lowers the target radiator subcool degree TGSC as described above, so the radiator subcool degree SC decreases as shown in FIG. Go.
  • the controller 32 increases the rotational speed NC of the compressor 2 and increases it to the control upper limit value TGNCmax of the target compressor rotational speed TGNC. Thereby, a refrigerant
  • the controller 32 resets the priority mode switching flag fTGSCNCfb to “0” again, so that the priority mode returns to the high pressure priority mode again.
  • FIG. 12 shows another example of correction control of the target radiator subcooling degree TGSC of the radiator 4.
  • the controller 32 determines the target radiator subcooling correction value TGSChos between the correction upper limit value HOSHi (for example, 15 deg) and the correction lower limit value HOSLo (0 deg) based on the data table in which a hysteresis of about 0.4 MPa is set. To do.
  • the controller 32 first executes the high pressure priority mode in which the radiator pressure Pci (high pressure) is increased with the target radiator subcool degree correction value TGSChos as the correction upper limit value HOSHi according to the table of FIG. Then, when the radiator pressure Pci (high pressure) approaches the control upper limit value PCOmax of the target radiator pressure PCO, the target radiator subcool degree correction value TGSChos is gradually lowered from the correction upper limit value HOHi to the correction lower limit value HOSLo. Run number priority mode. Conversely, when the radiator pressure Pci decreases from the control upper limit value PCOmax and moves away, it gradually increases again to the correction upper limit value HOSHi in the high pressure priority mode.
  • the controller 32 sets the target heat dissipation of the radiator 4 in such a direction that the high pressure (radiator pressure Pci) is a predetermined high value (in the embodiment, the control upper limit value PCOmax of the target radiator pressure PCO).
  • the high-pressure priority mode in which the degree of subcooling TGSC is increased, and the radiator 4 in a direction in which the rotational speed NC of the compressor 2 is set to a predetermined high value (in the embodiment, the target compressor rotational speed upper limit value TGNCmax).
  • a rotation speed priority mode for reducing the target radiator subcooling degree TGSC and by switching between the high pressure priority mode and the rotation speed priority mode, the high pressure (heat radiator pressure Pci) is increased to a predetermined high value.
  • the target radiator pressure PCO While maintaining the target radiator pressure PCO at the control upper limit value PCOmax, the target radiator subcooling degree TGSC of the radiator 4 is set so as to keep the rotational speed NC of the compressor 2 high.
  • the high-pressure priority mode is executed to set the high-pressure pressure (radiator pressure Pci) to a predetermined high value (control upper limit value PCOmax of the target radiator pressure PCO), and the target radiator subcooling degree TGSC of the radiator 4
  • the mode shifts to the rotation speed priority mode and the rotation speed NC of the compressor 2 is increased to a predetermined high value (control upper limit value PCOmax)
  • the radiator subcooling degree SC that satisfies both the high pressure and the refrigerant flow rate is appropriately controlled. Will be able to.
  • the target radiator subcooling degree TGSC of the radiator 4 is increased in the direction in which the high pressure (radiator pressure Pci) is set to the control upper limit value PCOmax, and in the rotation speed priority mode, the rotation speed of the compressor 2 is increased. Since the target radiator subcooling degree TGSC of the radiator 4 is lowered in a direction in which NC is set to the target compressor rotation speed upper limit value TGNCmax (control upper limit value), the radiator subcooling degree SC is appropriately controlled to increase the high pressure pressure. Can be kept below the control upper limit value PCOmax, and the rotational speed NC of the compressor 2 can be increased to maintain the refrigerant flow rate, thereby improving the heating capacity.
  • the target radiator subcooling of the radiator 4 is based on the deviation e between the control upper limit value PCOmax of the high pressure (heat radiator pressure Pci) and the actual high pressure (heat radiator pressure Pci).
  • TGSC is feedback-corrected
  • the radiator 4 is based on the deviation e between the target compressor speed upper limit value (control upper limit value) TGNCmax and the actual speed NC of the speed NC of the compressor 2. Since the target radiator subcooling degree TGSC is feedback-corrected, it is possible to always achieve a stable correction of the refrigerant subcooling degree SC of the radiator 4.
  • the controller 32 has efficiency priority control and capacity priority control.
  • the target radiator subcooling degree TGSC of the radiator 4 is determined on the basis of the passing air volume of the radiator 4, and the radiator.
  • the process shifts to the capacity priority control.
  • the high pressure priority mode and the rotation speed priority mode are executed, and the target radiator subcooling degree of the radiator 4 Since the TGSC is corrected, the efficiency priority control is always executed, and the capacity priority control for executing the high pressure priority mode and the rotation speed priority mode can be executed only when the heating capacity of the radiator 4 is insufficient. .
  • the heating capacity can be improved while minimizing the decrease in the operating efficiency COP. Therefore, the electric power charged in the battery such as an electric vehicle or a hybrid vehicle Thus, the present invention is extremely suitable for a vehicle that drives the compressor 2.
  • the controller 32 changes the capacity priority requirement condition for shifting to the capacity priority control depending on whether or not a part of the refrigerant exiting the radiator 4 is returned to the compressor 2 by the injection circuit 40, so that the gas injection is performed.
  • the controller 32 changes the capacity priority requirement condition for shifting to the capacity priority control depending on whether or not a part of the refrigerant exiting the radiator 4 is returned to the compressor 2 by the injection circuit 40, so that the gas injection is performed.
  • the present invention is applied to the vehicle air conditioner 1 that switches between the heating mode, the dehumidifying and heating mode, the dehumidifying and cooling mode, and the cooling mode.
  • the present invention is not limited thereto, and only the heating mode is performed. In addition, the present invention is effective.
  • the predetermined high value in the high pressure priority mode may not be the control upper limit value PCOmax of the target radiator pressure PCO but may be a predetermined high value lower than that, and the predetermined high value in the rotation speed priority mode may also be the target compressor rotation It may be a predetermined high value lower than the control upper limit value TGNCmax of several TGNC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】暖房時に高圧圧力と冷媒流量の双方を満足する放熱器の冷媒過冷却度を適切に制御して暖房能力の向上を図ることができる車両用空気調和装置を提供する。 【解決手段】冷媒を圧縮する圧縮機2と、冷媒を放熱させる放熱器4と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器7と、コントローラを備える。コントローラにより、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器7にて吸熱させる暖房モードを実行する。コントローラ32は、高圧圧力を所定の高い値とする方向で放熱器4の目標放熱器過冷却度TGSCを高くする高圧優先モードと、圧縮機2の回転数を所定の高い値とする方向で放熱器の目標放熱器過冷却度を低下させる回転数優先モードとを有する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の車両用空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器等から構成される冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を吸熱器において吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 また、特許文献1では暖房モードにおいて放熱器から出た冷媒を分流し、この分流した冷媒を減圧した後、当該放熱器を出た冷媒と熱交換させ、圧縮機の圧縮途中に戻すインジェクション回路を設け、それにより圧縮機の吐出冷媒を増加させ、放熱器による暖房能力を向上させていた。
特許第3985384号公報
 ここで、圧縮機の回転数には制御上の上限値が設定されている(制御上限値)。即ち、圧縮機の回転数はこの制御上限値を超える設定とすることはできない。また、冷媒回路の高圧圧力にも圧縮機保護のために制御上の上限値があり、放熱器における冷媒の過冷却度が高く、高圧圧力が制御上限値を超えた場合には、圧縮機の回転数を低下させて高圧圧力を抑える制御が成される。
 しかしながら、高圧圧力を制御上限値以下に維持することができても、そのとき圧縮機の回転数は低下しているために冷媒流量が少なく、放熱器による暖房能力が不足して、車室内への吹出温度が低下し、所望の暖房性能を満足することができなくなるという問題があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、暖房時に高圧圧力と冷媒流量の双方を満足する放熱器の冷媒過冷却度を適切に制御して暖房能力の向上を図ることができる車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に流入する冷媒を減圧させる膨張弁と、制御手段とを備え、この制御手段により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を膨張弁で減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御手段は、膨張弁により放熱器における冷媒の過冷却度を制御し、高圧圧力に基づいて圧縮機の回転数を制御すると共に、高圧圧力を所定の高い値とする方向で放熱器の目標放熱器過冷却度を高くする高圧優先モードと、圧縮機の回転数を所定の高い値とする方向で放熱器の目標放熱器過冷却度を低下させる回転数優先モードとを有することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御手段は、高圧優先モードと回転数優先モードを切り換えて実行することにより、高圧圧力を所定の高い値に維持しながら、圧縮機の回転数を高く維持するよう放熱器の目標放熱器過冷却度を変更することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記発明において制御手段は、高圧優先モードを実行して高圧圧力を所定の高い値とする方向で放熱器の目標放熱器過冷却度を高くすると共に、高圧圧力が所定の高い値となった場合に、回転数優先モードに移行し、圧縮機の回転数を所定の高い値とする方向で放熱器の目標放熱器過冷却度を低下させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御手段は、高圧優先モードでは高圧圧力を制御上限値とする方向で放熱器の目標放熱器過冷却度を高くすると共に、回転数優先モードでは圧縮機の回転数を制御上限値とする方向で放熱器の目標放熱器過冷却度を低下させることを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記発明において制御手段は、高圧優先モードでは高圧圧力の制御上限値と実際の高圧圧力との偏差に基づき、放熱器の目標放熱器過冷却度をフィードバック補正すると共に、回転数優先モードでは圧縮機の回転数の制御上限値と実際の回転数との偏差に基づき、放熱器の目標放熱器過冷却度をフィードバック補正することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御手段は、効率優先制御と能力優先制御とを有し、効率優先制御では放熱器の通過風量に基づいて放熱器の目標放熱器過冷却度を決定すると共に、放熱器による暖房能力が不足している条件が成立した場合に能力優先制御に移行し、この能力優先制御において、高圧優先モードと回転数優先モードを実行し、放熱器の目標放熱器過冷却度を補正することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において放熱器を出た冷媒の一部を分流して圧縮機に戻すインジェクション回路を備え、制御手段は、インジェクション回路により放熱器を出た冷媒の一部を圧縮機に戻す場合と戻さない場合とで、能力優先制御に移行する条件を変更することを特徴とする。
 本発明によれば、制御手段が高圧圧力を所定の高い値とする方向で放熱器の目標放熱器過冷却度を高くする高圧優先モードと、圧縮機の回転数を所定の高い値とする方向で放熱器の目標放熱器過冷却度を低下させる回転数優先モードとを有しているので、請求項2の発明の如く高圧優先モードと回転数優先モードを切り換えて実行することにより、高圧圧力を所定の高い値に維持しながら、圧縮機の回転数を高く維持するよう放熱器の目標放熱器過冷却度を変更することで、暖房時に高圧圧力を維持しながら、冷媒流量も確保して暖房能力の向上を図ることが可能となる。
 この場合、例えば請求項3の発明の如く高圧優先モードを実行して高圧圧力を所定の高い値とする方向で放熱器の目標放熱器過冷却度を高くし、高圧圧力が所定の高い値となった場合に、回転数優先モードに移行し、圧縮機の回転数を所定の高い値とする方向で放熱器の目標放熱器過冷却度を低下させることにより、高圧圧力と冷媒流量の双方を満足させる放熱器の冷媒過冷却度を適切に制御することができるようになる。
 特に、請求項4の発明の如く高圧優先モードでは高圧圧力を制御上限値とする方向で放熱器の目標放熱器過冷却度を高くすると共に、回転数優先モードでは圧縮機の回転数を制御上限値とする方向で放熱器の目標放熱器過冷却度を低下させるようにすれば、放熱器の冷媒過冷却度を適切に制御して、高圧圧力を制御上限値以下に抑制しながら、圧縮機の回転数を高くして冷媒流量も維持し、暖房能力を向上させることができる。
 この場合、請求項5の発明の如く高圧優先モードでは高圧圧力の制御上限値と実際の高圧圧力との偏差に基づき、放熱器の目標放熱器過冷却度をフィードバック補正すると共に、回転数優先モードでは圧縮機の回転数の制御上限値と実際の回転数との偏差に基づき、放熱器の目標放熱器過冷却度をフィードバック補正することにより、常に安定した放熱器の冷媒過冷却度の補正を実現することが可能となる。
 また、請求項6の発明の如く制御手段が効率優先制御と能力優先制御とを有しており、効率優先制御では放熱器の通過風量に基づいて放熱器の目標放熱器過冷却度を決定すると共に、放熱器による暖房能力が不足している条件が成立した場合に能力優先制御に移行し、この能力優先制御において、高圧優先モードと回転数優先モードを実行し、放熱器の目標放熱器過冷却度を補正するようにすれば、常には効率優先制御を実行し、放熱器の暖房能力が不足する場合のみ、高圧優先モードと回転数優先モードを実行する能力優先制御を実行することができる。
 これにより、運転効率の低下を最小限に抑制しながら暖房能力の向上を図ることができるようになるので、電気自動車やハイブリッド自動車等、バッテリに充電された電力で圧縮機を駆動する車両において極めて好適なものとなる。
 更に、請求項7の発明の如く放熱器を出た冷媒の一部を分流して圧縮機に戻すインジェクション回路を備えている場合、制御手段がインジェクション回路により放熱器を出た冷媒の一部を圧縮機に戻す場合と戻さない場合とで、能力優先制御に移行する条件を変更することにより、インジェクションによる圧縮機からの吐出冷媒量の増大による暖房能力の向上を加味した適切な放熱器の冷媒過冷却度の補正を行うことが可能となる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図1の車両用空気調和装置のインジェクション時のP-h線図である。 図2のコントローラの暖房時の制御ブロック図である。 図2のコントローラによる目標吹出温度の決定を説明する図である。 図4の圧縮機回転数演算部の制御ブロック図である。 図2のコントローラによる目標放熱器過冷却度決定に関する制御ブロック図である。 図2のコントローラによる効率優先制御時の目標放熱器過冷却度の決定方法を説明する図である。 図2のコントローラによる能力優先制御時の目標放熱器過冷却度の補正に関する制御ブロック図である。 図2のコントローラの動作を説明するフローチャートである。 図2のコントローラの動作を説明するタイミングチャートである。 図2のコントローラの他の実施例の目標放熱器過冷却度補正動作を説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。この場合、本発明を適用する実施例の車両は、エンジン(内燃機関)を有さない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられて圧縮機2から吐出された高温高圧の冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。尚、室外熱交換器7には、外気と冷媒とを熱交換させるための室外送風機15が設けられている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。
 また、放熱器4を出た直後(冷媒配管13F、13Iに分岐する手前)の冷媒配管13Eは分岐しており、この分岐した冷媒配管13Kはインジェクション制御用の電動弁から成るインジェクション膨張弁30を介して圧縮機2の圧縮途中に連通接続されている。そして、このインジェクション膨張弁30の出口側と圧縮機2間の冷媒配管13Kは、圧縮機2の吐出側に位置する冷媒配管13Gと熱交換関係に設けられ、両者で吐出側熱交換器35を構成している。
 これら冷媒配管13K、インジェクション膨張弁30、及び、吐出側熱交換器35からインジェクション回路40が構成される。このインジェクション回路40は、放熱器4から出た冷媒の一部を分流して圧縮機2の圧縮途中に戻す(ガスインジェクション)ための回路であり、インジェクション膨張弁30は冷媒配管13Kに流入した冷媒を減圧した後、吐出側熱交換器35に流入させる。吐出側熱交換器35に流入した冷媒は、圧縮機2から冷媒配管13Gに吐出され、放熱器4に流入する前の冷媒と熱交換し、冷媒配管13Gを流れる冷媒から吸熱して蒸発する構成とされている。吐出側熱交換器35で冷媒配管13Kに分流された冷媒が蒸発することで、圧縮機2へのガスインジェクションが行われることになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4から出た直後の温度、又は、放熱器4自体の温度、又は、放熱器4にて加熱された直後の空気の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9から出た直後の温度、又は、吸熱器9自体、又は、吸熱器9にて冷却された直後の空気の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、インジェクション回路40の冷媒配管13Kに流入し、吐出側熱交換器35を経て圧縮機2の圧縮途中に戻るインジェクション冷媒の圧力を検出するインジェクション圧力センサ50と、該インジェクション冷媒の温度を検出するインジェクション温度センサ55の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吸込口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、インジェクション膨張弁30と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モードの冷媒の流れ
 コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経た後、放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、一部はインジェクション回路40の冷媒配管13Kに分流され、主には冷媒配管13Eを経て室外膨張弁6に至る。尚、インジェクション回路40の機能作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(ヒートポンプ)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、実施例では後述するように放熱器圧力センサ47(又は吐出圧力センサ42)が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、放熱器4の通過風量と後述する目標吹出温度に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。尚、室外膨張弁6の弁開度は、それらの代わりに或いはそれらに加えて放熱器4の温度や外気温度に基づいて制御してもよい。
 (2)除湿暖房モードの冷媒の流れ
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。尚、この除湿暖房モードではインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (3)内部サイクルモードの冷媒の流れ
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21も閉じる。この室外膨張弁6と電磁弁21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。尚、この内部サイクルモードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (4)除湿冷房モードの冷媒の流れ
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22、及び、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。尚、この除湿冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (5)冷房モードの冷媒の流れ
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は吐出側熱交換器35を経て放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。尚、この冷房モードでもインジェクション回路40によるガスインジェクションは行わないため、インジェクション膨張弁30は全閉とする(全閉位置)。
 (6)運転モードの切換制御
 コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていく。この場合、コントローラ32は基本的には暖房モードから除湿暖房モードへ、或いは、除湿暖房モードから暖房モードへと移行し、除湿暖房モードから除湿冷房モードへ、或いは、除湿冷房モードから除湿暖房モードへと移行し、除湿冷房モードから冷房モードへ、或いは、冷房モードから除湿冷房モードへと移行するものであるが、除湿暖房モードから除湿冷房モードへ移行する際、及び、除湿冷房モードから除湿暖房モードへ移行する際には、前記内部サイクルモードを経由して移行する。また、冷房モードから内部サイクルモードへ、内部サイクルモードから冷房モードへ移行する場合もある。
 (7)暖房モードにおけるガスインジェクション
 次に、前記暖房モードにおけるガスインジェクションについて説明する。図3は暖房モードにおける本発明の車両用空気調和装置1のP-h線図を示している。放熱器4を出て冷媒配管13Eに入り、その後分流されてインジェクション回路40の冷媒配管13Kに流入した冷媒は、インジェクション膨張弁30で減圧された後、吐出側熱交換器35に入り、そこで圧縮機2の吐出冷媒(圧縮機2から吐出されて放熱器4に流入する前の冷媒)と熱交換し、吸熱して蒸発する。蒸発したガス冷媒はその後圧縮機2の圧縮途中に戻り、アキュムレータ12から吸い込まれて圧縮されている冷媒と共に更に圧縮された後、再度圧縮機2から冷媒配管13Gに吐出されることになる。
 図3において13Kで示す線がインジェクション回路40で圧縮機2に戻される冷媒である。インジェクション回路40から圧縮機2の圧縮途中に冷媒を戻すことにより、圧縮機2から吐出される冷媒量が増大するので、放熱器4における暖房能力が向上するものであるが、圧縮機2に液冷媒が戻ると液圧縮を引き起こしてしまうので、インジェクション回路40から圧縮機2に戻す冷媒はガスでなければならない。
 そのためにコントローラ32は、インジェクション圧力センサ50及びインジェクション温度センサ55がそれぞれ検出する吐出側熱交換器35後の冷媒の圧力及び温度から圧縮機2の圧縮途中に向かう冷媒の過熱度を監視しており、吐出冷媒との熱交換で所定の過熱度が付くようにインジェクション膨張弁30の弁開度を制御するものであるが、実施例では吐出側熱交換器35において、圧縮機2から吐出されて放熱器4に流入する前の極めて高温の冷媒とインジェクション回路40を流れる冷媒とを熱交換させているので、大きな熱交換量が得られる。従って、インジェクション膨張弁30の弁開度を大きくしてインジェクション量を増やしても、冷媒は吐出側熱交換器35において十分に蒸発することができ、必要な過熱度が得られることになる。
 これにより、従来の如く放熱器後の冷媒とインジェクション冷媒とを熱交換させる場合に比して、圧縮機2へのガスインジェクション量を十分に確保し、圧縮機2の吐出冷媒量を増大させて暖房能力の向上を図ることができるようになる。
 次に、図4乃至図10を参照しながら前記暖房モードにおける圧縮機2、インジェクション回路40、及び、放熱器4における冷媒の過冷却度SCの目標値である目標放熱器過冷却度の制御について説明する。
 (8)暖房モードでの圧縮機の制御
 図4は前記暖房モードにおけるコントローラ32による圧縮機2と室外膨張弁6とインジェクション膨張弁30の制御ブロック図を示す。コントローラ32は目標吹出温度TAOを目標放熱器温度演算部57と目標放熱器過冷却度演算部58と目標インジェクション冷媒過熱度演算部59に入力させる。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値であり、下記式(I)からコントローラ32が算出する。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは図5に示すように外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 コントローラ32の目標放熱器温度演算部57にて目標吹出温度TAOから目標放熱器温度TCOを算出し、次に、この目標放熱器温度TCOに基づき、コントローラ32は目標放熱器圧力演算部61にて目標放熱器圧力PCOを算出する。そして、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力である放熱器4の圧力(放熱器圧力)Pciとに基づき、コントローラ32は圧縮機回転数演算部62にて暖房モードでの圧縮機2の目標圧縮機回転数TGNChを算出し、この目標圧縮機回転数TGNChにて圧縮機2を運転する。
 図6はこの圧縮機回転数演算部62の制御ブロック図である。圧縮機回転数演算部62は、F/F(フィードフォワード)操作量演算部71、F/B(フィードバック)操作量演算部72、加算器73、及び、リミット設定部74から構成される。図4の目標放熱器温度演算部57で算出された目標放熱器温度TCOは、目標放熱器圧力演算部61とF/F操作量演算部71に入力される。目標放熱器圧力演算部61では前述したように目標放熱器圧力PCOが算出され、この算出された目標放熱器圧力PCOは、圧縮機回転数演算部62のF/F操作量演算部71とF/B操作量演算部72に入力される。
 F/F操作量演算部71は、外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(TH-Te)で得られるエアミックスダンパ28のエアミックスダンパ開度SWと、目標放熱器圧力PCOに基づいて目標圧縮機回転数のF/F操作量TGNChffを算出する。
 尚、THは放熱器温度センサ46から得られる放熱器4の温度(放熱器温度)、Teは吸熱器温度センサ48から得られる吸熱器9の温度(吸熱器温度)である。また、エアミックスダンパ開度SWは0≦SW≦1の範囲で変化し、0で放熱器4への通風をしないエアミックス全閉状態、1で空気流通路3内の全ての空気が放熱器4に通風されるエアミックス全開状態となる。
 F/B操作量演算部72は、目標放熱器圧力PCOと放熱器圧力Pciに基づいて目標圧縮機回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部71が算出したF/F操作量TGNChffとF/B操作量演算部72が算出したF/B操作量TGNChfbは加算器73で加算され、リミット設定部74で制御上限値(ECNpdLimHi)と制御下限値(ECNpdLimLo)のリミットを付けられた後、目標圧縮機回転数TGNChとして決定される。暖房モード(除湿暖房モードも含む)においては、コントローラ32はこの目標圧縮機回転数TGNChに基づいて圧縮機2の回転数を制御する。
 即ち、放熱器4に放熱させて車室内を暖房する暖房モード(除湿暖房モードも含む)では、目標放熱器圧力PCO(高圧圧力の目標値)に基づいて圧縮機2の目標圧縮機回転数TGNChを決定する。
 (9)ガスインジェクション制御
 また、コントローラ32は図4の目標インジェクション冷媒過熱度演算部59にて目標吹出温度TAOに基づき、インジェクション回路40から圧縮機2の圧縮途中に戻されるインジェクション冷媒の過熱度の目標値(目標インジェクション冷媒過熱度TGSH)を算出する。一方、コントローラ32は、インジェクション圧力センサ50が検出するインジェクション冷媒の圧力(インジェクション冷媒圧力Pinj)とインジェクション温度センサ55が検出するインジェクション冷媒の温度(インジェクション冷媒温度Tinj)に基づき、インジェクション冷媒過熱度演算部66にてインジェクション冷媒の過熱度INJSHを算出する。
 そして、このインジェクション冷媒過熱度INJSHと目標インジェクション冷媒過熱度TGSHに基づき、目標インジェクション膨張弁開度演算部67にてインジェクション膨張弁30の目標弁開度(目標インジェクション膨張弁開度TGINJCV)を算出する。そして、コントローラ32はこの目標インジェクション膨張弁開度TGINJCVにインジェクション膨張弁30の弁開度を制御する。
 目標インジェクション冷媒過熱度演算部59は、例えば目標吹出温度TAOが高くなるに従って目標インジェクション冷媒過熱度TGSHを低くする(ヒステリシス有り)。目標インジェクション冷媒過熱度TGSHを低くするということは、インジェクション膨張弁30の弁開度を拡張してインジェクション量を増大させることである。即ち、コントローラ32は目標吹出温度TAOが高くなる程、インジェクション膨張弁30により、圧縮機2に戻すインジェクション量を増やし、圧縮機2の吐出冷媒量を増やして暖房能力を増大させる。
 また、コントローラ32は式(II)、式(III)、式(IV)を用いて要求される放熱器4の暖房能力である目標暖房能力(要求暖房能力)TGQと、インジェクション回路40に冷媒を流していないとき、即ち、ガスインジェクションを行っていないときに放熱器4が発生可能なHP最大暖房能力推定値QmaxHPと、インジェクション回路40に冷媒を流すとき、即ち、ガスインジェクションを行うときに放熱器4が発生可能なINJ時最大暖房能力推定値QmaxINJを算出する。
 TGQ=(TCO-Te)×Cpa×ρ×Qair       ・・(II)
 QmaxHP=f1(Tam、Nc、BLV、VSP、Te)  ・・(III)
 QmaxINJ=f2(Tam、Nc、BLV、VSP、Te) ・・(IV)
 ここで、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m3]、Qairは放熱器4を通過する風量[m3/h](通過風量Qairは室内送風機27のブロワ電圧BLV等から推定)、VSPは車速センサ52から得られる車速である。
 尚、式(II)においてはQairに代えて、或いは、それに加えて、放熱器4に流入する空気の温度、又は、放熱器4から流出する空気の温度を採用してもよい。また、式(III)及び(IV)の圧縮機2の回転数Ncは冷媒流量を示す指標の一例であり、ブロワ電圧BLVは空気流通路3内の風量を示す指標の一例であり、暖房能力推定値QmaxHP、QmaxINJはこれらの関数から算出される。また、それらと放熱器4の出口冷媒圧力、放熱器4の出口冷媒温度、放熱器4の入口冷媒圧力、及び、放熱器4の入口冷媒温度のうちの何れか、若しくは、組み合わせから算出してもよい。
 そして、コントローラ32は目標暖房能力TGQがHP最大暖房能力推定値QmaxHP以下の場合、インジェクション無しの制御とする。この場合、コントローラ32はインジェクション膨張弁30を全閉(全閉位置)としてインジェクション回路40に冷媒を流さない。一方、目標暖房能力TGQがHP最大暖房能力推定値QmaxHPを超えている場合、即ち、放熱器4によるHP最大暖房能力推定値QmaxHPが目標暖房能力TGQに対して不足する場合、インジェクション有りの制御として、ガスインジェクションを実行する。この場合、コントローラ32はインジェクション膨張弁30の弁開度を所定の値として開き、圧縮機2にガスインジェクションを行う。即ち、コントローラ32は前述した如く目標インジェクション膨張弁開度TGINJCVにインジェクション膨張弁30の弁開度を制御する。
 (10)目標放熱器過冷却度の制御
 更に、コントローラ32は目標放熱器過冷却度演算部58にて目標吹出温度TAOに基づき、放熱器4の目標放熱器過冷却度TGSCを算出する。この目標放熱器過冷却度演算部58については後に詳述する。一方、コントローラ32は、放熱器圧力Pciと放熱器温度センサ46が検出する放熱器4の温度(放熱器温度Tci)に基づき、放熱器過冷却度演算部63にて放熱器4における冷媒の過冷却度(放熱器過冷却度SC)を算出する。そして、この放熱器過冷却度SCと目標放熱器過冷却度TGSCに基づき、目標室外膨張弁開度演算部64にて室外膨張弁6の目標弁開度(目標室外膨張弁開度TGECCV)を算出する。そして、コントローラ32はこの目標室外膨張弁開度TGECCVに室外膨張弁6の弁開度を制御する。
 次に、図7乃至図11を参照して図4の目標放熱器過冷却度演算部58の構成と動作について説明する。図7は目標放熱器過冷却度演算部58はSC目標基本値演算部76と、目標放熱器過冷却度補正値演算部77と、補正可否切換部78と、加算器79から構成される。コントローラ32はこの暖房モードにおいて、効率優先制御と能力優先制御の二つの制御状態を備えており、その切り換えは能力優先フラグfPRIabilityが「1」(セット)か「0」(リセット)かで切り換えられる。加算器79ではSC目標基本値演算部76で後述する如く算出された目標放熱器過冷却度基本値TGSCbaseと補正可否切換部78からの目標放熱器過冷却度補正値TGSChosが加算される。
 補正可否切換部78には、目標放熱器過冷却度補正値演算部77で後述する如く算出された目標放熱器過冷却度補正値TGSChosと「0」が入力され、前述した能力優先フラグfPRIabilityが「1」(セット)のときは、補正可否切換部78から目標放熱器過冷却度補正値演算部77が算出した目標放熱器過冷却度補正値TGSChosが加算器79に出力され、能力優先フラグfPRIabilityが「0」(リセット)のときは、「0」(補正無しの通常制御)が補正可否切換部78から加算器79に出力される。
 即ち、能力優先フラグfPRIabilityが「1」(セット)された能力優先制御では、SC目標基本値演算部76で算出された目標放熱器過冷却度基本値TGSCbaseに目標放熱器過冷却度補正値演算部77で算出された目標放熱器過冷却度補正値TGSChosが加算された値が目標放熱器過冷却度TGSC(TGSC=TGSCbase+TGSChos)となり、能力優先フラグfPRIabilityが「0」(リセット)された効率優先制御では、SC目標基本値演算部76で算出された目標放熱器過冷却度基本値TGSCbaseに補正可否切換部78からの「0」の目標放熱器過冷却度補正値TGSChosが加算された値、即ち、目標放熱器過冷却度基本値TGSCbaseが目標放熱器過冷却度TGSC(TGSC=TGSCbase)となる。
 (10-1)効率優先制御
 前記コントローラ32は、通常(能力優先フラグfPRIability=「0」)は効率優先制御を実行している。即ち、SC目標基本値演算部76は、外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO-Te)/(TH-Te)で得られるエアミックスダンパ28のエアミックスダンパ開度SWに基づいて目標放熱器過冷却度基本値TGSCbaseを算出する。このとき、放熱器4の通過風量Qair[m3/h]を前述同様に室内送風機27のブロワ電圧BLV等から推定する。
 ここで、暖房能力一定の場合、運転効率COPが最大となる放熱器過冷却度SCが存在する。効率優先制御の場合は、運転効率を優先するためにSC目標基本値演算部76ではこのCOPが最大となる点を狙って目標放熱器過冷却度基本値TGSCbaseを算出する。この様子が図8に示されている。放熱器4の通過風量Qairが100m3/hの場合、外気温度Tamが0℃(L1)でも-10℃(L2)でも、SC目標基本値演算部76は全ての目標吹出温度TAOにおいて目標放熱器過冷却度基本値TGSCbaseを10(deg)とする。尚、0℃以下は10degとする。
 また、放熱器4の通過風量Qairが200m3/hの場合、外気温度Tamが0℃(L3)でも-10℃(L4)でも、SC目標基本値演算部76は全ての30(deg)~80(deg)の目標吹出温度TAOにおいて目標放熱器過冷却度基本値TGSCbaseを25(deg)とするが、目標吹出温度TAOが80(deg)より高くなるヒートアップ領域では徐々に30(deg)まで上昇させる。尚、-10℃以下は-10℃と同じとする。また、通過風量Qairが150m3/hの場合にはSC目標基本値演算部76は全ての目標吹出温度TAOにおいて目標放熱器過冷却度基本値TGSCbaseを16.8(deg。L5)とする。
 このように、SC目標基本値演算部76では放熱器4の通過風量Qairに基づいて最大効率を狙って目標放熱器過冷却度基本値TGSCbaseを算出する。効率優先制御では加算器79には補正可否切換部78から「0」が入力されるため、この算出された目標放熱器過冷却度基本値TGSCbaseが目標放熱器過冷却度TGSCとなり、この目標放熱器過冷却度TGSCと放熱器過冷却度演算部63にて算出された放熱器過冷却度SCとに基づき、前述したように室外膨張弁6の目標室外膨張弁開度TGECCVが算出され、この算出された目標室外膨張弁開度TGECCVに室外膨張弁6の弁開度が制御されることになる。
 (10-2)能力優先制御
 次に、前述した能力優先制御について説明する。前述した如くコントローラ32は通常効率優先制御を実行しているものであるが、能力優先フラグfPRIabilityが「1」(セット)されたことで能力優先制御に移行する。
 (10-2-1)能力優先フラグfPRIabilityのセット/リセット
 次に、効率優先制御と能力優先制御の切り換えについて説明する。先ず、前述したインジェクション回路40によるインジェクション無し制御の場合は以下の全ての条件(能力優先要求条件)が成立したときに、能力優先フラグfPRIability=「1」(セット)とし、能力優先制御に移行する。即ち、
 ・TGQ>QmaxHP(例えば4kW)
 ・(TGNCmax-NC)≧ΔN1(例えば100rpm)
 ・Tam<A1(例えば-10℃)
 ・(TCO-TH)≧ΔT1(例えば5deg)の状態が所定時間以上経過
 尚、TGNCmaxは目標圧縮機回転数上限値で、前述したECNpdLimHiであり、圧縮機2の回転数NCの制御上限値である。
 また、前述したインジェクション有り制御の場合、上記条件は以下の如く成る。即ち、
 ・TGQ>QmaxINJ(例えば5kW)
 ・(TGNCmax-NC)≧ΔN2(例えば100rpm)
 ・Tam<A2(例えば-15℃)
 ・(TCO-TH)≧ΔT1(例えば5deg)の状態が所定時間以上経過
 即ち、放熱器4による暖房能力が不足し、目標暖房能力TGQがHP最大暖房能力推定値QmaxHPかINJ時最大暖房能力推定値QmaxINJより大きくなり、圧縮機2の回転数が制御上限値まで未だ余裕がある場合、外気温度Tamが低く、放熱器温度THも目標放熱器温度TCOより所定値以上低下していることが続いたことを条件として、コントローラ32は能力優先フラグfPRIabilityをセット「1」し、能力優先制御に移行する。
 また、インジェクション無しとインジェクション有りの場合、前述したように放熱器4による暖房能力が異なり、INJ時最大暖房能力推定値QmaxINJもHP最大暖房能力推定値QmaxHPより大きくなるため、移行条件も変更され、外気温度Tamはより低い値での成立となる。尚、インジェクション有り制御の場合は、目標暖房能力が大きい状況となるため、無条件に能力優先フラグfPRIabilityをセットしてもよい。
 次に、能力優先フラグfPRIabilityをリセット「0」する条件は以下の如くである。即ち、インジェクション無し制御のときは、以下の全ての条件(能力優先解除条件)が成立し、所定時間経過したときに能力優先フラグfPRIabilityをリセット「0」し、能力優先制御を解除して効率優先制御に移行する。即ち、
 ・TGQ<QmaxHP(例えば4kW)-0.5kW
 ・(TCO-TH)<ΔT2(例えば2deg)
 ・TGSChos<SC(例えば3deg)
 また、インジェクション有り制御のときは、以下の如くである。
 ・TGQ<QmaxINJ(例えば5kW)-0.5kW
 ・(TCO-TH)<ΔT2(例えば2deg)
 ・TGSChos<SC(例えば3deg)
 即ち、放熱器4による暖房能力の不足が解消され、目標暖房能力TGQよりHP最大暖房能力推定値QmaxHPやINJ時最大暖房能力推定値QmaxINJが大きくなり、放熱器温度THと目標放熱器温度TCOとの差が所定値未満に縮小し、目標放熱器過冷却度補正値TGSChosが小さくなったことが継続したことを条件として、コントローラ32は能力優先フラグfPRIabilityをリセット「0」し、能力優先制御を解除して効率優先制御に復帰する。
 (10-2-2)目標放熱器過冷却度補正値の演算
 次に、目標放熱器過冷却度補正値演算部77における目標放熱器過冷却度補正値TGSChosの演算について説明する。目標放熱器過冷却度補正値演算部77には目標圧縮機回転数上限値TGNCmax(圧縮機2の回転数の制御上限値)と、圧縮機2の回転数NCと、目標放熱器圧力PCO(高圧圧力の目標値)と、放熱器圧力Pciが入力される。
 図9はこの目標放熱器過冷却度補正値演算部77の制御ブロック図を示している。コントローラ32はこの能力優先制御において、高圧優先モードと回転数優先モードを有しており、それら二つのモードを切り換えて実行するが、図9の減算器82、不感帯処理部83、増幅器83が回転数優先モードの実行ブロックを、減算器84、不感帯処理部86、増幅器87が高圧優先モードの実行ブロックを構成する。各増幅器83、87の出力は優先モード切換部88に入力され、優先モードフラグfTGSCNCfbのセット「1」、リセット「0」によってこれらが切り換えられて加算器91に出力される。この加算器91には前回値が加算され、リミット設定部89で制御上限値(TGSChosHi)と制御下限値(TGSChosLo)のリミットが作られた後、目標放熱器過冷却度補正値TGSChosとして決定される。
 即ち、回転数優先モードでは、目標圧縮機回転数上限値TGNCmax(圧縮機2の回転数の制御上限値)がマイナス(-)、圧縮機2の回転数NCがプラス(+)で減算器81に入力され、その偏差eが不感帯処理部82(例えば100rpmが不感帯)を経て増幅器83で増幅されて優先モード切換部88に入力される。即ち、回転数NCに対して目標圧縮機回転数上限値TGNCmaxをフィードバック(I分)制御する。この増幅器83の出力値は圧縮機2の回転数NCを高くする方向で放熱器過冷却度SCを低下させ、最終的に圧縮機2の回転数NCを目標圧縮機回転数上限値(制御上限値)TGNCmaxとする目標放熱器過冷却度補正値TGSChosとなる。これにより、この回転数優先モードでは、目標圧縮機回転数上限値(制御上限値)TGNCmaxと実際の圧縮機2の回転数NCとの偏差eに基づいて、目標放熱器過冷却度補正値TGSChosを算出し、目標放熱器過冷却度TGSCをフィードバック補正することになる。
 また、高圧優先モードでは、放熱器圧力Pciがマイナス(-)、目標放熱器圧力PCO(高圧圧力の目標値)がプラス(+)で減算器84に入力され、その偏差eが不感帯処理部86(例えば0.05MPaが不感帯)を経て増幅器87で増幅されて優先モード切換部88に入力される。即ち、目標放熱器圧力PCOに対して放熱器圧力Pciをフィードバック(I分)制御する。この増幅器87の出力値は放熱器圧力Pci(高圧圧力)を高くする方向で放熱器過冷却度SCを高くし、最終的に放熱器圧力Pci(高圧圧力)を目標放熱器圧力PCOの制御上限値PCOmaxとする目標放熱器過冷却度補正値TGSChosとなる。これにより、この高圧優先モードでは、目標放熱器圧力PCO(高圧圧力の目標値)の制御上限値PCOmaxと実際の放熱器圧力(高圧圧力)Pciとの偏差eに基づいて、目標放熱器過冷却度補正値TGSChosを算出し、目標放熱器過冷却度TGSCをフィードバック補正することになる。
 (10-2-3)高圧優先モードと回転数優先モードの切換え条件
 上述の如き高圧優先モードと回転数優先モードは、優先モードフラグfTGSCNCfbのセット「1」、リセット「0」によってこれらが切り換えられる。コントローラ32は、放熱器圧力Pciが制御上限値PCOmaxとなるまでは優先モードフラグfTGSCNCfbをリセット「0」の状態とし、PCOmaxとなった時点でセット「1」する。その後、放熱器圧力Pciが所定のヒステリシス分(例えば0.1MPa等)低下した場合に、優先モードフラグfTGSCNCfbをリセット「0」する。
 (11)実際の放熱器過冷却度SC制御動作
 以上の効率優先制御と能力優先制御の切換、及び、優先モードの切換の実際を図10及び図11に基づいて説明する。コントローラ32は図10のステップS1で各データ(温度データ、圧力データ)を読み込み、ステップS2で現在が暖房モードであるか判断する。暖房モードである場合、コントローラ32はステップS2からステップS3に進み、SC目標基本値演算部76により前述したように目標放熱器過冷却度基本値TGSCbaseを演算する。次に、ステップS4で目標暖房能力(要求暖房能力)TGQと、HP最大暖房能力推定値QmaxHP、INJ時最大暖房能力推定値QmaxINJを演算し、ステップS5で能力優先フラグfPRIability=「1」(セット)とする全条件が成立しているか否か判定する。
 そして、ステップS6で全条件が成立していない場合、能力優先制御の要求が無いと判断し、能力優先フラグfPRIabilityをリセット「0」して、ステップS9に進み、目標放熱器過冷却度補正値TGSChos=0とする。この場合は、効率優先制御となり、目標放熱器過冷却度基本値TGSCbaseが目標放熱器過冷却度TGSCとなる。
 係る効率優先制御を実行している間に、外気温度が低下する等により、図11に示すように例えばHP最大暖房能力推定値QmaxHPが目標暖房能力TGQを下回り、能力優先フラグfPRIability=「1」(セット)とする全条件(能力優先要求条件)が成立した場合、コントローラ32はステップS6で能力優先フラグfPRIability=「1」(セット)とし、ステップS7に進んで前述した能力優先制御を実行する。
 この能力優先制御に移行したとき、放熱器圧力Pci(高圧圧力)は目標放熱器圧力PCOの制御上限値PCOmaxより低いため、コントローラ32は優先モード切換フラグfTGSCNCfbをリセット「0」として高圧優先モードを実行する。この高圧優先モードでは前述した如く目標放熱器過冷却度補正値TGSChosは目標放熱器過冷却度TGSCを高くする値であるので、放熱器過冷却度SCは図11に示すように上昇していき、放熱器圧力Pci(高圧圧力)は制御上限値PCOmaxまで上昇していく。
 放熱器圧力Pci(高圧圧力)が制御上限値PCOmaxまで上昇した場合、コントローラ32は優先モード切換フラグfTGSCNCfbをセット「1」するので、今度は回転数優先モードに移行する。この回転数優先モードでは前述した如く目標放熱器過冷却度補正値TGSChosは目標放熱器過冷却度TGSCを低下させる値であるので、放熱器過冷却度SCは図11に示すように低下していく。放熱器過冷却度SCが下がると、放熱器圧力Pciも下がるので、コントローラ32は圧縮機2の回転数NCを上昇させ、目標圧縮機回転数TGNCの制御上限値TGNCmaxまで上げる。これにより、冷媒流量が増大する。
 その状態で、放熱器圧力Pci(高圧圧力)がヒステリシス分の0.1MPa低下すると、コントローラ32は再び優先モード切換フラグfTGSCNCfbをリセット「0」するので、優先モードは再び高圧優先モードに復帰する。
 このような能力優先制御を実行している間に、例えば外気温度が上昇し、前述した能力優先フラグfPRIability=「0」(リセット)とする全条件(能力優先解除条件)が成立した場合、コントローラ32はステップS8で能力優先フラグfPRIability=「0」(リセット)とし、効率優先制御に復帰する。
 (12)目標放熱器過冷却度の補正制御の他の例
 次に、図12は放熱器4の目標放熱器過冷却度TGSCの補正制御の他の例を示している。この場合、コントローラ32はヒステリシス0.4MPa程度が設定されたデータテーブルに基づいて補正上限値HOSHi(例えば15deg)と補正下限値HOSLo(0deg)の間で目標放熱器過冷却度補正値TGSChosを決定する。
 即ち、この実施例ではコントローラ32は図12のテーブルに従い、先ず目標放熱器過冷却度補正値TGSChosを補正上限値HOSHiとして放熱器圧力Pci(高圧圧力)を上昇させる高圧優先モードを実行する。そして、放熱器圧力Pci(高圧圧力)が目標放熱器圧力PCOの制御上限値PCOmaxに近づいた場合、目標放熱器過冷却度補正値TGSChosを補正上限値HOSHiから補正下限値HOSLoまで徐々に下げる回転数優先モードを実行する。逆に、放熱器圧力Pciが制御上限値PCOmaxから低下して遠ざかると、再び高圧優先モードで補正上限値HOSHiまで徐々に上げていくものである。
 以上詳述した如く、本発明ではコントローラ32が高圧圧力(放熱器圧力Pci)を所定の高い値(実施例では目標放熱器圧力PCOの制御上限値PCOmax)とする方向で放熱器4の目標放熱器過冷却度TGSCを高くする高圧優先モードと、圧縮機2の回転数NCを所定の高い値(実施例では制御上限値である目標圧縮機回転数上限値TGNCmax)とする方向で放熱器4の目標放熱器過冷却度TGSCを低下させる回転数優先モードとを有し、これら高圧優先モードと回転数優先モードを切り換えて実行することにより、高圧圧力(放熱器圧力Pci)を所定の高い値(目標放熱器圧力PCOの制御上限値PCOmax付近)に維持しながら、圧縮機2の回転数NCを高く維持するよう放熱器4の目標放熱器過冷却度TGSCを変更することで、暖房時に高圧圧力を維持しながら、冷媒流量も確保して暖房能力の向上を図ることが可能となる。
 この場合、高圧優先モードを実行して高圧圧力(放熱器圧力Pci)を所定の高い値(目標放熱器圧力PCOの制御上限値PCOmax)とする方向で放熱器4の目標放熱器過冷却度TGSCを高くし、高圧圧力(放熱器圧力Pci)が所定の高い値(制御上限値PCOmax)となった場合に、回転数優先モードに移行し、圧縮機2の回転数NCを所定の高い値(目標圧縮機回転数上限値TGNCmax)とする方向で放熱器4の目標放熱器過冷却度TGSCを低下させることにより、高圧圧力と冷媒流量の双方を満足させる放熱器過冷却度SCを適切に制御することができるようになる。
 特に、高圧優先モードでは高圧圧力(放熱器圧力Pci)を制御上限値PCOmaxとする方向で放熱器4の目標放熱器過冷却度TGSCを高くすると共に、回転数優先モードでは圧縮機2の回転数NCを目標圧縮機回転数上限値TGNCmax(制御上限値)とする方向で放熱器4の目標放熱器過冷却度TGSCを低下させるので、放熱器過冷却度SCを適切に制御して、高圧圧力を制御上限値PCOmax以下に抑制しながら、圧縮機2の回転数NCを高くして冷媒流量も維持し、暖房能力を向上させることができる。
 この場合、実施例では高圧優先モードでは高圧圧力(放熱器圧力Pci)の制御上限値PCOmaxと実際の高圧圧力(放熱器圧力Pci)との偏差eに基づき、放熱器4の目標放熱器過冷却度TGSCをフィードバック補正すると共に、回転数優先モードでは圧縮機2の回転数NCの目標圧縮機回転数上限値(制御上限値)TGNCmaxと実際の回転数NCとの偏差eに基づき、放熱器4の目標放熱器過冷却度TGSCをフィードバック補正しているので、常に安定した放熱器4の冷媒過冷却度SCの補正を実現することが可能となる。
 また、コントローラ32は効率優先制御と能力優先制御とを有しており、効率優先制御では放熱器4の通過風量に基づいて放熱器4の目標放熱器過冷却度TGSCを決定すると共に、放熱器4による暖房能力が不足している条件が成立した場合に能力優先制御に移行し、この能力優先制御において、高圧優先モードと回転数優先モードを実行し、放熱器4の目標放熱器過冷却度TGSCを補正するようにしたので、常には効率優先制御を実行し、放熱器4の暖房能力が不足する場合のみ、高圧優先モードと回転数優先モードを実行する能力優先制御を実行することができる。
 これにより、図11最下段に示すように運転効率COPの低下を最小限に抑制しながら暖房能力の向上を図ることができるようになるので、電気自動車やハイブリッド自動車等、バッテリに充電された電力で圧縮機2を駆動する車両において極めて好適なものとなる。
 更に、コントローラ32はインジェクション回路40により放熱器4を出た冷媒の一部を圧縮機2に戻す場合と戻さない場合とで、能力優先制御に移行する能力優先要求条件を変更するので、ガスインジェクションによる圧縮機2からの吐出冷媒量の増大による暖房能力の向上を加味した適切な放熱器過冷却度SCの補正を行うことが可能となる。
 尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。
 また、上記実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。例えば、高圧優先モードにおける所定の高い値も、目標放熱器圧力PCOの制御上限値PCOmaxでは無く、それより低い所定の高い値でもよく、回転数優先モードにおける所定の高い値も、目標圧縮機回転数TGNCの制御上限値TGNCmaxでは無く、それより低い所定の高い値であってもよい。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 17、20、21、22 電磁弁
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 コントローラ(制御手段)
 30、70 膨張弁
 40 インジェクション回路
 35 吐出側熱交換器
 R 冷媒回路

Claims (7)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     該室外熱交換器に流入する冷媒を減圧させる膨張弁と、
     制御手段とを備え、
     該制御手段により、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を前記膨張弁で減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記制御手段は、前記膨張弁により前記放熱器における冷媒の過冷却度を制御し、高圧圧力に基づいて前記圧縮機の回転数を制御すると共に、
     前記高圧圧力を所定の高い値とする方向で前記放熱器の目標放熱器過冷却度を高くする高圧優先モードと、
     前記圧縮機の回転数を所定の高い値とする方向で前記放熱器の目標放熱器過冷却度を低下させる回転数優先モードとを有することを特徴とする車両用空気調和装置。
  2.  前記制御手段は、前記高圧優先モードと回転数優先モードを切り換えて実行することにより、前記高圧圧力を前記所定の高い値に維持しながら、前記圧縮機の回転数を高く維持するよう前記放熱器の目標放熱器過冷却度を変更することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記制御手段は、前記高圧優先モードを実行して前記高圧圧力を前記所定の高い値とする方向で前記放熱器の目標放熱器過冷却度を高くすると共に、前記高圧圧力が前記所定の高い値となった場合に、前記回転数優先モードに移行し、前記圧縮機の回転数を前記所定の高い値とする方向で前記放熱器の目標放熱器過冷却度を低下させることを特徴とする請求項2に記載の車両用空気調和装置。
  4.  前記制御手段は、前記高圧優先モードでは前記高圧圧力を制御上限値とする方向で前記放熱器の目標放熱器過冷却度を高くすると共に、前記回転数優先モードでは前記圧縮機の回転数を制御上限値とする方向で前記放熱器の目標放熱器過冷却度を低下させることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  5.  前記制御手段は、前記高圧優先モードでは前記高圧圧力の制御上限値と実際の高圧圧力との偏差に基づき、前記放熱器の目標放熱器過冷却度をフィードバック補正すると共に、前記回転数優先モードでは前記圧縮機の回転数の制御上限値と実際の回転数との偏差に基づき、前記放熱器の目標放熱器過冷却度をフィードバック補正することを特徴とする請求項4に記載の車両用空気調和装置。
  6.  前記制御手段は、効率優先制御と能力優先制御とを有し、
     前記効率優先制御では前記放熱器の通過風量に基づいて前記放熱器の目標放熱器過冷却度を決定すると共に、
     前記放熱器による暖房能力が不足している条件が成立した場合に前記能力優先制御に移行し、該能力優先制御において、前記高圧優先モードと回転数優先モードを実行し、前記放熱器の目標放熱器過冷却度を補正することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。
  7.  前記放熱器を出た冷媒の一部を分流して前記圧縮機に戻すインジェクション回路を備え、
     前記制御手段は、前記インジェクション回路により前記放熱器を出た冷媒の一部を前記
    圧縮機に戻す場合と戻さない場合とで、前記能力優先制御に移行する条件を変更することを特徴とする請求項6に記載の車両用空気調和装置。
PCT/JP2014/070575 2013-08-07 2014-08-05 車両用空気調和装置 WO2015020030A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480044308.4A CN105452029B (zh) 2013-08-07 2014-08-05 车用空调装置
US14/909,353 US10040337B2 (en) 2013-08-07 2014-08-05 Vehicle air conditioner
DE112014003652.8T DE112014003652T5 (de) 2013-08-07 2014-08-05 Fahrzeugklimaanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-164004 2013-08-07
JP2013164004A JP6174414B2 (ja) 2013-08-07 2013-08-07 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2015020030A1 true WO2015020030A1 (ja) 2015-02-12

Family

ID=52461361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070575 WO2015020030A1 (ja) 2013-08-07 2014-08-05 車両用空気調和装置

Country Status (5)

Country Link
US (1) US10040337B2 (ja)
JP (1) JP6174414B2 (ja)
CN (1) CN105452029B (ja)
DE (1) DE112014003652T5 (ja)
WO (1) WO2015020030A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082786A1 (fr) * 2018-06-26 2019-12-27 Valeo Systemes Thermiques Procede de controle d’un circuit de fluide refrigerant pour vehicule

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999637B2 (ja) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 車両用空気調和装置
JP6005484B2 (ja) * 2012-11-09 2016-10-12 サンデンホールディングス株式会社 車両用空気調和装置
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机***
CN107120858A (zh) * 2017-07-06 2017-09-01 王道均 智能三源无霜制冷***
US11413932B2 (en) * 2017-10-12 2022-08-16 Ford Global Technologies, Llc Blower motor operation
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019131038A (ja) * 2018-01-31 2019-08-08 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
CN109140685A (zh) * 2018-08-21 2019-01-04 吉利汽车研究院(宁波)有限公司 一种电动压缩机转速控制方法与装置
DE102018127108B4 (de) * 2018-10-30 2021-04-22 Hanon Systems Vorrichtungen für ein Klimatisierungssystem eines Kraftfahrzeugs sowie ein Verfahren zum Betreiben der Vorrichtungen
JP7280689B2 (ja) * 2018-11-16 2023-05-24 サンデン株式会社 車両用空気調和装置
JP2020093644A (ja) * 2018-12-12 2020-06-18 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7233915B2 (ja) * 2018-12-25 2023-03-07 サンデン株式会社 車両用空気調和装置
JP7330482B2 (ja) * 2019-02-26 2023-08-22 株式会社イズミ技研 ヒートポンプシステム
EP3926252A4 (en) * 2019-03-11 2022-02-23 Mitsubishi Electric Corporation REFRIGERATION CYCLE DEVICE
KR20210017119A (ko) * 2019-08-07 2021-02-17 현대자동차주식회사 차량용 히트펌프 시스템
KR20210026705A (ko) * 2019-09-02 2021-03-10 현대자동차주식회사 차량용 히트펌프 시스템
CN112833522A (zh) * 2019-11-22 2021-05-25 三花控股集团有限公司 一种控制***及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986149A (ja) * 1995-09-26 1997-03-31 Denso Corp 車両用空調装置
WO2011117924A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 冷凍サイクル装置及びその運転方法
WO2012118198A1 (ja) * 2011-03-03 2012-09-07 サンデン株式会社 車両用空気調和装置
WO2013084738A1 (ja) * 2011-12-09 2013-06-13 サンデン株式会社 車両用空気調和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP2003326959A (ja) * 2002-05-09 2003-11-19 Denso Corp 車両用空調装置
US7458226B2 (en) * 2003-12-18 2008-12-02 Calsonic Kansei Corporation Air conditioning system, vehicular air conditioning system and control method of vehicular air conditioning system
US7610765B2 (en) * 2004-12-27 2009-11-03 Carrier Corporation Refrigerant charge status indication method and device
JP5421937B2 (ja) * 2011-01-20 2014-02-19 サンデン株式会社 車両用空気調和装置
JP6275372B2 (ja) * 2011-09-05 2018-02-07 株式会社デンソー 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986149A (ja) * 1995-09-26 1997-03-31 Denso Corp 車両用空調装置
WO2011117924A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 冷凍サイクル装置及びその運転方法
WO2012118198A1 (ja) * 2011-03-03 2012-09-07 サンデン株式会社 車両用空気調和装置
WO2013084738A1 (ja) * 2011-12-09 2013-06-13 サンデン株式会社 車両用空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082786A1 (fr) * 2018-06-26 2019-12-27 Valeo Systemes Thermiques Procede de controle d’un circuit de fluide refrigerant pour vehicule

Also Published As

Publication number Publication date
CN105452029A (zh) 2016-03-30
CN105452029B (zh) 2017-07-28
US10040337B2 (en) 2018-08-07
DE112014003652T5 (de) 2016-04-21
JP2015030450A (ja) 2015-02-16
US20160185186A1 (en) 2016-06-30
JP6174414B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6174414B2 (ja) 車両用空気調和装置
JP6271195B2 (ja) 車両用空気調和装置
JP6241595B2 (ja) 車両用空気調和装置
JP6125325B2 (ja) 車両用空気調和装置
JP6073653B2 (ja) 車両用空気調和装置
JP6073651B2 (ja) 車両用空気調和装置
JP6192435B2 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
WO2014084343A1 (ja) 車両用空気調和装置
WO2014073691A1 (ja) 車両用空気調和装置
JP6339419B2 (ja) 車両用空気調和装置
JP6005484B2 (ja) 車両用空気調和装置
WO2015053211A1 (ja) 車両用空気調和装置
JP2018177083A (ja) 車両用空気調和装置
WO2018230241A1 (ja) 車両用空気調和装置
JP2014094677A5 (ja)
JP2014094671A (ja) 車両用空気調和装置
JP2014094673A5 (ja)
JP2017007623A (ja) 車両用空気調和装置
JP2017013652A (ja) 車両用空気調和装置
WO2021020162A1 (ja) 車両用空気調和装置
WO2018116962A1 (ja) 車両用空気調和装置
JP6047387B2 (ja) 車両用空気調和装置
JP6047388B2 (ja) 車両用空気調和装置
JP2019073053A (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044308.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909353

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014003652

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834095

Country of ref document: EP

Kind code of ref document: A1