WO2015170513A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2015170513A1
WO2015170513A1 PCT/JP2015/057722 JP2015057722W WO2015170513A1 WO 2015170513 A1 WO2015170513 A1 WO 2015170513A1 JP 2015057722 W JP2015057722 W JP 2015057722W WO 2015170513 A1 WO2015170513 A1 WO 2015170513A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
heat exchanger
outdoor heat
compressor
Prior art date
Application number
PCT/JP2015/057722
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
竜 宮腰
耕平 山下
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to US15/309,374 priority Critical patent/US10427495B2/en
Priority to CN201580023876.0A priority patent/CN106461277B/zh
Priority to DE112015002160.4T priority patent/DE112015002160T5/de
Publication of WO2015170513A1 publication Critical patent/WO2015170513A1/ja
Priority to US16/378,077 priority patent/US10538144B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00807Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a specific way of measuring or calculating an air or coolant temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00864Ventilators and damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00957Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/3251Cooling devices information from a variable is obtained related to pressure of the refrigerant at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3258Cooling devices information from a variable is obtained related to temperature of the air at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/328Cooling devices output of a control signal related to an evaporating unit
    • B60H2001/3283Cooling devices output of a control signal related to an evaporating unit to control the refrigerant flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
  • an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator (condenser) that is provided on the vehicle interior side to dissipate the refrigerant, and the vehicle interior side
  • a heat absorber evaporator
  • an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb the refrigerant, and dissipates the refrigerant discharged from the compressor in the radiator
  • a heating mode in which the heat dissipated in the radiator is absorbed in the outdoor heat exchanger, a dehumidification mode in which the refrigerant discharged from the compressor is dissipated in the radiator, and the refrigerant dissipated in the radiator is absorbed in the heat absorber
  • compression A refrigerant that has been radiated in an outdoor heat exchanger and is switched and executed in each cooling mode in
  • the outdoor heat exchanger functions as a refrigerant evaporator. Therefore, when the air conditioning apparatus of the vehicle is activated and the heating mode is executed, moisture in the outside air adheres to the outdoor heat exchanger as frost and grows depending on the temperature / humidity conditions of the outside air.
  • frost is formed on the outdoor heat exchanger in the heating mode, the frost becomes a thermal resistance and heat transfer is reduced, and the air flow to the heat exchanger is also reduced, so the heat exchange performance with the outside air is significantly deteriorated, There is a problem that the required heating capacity cannot be obtained because heat cannot be absorbed from the outside air.
  • FIG. 26 shows the relationship between the refrigerant evaporation temperature TXO of the outdoor heat exchanger and the heating capacity.
  • the refrigerant evaporation temperature TXO decreases due to the decrease in the heat absorption performance, so that the heating capacity also decreases.
  • the suction refrigerant temperature Ts of the compressor and the heating capacity.
  • the heat absorption capability of the outdoor heat exchanger can be lowered. It can be seen that it can be raised.
  • the present invention has been made to solve the above-described conventional technical problems, and in a so-called heat pump type vehicle air conditioner, by delaying the progress of frost formation on an outdoor heat exchanger,
  • the purpose is to eliminate or suppress a decrease in heating capacity due to frost.
  • an air conditioning apparatus for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the passenger compartment circulates, and air circulation by radiating the refrigerant
  • a heat radiator for heating the air supplied from the road to the vehicle interior, a heat absorber for absorbing heat from the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior, and a heat absorber provided outside the vehicle for absorbing the refrigerant
  • At least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed, and then the heat is absorbed by the outdoor heat exchanger.
  • An air conditioner for a vehicle includes a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and an indoor blower for supplying air to the air flow passage.
  • a radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the vehicle interior;
  • a heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
  • An outdoor heat exchanger that is provided outside and absorbs the refrigerant, and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed.
  • the heating means for absorbing heat in the outdoor heat exchanger is executed, and the control means includes a refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed, and a refrigerant evaporation temperature TXO of the outdoor heat exchanger.
  • Difference ⁇ TXO Based on (TXObase-TXO) in a direction to reduce in accordance with the difference ⁇ TXO increases, and correcting the air volume of the indoor blower.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator that heats the refrigerant
  • a heat absorber that cools the air supplied to the vehicle interior through the air flow passage
  • an outdoor heat exchanger that is provided outside the vehicle and absorbs the refrigerant
  • the control upper limit value of the rotation speed of the compressor is corrected in a direction to decrease as the value increases.
  • a vehicle air conditioner for controlling a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to a vehicle compartment flows, and an inside / outside air ratio of air introduced into the air flow passage.
  • an outdoor heat exchanger that is provided outside the passenger compartment and absorbs the refrigerant, and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and radiated.
  • a heating mode is performed in which heat is absorbed by the outdoor heat exchanger, and the control means includes a refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed, and the outdoor heat exchanger.
  • TXObase refrigerant evaporation temperature
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator that heats the refrigerant, a heat absorber that cools the air supplied to the vehicle interior from the air flow passage, an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs the refrigerant,
  • the heating means for absorbing heat in the outdoor heat exchanger is executed, and the control means includes a refrigerant evaporation temperature TXObase of the outdoor heat exchanger when no frost is formed, and a refrigerant evaporation temperature TXO of the outdoor heat exchanger.
  • Difference ⁇ TX Based on (TXObase-TXO), in the direction of increasing in accordance with the difference ⁇ TXO increases, and correcting the air volume of the outdoor fan.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • a heat radiator that heats the refrigerant
  • a heat absorber that cools the air supplied to the vehicle interior through the air flow passage
  • an outdoor heat exchanger that is provided outside the vehicle and absorbs the refrigerant
  • control Means for performing a heating mode in which at least the refrigerant discharged from the compressor is radiated by a radiator and the radiated refrigerant is decompressed and then absorbed by an outdoor heat exchanger. Then, the control means corrects in the direction of increasing the target supercooling degree TGSC, which is the target value of the refrigerant supercooling degree in the radiator, at the initial stage of startup.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior circulates, and an indoor blower for supplying air to the air flow passage.
  • a radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the vehicle interior;
  • a heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
  • An outdoor heat exchanger that is provided outside and absorbs the refrigerant, and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed.
  • the heating means is configured to absorb heat in the outdoor heat exchanger, and the control means does not increase the air volume of the indoor fan and / or the compressor until the high-pressure side pressure rises to a predetermined value. Decrease the control upper limit of the rotation speed And characterized in that.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle interior circulates, and an indoor blower for supplying air to the air flow passage.
  • a radiator for radiating the refrigerant and heating the air supplied from the air flow passage to the vehicle interior;
  • a heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior;
  • An outdoor heat exchanger that is provided outside and absorbs the refrigerant, and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed.
  • control means In the heating mode in which heat is absorbed by the outdoor heat exchanger, the control means is configured such that when the suction refrigerant temperature Ts of the compressor is lowered to a predetermined value, or the refrigerant evaporation temperature TXO of the outdoor heat exchanger is When it falls to the predetermined value, Characterized in that to reduce the air volume of the internal blower.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator that heats the refrigerant
  • a heat absorber that cools the air supplied to the vehicle interior through the air flow passage
  • an outdoor heat exchanger that is provided outside the vehicle and absorbs the refrigerant
  • the control means adjusts the rotation speed of the compressor so as to maintain the suction refrigerant temperature Ts of the compressor or the refrigerant evaporation temperature TXO of the outdoor heat exchanger at a predetermined value.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator that heats the refrigerant
  • a heat absorber that cools the air supplied to the vehicle interior through the air flow passage
  • an outdoor heat exchanger that is provided outside the vehicle and absorbs the refrigerant
  • the control means lowers the control upper limit value of the rotation speed of the compressor when the suction refrigerant temperature Ts of the compressor or the refrigerant evaporation temperature TXO of the outdoor heat exchanger is lowered to a predetermined value. To do.
  • An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant from the air flow passage to the vehicle interior.
  • a heat radiator that heats the refrigerant, a heat absorber that cools the air supplied to the vehicle interior from the air flow passage, an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs the refrigerant,
  • the control means When the heating mode in which heat is absorbed by the outdoor heat exchanger is executed, the control means, when the suction refrigerant temperature Ts of the compressor or the refrigerant evaporation temperature TXO of the outdoor heat exchanger is reduced to a predetermined value, The air volume of the outdoor fan Characterized thereby pressurized.
  • a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
  • a heating mode is performed in which heat is absorbed by the outdoor heat exchanger, and the control means operates the auxiliary heating means when the outside air temperature is low at the initial stage of startup.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • a radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle cabin to absorb the refrigerant, and a control means.
  • the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • the target supercooling degree TGSC which is the target value of the supercooling degree of the refrigerant in the radiator, is corrected in the direction of increasing as the value increases.
  • the control means corrects the target subcooling degree TGSC of the radiator in a direction to increase.
  • the radiator pressure high pressure side pressure
  • the outdoor heat exchanger pressure low pressure side pressure
  • the compressor which compresses a refrigerant
  • a heat radiator for heating the air supplied from the air flow passage to the vehicle interior, a heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior, and provided outside the vehicle interior.
  • An outdoor heat exchanger that absorbs heat by the refrigerant and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed, and then the outdoor heat exchange is performed.
  • the control means is configured such that the difference between the refrigerant evaporation temperature TXObase of the outdoor heat exchanger and the refrigerant evaporation temperature TXO of the outdoor heat exchanger when no frost is formed.
  • TXObase-TXO Based on (TXObase-TXO), in a direction to reduce in accordance with the difference ⁇ TXO increases, it corrects the air volume of the indoor blower.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by dissipating the refrigerant are heated.
  • a radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle cabin to absorb the refrigerant, and a control means.
  • the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • the control upper limit value of the rotation speed of the compressor is corrected in a direction of decreasing as the value increases.
  • the control upper limit value of the rotational speed of the compressor is reduced, the amount of heat absorbed by the outdoor heat exchanger is also reduced, so that in the situation where frost formation occurs in the outdoor heat exchanger as well, the amount of heat absorbed by the outdoor heat exchanger is reduced. It is possible to delay the progress of frost and eliminate or suppress the decrease in heating capacity due to frost formation.
  • the compressor which compresses a refrigerant
  • an outdoor heat exchanger that is provided outside the vehicle cabin and absorbs the refrigerant, and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed.
  • the control means includes the refrigerant evaporation temperature TXObase of the outdoor heat exchanger and the refrigerant of the outdoor heat exchanger when no frost is formed.
  • TXObase the refrigerant evaporation temperature
  • DerutaTXO increases, corrects the inside air ratio of the air introduced into the air flow path by the suction switching damper.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • the control means is configured such that the difference between the refrigerant evaporation temperature TXObase of the outdoor heat exchanger and the refrigerant evaporation temperature TXO of the outdoor heat exchanger when no frost is formed.
  • ⁇ TX Based on (TXObase-TXO), in the direction of increasing in accordance with the difference ⁇ TXO increases, it corrects the air volume of the outdoor fan.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • a radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle cabin to absorb the refrigerant, and a control means.
  • the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • the control means corrects the target supercooling degree TGSC, which is the target value of the supercooling degree of the refrigerant in the radiator, in the initial stage of startup.
  • the number of rotations of the compressor tends to increase and the outdoor heat exchanger tends to frost.
  • the radiator pressure high pressure side pressure
  • the number of rotations of the compressor also decreases and the outdoor heat exchanger pressure (low pressure side pressure) also increases, making it difficult for the outdoor heat exchanger to form frost. Therefore, the progress of frost formation on the outdoor heat exchanger is delayed. It is possible to eliminate or suppress a decrease in heating capacity due to frost formation.
  • the compressor which compresses a refrigerant
  • a heat radiator for heating the air supplied from the air flow passage to the vehicle interior, a heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior, and provided outside the vehicle interior.
  • An outdoor heat exchanger that absorbs heat by the refrigerant and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed, and then the outdoor heat exchange is performed.
  • the control means does not increase the air volume of the indoor fan and / or the rotation speed of the compressor until the high-pressure side pressure rises to a predetermined value. The control upper limit of To.
  • the radiator pressure high-pressure side pressure
  • the outdoor heat exchanger pressure low-pressure side pressure
  • the excessive fall of the outdoor heat exchanger pressure can also be prevented by lowering the control upper limit value of the rotation speed of the compressor, these conditions can occur in a situation where frost formation occurs in the outdoor heat exchanger.
  • frost formation occurs in the outdoor heat exchanger.
  • the compressor which compresses a refrigerant
  • a heat radiator for heating the air supplied from the air flow passage to the vehicle interior, a heat absorber for absorbing the refrigerant and cooling the air supplied from the air flow passage to the vehicle interior, and provided outside the vehicle interior.
  • An outdoor heat exchanger that absorbs heat by the refrigerant and a control means, and at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed, and then the outdoor heat exchange is performed.
  • the vehicle air conditioner that performs the heating mode in which heat is absorbed by the cooler, when the control means has the suction refrigerant temperature Ts of the compressor lowered to a predetermined value, or the refrigerant evaporation temperature TXO of the outdoor heat exchanger is a predetermined value If it falls to Reducing the air volume of the internal blower.
  • the suction refrigerant temperature Ts of the compressor and the refrigerant evaporation temperature TXO of the outdoor heat exchanger are reduced, so that the control means reduces the air volume of the indoor fan.
  • the air volume of the indoor blower is reduced, the heating capacity required as described above is lowered, so that the rotational speed of the compressor is also lowered, and the heat absorption amount in the outdoor heat exchanger is also reduced.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • a radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle cabin to absorb the refrigerant, and a control means.
  • the control means adjusts the rotational speed of the compressor so as to maintain the suction refrigerant temperature Ts of the compressor or the refrigerant evaporation temperature TXO of the outdoor heat exchanger at a predetermined value.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • a radiator a heat absorber for absorbing the refrigerant to cool the air supplied from the air flow passage to the vehicle interior, an outdoor heat exchanger provided outside the vehicle cabin to absorb the refrigerant, and a control means.
  • the vehicle air conditioner that executes a heating mode in which at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger.
  • the control means lowers the control upper limit value of the rotation speed of the compressor.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • the control means detects that the intake refrigerant temperature Ts of the compressor or the refrigerant evaporation temperature TXO of the outdoor heat exchanger has decreased to a predetermined value. Blower air volume Increase.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant are heated.
  • the auxiliary heating means for heating the air supplied to the room and the control means at least the refrigerant discharged from the compressor is radiated by the radiator by the control means, and the radiated refrigerant is decompressed
  • the control means operates the auxiliary heating means when the outside air temperature is low at the initial start-up.
  • the rotation speed of the compressor tends to be high and the outdoor heat exchanger is likely to be frosted.
  • the rotational speed of the compressor can be lowered.
  • the outdoor heat exchanger pressure low pressure side pressure
  • the temperature rises making it difficult for the outdoor heat exchanger to form frost. Therefore, the progress of frost formation on the outdoor heat exchanger is delayed, It is possible to eliminate or suppress a decrease in heating capacity due to frost.
  • FIG. 3 is a control block diagram of the controller of FIG. 2. It is a figure which shows the relationship between (DELTA) TXO and TGSC correction value for demonstrating one Example of the frosting delay control to the outdoor heat exchanger by the controller of FIG. 2 (Example 1).
  • 5 is a timing chart showing changes in the operation, pressure, and temperature of the vehicle air conditioner in the case of FIG. 4.
  • FIG. 2 shows the relationship between the air flow rate of the indoor fan and the compressor rotational speed with respect to the radiator pressure PCI (high pressure side pressure) for explaining yet another embodiment of the frosting delay control to the outdoor heat exchanger by the controller of FIG. (Example 7) which is a figure shown.
  • Compressor suction refrigerant temperature or outdoor heat exchanger refrigerant evaporation temperature of a vehicle air conditioner for explaining still another embodiment of frosting delay control to the outdoor heat exchanger by the controller of FIG. (Example 8) which is a timing chart which shows the change of TXO and an indoor air blower air volume.
  • Compressor suction refrigerant temperature or outdoor heat exchanger refrigerant evaporation temperature of a vehicle air conditioner for explaining still another embodiment of frosting delay control to the outdoor heat exchanger by the controller of FIG. (Example 9) which is a timing chart which shows TXO and the change of compressor rotation speed.
  • Compressor suction refrigerant temperature or outdoor heat exchanger refrigerant evaporation temperature of a vehicle air conditioner for explaining still another embodiment of frosting delay control to the outdoor heat exchanger by the controller of FIG. (Example 10) which is a timing chart which shows the change of TXO and the control upper limit of compressor rotation speed.
  • FIG. 12 is a diagram showing the relationship between the outside air temperature and the operation of the heat medium circulation circuit for explaining still another embodiment of the frosting delay control to the outdoor heat exchanger by the controller of FIG. 2 (embodiment 12). . It is a block diagram of the other Example of the vehicle air conditioner to which this invention is applied (Example 13).
  • Example 14 It is a block diagram of another another Example of the air conditioning apparatus for vehicles to which this invention is applied (Example 14). It is a block diagram of another another Example of the air conditioning apparatus for vehicles to which this invention is applied (Example 15). It is a block diagram of another another Example of the air conditioning apparatus for vehicles to which this invention is applied (Example 16). It is a block diagram of another another Example of the air conditioning apparatus for vehicles to which this invention is applied (Example 17). (Example 18) which is a block diagram of another another Example of the air conditioning apparatus for vehicles to which this invention is applied. It is a figure which shows the relationship between outdoor heat exchanger refrigerant
  • FIG. 1 shows a block diagram of an embodiment of a vehicle air conditioner 1 to which the present invention is applied.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs heating by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further operates in each operation mode such as dehumidifying heating, cooling dehumidification, and cooling. Is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 composed of an electric valve that decompresses and expands the refrigerant during heating, and an outdoor heat exchange that functions as a radiator during cooling and performs heat exchange between the refrigerant and the outside air so as to function as an evaporator during heating.
  • a heat exchanger 9 an indoor expansion valve 8 including an electric valve for decompressing and expanding the refrigerant, a heat absorber 9 provided in the air flow passage 3 to absorb heat from the outside of the vehicle interior during cooling and dehumidification, and a heat absorber 9.
  • Steam to adjust evaporation capacity A capacity control valve 11, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, and thereby stops the vehicle (that is, the vehicle speed VSP is 0 km / h).
  • the outdoor heat exchanger 7 is configured to ventilate the outside air.
  • the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (open / close valve) 17 that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve (open / close valve) 21 that is opened during heating.
  • the refrigerant pipe 13C is connected in communication.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and this branched refrigerant pipe 13F is a check valve via an electromagnetic valve (open / close valve) 22 that is opened during dehumidification. 18 is connected to the refrigerant pipe 13B on the downstream side.
  • a bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel.
  • the bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (open / close valve) for bypassing the outdoor expansion valve 6 and flowing refrigerant. ) 20 is interposed.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 13I.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25, the air introduced into the air flow passage 3 is switched between the inside air (inside air circulation mode) which is the air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment, and the ratio thereof.
  • a suction switching damper 26 for adjusting the (inside / outside air ratio) is provided.
  • An indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • reference numeral 23 denotes a heat medium circulation circuit as auxiliary heating means provided in the vehicle air conditioner 1 of the embodiment.
  • the heat medium circulation circuit 23 includes a circulation pump 30 that constitutes a circulation means, a heat medium heating electric heater 35, and an air flow passage 3 on the air downstream side of the radiator 4 with respect to the air flow in the air flow passage 3.
  • a heat medium-air heat exchanger 40 provided in the inside is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A.
  • the heating medium heating electric heater 35 When the circulation pump 30 is operated and the heating medium heating electric heater 35 is energized to generate heat (when the heating medium circulation circuit 23 is operated), the heating medium heated by the heating medium heating electric heater 35 is heated medium-air heat. It is configured to be circulated to the exchanger 40. That is, the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 becomes a so-called heater core, and complements the heating of the passenger compartment. By employing such a heat medium circulation circuit 23, it is possible to improve the electrical safety of the passenger.
  • an air mix damper 28 is provided in the air flow passage 3 on the air upstream side of the radiator 4 to adjust the degree of flow of inside air and outside air to the radiator 4. Further, in the air flow passage 3 on the downstream side of the radiator 4, foot, vent, and differential air outlets (represented by the air outlet 29 in FIG. 1) are formed. Is provided with a blower outlet switching damper 31 for switching and controlling the blowing of air from each of the blowout ports.
  • reference numeral 32 in FIG. 2 denotes a controller (ECU) as a control means composed of a microcomputer.
  • the input of the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature of the vehicle, and the outside air humidity of the vehicle.
  • An outside air humidity sensor 34 to detect, an HVAC intake temperature sensor 36 to detect the temperature of air sucked into the air flow passage 3 from the intake port 25, an inside air temperature sensor 37 to detect the temperature of the air (inside air) in the passenger compartment, An inside air humidity sensor 38 that detects the humidity of the air in the passenger compartment, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the passenger compartment, and an outlet temperature that detects the temperature of the air blown into the passenger compartment from the outlet 29 A sensor 41, a discharge pressure sensor 42 that detects the discharge refrigerant pressure of the compressor 2, and a discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2.
  • a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself), and the refrigerant pressure of the heat absorber 9 (in the heat absorber 9 or ,
  • a heat absorber pressure sensor 49 that detects the pressure of the refrigerant immediately after exiting the heat absorber 9, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and the vehicle moving speed (vehicle speed).
  • the outdoor heat exchanger temperature sensor 54 for detecting the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 and the refrigerant pressure of the outdoor heat exchanger 7 (from the outdoor heat exchanger 7 or from the outdoor heat exchanger 7).
  • Each output of the outdoor heat exchanger pressure sensor 56 for detecting the pressure of the refrigerant immediately after) is connected.
  • the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35.
  • the temperature of the electric heater through the heat medium heating air heater 40 (the temperature of the air passing through the heat medium-air heat exchanger 40, Alternatively, the outputs of the heat medium-air heat exchanger temperature sensor 55 for detecting the temperature of the heat medium-air heat exchanger 40 itself are also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet damper 31, and the outdoor expansion valve. 6, the indoor expansion valve 8, the electromagnetic valves 22, 17, 21, 20, the circulation pump 30, the heat medium heating electric heater 35, and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 is roughly divided into a heating mode, a dehumidifying heating mode, an internal cycle mode, a dehumidifying cooling mode, and a cooling mode, and executes them.
  • a heating mode a dehumidifying heating mode
  • an internal cycle mode a dehumidifying cooling mode
  • a cooling mode a cooling mode
  • (1) Heating mode When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21, and closes the electromagnetic valve 17, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the operation and action of the heat medium circulation circuit 23 will be described later.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump, and the outdoor heat exchanger 7 functions as a refrigerant evaporator.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 is blown out from the outlet 29 through the heat medium-air heat exchanger 40, the vehicle interior is thereby heated.
  • the controller 32 controls the rotational speed of the compressor 2 based on the refrigerant pressure of the radiator detected by the radiator pressure sensor 47, that is, the radiator pressure PCI (pressure on the high pressure side of the refrigerant circuit R), and the radiator temperature sensor. 46 controls the opening degree of the outdoor expansion valve 6 based on the degree of refrigerant subcooling calculated based on the temperature of the radiator 4 (radiator temperature TCI) and the radiator pressure PCI detected by the The degree of supercooling SC of the refrigerant at the outlet is controlled.
  • the controller 32 opens the electromagnetic valve 22 in the heating mode.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the radiator pressure PCI detected by the radiator pressure sensor 47 and controls the outdoor expansion valve 6 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. Control valve opening.
  • the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating mode (fully closed position) and also closes the electromagnetic valves 20 and 21. Since the outdoor expansion valve 6 and the electromagnetic valves 20 and 21 are closed, the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are prevented. All the condensed refrigerant flowing through the refrigerant pipe 13E through the vessel 4 flows through the electromagnetic valve 22 to the refrigerant pipe 13F. And the refrigerant
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification heating is performed in the vehicle interior, but in this internal cycle mode, the air flow path on the indoor side 3, the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption), so that heat from the outside air is not pumped up, and the heating capacity for the power consumption of the compressor 2 Is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the radiator pressure PCI described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI.
  • the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21, the solenoid valve 22, and the solenoid valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the radiator 4 and the heat medium-air heat exchanger 40. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior.
  • the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 and controls the valve opening degree of the outdoor expansion valve 6 based on the above-described radiator pressure PCI. .
  • the controller 32 opens the electromagnetic valve 20 in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is the upper limit of control)).
  • the air mix damper 28 is in a state in which no air is passed through the radiator 4 and the heat medium-air heat exchanger 40. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 ⁇ / b> E.
  • the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the outlet 29 without passing through the radiator 4, thereby cooling the vehicle interior.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • FIG. 3 is a control block diagram of the compressor 2 and the outdoor expansion valve 6 by the controller 32 in the heating mode.
  • the controller 32 inputs the target blowing temperature TAO to the target radiator temperature calculation unit 57 and the target radiator subcool degree calculation unit 58.
  • This target blowing temperature TAO is a target value of the air temperature blown into the vehicle compartment from the blowout port 29, and is calculated by the controller 32 from the following formula (I).
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (1)
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 calculates the target radiator temperature TCO from the target outlet temperature TAO in the target radiator temperature calculation unit 57, and then, based on the target radiator temperature TCO, the target radiator pressure calculation unit 61 calculates the target heat dissipation.
  • the vessel pressure PCO is calculated.
  • the controller 32 rotates the compressor 2 at the compressor rotational speed calculation unit 62.
  • the number Nc is calculated, and the compressor 2 is operated at this rotational speed Nc. That is, the controller 32 controls the radiator pressure PCI according to the rotational speed Nc of the compressor 2.
  • the controller 32 calculates the target subcooling degree TGSC of the radiator 4 based on the target blowout temperature TAO in the target radiator subcooling degree calculation unit 58.
  • the controller 32 uses the radiator supercooling degree calculation unit 63 based on the radiator pressure PCI and the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 to exceed the refrigerant in the radiator 4.
  • the cooling degree (radiator supercooling degree SC) is calculated.
  • the target outdoor expansion valve opening degree calculation unit 64 calculates the target valve opening degree of the outdoor expansion valve 6 (target outdoor expansion valve opening degree TGECCV). .
  • the controller 32 controls the valve opening degree of the outdoor expansion valve 6 to this target outdoor expansion valve opening degree TGECVV.
  • the radiator supercooling degree calculation unit 63 of the controller 32 performs the calculation in a direction to increase the target supercooling degree TGSC as the target blowout temperature TAO is higher.
  • the target supercooling is not limited to this, and the airflow in the indoor blower 27 is smaller.
  • the temperature TGSC is lowered, and further, the target supercooling degree TGSC is raised at the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7, the start-up of the vehicle air conditioner 1, and the start-up of the heating mode.
  • Heating mode and auxiliary heating by heating medium circulation circuit (auxiliary heating means) in the heating mode When the controller 32 determines that the heating capacity of the radiator 4 is insufficient in the heating mode, the heating medium heating electric heater Heating is performed by the heat medium circulation circuit 23 by energizing 35 to generate heat and operating the circulation pump 30.
  • the circulation pump 30 of the heat medium circulation circuit 23 When the circulation pump 30 of the heat medium circulation circuit 23 is operated and the heat medium heating electric heater 35 is energized, as described above, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is the heat medium. -Since it is circulated through the air heat exchanger 40, the air passing through the radiator 4 in the air flow passage 3 is heated.
  • the controller 32 detects the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 obtained from the outdoor heat exchanger temperature sensor 54 and the outside air
  • the frost formation state of the outdoor heat exchanger 7 is estimated based on the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 when no frost is formed on the outdoor heat exchanger 7 in a low humidity environment.
  • the controller 32 determines the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 at the time of non-frosting using the following formula (II).
  • Tam which is a parameter of the formula (II)
  • Nc is the rotational speed of the compressor 2
  • BLV is the blower voltage of the indoor blower 27
  • VSP is the vehicle speed obtained from the vehicle speed sensor 52.
  • K1 to k4 are coefficients, which are obtained in advance by experiments or the like.
  • the outside air temperature Tam is an index indicating the intake air temperature of the outdoor heat exchanger 7.
  • the index indicating the intake air temperature of the outdoor heat exchanger 7 is not limited to the outdoor air temperature Tam.
  • the rotation speed Nc of the compressor 2 is an index indicating the refrigerant flow rate in the refrigerant circuit R. The higher the rotation speed Nc (the higher the refrigerant flow rate), the lower the TXObase. Therefore, the coefficient k2 is a negative value.
  • the blower voltage BLV is an index indicating the amount of air passing through the radiator 4.
  • the index indicating the amount of air passing through the radiator 4 is not limited to this, and the blower air amount of the indoor blower 27 and the opening degree SW of the air mix damper 28 may be used.
  • the vehicle speed VSP is an index indicating the passing air speed of the outdoor heat exchanger 7.
  • the index indicating the passing air speed of the outdoor heat exchanger 7 is not limited to this, and may be the voltage of the outdoor blower 15 or the wind speed.
  • FIG. 4 shows the relationship between the difference ⁇ TXO in this case and the correction value of the target supercooling degree TGSC.
  • the target radiator subcooling degree calculation unit 58 of the controller 32 sets the correction value of TGSC to 0 until the difference ⁇ TXO increases from 0 to 1, and changes the TGSC as the difference ⁇ TXO increases from 1 to 5.
  • the correction value is increased from 0 to 15 with a predetermined inclination.
  • the TGSC correction value is set to 15 until the difference ⁇ TXO decreases from a large value to 4, and as the difference ⁇ TXO decreases from 4 to 0, the TGSC correction value is increased from 15 to 0 with a predetermined slope. Reduce.
  • the controller 32 corrects the target subcooling degree TGSC of the radiator 4 in the direction of increasing based on FIG.
  • the radiator pressure PCI high pressure side pressure
  • the rotational speed Nc of the compressor 2 is decreased and the pressure of the outdoor heat exchanger 7 (low pressure side pressure).
  • the outdoor heat exchanger 7 is hardly frosted.
  • the uppermost solid line is the target radiator pressure PCO
  • the broken line is the radiator pressure PCI.
  • the second stage from the top is the rotational speed Nc of the compressor 2, and the solid line shows the case where the correction control of the target supercooling degree TGSC is performed, and the broken line shows the case where it is not performed.
  • the lowermost stage shows the difference ⁇ TXO
  • the solid line shows the case where the correction control of the target supercooling degree TGSC is performed
  • the broken line shows the case where the correction is not performed.
  • the rotational speed Nc of the compressor 2 is reduced as compared with the case where the correction is not performed.
  • the rotational speed Nc of the compressor 2 decreases from 8000 rpm to 5000 rpm under a certain condition, the heat absorption capability of the outdoor heat exchanger 7 decreases, and thus the refrigerant evaporation temperature TXO increases.
  • the difference ⁇ TXO also decreases, that is, the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 becomes equal to the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 when there is no frost formation. Get closer. Thereby, it becomes possible to suppress the frost formation on the outdoor heat exchanger 7 and to delay the progress of the frost formation, thereby eliminating or suppressing the decrease in the heating capacity due to the frost formation of the outdoor heat exchanger 7. It becomes possible.
  • FIG. 6 shows another example of frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • FIG. 6 shows the relationship between the difference ⁇ TXO in this case and the correction value of the indoor fan voltage (an example of a value indicating the air volume of the indoor fan 27).
  • the controller 32 sets the correction value of the indoor blower voltage to 0 until the difference ⁇ TXO increases from 0 to 1, and increases the correction value of the indoor blower voltage by a predetermined slope as the difference ⁇ TXO increases from 1 to 5. From 0 to -2.
  • the correction value of the indoor blower voltage is set to ⁇ 2 until the difference ⁇ TXO decreases from a large value to 4, and the correction value of the indoor blower voltage has a predetermined slope as the difference ⁇ TXO decreases from 4 to 0. Raise from -2 to 0.
  • the controller 32 corrects the air volume of the indoor blower 27 (in the embodiment, the indoor blower voltage) in the direction of decreasing based on FIG.
  • the air volume of the indoor blower 27 decreases, the required heating capacity decreases, so the rotational speed Nc of the compressor 2 also decreases, and the heat absorption amount in the outdoor heat exchanger 7 also decreases.
  • FIG. 7 shows another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • the compressor rotation speed calculation unit 62 of the controller 32 is based on the refrigerant evaporation temperature TXObase of the outdoor heat exchanger 7 when no frost is formed and the current refrigerant evaporation temperature TXO of the outdoor heat exchanger 7.
  • FIG. 7 shows the relationship between the difference ⁇ TXO and the compressor rotational speed control upper limit value in this case.
  • the controller 32 sets the control upper limit value of the rotation speed of the compressor 2 to 8000 rpm until the difference ⁇ TXO increases from 0 to 1, and sets the control upper limit value to a predetermined value as the difference ⁇ TXO increases from 1 to 5. Decrease from 8000 rpm to 6000 rpm with a ramp. Further, the control upper limit value is set to 6000 rpm until the difference ⁇ TXO decreases from 4 to 4, and the control upper limit value is increased from 6000 rpm to 8000 rpm with a predetermined slope as the difference ⁇ TXO decreases from 4 to 0. .
  • the controller 32 corrects in a direction to decrease the control upper limit value of the rotational speed of the compressor 2 based on FIG.
  • the control upper limit value of the rotational speed of the compressor 2 is lowered, the amount of heat absorbed in the outdoor heat exchanger 7 is also reduced, so that in the situation where frost formation occurs in the outdoor heat exchanger 7, the outdoor heat exchanger 7 is referred to. It is possible to delay the progress of the frost formation of the outdoor heat exchanger and to eliminate or suppress the decrease in the heating capacity due to the frost formation of the outdoor heat exchanger 7.
  • FIG. 8 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • FIG. 8 shows the relationship between the difference ⁇ TXO and the inside air ratio in this case.
  • REC is the inside air and FRESH is the outside air
  • the inside air ratio 100%: outside air ratio 0% (below vertical axis) to the inside air ratio 0%: outside air ratio 100% (on the vertical axis) is adjusted by the suction switching damper 26.
  • the controller 32 sets the inside air ratio to 25% until the difference ⁇ TXO increases from 0 to 1, and increases the inside air ratio to 50% with a predetermined slope as the difference ⁇ TXO increases from 1 to 5. Raise.
  • the inside air ratio is set to 50% until the difference ⁇ TXO decreases from a large value to 4, and as the difference ⁇ TXO decreases from 4 to 0, the inside air ratio decreases from 50% to 25% with a predetermined slope.
  • the controller 32 corrects the ratio of the inside air of the air introduced into the air flow passage 3 in the direction of increasing based on FIG.
  • the inside air ratio of the air introduced into the air flow passage 3 is increased, the heating load is decreased, and thus the required heating capacity is decreased. Therefore, the rotational speed Nc of the compressor 2 is also decreased, and the outdoor The amount of heat absorbed in the heat exchanger 7 is also reduced.
  • FIG. 9 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • FIG. 9 shows the relationship between the difference ⁇ TXO and the air volume (operation rate) of the outdoor fan 15 in this case.
  • the controller 32 sets the air volume of the outdoor fan 15 to Lo (small air volume) until the difference ⁇ TXO increases from 0 to 1, and the air volume of the outdoor fan 15 is predetermined as the difference ⁇ TXO increases from 1 to 5. And increase to HI (large air flow). Further, the air volume of the outdoor fan 15 is set to HI until the difference ⁇ TXO decreases from a large value to 4, and the air volume is decreased from HI to Lo with a predetermined inclination as the difference ⁇ TXO decreases from 4 to 0. .
  • the controller 32 corrects in the direction of increasing the air volume of the outdoor blower 15 based on FIG.
  • the air volume of the outdoor blower 15 increases, the operating pressure of the outdoor heat exchanger 7 also increases, so that the outdoor heat exchanger 7 is hardly frosted.
  • FIG. 11 shows an example of a flowchart of the controller 32 relating to the frosting delay control.
  • the controller 32 reads the data detected by each sensor in step S1 of FIG. 11, and then determines the current operation mode in step S2. In step S3, it is determined whether or not the current operation mode is the heating mode. If the current operation mode is the heating mode, the process proceeds to step S4. In step S4, the set temperature Tset in the vehicle interior is compared with the temperature Tin of the vehicle interior air, and it is determined whether or not the difference (Tset ⁇ Tin) is higher than a predetermined value A.
  • the controller 32 proceeds from step S4 to step S5, and the target subcooling degree is reached.
  • Control for correcting the TGSC in the direction of increasing is executed.
  • the second solid line from the top indicates the target radiator pressure PCO when the correction control for increasing the TGSC is performed
  • the broken line indicates the target radiator pressure PCO when the correction control is not performed.
  • the lowermost stage is the rotation speed Nc of the compressor 2, and the solid line indicates a case where the correction control of the target supercooling degree TGSC is performed, and the broken line indicates a case where the correction is not performed.
  • the rotational speed Nc of the compressor 2 is likely to increase (broken line), and the outdoor heat exchanger 7 is likely to be frosted.
  • the radiator pressure PCI high pressure side pressure
  • the rotational speed Nc of the compressor 2 in the initial stage of the start-up also decreases, and an excessive increase is suppressed.
  • the pressure (low pressure side pressure) of the outdoor heat exchanger 7 also rises, and it becomes difficult for the outdoor heat exchanger 7 to form frost. Therefore, the progress of frost formation on the outdoor heat exchanger 7 is delayed, and frost formation occurs. It becomes possible to eliminate or suppress a decrease in heating capacity.
  • FIG. 12 shows another example of the flowchart of the controller 32 relating to the frosting delay control.
  • the target blowing temperature TAO is compared with the predetermined value B in step S4. Since the air temperature in the passenger compartment is low and the target outlet temperature TAO is high and higher than the predetermined value B at the beginning of startup, it is determined whether or not it is necessary to execute correction control for the target subcooling degree TGSC in step S5. can do.
  • FIG. 13 shows this state.
  • the target radiator subcooling degree calculation unit 58 of the controller 32 determines the target subcooling degree TGSC from the target blowing temperature TAO.
  • the controller 32 sets the target supercooling degree TGSC in a region where the target blowing temperature TAO is high (a region higher than a predetermined value B (for example, 80) indicated by X in FIG. 13). Raise. In this way, it is possible to delay the progress of frost formation on the outdoor heat exchanger 7 even if it is determined whether or not it is the initial stage of startup based on the target blowing temperature TAO and the target subcooling degree TGSC is corrected.
  • a predetermined value B for example, 80
  • FIG. 14 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • the Nc upper limit indicated by a broken line is the control upper limit value of the rotational speed Nc of the compressor 2 described above.
  • BLV indicated by a solid line is the blower voltage of the indoor blower 27 described above, and is an air volume supplied to the air flow passage 3 by the indoor blower 27.
  • the controller 32 is based on the radiator pressure PCI (high pressure side pressure) detected by the radiator pressure sensor 47 until the radiator pressure PCI rises to a predetermined value, 1.4 MPa in the embodiment.
  • the blower voltage BLV is maintained at 4 V, for example, and the control upper limit value of the rotation speed Nc of the compressor 2 is also maintained at 5000 rpm, for example.
  • the controller 32 increases the blower voltage BLV of the indoor blower 27 to, for example, 12 V with a predetermined slope.
  • the control upper limit value of the rotational speed Nc of the compressor 2 is similarly increased to, for example, 8000 rpm.
  • the controller 32 maintains 4 V without increasing the air volume (BLV) of the indoor blower 27 until the radiator pressure PCI (high pressure side pressure) rises to a predetermined value (1.4 MPa).
  • the control upper limit value of the rotational speed Nc of the compressor 2 is also reduced to a low value (5000 rpm) and maintained, and control not to increase is performed.
  • the radiator pressure PCI high pressure side pressure
  • the outdoor heat exchanger 7 low pressure side pressure
  • TXO temperature of the outdoor heat exchanger 7
  • the outdoor heat exchanger 7 is frosted.
  • FIG. 15 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • BLV shown in the upper stage is the blower voltage of the indoor blower 27 described above, and is the amount of air sent from the indoor blower 27 to the air flow passage 3.
  • Ts shown in the lower stage is the refrigerant temperature sucked into the compressor 2 detected by the above-described suction temperature sensor 45
  • TXO is the refrigerant evaporation temperature of the outdoor heat exchanger 7 detected by the above-mentioned outdoor heat exchanger temperature sensor 54. It is.
  • the controller 32 sets the suction refrigerant temperature Ts detected by the suction temperature sensor 45 or the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54 to a predetermined low value (predetermined value).
  • predetermined value a predetermined low value
  • the blower voltage BLV of the indoor blower 27 is lowered as shown by the solid line in the figure (with frosting delay control).
  • a broken line shows the case where there is no reduction (no frosting delay control).
  • the controller 32 causes the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 to reach a predetermined value when the suction refrigerant temperature Ts of the compressor 2 decreases to a predetermined value.
  • the blower voltage BLV of the indoor blower 27 is lowered to reduce the air volume supplied to the air flow passage 3.
  • the suction refrigerant temperature Ts which is the temperature of the refrigerant discharged from the outdoor heat exchanger 7, and the refrigerant evaporation temperature TXO in the outdoor heat exchanger 7 also rise as shown by the solid line in the figure (frosting delay). With control, the broken line shows the case without frosting delay control).
  • FIG. 16 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • Nc shown in the upper stage is the rotational speed of the compressor 2 described above.
  • Ts shown in the lower stage is the refrigerant temperature sucked into the compressor 2 detected by the above-described suction temperature sensor 45
  • TXO is the refrigerant evaporation temperature of the outdoor heat exchanger 7 detected by the above-mentioned outdoor heat exchanger temperature sensor 54. It is.
  • the compressor rotation speed calculation unit 62 of the controller 32 calculates the suction refrigerant temperature Ts detected by the suction temperature sensor 45 or the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54.
  • the rotation speed Nc of the compressor 2 is controlled so as to maintain a predetermined appropriate value (a predetermined value that is not too low). That is, for example, when the suction refrigerant temperature Ts or the refrigerant evaporation temperature TXO falls below a predetermined value, the controller 32 reduces the rotational speed Nc of the compressor 2. As the rotational speed Nc decreases, the flow rate of the refrigerant flowing into the outdoor heat exchanger 7 also decreases, so the amount of heat absorbed in the outdoor heat exchanger 7 decreases.
  • the suction refrigerant temperature Ts which is the temperature of the refrigerant discharged from the outdoor heat exchanger 7, and the refrigerant evaporation temperature TXO in the outdoor heat exchanger 7 also rise as shown by the solid line in the figure (with frosting delay control, broken line indicates The case where no frosting delay control is shown) is maintained at a predetermined value.
  • the rotation speed Nc of the compressor 2 and maintaining the suction refrigerant temperature Ts of the compressor 2 or the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 at a predetermined value, they are reduced. It is possible to prevent inconvenience that frost formation easily occurs and to eliminate or suppress a decrease in heating capacity due to frost formation of the outdoor heat exchanger 7.
  • FIG. 17 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • Nc indicated by a solid line in the upper stage is the rotational speed of the compressor 2 described above
  • a broken line is a control upper limit value of the rotational speed Nc of the compressor 2.
  • Ts shown in the lower stage is the refrigerant temperature sucked into the compressor 2 detected by the above-described suction temperature sensor 45
  • TXO is the refrigerant evaporation temperature of the outdoor heat exchanger 7 detected by the above-mentioned outdoor heat exchanger temperature sensor 54. It is.
  • the compressor rotation speed calculation unit 62 of the controller 32 has the suction refrigerant temperature Ts detected by the suction temperature sensor 45 or the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54.
  • Ts detected by the suction temperature sensor 45
  • TXO refrigerant evaporation temperature
  • the control upper limit value of the rotational speed Nc of the compressor 2 is lowered as indicated by MAX1 in the figure (with frosting delay control).
  • MAX2 shows the case where it does not reduce (no frosting delay control).
  • the controller 32 causes the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 to reach a predetermined value when the suction refrigerant temperature Ts of the compressor 2 decreases to a predetermined value.
  • the control upper limit value of the rotational speed Nc of the compressor 2 is lowered to suppress an increase in the rotational speed Nc of the compressor 2.
  • FIG. 18 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • the upper part shows the air volume (operating rate) of the outdoor fan 15.
  • Ts shown in the lower stage is the refrigerant temperature sucked into the compressor 2 detected by the above-described suction temperature sensor 45
  • TXO is the refrigerant evaporation temperature of the outdoor heat exchanger 7 detected by the above-mentioned outdoor heat exchanger temperature sensor 54. It is.
  • the controller 32 sets the suction refrigerant temperature Ts detected by the suction temperature sensor 45 or the refrigerant evaporation temperature TXO of the outdoor heat exchanger 7 detected by the outdoor heat exchanger temperature sensor 54 to a predetermined low value (predetermined value).
  • predetermined value a predetermined low value
  • the air volume of the outdoor blower 15 is increased as indicated by a solid line in the figure (with frosting delay control).
  • a broken line shows the case where it does not increase (no frosting delay control).
  • the suction refrigerant temperature Ts which is the temperature of the refrigerant discharged from the outdoor heat exchanger 7, and the refrigerant evaporation temperature TXO in the outdoor heat exchanger 7 also rise as shown by the solid line in the figure (frosting delay). With control, the broken line shows the case without frosting delay control).
  • FIG. 19 shows still another example of the frosting delay control to the outdoor heat exchanger 7 by the controller 32.
  • the controller 32 sets the heating medium heating electric heater 35 of the heating medium circulation circuit 23 according to the outside air temperature Tam detected by the outside air temperature sensor 33 at the start of the vehicle air conditioner 1 or at the start of the heating mode. Control energization rate.
  • the controller 32 sets the energization rate of the heat medium heating electric heater 35 to 0 when, for example, the outside air temperature Tam is 0 ° C. or higher. Then, as the outside air temperature Tam decreases from 0 ° C. to, for example, ⁇ 20 ° C., the energization rate of the heat medium heating electric heater 35 is increased to 100% with a predetermined inclination.
  • the controller 32 operates the heat medium circuit 23 when the outside air temperature Tam is low at the initial stage of start-up, generates heat in the heat medium heating electric heater 35, and causes the heat medium-air heat exchanger 40 to enter the air flow path 3. While heating the air, the lower the outside air temperature Tam, the more the heat generated by the heat medium heating electric heater 35 is increased, and the amount of heat generated by the heat medium-air heat exchanger 40 is increased.
  • the rotational speed Nc of the compressor 2 is likely to be high, and the outdoor heat exchanger 7 is likely to be frosted.
  • the load borne by the refrigerant circuit R can be reduced, and the rotational speed Nc of the compressor 2 can be lowered.
  • the pressure of the outdoor heat exchanger 7 (low pressure side pressure) also rises, the temperature rises, and it becomes difficult to form frost on the outdoor heat exchanger 7, so the progress of frost formation on the outdoor heat exchanger 7 is delayed. It is possible to eliminate or suppress a decrease in heating capacity due to frost formation.
  • the heat medium circulation circuit 23 is employed as the auxiliary heating unit.
  • the auxiliary heating unit may be configured by a normal electric heater (for example, a PTC heater) 73.
  • FIG. 20 shows a configuration example corresponding to FIG. 1 in that case. In FIG. 20, the heat medium circulation circuit 23 of FIG. 1 is replaced with an electric heater 73 in this case.
  • controller 32 controls the energization of the electric heater 73 instead of the circulation pump 30 and the heat medium heating electric heater 35 of the heat medium circulation circuit 23, and the same as described above. Since the heating capacity of the radiator 4 is complemented by heat generation, detailed description thereof is omitted. Thus, the air supplied to the passenger compartment may be heated by the electric heater 73. According to such a configuration, there is an advantage that the configuration is simplified as compared with the case where the heat medium circulation circuit 23 is used.
  • FIG. 21 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
  • FIG. 22 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the refrigerant circuit R in this embodiment is the same as that shown in FIG.
  • the heat medium-air heat exchanger 40 of the heat medium circuit 23 is disposed upstream of the radiator 4 and downstream of the air mix damper 28 with respect to the air flow in the air flow passage 3.
  • Other configurations are the same as those in FIG.
  • the present invention is also effective in the vehicle air conditioner 1 in which the heat medium-air heat exchanger 40 is arranged on the upstream side of the radiator 4.
  • the heat medium in the heat medium circulation circuit 23 is used. The problem caused by the low temperature is not caused. This facilitates cooperative heating with the radiator 4 and eliminates the need for so-called preliminary operation in which the heat medium is heated in advance.
  • air that has passed through the heat medium-air heat exchanger 40 flows into the radiator 4. Therefore, it is assumed that the temperature difference with the radiator 4 is reduced and the heat exchange efficiency is lowered.
  • the heat medium-air heat exchanger 40 is arranged on the downstream side of the radiator 4 with respect to the air flow in the air flow passage 3 as shown in FIGS. 1 and 21, the heat medium-air as shown in FIG. Compared with the case where the heat exchanger 40 is arranged upstream, the air heated by the heat medium-air heat exchanger 40 does not flow into the radiator 4, and the temperature difference between the temperature of the radiator 4 and the air Is ensured, and a reduction in heat exchange efficiency in the radiator 4 can be prevented.
  • the auxiliary heating means may be configured by replacing the heat medium circuit 23 of the above embodiment (FIG. 22) with a normal electric heater (PTC heater) 73.
  • FIG. 23 shows a configuration example corresponding to FIG. 22 in that case.
  • the heat medium circulation circuit 23 of FIG. 22 is replaced with an electric heater 73 in this case.
  • controller 32 controls the energization of the electric heater 73 instead of the circulation pump 30 and the heat medium heating electric heater 35 of the heat medium circulation circuit 23, and the same as described above. Since the heating capacity of the radiator 4 is complemented by heat generation, detailed description thereof is omitted. Thus, the air supplied to the passenger compartment may be heated by the electric heater 73, and according to such a configuration, there is an advantage that the configuration is simplified as compared with the case where the heat medium circulation circuit 23 is similarly used. is there.
  • the auxiliary heating means may be configured by replacing the heat medium circulation circuit 23 of the embodiment (FIG. 21) with a normal electric heater (PTC heater) 73.
  • FIG. 24 shows a configuration example corresponding to FIG. 21 in that case. In FIG. 24, the heat medium circulation circuit 23 of FIG. 21 is replaced with an electric heater 73 in this case.
  • controller 32 controls the energization of the electric heater 73 instead of the circulation pump 30 and the heat medium heating electric heater 35 of the heat medium circulation circuit 23, and the same as described above. Since the heating capacity of the radiator 4 is complemented by heat generation, detailed description thereof is omitted. Thus, the air supplied to the passenger compartment may be heated by the electric heater 73, and according to such a configuration, there is an advantage that the configuration is simplified as compared with the case where the heat medium circulation circuit 23 is similarly used. is there.
  • FIG. 25 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the piping configuration of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment is basically the same as that in FIG. 1, but the radiator 4 is not provided in the air flow passage 3 and is arranged outside thereof. Has been. Instead, the radiator 4 is provided with a heat medium-refrigerant heat exchanger 74 in this case in a heat exchange relationship.
  • This heat medium-refrigerant heat exchanger 74 is connected to the heat medium pipe 23A between the circulation pump 30 of the heat medium circulation circuit 23 and the heat medium heating electric heater 35, and the heat medium of the heat medium circulation circuit 23-
  • the air heat exchanger 40 is provided in the air flow passage 3.
  • the heating medium heating electric heater 35 is energized to heat the heating medium flowing in the heating medium circuit 23A.
  • the electric heater is disposed in the air flow passage 3 as described above.
  • the present invention is applied to the vehicle air conditioner 1 that is executed by switching each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode.
  • the present invention is not limited thereto, and only the heating mode is performed. The present invention is also effective for such a case.
  • the configuration and each numerical value of the refrigerant circuit R described in the above embodiments are not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】ヒートポンプ方式の車両用空気調和装置において、室外熱交換器への着霜の進行を遅延させることにより、着霜による暖房能力の低下を解消、抑制する。 【解決手段】コントローラは、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器7にて吸熱させる暖房モードを実行し、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと、当該室外熱交換器7の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、放熱器4における冷媒の過冷却度の目標値である目標過冷却度TGSCを補正する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器(凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードの各モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
特許第3985384号公報
 ここで、上記暖房モードにおいては、室外熱交換器が冷媒の蒸発器として機能する。そのため、車両の空気調和装置を起動して暖房モードを実行すると、外気の温度/湿度の条件によっては、室外熱交換器に外気中の水分が霜となって付着し、成長するようになる。暖房モードにおいて室外熱交換器に着霜した場合、霜は熱抵抗となり伝熱性を低下させ、且つ、熱交換器への空気の流れも低下させるため、外気との熱交換性能が著しく悪化し、外気中から吸熱することができなくなるため、所要の暖房能力が得られなくなる問題があった。
 図26は係る室外熱交換器の冷媒蒸発温度TXOと暖房能力の関係を示している。室外熱交換器の着霜が進行すると、吸熱性能の低下から冷媒蒸発温度TXOが低下するため、暖房能力も低下してしまう。これは、圧縮機の吸込冷媒温度Tsと暖房能力との関係においても同様である。一方で、図中に示すように、例えば、或る条件下において圧縮機回転数を8000rpmから5000rpmまで低下させることにより、室外熱交換器の吸熱能力を下げることができるため、冷媒蒸発温度TXOを上昇させることができることが分かる。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、所謂ヒートポンプ方式の車両用空気調和装置において、室外熱交換器への着霜の進行を遅延させることにより、着霜による暖房能力の低下を解消、若しくは、抑制することを目的とする。
 上記課題を解決するために、請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、放熱器における冷媒の過冷却度の目標値である目標過冷却度TGSCを補正することを特徴とする。
 請求項2の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を送給するための室内送風機と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて減少させる方向で、室内送風機の風量を補正することを特徴とする。
 請求項3の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて低下させる方向で、圧縮機の回転数の制御上限値を補正することを特徴とする。
 請求項4の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に導入する空気の内外気比率を制御するための吸込切換ダンパと、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、吸込切換ダンパにより空気流通路に導入される空気の内気比率を補正することを特徴とする。
 請求項5の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に外気を通風するための室外送風機と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて増加させる方向で、室外送風機の風量を補正することを特徴とする。
 請求項6の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、起動初期には放熱器における冷媒の過冷却度の目標値である目標過冷却度TGSCを上昇させる方向で補正することを特徴とする。
 請求項7の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を送給するための室内送風機と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、高圧側圧力が所定値に上昇するまで、室内送風機の風量を増加させず、且つ、または、圧縮機の回転数の制御上限値を低下させることを特徴とする。
 請求項8の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を送給するための室内送風機と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、圧縮機の吸込冷媒温度Tsが所定値に低下した場合、又は、室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、室内送風機の風量を減少させることを特徴とする。
 請求項9の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOを所定値に維持するよう、圧縮機の回転数を調整することを特徴とする。
 請求項10の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、圧縮機の回転数の制御上限値を低下させることを特徴とする。
 請求項11の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に外気を通風するための室外送風機と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、室外送風機の風量を増加させることを特徴とする。
 請求項12の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、空気流通路から車室内に供給する空気を加熱するための補助加熱手段と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するものであって、制御手段は、起動初期において、外気温度が低い場合、補助加熱手段を動作させることを特徴とする。
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、放熱器における冷媒の過冷却度の目標値である目標過冷却度TGSCを補正する。
 暖房モードにおいて室外熱交換器に着霜し始めると、室外熱交換器の冷媒蒸発温度TXOが低下して無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=(TXObase-TXO)が増大するので、制御手段は、放熱器の目標過冷却度TGSCを上昇させる方向で補正することになる。放熱器の目標過冷却度TGSCが上昇すると、放熱器圧力(高圧側圧力)が上昇するので、圧縮機の回転数は低下し、室外熱交換器圧力(低圧側圧力)も上昇して室外熱交換器に着霜し難くなる。これにより、室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項2の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を送給するための室内送風機と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて減少させる方向で、室内送風機の風量を補正する。
 室内送風機の風量が減少すると、必要とされる暖房能力が低下することになるので、圧縮機の回転数も低下し、室外熱交換器における吸熱量も減少する。これにより、同様に室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項3の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて低下させる方向で、圧縮機の回転数の制御上限値を補正する。
 圧縮機の回転数の制御上限値が低下すると、室外熱交換器における吸熱量も減少することになるので、同様に室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項4の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に導入する空気の内外気比率を制御するための吸込切換ダンパと、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、吸込切換ダンパにより空気流通路に導入される空気の内気比率を補正する。
 空気流通路に導入される空気の内気比率が上昇すると、暖房負荷が低下し、それにより必要とされる暖房能力が低下することになるので、圧縮機の回転数も低下し、室外熱交換器における吸熱量も減少する。これにより、同様に室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項5の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に外気を通風するための室外送風機と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、無着霜時における室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて増加させる方向で、室外送風機の風量を補正する。
 室外送風機の風量が増加すると、室外熱交換器の作動圧力(蒸発温度)も上昇するため、室外熱交換器に着霜し難くなる。これにより、同様に室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項6の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、起動初期には放熱器における冷媒の過冷却度の目標値である目標過冷却度TGSCを上昇させる方向で補正する。
 車両用空気調和装置の起動初期や暖房モードの起動初期には、圧縮機の回転数も高くなり易く、室外熱交換器に着霜し易い状況となるが、係る起動初期に放熱器の目標過冷却度TGSCを上昇させることで、前述同様に放熱器圧力(高圧側圧力)が上昇する。これにより、圧縮機の回転数も低下して室外熱交換器圧力(低圧側圧力)も上昇し、室外熱交換器に着霜し難くなるので、室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項7の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を送給するための室内送風機と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、高圧側圧力が所定値に上昇するまで、室内送風機の風量を増加させず、且つ、または、圧縮機の回転数の制御上限値を低下させる。
 室内送風機の風量を増加させないことで、より早く放熱器圧力(高圧側圧力)を上昇させることができ、それにより室外熱交換器圧力(低圧側圧力)も上昇させ、その温度も上昇させて着霜の進行を遅延させることが可能となる。また、圧縮機の回転数の制御上限値を低下させることでも室外熱交換器圧力(低圧側圧力)の過度な低下を防止することができるので、室外熱交換器に着霜が生じる状況においてこれらを合わせて実行することで、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる
 請求項8の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、この空気流通路に空気を送給するための室内送風機と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、圧縮機の吸込冷媒温度Tsが所定値に低下した場合、又は、室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、室内送風機の風量を減少させる。
 暖房モードにおいて室外熱交換器に着霜し始めると、圧縮機の吸込冷媒温度Tsや室外熱交換器の冷媒蒸発温度TXOが低下するので、制御手段は、室内送風機の風量を減少させることになる。室内送風機の風量が減少すると、前述同様に必要とされる暖房能力が低下することになるので、圧縮機の回転数も低下し、室外熱交換器における吸熱量も減少する。これにより、係る室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項9の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOを所定値に維持するよう、圧縮機の回転数を調整する。
 圧縮機の回転数を調整して圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOを所定値に維持することで、それらが低下して着霜し易くなる不都合を防止し、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項10の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、圧縮機の回転数の制御上限値を低下させる。
 圧縮機の回転数の制御上限値が低下すると、室外熱交換器における吸熱量も減少することになるので、前述同様に室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項11の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、この室外熱交換器に外気を通風するための室外送風機と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行するも車両用空気調和装置において、制御手段が、圧縮機の吸込冷媒温度Ts、又は、室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、室外送風機の風量を増加させる。
 室外送風機の風量が増加すると、室外熱交換器の作動圧力(蒸発温度)も上昇するため、室外熱交換器に着霜し難くなる。これにより、前述同様に室外熱交換器に着霜が生じる状況において、当該室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 請求項12の発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられて冷媒を吸熱させる室外熱交換器と、空気流通路から車室内に供給する空気を加熱するための補助加熱手段と、制御手段とを備え、この制御手段により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、制御手段が、起動初期において、外気温度が低い場合、補助加熱手段を動作させる。
 外気温度が低い状況での車両用空気調和装置の起動初期や暖房モードの起動初期には、圧縮機の回転数も高くなり易く、室外熱交換器に着霜し易い状況となるが、係る起動初期に補助加熱手段を動作させることで、圧縮機の回転数を低くすることが可能となる。これにより、室外熱交換器圧力(低圧側圧力)も上昇し、その温度も上昇して室外熱交換器に着霜し難くなるので、室外熱交換器への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図2のコントローラの制御ブロック図である。 図2のコントローラによる室外熱交換器への着霜遅延制御の一実施例を説明するためのΔTXOとTGSC補正値の関係を示す図である(実施例1)。 図4の場合の車両用空気調和装置の動作や圧力、温度の変化を示すタイミングチャートである。 図2のコントローラによる室外熱交換器への着霜遅延制御の他の実施例を説明するためのΔTXOと室内送風機風量補正値の関係を示す図である(実施例2)。 図2のコントローラによる室外熱交換器への着霜遅延制御のもう一つの他の実施例を説明するためのΔTXOと圧縮機回転数の制御上限値の関係を示す図である(実施例3)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するためのΔTXOと内気比率の関係を示す図である(実施例4)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するためのΔTXOと室外送風機風量(稼働率)の関係を示す図である(実施例5)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための車両用空気調和装置の動作や圧力、温度の変化を示すタイミングチャートである(実施例6)。 図10の場合のコントローラの制御フローチャートの一例を示す図である。 図10の場合のコントローラの制御フローチャートの他の例を示す図である。 図10の場合のコントローラによるTGSCの設定例を示す図である。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための放熱器圧力PCI(高圧側圧力)に対する室内送風機風量と圧縮機回転数の関係を示す図である(実施例7)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための車両用空気調和装置の圧縮機吸込冷媒温度、又は、室外熱交換器冷媒蒸発温度TXOと、室内送風機風量の変化を示すタイミングチャートである実施例8)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための車両用空気調和装置の圧縮機吸込冷媒温度、又は、室外熱交換器冷媒蒸発温度TXOと、圧縮機回転数の変化を示すタイミングチャートである(実施例9)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための車両用空気調和装置の圧縮機吸込冷媒温度、又は、室外熱交換器冷媒蒸発温度TXOと、圧縮機回転数の制御上限値の変化を示すタイミングチャートである(実施例10)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための車両用空気調和装置の圧縮機冷媒吸込温度、又は、室外熱交換器冷媒蒸発温度TXOと、室外送風機風量(稼働率)の変化を示すタイミングチャートである(実施例11)。 図2のコントローラによる室外熱交換器への着霜遅延制御の更にもう一つの他の実施例を説明するための外気温度と熱媒体循環回路の動作の関係を示す図である(実施例12)。 本発明を適用した車両用空気調和装置の他の実施例の構成図である(実施例13)。 本発明を適用した車両用空気調和装置のもう一つの他の実施例の構成図である(実施例14)。 本発明を適用した車両用空気調和装置の更にもう一つの他の実施例の構成図である(実施例15)。 本発明を適用した車両用空気調和装置の更にもう一つの他の実施例の構成図である(実施例16)。 本発明を適用した車両用空気調和装置の更にもう一つの他の実施例の構成図である(実施例17)。 本発明を適用した車両用空気調和装置の更にもう一つの他の実施例の構成図である(実施例18)。 室外熱交換器冷媒蒸発温度TXOと暖房能力の関係を示す図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明を適用した車両用空気調和装置1の一実施例の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や冷房除湿、冷房等の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速VSPが0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(開閉弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(開閉弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(開閉弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(開閉弁)20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は13Iとする。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を、車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換え、更には、それらの比率(内外気比率)を調整する吸込切換ダンパ26が設けられている。そして、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱手段としての熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ35と、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられた熱媒体-空気熱交換器40とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等が採用される。
 そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると(熱媒体循環回路23が動作すると)、熱媒体加熱電気ヒータ35により加熱された熱媒体が熱媒体-空気熱交換器40に循環されるよう構成されている。即ち、この熱媒体循環回路23の熱媒体-空気熱交換器40が所謂ヒータコアとなり、車室内の暖房を補完する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上することができるようになる。
 また、放熱器4の空気上流側における空気流通路3内には、内気や外気の放熱器4への流通度合いを調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、フット、ベント、デフの各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度を検出する外気温度センサ33と、車両の外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ45と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)、即ち、室外熱交換器7の冷媒蒸発温度TXOを検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ35の温度(熱媒体加熱電気ヒータ35で加熱された直後の熱媒体の温度、又は、熱媒体加熱電気ヒータ35に内蔵された図示しない電気ヒータ自体の温度)を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体-空気熱交換器40の温度(熱媒体-空気熱交換器40を経た空気の温度、又は、熱媒体-空気熱交換器40自体の温度)を検出する熱媒体-空気熱交換器温度センサ55の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口ダンパ31と、室外膨張弁6、室内膨張弁8と、各電磁弁22、17、21、20と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では大きく分けて暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れについて説明する。
 (1)暖房モード
 コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21を開放し、電磁弁17、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び熱媒体-空気熱交換器40に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。尚、熱媒体循環回路23の動作及び作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなり、室外熱交換器7は冷媒の蒸発器として機能する。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は熱媒体-空気熱交換器40を経て吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は放熱器圧力センサ47が検出する放熱器の冷媒圧力、即ち、放熱器圧力PCI(冷媒回路Rの高圧側圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力PCIに基づいて算出される冷媒の過冷却度に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。コントローラ32は放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクルモード
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁20、21も閉じる。この室外膨張弁6と電磁弁20、21が閉じられることにより、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCIに基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21、電磁弁22及び電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び熱媒体-空気熱交換器40に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御すると共に、前述した放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御する。
 (5)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は放熱器4及び熱媒体-空気熱交換器40に空気が通風されない状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。
 このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数を制御する。
 (6)暖房モードでの圧縮機及び室外膨張弁の制御ブロック
 図3は前記暖房モードにおけるコントローラ32による圧縮機2と室外膨張弁6の制御ブロック図を示す。コントローラ32は目標吹出温度TAOを目標放熱器温度演算部57と目標放熱器過冷却度演算部58に入力させる。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気温度の目標値であり、下記式(I)からコントローラ32が算出する。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 コントローラ32は、目標放熱器温度演算部57にて目標吹出温度TAOから目標放熱器温度TCOを算出し、次に、この目標放熱器温度TCOに基づき、目標放熱器圧力演算部61にて目標放熱器圧力PCOを算出する。そして、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の圧力(放熱器圧力PCI)とに基づき、コントローラ32は圧縮機回転数演算部62にて圧縮機2の回転数Ncを算出し、この回転数Ncにて圧縮機2を運転する。即ち、コントローラ32は圧縮機2の回転数Ncにより放熱器圧力PCIを制御する。
 また、コントローラ32は、目標放熱器過冷却度演算部58にて目標吹出温度TAOに基づき、放熱器4の目標過冷却度TGSCを算出する。一方、コントローラ32は、放熱器圧力PCIと放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)に基づき、放熱器過冷却度演算部63にて放熱器4における冷媒の過冷却度(放熱器過冷却度SC)を算出する。そして、この放熱器過冷却度SCと目標過冷却度TGSCに基づき、目標室外膨張弁開度演算部64にて室外膨張弁6の目標弁開度(目標室外膨張弁開度TGECCV)を算出する。そして、コントローラ32はこの目標室外膨張弁開度TGECVVに室外膨張弁6の弁開度を制御する。
 コントローラ32の放熱器過冷却度演算部63は目標吹出温度TAOが高い程、目標過冷却度TGSCを上げる方向に演算を行うが、それに限らず、室内送風機27の風量が小さい程、目標過冷却度TGSCを下げ、更には、室外熱交換器7の冷媒蒸発温度TXOや車両用空気調和装置1の起動初期、暖房モードの起動初期に目標過冷却度TGSCを上昇させる。
 (7)暖房モード及び当該暖房モードでの熱媒体循環回路(補助加熱手段)による補助加熱
 また、コントローラ32は、暖房モードにおいて放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23による加熱を実行する。
 熱媒体循環回路23の循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されると、前述したように熱媒体加熱電気ヒータ35により加熱された熱媒体(高温の熱媒体)が熱媒体-空気熱交換器40に循環されるので、空気流通路3の放熱器4を経た空気を加熱することになる。
 (8)暖房モードでの室外熱交換器への着霜遅延制御
 前述した暖房モードでは、室外熱交換器7が蒸発器として機能するため、室外熱交換器7には外気中の水分が霜となって付着するようになる。この霜が成長すると室外熱交換器7と通風される外気と冷媒との間の熱交換が著しく阻害されるため、空調性能(暖房能力)が悪化することになる。そこで、この実施例でコントローラ32は、室外熱交換器7への着霜状態を推定し、着霜し始めている(着霜進行)と判断した場合には、以下に説明する着霜遅延制御を実行する。
 (8-1)室外熱交換器への着霜状態の推定
 この実施例でコントローラ32は、室外熱交換器温度センサ54から得られる室外熱交換器7の現在の冷媒蒸発温度TXOと、外気が低湿環境で室外熱交換器7に着霜していない無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseとに基づき、室外熱交換器7の着霜状態を推定する。この場合のコントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseを、次式(II)を用いて決定する。
 TXObase=f(Tam、Nc、BLV、VSP)
      =k1×Tam+k2×Nc+k3×BLV+k4×VSP
                                                 ・・(II)
 ここで、式(II)のパラメータであるTamは外気温度センサ33から得られる外気温度、Ncは圧縮機2の回転数、BLVは室内送風機27のブロワ電圧、VSPは車速センサ52から得られる車速であり、k1~k4は係数で、予め実験等により求めておく。
 上記外気温度Tamは室外熱交換器7の吸込空気温度を示す指標であり、外気温度Tam(室外熱交換器7の吸込空気温度)が低くなる程、TXObaseは低くなる傾向となる。従って、係数k1は正の値となる。尚、室外熱交換器7の吸込空気温度を示す指標としては外気温度Tamに限られない。
 また、上記圧縮機2の回転数Ncは冷媒回路R内の冷媒流量を示す指標であり、回転数Ncが高い程(冷媒流量が多い程)、TXObaseは低くなる傾向となる。従って、係数k2は負の値となる。
 また、上記ブロワ電圧BLVは放熱器4の通過風量を示す指標であり、ブロワ電圧BLVが高い程(放熱器4の通過風量が大きい程)、TXObaseは低くなる傾向となる。従って、係数k3は負の値となる。尚、放熱器4の通過風量を示す指標としてはこれに限らず、室内送風機27のブロワ風量やエアミックスダンパ28の開度SWを用いてもよい。
 また、上記車速VSPは室外熱交換器7の通過風速を示す指標であり、車速VSPが低い程(室外熱交換器7の通過風速が低い程)、TXObaseは低くなる傾向となる。従って、係数k4は正の値となる。尚、室外熱交換器7の通過風速を示す指標としてはこれに限らず、室外送風機15の電圧または風速でもよい。
 (8-2)室外熱交換器への着霜遅延制御の例(その1)
 次にコントローラ32の目標放熱器過冷却度演算部58は、式(II)に現在の各パラメータの値を代入することで得られる無着霜時における冷媒蒸発温度TXObaseと現在の冷媒蒸発温度TXOとに基づき、それらの差ΔTXO(ΔTXO=TXObase-TXO)を算出し、冷媒蒸発温度TXOが無着霜時における冷媒蒸発温度TXObaseより低下して、その差ΔTXOが増大するに応じて上昇させる方向で、前記目標過冷却度TGSCを補正する。
 図4はこの場合の差ΔTXOと目標過冷却度TGSCの補正値との関係を示している。コントローラ32の目標放熱器過冷却度演算部58は、実施例では差ΔTXOが0から1に増大するまではTGSCの補正値を0とし、差ΔTXOが1から5まで増大するに応じてTGSCの補正値を所定の傾斜を有して0から15まで上昇させる。また、差ΔTXOが大きい値から4に減少するまではTGSCの補正値を15とし、差ΔTXOが4から0まで減少するに応じてTGSCの補正値を所定の傾斜を有して15から0まで低下させる。
 暖房モードにおいて室外熱交換器7に着霜し始めると、室外熱交換器7の冷媒蒸発温度TXOが低下して無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=(TXObase-TXO)が増大するので、コントローラ32は、図4に基づいて放熱器4の目標過冷却度TGSCを上昇させる方向で補正することになる。放熱器4の目標過冷却度TGSCが上昇すると、放熱器圧力PCI(高圧側圧力)が上昇するので、圧縮機2の回転数Ncは低下し、室外熱交換器7の圧力(低圧側圧力)も上昇して室外熱交換器7に着霜し難くなる。
 この様子が図5に示されている。図中最上段の実線は目標放熱器圧力PCO、破線は放熱器圧力PCIである。上から二段目は圧縮機2の回転数Ncであり、実線は目標過冷却度TGSCの補正制御を行った場合を示し、破線は行わない場合を示す。また、最下段は差ΔTXOを示し、実線は目標過冷却度TGSCの補正制御を行った場合を示し、破線は行わない場合を示す。
 この図の上から三段目の如く、目標過冷却度TGSCを上昇させる補正を行うことで、補正を行わない場合に比して圧縮機2の回転数Ncが低下する。図26に示すように、例えば、或る条件下において圧縮機2の回転数Ncが8000rpmから5000rpmまで低下すると、室外熱交換器7の吸熱能力が下がるため、冷媒蒸発温度TXOが上昇する。室外熱交換器7の冷媒蒸発温度TXOが上昇すると、差ΔTXOも低下する、即ち、室外熱交換器7の冷媒蒸発温度TXOが無着霜時における当該室外熱交換器7の冷媒蒸発温度TXObaseに近づく。これにより、室外熱交換器7への着霜を抑制し、着霜の進行を遅延させることができるようになり、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-3)室外熱交換器への着霜遅延制御の例(その2)
 次に、図6はコントローラ32による室外熱交換器7への着霜遅延制御の他の例を示している。この場合、コントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと、現在の当該室外熱交換器7の冷媒蒸発温度TXOとに基づき、それらの差ΔTXO=(TXObase-TXO)が増大するに応じて減少させる方向で、前記室内送風機27の風量を補正する。
 図6はこの場合の差ΔTXOと室内送風機電圧(室内送風機27の風量を示す値の一例)の補正値との関係を示している。コントローラ32は、実施例では差ΔTXOが0から1に増大するまでは室内送風機電圧の補正値を0とし、差ΔTXOが1から5に増大するに応じて室内送風機電圧の補正値を所定の傾斜を有して0から-2まで低下させる。また、差ΔTXOが大きい値から4に減少するまでは室内送風機電圧の補正値を-2とし、差ΔTXOが4から0まで減少するに応じて室内送風機電圧の補正値を所定の傾斜を有して-2から0まで上昇させる。
 暖房モードにおいて室外熱交換器7に着霜し始めると、室外熱交換器7の冷媒蒸発温度TXOが低下して無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=(TXObase-TXO)が増大するので、コントローラ32は、図6に基づいて室内送風機27の風量(実施例では室内送風機電圧)を減少させる方向で補正することになる。室内送風機27の風量が減少すると、必要とされる暖房能力が低下することになるので、圧縮機2の回転数Ncも低下し、室外熱交換器7における吸熱量も減少する。これにより、室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-4)室外熱交換器への着霜遅延制御の例(その3)
 次に、図7はコントローラ32による室外熱交換器7への着霜遅延制御のもう一つの他の例を示している。この場合、コントローラ32の圧縮機回転数演算部62は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと、現在の当該室外熱交換器7の冷媒蒸発温度TXOとに基づき、それらの差ΔTXO=(TXObase-TXO)が増大するに応じて低下させる方向で、前記圧縮機2の回転数の制御上限値を補正する。
 図7はこの場合の差ΔTXOと圧縮機回転数制御上限値との関係を示している。コントローラ32は、実施例では差ΔTXOが0から1に増大するまでは圧縮機2の回転数の制御上限値を8000rpmとし、差ΔTXOが1から5に増大するに応じて制御上限値を所定の傾斜を有して8000rpmから6000rpmまで低下させる。また、差ΔTXOが大きい値から4に減少するまでは制御上限値を6000rpmとし、差ΔTXOが4から0まで減少するに応じて制御上限値を所定の傾斜を有して6000rpmから8000rpmまで上昇させる。
 暖房モードにおいて室外熱交換器7に着霜し始めると、室外熱交換器7の冷媒蒸発温度TXOが低下して無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=(TXObase-TXO)が増大するので、コントローラ32は、図7に基づいて圧縮機2の回転数の制御上限値を低下させる方向で補正することになる。圧縮機2の回転数の制御上限値が低下すると、室外熱交換器7における吸熱量も減少することになるので、室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-5)室外熱交換器への着霜遅延制御の例(その4)
 次に、図8はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この場合、コントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと、現在の当該室外熱交換器7の冷媒蒸発温度TXOとに基づき、それらの差ΔTXO=(TXObase-TXO)が増大するに応じて上昇させる方向で、前記吸込切換ダンパ26より空気流通路3に導入される空気の内気比率を補正する。
 図8はこの場合の差ΔTXOと内気比率との関係を示している。尚、図中RECが内気、FRESHは外気であり、内気比率100%:外気比率0%(縦軸下)から内気比率0%:外気比率100%(縦軸上)まで吸込切換ダンパ26により調整可能とされている。コントローラ32は、実施例では差ΔTXOが0から1に増大するまでは内気比率を25%とし、差ΔTXOが1から5に増大するに応じて内気比率を所定の傾斜を有して50%まで上昇させる。また、差ΔTXOが大きい値から4に減少するまでは内気比率を50%とし、差ΔTXOが4から0まで減少するに応じて内気比率を所定の傾斜を有して50%から25%まで低下させる。
 暖房モードにおいて室外熱交換器7に着霜し始めると、室外熱交換器7の冷媒蒸発温度TXOが低下して無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=(TXObase-TXO)が増大するので、コントローラ32は、図8に基づいて空気流通路3に導入される空気の内気比率を上昇させる方向で補正することになる。空気流通路3に導入される空気の内気比率が上昇すると、暖房負荷が低下し、それにより必要とされる暖房能力が低下することになるので、圧縮機2の回転数Ncも低下し、室外熱交換器7における吸熱量も減少する。これにより、室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-6)室外熱交換器への着霜遅延制御の例(その5)
 次に、図9はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この場合、コントローラ32は、無着霜時における室外熱交換器7の冷媒蒸発温度TXObaseと、現在の当該室外熱交換器7の冷媒蒸発温度TXOとに基づき、それらの差ΔTXO=(TXObase-TXO)が増大するに応じて増加させる方向で、前記室外送風機15の風量を補正する。
 図9はこの場合の差ΔTXOと室外送風機15の風量(稼働率)との関係を示している。コントローラ32は、実施例では差ΔTXOが0から1に増大するまでは室外送風機15の風量をLo(風量小)とし、差ΔTXOが1から5に増大するに応じて室外送風機15の風量を所定の傾斜を有してHI(風量大)まで上昇させる。また、差ΔTXOが大きい値から4に減少するまでは室外送風機15の風量をHIとし、差ΔTXOが4から0まで減少するに応じて風量を所定の傾斜を有してHIからLoまで低下させる。
 暖房モードにおいて室外熱交換器7に着霜し始めると、室外熱交換器7の冷媒蒸発温度TXOが低下して無着霜時における当該室外熱交換器の冷媒蒸発温度TXObaseとの差ΔTXO=(TXObase-TXO)が増大するので、コントローラ32は、図9に基づいて室外送風機15の風量を増加させる方向で補正することになる。室外送風機15の風量が増加すると、室外熱交換器7の作動圧力も上昇するため、室外熱交換器7に着霜し難くなる。これにより、室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外送風機7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-7)室外熱交換器への着霜遅延制御の例(その6)
 次に、図10~図13を参照してコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を説明する。この場合、コントローラ32は、車両用空気調和装置1の起動初期や、暖房モードの起動初期(ヒートアップ初期)において、放熱器4の目標過冷却度TGSCを上昇させる方向で補正する。
 図11は係る着霜遅延制御に関するコントローラ32のフローチャートの一例を示している。コントローラ32は図11のステップS1で各センサが検出するデータを読み込み、次にステップS2で現在の運転モードを判定する。そして、ステップS3で現在の運転モードが暖房モードであるか否か判断し、暖房モードであるときはステップS4に進む。ステップS4では前記車室内の設定温度Tsetと車室内空気の温度Tinとを比較し、それらの差(Tset-Tin)が所定値Aより高いか否か判断する。
 暖房モードの起動初期には車室内空気の温度Tinは車室内の設定温度Tsetより低くその差(Tset-Tin)はAより大きいので、コントローラ32はステップS4からステップS5に進み、目標過冷却度TGSCを上昇させる方向で補正する制御を実行する。この様子が図10に示されている。図中上から二段目の実線はTGSCを上昇させる補正制御を行ったときの目標放熱器圧力PCO、破線は補正制御を行わないときの目標放熱器圧力PCOである。最下段は圧縮機2の回転数Ncであり、実線は目標過冷却度TGSCの補正制御を行った場合を示し、破線は行わない場合を示す。
 車両用空気調和装置1の起動初期や暖房モードの起動初期には、圧縮機2の回転数Ncも高くなり易く(破線)、室外熱交換器7に着霜し易い状況となるが、係る起動初期に図10の最上段の如く放熱器4の目標過冷却度TGSCを上昇させる補正を行うことで(実線)、放熱器圧力PCI(高圧側圧力)が上昇するので、補正を行わない場合(破線)に比して、起動初期における圧縮機2の回転数Ncも低下し、過剰な上昇が抑制される。これにより、室外熱交換器7の圧力(低圧側圧力)も上昇し、室外熱交換器7に着霜し難くなるので、室外熱交換器7への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 尚、図12は係る着霜遅延制御に関するコントローラ32のフローチャートの他の例を示しており、この場合にはステップS4で目標吹出温度TAOと所定値Bとを比較している。起動初期には車室内の空気温度も低く、目標吹出温度TAOも高くなって所定値Bより高くなるので、係る比較によってもステップS5における目標過冷却度TGSCの補正制御の実行の要否を判断することができる。
 図13はこの様子を示している。この図において、コントローラ32の目標放熱器過冷却度演算部58は目標吹出温度TAOから目標過冷却度TGSCを決定しており、この場合は空気流通路3の風量が多いほどTGSCが高くなるように決定するものであるが、風量大の状況において、コントローラ32は目標吹出温度TAOが高い領域(図13にXで示す所定値B(例えば80)より高い領域)で、目標過冷却度TGSCを上昇させる。このように、目標吹出温度TAOによって起動初期か否かを判断し、目標過冷却度TGSCを補正するようにしても室外熱交換器7への着霜の進行を遅延させることができる。
 (8-8)室外熱交換器への着霜遅延制御の例(その7)
 次に、図14はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この図において、破線で示すNc上限は前述した圧縮機2の回転数Ncの制御上限値である。実線で示すBLVは前述した室内送風機27のブロワ電圧であり、室内送風機27が空気流通路3に送給する風量となる。
 この場合、コントローラ32は放熱器圧力センサ47が検出する放熱器圧力PCI(高圧側圧力)に基づき、放熱器圧力PCIが所定値、実施例では1.4MPaに上昇するまでは、室内送風機27のブロワ電圧BLVを例えば4Vに維持し、圧縮機2の回転数Ncの制御上限値も例えば5000rpmに維持する。そして、放熱器圧力PCIが所定値(1.4MPa)を超えて例えば2.0MPaに上昇するに従い、コントローラ32は室内送風機27のブロワ電圧BLVを所定の傾斜を有して例えば12Vまで上昇させていき、圧縮機2の回転数Ncの制御上限値も同様に例えば8000rpmまで上昇させていく。
 このように、この実施例でコントローラ32は、放熱器圧力PCI(高圧側圧力)が所定値(1.4MPa)に上昇するまで、室内送風機27の風量(BLV)を増加させずに4Vに維持し、且つ、圧縮機2の回転数Ncの制御上限値も低い値(5000rpm)に低下させて維持し、増加させない制御を行う。
 室内送風機27の風量を増加させないことで、より早く放熱器圧力PCI(高圧側圧力)を上昇させることができ、それにより室外熱交換器7の圧力(低圧側圧力)も上昇させ、その温度TXOも上昇させて着霜の進行を遅延させることが可能となる。また、圧縮機2の回転数Ncの制御上限値を低下させることでも室外熱交換器7の圧力(低圧側圧力)の過度な低下を防止することができるので、室外熱交換器7に着霜が生じる状況においてこれらを合わせて実行することで、当該室外熱交換器7への着霜の進行を遅延させ、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる
 (8-9)室外熱交換器への着霜遅延制御の例(その8)
 次に、図15はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この図において、上段に示すBLVは前述した室内送風機27のブロワ電圧であり、室内送風機27が空気流通路3に送給する風量となる。また、下段に示すTsは前述した吸込温度センサ45が検出する圧縮機2への吸込冷媒温度であり、TXOは前述した室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度である。
 この場合、コントローラ32は吸込温度センサ45が検出する吸込冷媒温度Ts、又は、室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度TXOが所定の低い値(所定値)に低下した場合、室内送風機27のブロワ電圧BLVを図中実線で示すように低下させる(着霜遅延制御有り)。尚、破線は低下させない場合(着霜遅延制御無し)を示す。
 ここで、暖房モードにおいて室外熱交換器7に着霜し始めると、圧縮機2の吸込冷媒温度Tsや室外熱交換器7の冷媒蒸発温度TXOが低下する。そこで、この実施例の場合には、上述したようにコントローラ32は、圧縮機2の吸込冷媒温度Tsが所定値に低下した場合、又は、室外熱交換器7の冷媒蒸発温度TXOが所定値に低下した場合、室内送風機27のブロワ電圧BLVを低下させて空気流通路3に送給する風量を減少させる。
 室内送風機27の風量が減少すると、前述同様に必要とされる暖房能力が低下することになるので、圧縮機2の回転数Ncも低下し、室外熱交換器7に流入する冷媒流量も減少するため、室外熱交換器7における吸熱量も減少する。また、室外熱交換器7から出た冷媒の温度である吸込冷媒温度Tsや室外熱交換器7での冷媒蒸発温度TXOも図中実線で示すように上昇していくことになる(着霜遅延制御有り。破線は着霜遅延制御無しの場合を示す)。これにより、係る室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-10)室外熱交換器への着霜遅延制御の例(その9)
 次に、図16はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この図において、上段に示すNcは前述した圧縮機2の回転数である。また、下段に示すTsは前述した吸込温度センサ45が検出する圧縮機2への吸込冷媒温度であり、TXOは前述した室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度である。
 この場合、コントローラ32の圧縮機回転数演算部62は、吸込温度センサ45が検出する吸込冷媒温度Ts、又は、室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度TXOを所定の適正な値(低すぎない所定値)に維持するよう、圧縮機2の回転数Ncを制御する。即ち、例えば吸込冷媒温度Ts、又は、冷媒蒸発温度TXOが所定値以下に低下した場合、コントローラ32は圧縮機2の回転数Ncを低下させる。回転数Ncが低下することで、室外熱交換器7に流入する冷媒流量も減少するため、室外熱交換器7における吸熱量が減少する。
 また、室外熱交換器7から出た冷媒の温度である吸込冷媒温度Tsや室外熱交換器7での冷媒蒸発温度TXOも図中実線で示すように上昇し(着霜遅延制御有り。破線は着霜遅延制御無しの場合を示す)、所定値に維持されることになる。このように、圧縮機2の回転数Ncを調整して圧縮機2の吸込冷媒温度Ts、又は、室外熱交換器7の冷媒蒸発温度TXOを所定値に維持することで、それらが低下して着霜し易くなる不都合を防止し、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-11)室外熱交換器への着霜遅延制御の例(その10)
 次に、図17はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この図において、上段に実線で示すNcは前述した圧縮機2の回転数であり、破線はこの圧縮機2の回転数Ncの制御上限値である。また、下段に示すTsは前述した吸込温度センサ45が検出する圧縮機2への吸込冷媒温度であり、TXOは前述した室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度である。
 この場合、コントローラ32の圧縮機回転数演算部62は、吸込温度センサ45が検出する吸込冷媒温度Ts、又は、室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度TXOが所定の低い値(所定値)に低下した場合、圧縮機2の回転数Ncの制御上限値を図中MAX1で示すように低下させる(着霜遅延制御有り)。尚、MAX2は低下させない場合(着霜遅延制御無し)を示す。
 ここで、暖房モードにおいて室外熱交換器7に着霜し始めると、圧縮機2の吸込冷媒温度Tsや室外熱交換器7の冷媒蒸発温度TXOが低下する。そこで、この実施例の場合には、上述したようにコントローラ32は、圧縮機2の吸込冷媒温度Tsが所定値に低下した場合、又は、室外熱交換器7の冷媒蒸発温度TXOが所定値に低下した場合、圧縮機2の回転数Ncの制御上限値を低下させて圧縮機2の回転数Ncの上昇を抑制する。
 圧縮機2の回転数Ncの制御上限値が低下すると、圧縮機2の回転数Ncが低く抑えられて室外熱交換器7における吸熱量も減少することになるので、前述同様に室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外熱交換器7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-12)室外熱交換器への着霜遅延制御の例(その11)
 次に、図18はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この図において、上段に示すのは室外送風機15の風量(稼働率)である。また、下段に示すTsは前述した吸込温度センサ45が検出する圧縮機2への吸込冷媒温度であり、TXOは前述した室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度である。
 この場合、コントローラ32は吸込温度センサ45が検出する吸込冷媒温度Ts、又は、室外熱交換器温度センサ54が検出する室外熱交換器7の冷媒蒸発温度TXOが所定の低い値(所定値)に低下した場合、室外送風機15の風量を図中実線で示すように増加させる(着霜遅延制御有り)。尚、破線は増加させない場合(着霜遅延制御無し)を示す。
 室外送風機15の風量が増加すると、室外熱交換器7の作動圧力も上昇するため、室外熱交換器7に着霜し難くなる。また、室外熱交換器7から出た冷媒の温度である吸込冷媒温度Tsや室外熱交換器7での冷媒蒸発温度TXOも図中実線で示すように上昇していくことになる(着霜遅延制御有り。破線は着霜遅延制御無しの場合を示す)。これにより、前述同様に室外熱交換器7に着霜が生じる状況において、当該室外熱交換器7への着霜の進行を遅延させ、室外送風機7の着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 (8-13)室外熱交換器への着霜遅延制御の例(その12)
 次に、図19はコントローラ32による室外熱交換器7への着霜遅延制御の更にもう一つの他の例を示している。この場合コントローラ32は、車両用空気調和装置1の起動初期や、暖房モードの起動初期において、外気温度センサ33が検出する外気温度Tamに応じて熱媒体循環回路23の熱媒体加熱電気ヒータ35の通電率を制御する。
 即ち、この実施例でコントローラ32は、例えば外気温度Tamが0℃以上である場合には、熱媒体加熱電気ヒータ35の通電率を0とする。そして、外気温度Tamが0℃より低下して例えば-20℃になるに応じて熱媒体加熱電気ヒータ35の通電率を所定の傾斜を有して100%まで上昇させていく。
 即ち、コントローラ32は起動初期において、外気温度Tamが低い場合は熱媒体循環回路23を動作させ、熱媒体加熱電気ヒータ35を発熱させて熱媒体-空気熱交換器40により空気流通路3内の空気を加熱すると共に、外気温度Tamが低い程、熱媒体加熱電気ヒータ35の発熱量を増加させて、熱媒体-空気熱交換器40による加熱量を増加させる。
 外気温度Tamが低い状況での車両用空気調和装置1の起動初期や暖房モードの起動初期には、圧縮機2の回転数Ncも高くなり易く、室外熱交換器7に着霜し易い状況となるが、係る起動初期に熱媒体循環回路23を動作させることで、冷媒回路Rが負担する負荷が減少させ、圧縮機2の回転数Ncを低くすることが可能となる。これにより、室外熱交換器7圧力(低圧側圧力)も上昇し、その温度も上昇して室外熱交換器7に着霜し難くなるので、室外熱交換器7への着霜の進行を遅延させ、着霜による暖房能力の低下を解消、若しくは、抑制することが可能となる。
 尚、上記各実施例では補助加熱手段として熱媒体循環回路23を採用したが、通常の電気ヒータ(例えば、PTCヒータ)73にて補助加熱手段を構成してもよい。その場合の図1に対応する構成例が図20である。この図20では図1の熱媒体循環回路23がこの場合の電気ヒータ73に置き換えられている。
 その他の構成及び制御は基本的に同様であり、コントローラ32は熱媒体循環回路23の循環ポンプ30及び熱媒体加熱電気ヒータ35の代わりに、電気ヒータ73の通電を制御して、前述同様にその発熱によって放熱器4による暖房能力の補完を行うものであるので、詳細な説明は省略する。このように、車室内に供給する空気を電気ヒータ73で加熱するようにしても良く、係る構成によれば熱媒体循環回路23を用いる場合に比して構成が簡素化される利点がある。
 次に、図21は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。
 その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 次に、図22は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。尚、この実施例の冷媒回路Rは図21と同様である。但し、この場合、熱媒体循環回路23の熱媒体-空気熱交換器40は、空気流通路3の空気の流れに対して放熱器4の上流側であってエアミックスダンパ28の下流側に配置されている。他の構成は図21と同様である。
 この場合には空気流通路3において熱媒体-空気熱交換器40が放熱器4の上流側に位置するため、熱媒体循環回路23の動作中、空気は熱媒体-空気熱交換器40で加熱された後、放熱器4に流入するようになる。このように熱媒体-空気熱交換器40を放熱器4の上流側に配置した車両用空気調和装置1においても本発明は有効であり、特にこの場合には熱媒体循環回路23内の熱媒体の温度が低いことによる問題は生じなくなる。これにより、放熱器4との協調暖房も容易となると共に、熱媒体を予め加熱しておく所謂予備運転が不要となるが、熱媒体-空気熱交換器40を経た空気が放熱器4に流入することになるため、放熱器4との温度差が小さくなり、熱交換効率が低下することが想定される。
 一方、図1や図21のように熱媒体-空気熱交換器40を、空気流通路3の空気の流れに対して放熱器4の下流側に配置すれば、図22の如く熱媒体-空気熱交換器40を上流側に配置する場合に比して、熱媒体-空気熱交換器40で加熱された空気が放熱器4に流入することが無くなり、放熱器4の温度と空気の温度差を確保して、放熱器4における熱交換効率の低下を防止することができるようになる。
 尚、同様に上記実施例(図22)の熱媒体循環回路23を通常の電気ヒータ(PTCヒータ)73に置き換えて補助加熱手段を構成してもよい。その場合の図22に対応する構成例が図23である。この図23では図22の熱媒体循環回路23がこの場合の電気ヒータ73に置き換えられている。
 その他の構成及び制御は基本的に同様であり、コントローラ32は熱媒体循環回路23の循環ポンプ30及び熱媒体加熱電気ヒータ35の代わりに、電気ヒータ73の通電を制御して、前述同様にその発熱によって放熱器4による暖房能力の補完を行うものであるので、詳細な説明は省略する。このように、車室内に供給する空気を電気ヒータ73で加熱するようにしても良く、係る構成によれば同様に熱媒体循環回路23を用いる場合に比して構成が簡素化される利点がある。
 また、同様に前記実施例(図21)の熱媒体循環回路23を通常の電気ヒータ(PTCヒータ)73に置き換えて補助加熱手段を構成してもよい。その場合の図21に対応する構成例が図24である。この図24では図21の熱媒体循環回路23がこの場合の電気ヒータ73に置き換えられている。
 その他の構成及び制御は基本的に同様であり、コントローラ32は熱媒体循環回路23の循環ポンプ30及び熱媒体加熱電気ヒータ35の代わりに、電気ヒータ73の通電を制御して、前述同様にその発熱によって放熱器4による暖房能力の補完を行うものであるので、詳細な説明は省略する。このように、車室内に供給する空気を電気ヒータ73で加熱するようにしても良く、係る構成によれば同様に熱媒体循環回路23を用いる場合に比して構成が簡素化される利点がある。
 次に、図25は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。この実施例の冷媒回路R及び熱媒体循環回路23の配管構成は図1の場合と基本的に同様であるが、放熱器4は空気流通路3には設けられておらず、その外側に配置されている。その代わりに、この放熱器4にはこの場合の熱媒体-冷媒熱交換器74が熱交換関係に配設されている。
 この熱媒体-冷媒熱交換器74は、熱媒体循環回路23の循環ポンプ30と熱媒体加熱電気ヒータ35の間の熱媒体配管23Aに接続されたもので、熱媒体循環回路23の熱媒体-空気熱交換器40は空気流通路3に設けられている。係る構成で、循環ポンプ30から吐出された熱媒体は放熱器4を流れる冷媒と熱交換し、当該冷媒により加熱され、次に、熱媒体加熱電気ヒータ35(通電されて発熱している場合)で加熱された後、熱媒体-空気熱交換器40で放熱することにより、空気流通路3から車室内に供給される空気を加熱する。
 このような構成の車両用空気調和装置1においても、放熱器4による暖房能力が不足する場合に、熱媒体加熱電気ヒータ35に通電して熱媒体回路23A内を流れる熱媒体を加熱することにより、暖房補助を行うことが可能となると共に、前述したように電気ヒータを空気流通路3に配設する場合に比して、電気的により安全な車室内暖房を実現することができるようになる。
 尚、各実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1について本発明を適用したが、それに限らず、暖房モードのみ行うものにも本発明は有効である。
 また、上記各実施例で説明した冷媒回路Rの構成や各数値はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 11 蒸発能力制御弁
 15 室外送風機
 17、20、21、22 電磁弁
 23 熱媒体循環回路(補助加熱手段)
 26 吸込切換ダンパ
 27 室内送風機
 28 エアミックスダンパ
 32 コントローラ(制御手段)
 35 熱媒体加熱電気ヒータ
 40 熱媒体-空気熱交換器
 73 電気ヒータ
 R 冷媒回路

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、無着霜時における前記室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、前記放熱器における冷媒の過冷却度の目標値である目標過冷却度TGSCを補正することを特徴とする車両用空気調和装置。
  2.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に空気を送給するための室内送風機と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、無着霜時における前記室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて減少させる方向で、前記室内送風機の風量を補正することを特徴とする車両用空気調和装置。
  3.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、無着霜時における前記室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて低下させる方向で、前記圧縮機の回転数の制御上限値を補正することを特徴とする車両用空気調和装置。
  4.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に導入する空気の内外気比率を制御するための吸込切換ダンパと、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、無着霜時における前記室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて上昇させる方向で、前記吸込切換ダンパにより前記空気流通路に導入される空気の内気比率を補正することを特徴とする車両用空気調和装置。
  5.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     該室外熱交換器に外気を通風するための室外送風機と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、無着霜時における前記室外熱交換器の冷媒蒸発温度TXObaseと、当該室外熱交換器の冷媒蒸発温度TXOとの差ΔTXO=(TXObase-TXO)に基づき、当該差ΔTXOが増大するに応じて増加させる方向で、前記室外送風機の風量を補正することを特徴とする車両用空気調和装置。
  6.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、起動初期には前記放熱器における冷媒の過冷却度の目標値である目標過冷却度TGSCを上昇させる方向で補正することを特徴とする車両用空気調和装置。
  7.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に空気を送給するための室内送風機と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、高圧側圧力が所定値に上昇するまで、前記室内送風機の風量を増加させず、且つ、または、前記圧縮機の回転数の制御上限値を低下させることを特徴とする車両用空気調和装置。
  8.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     該空気流通路に空気を送給するための室内送風機と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、前記圧縮機の吸込冷媒温度Tsが所定値に低下した場合、又は、前記室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、前記室内送風機の風量を減少させることを特徴とする車両用空気調和装置。
  9.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、前記圧縮機の吸込冷媒温度Ts、又は、前記室外熱交換器の冷媒蒸発温度TXOを所定値に維持するよう、前記圧縮機の回転数を調整することを特徴とする車両用空気調和装置。
  10.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、前記圧縮機の吸込冷媒温度Ts、又は、前記室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、前記圧縮機の回転数の制御上限値を低下させることを特徴とする車両用空気調和装置。
  11.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     該室外熱交換器に外気を通風するための室外送風機と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、前記圧縮機の吸込冷媒温度Ts、又は、前記室外熱交換器の冷媒蒸発温度TXOが所定値に低下した場合、前記室外送風機の風量を増加させることを特徴とする車両用空気調和装置。
  12.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
     前記車室外に設けられて冷媒を吸熱させる室外熱交換器と、
     前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱手段と、
     制御手段とを備え、
     該制御手段により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードを実行する車両用空気調和装置において、
     前記制御手段は、起動初期において、外気温度が低い場合、前記補助加熱手段を動作させることを特徴とする車両用空気調和装置。
PCT/JP2015/057722 2014-05-08 2015-03-16 車両用空気調和装置 WO2015170513A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/309,374 US10427495B2 (en) 2014-05-08 2015-03-16 Vehicle air conditioning device
CN201580023876.0A CN106461277B (zh) 2014-05-08 2015-03-16 车用空调装置
DE112015002160.4T DE112015002160T5 (de) 2014-05-08 2015-03-16 Fahrzeugklimaanlage
US16/378,077 US10538144B2 (en) 2014-05-08 2019-04-08 Vehicle air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014096686A JP6418779B2 (ja) 2014-05-08 2014-05-08 車両用空気調和装置
JP2014-096686 2014-05-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/309,374 A-371-Of-International US10427495B2 (en) 2014-05-08 2015-03-16 Vehicle air conditioning device
US16/378,077 Division US10538144B2 (en) 2014-05-08 2019-04-08 Vehicle air conditioning device

Publications (1)

Publication Number Publication Date
WO2015170513A1 true WO2015170513A1 (ja) 2015-11-12

Family

ID=54392367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057722 WO2015170513A1 (ja) 2014-05-08 2015-03-16 車両用空気調和装置

Country Status (5)

Country Link
US (2) US10427495B2 (ja)
JP (1) JP6418779B2 (ja)
CN (1) CN106461277B (ja)
DE (1) DE112015002160T5 (ja)
WO (1) WO2015170513A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013105747B4 (de) * 2012-07-18 2022-06-09 Hanon Systems Vorrichtungen zur Wärmeverteilung in einem Kraftfahrzeug
JP5999637B2 (ja) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 車両用空気調和装置
JP6005484B2 (ja) * 2012-11-09 2016-10-12 サンデンホールディングス株式会社 車両用空気調和装置
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机***
FR3043593B1 (fr) * 2015-11-16 2019-04-19 Bluebus Procede et systeme de chauffage d'un habitacle d'un vehicule electrique, et vehicule electrique mettant en oeuvre un tel procede ou systeme.
JP6278214B2 (ja) * 2015-12-22 2018-02-14 トヨタ自動車株式会社 車両用空調装置
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6590321B2 (ja) * 2016-03-25 2019-10-16 パナソニックIpマネジメント株式会社 車両用空調装置
EP3318180A1 (en) * 2016-11-02 2018-05-09 Koninklijke Philips N.V. Device, system and method for co2 monitoring
JP2018079722A (ja) * 2016-11-14 2018-05-24 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR102334606B1 (ko) * 2017-04-14 2021-12-06 한온시스템 주식회사 차량용 공조장치의 제어 방법
JP6884028B2 (ja) * 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN107101346B (zh) * 2017-06-19 2020-06-19 芜湖美智空调设备有限公司 室外风机控制方法、空调器以及计算机可读存储介质
JP6863131B2 (ja) * 2017-06-28 2021-04-21 株式会社デンソー 空調装置
US10532661B2 (en) * 2017-08-21 2020-01-14 Ford Global Technologies, Llc System and method for heating electrified vehicle
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN108716756B (zh) * 2018-05-24 2020-10-23 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
JP7280689B2 (ja) * 2018-11-16 2023-05-24 サンデン株式会社 車両用空気調和装置
JP2020093644A (ja) * 2018-12-12 2020-06-18 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR20200125791A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 전기차용 열관리시스템
JP2021031026A (ja) * 2019-08-29 2021-03-01 株式会社ヴァレオジャパン 車両用空調装置
CN113719977A (zh) * 2020-05-22 2021-11-30 广东美的暖通设备有限公司 氟泵***的控制方法、氟泵***和计算机可读存储介质
KR20220162313A (ko) * 2021-06-01 2022-12-08 현대자동차주식회사 차량용 히트펌프 시스템 및 그 제어방법
DE102021123256A1 (de) * 2021-09-08 2023-03-09 Denso Automotive Deutschland Gmbh Fahrzeugwärme-Verwaltungssystem und Verfahren zum Betreiben desselben

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142139A (ja) * 1995-09-22 1997-06-03 Denso Corp 車両用空調装置
JP2001138735A (ja) * 1992-05-25 2001-05-22 Nissan Motor Co Ltd 車両用ヒートポンプ式冷暖房装置
JP2001324237A (ja) * 2000-05-12 2001-11-22 Denso Corp 冷凍サイクル装置
JP2011011686A (ja) * 2009-07-03 2011-01-20 Denso Corp 車両用空調装置の制御方法
WO2013084738A1 (ja) * 2011-12-09 2013-06-13 サンデン株式会社 車両用空気調和装置

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241222B1 (ko) * 2011-07-21 2013-03-13 기아자동차주식회사 차량용 히트펌프 시스템 제어방법
US2666298A (en) * 1950-11-01 1954-01-19 U S Thermo Control Co Method and means of defrosting a cold diffuser
US5685162A (en) * 1991-04-26 1997-11-11 Nippondenso Co., Ltd. Automotive air conditioner having condenser and evaporator provided within air duct
JP2882184B2 (ja) * 1992-05-25 1999-04-12 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
JP3284648B2 (ja) * 1992-05-25 2002-05-20 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
JP2745997B2 (ja) * 1992-09-14 1998-04-28 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
DE69503822T2 (de) 1994-04-21 1999-04-01 Denso Corp Klimaanlage
JP3781147B2 (ja) * 1997-04-09 2006-05-31 カルソニックカンセイ株式会社 ヒートポンプ式自動車用空気調和装置
JP3952545B2 (ja) * 1997-07-24 2007-08-01 株式会社デンソー 車両用空調装置
JP3985384B2 (ja) 1998-09-24 2007-10-03 株式会社デンソー 冷凍サイクル装置
JP3928471B2 (ja) * 2002-04-26 2007-06-13 株式会社デンソー 車両用空調装置
JP4023729B2 (ja) * 2002-08-22 2007-12-19 本田技研工業株式会社 エンジンの自動停止再始動制御装置
JP3841039B2 (ja) * 2002-10-25 2006-11-01 株式会社デンソー 車両用空調装置
US7377126B2 (en) * 2004-07-14 2008-05-27 Carrier Corporation Refrigeration system
ATE441821T1 (de) * 2005-03-18 2009-09-15 Danfoss As Verfahren zum steuern eines kühlsystems
US8517087B2 (en) * 2007-02-20 2013-08-27 Bergstrom, Inc. Combined heating and air conditioning system for vehicles
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
DE102010025779A1 (de) * 2009-07-03 2011-01-13 DENSO CORPORATION, Kariya-shi Klimatisierungsvorrichtung für Fahrzeug und Verfahren zu deren Steuerung
JP5446524B2 (ja) * 2009-07-08 2014-03-19 株式会社デンソー 車両用空調装置
CN102575881B (zh) * 2009-10-22 2014-11-19 三菱电机株式会社 空调装置
JP2011140291A (ja) * 2010-01-11 2011-07-21 Denso Corp 車両用空調装置
JP5488237B2 (ja) * 2010-06-16 2014-05-14 日産自動車株式会社 車両用空調装置
JP5780166B2 (ja) * 2011-02-11 2015-09-16 株式会社デンソー ヒートポンプサイクル
KR101241223B1 (ko) * 2011-03-23 2013-03-25 기아자동차주식회사 차량용 히트펌프 시스템 및 그 제어방법
DE102012205200B4 (de) * 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
JP5920179B2 (ja) * 2011-12-05 2016-05-18 株式会社デンソー 熱交換器およびそれを備えるヒートポンプサイクル
JP5445569B2 (ja) * 2011-12-09 2014-03-19 株式会社デンソー 車両用空調装置
CN104271373B (zh) * 2012-02-28 2016-10-05 日本空调***股份有限公司 车辆用空调装置
JP5897994B2 (ja) * 2012-06-06 2016-04-06 シャープ株式会社 空気調和機
JP6088753B2 (ja) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 車両用空気調和装置
US10155430B2 (en) * 2012-11-30 2018-12-18 Sanden Holdings Corporation Vehicle air-conditioning device
JP6040099B2 (ja) * 2013-05-28 2016-12-07 サンデンホールディングス株式会社 車両用空気調和装置
JP6125330B2 (ja) * 2013-05-28 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
JP6192434B2 (ja) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 車両用空気調和装置
JP6192435B2 (ja) * 2013-08-23 2017-09-06 サンデンホールディングス株式会社 車両用空気調和装置
JP6223753B2 (ja) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 車両用空気調和装置
US9696067B2 (en) * 2013-09-07 2017-07-04 Trane International Inc. Apparatus and method for controlling indoor airflow for heat pumps
CN104515335B (zh) * 2013-10-08 2017-09-26 翰昂汽车零部件有限公司 车辆用热泵***
US8893524B1 (en) * 2013-11-11 2014-11-25 John D. Archer Dry ice container
JP6539116B2 (ja) * 2015-05-29 2019-07-03 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6633303B2 (ja) * 2015-06-25 2020-01-22 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6590551B2 (ja) * 2015-06-26 2019-10-16 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6619572B2 (ja) * 2015-07-01 2019-12-11 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6590558B2 (ja) * 2015-07-01 2019-10-16 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6571430B2 (ja) * 2015-07-21 2019-09-04 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
DE102015112030A1 (de) * 2015-07-23 2017-01-26 Halla Visteon Climate Control Corporation Modulares Klimatisierungssystem eines Kraftfahrzeugs
JP6332193B2 (ja) * 2015-08-06 2018-05-30 株式会社デンソー 車両用空調装置
KR101766045B1 (ko) * 2015-10-08 2017-08-08 현대자동차주식회사 차량용 공조시스템
JP6481668B2 (ja) * 2015-12-10 2019-03-13 株式会社デンソー 冷凍サイクル装置
JP6607638B2 (ja) * 2015-12-14 2019-11-20 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6485390B2 (ja) * 2016-03-08 2019-03-20 株式会社デンソー 冷凍サイクル装置
JP2018091536A (ja) * 2016-12-01 2018-06-14 株式会社デンソー 冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138735A (ja) * 1992-05-25 2001-05-22 Nissan Motor Co Ltd 車両用ヒートポンプ式冷暖房装置
JPH09142139A (ja) * 1995-09-22 1997-06-03 Denso Corp 車両用空調装置
JP2001324237A (ja) * 2000-05-12 2001-11-22 Denso Corp 冷凍サイクル装置
JP2011011686A (ja) * 2009-07-03 2011-01-20 Denso Corp 車両用空調装置の制御方法
WO2013084738A1 (ja) * 2011-12-09 2013-06-13 サンデン株式会社 車両用空気調和装置

Also Published As

Publication number Publication date
US20190255911A1 (en) 2019-08-22
US20170080778A1 (en) 2017-03-23
CN106461277A (zh) 2017-02-22
JP2015215101A (ja) 2015-12-03
CN106461277B (zh) 2019-05-17
US10427495B2 (en) 2019-10-01
DE112015002160T5 (de) 2017-02-02
US10538144B2 (en) 2020-01-21
JP6418779B2 (ja) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6418779B2 (ja) 車両用空気調和装置
JP6855281B2 (ja) 車両用空気調和装置
JP6125330B2 (ja) 車両用空気調和装置
JP6040099B2 (ja) 車両用空気調和装置
JP6710061B2 (ja) 車両用空気調和装置
JP6125312B2 (ja) 車両用空気調和装置
JP6619572B2 (ja) 車両用空気調和装置
JP6738157B2 (ja) 車両用空気調和装置
JP6073653B2 (ja) 車両用空気調和装置
WO2014073691A1 (ja) 車両用空気調和装置
JP6607638B2 (ja) 車両用空気調和装置
WO2014084343A1 (ja) 車両用空気調和装置
CN110214092B (zh) 车用空调装置
JP6963405B2 (ja) 車両用空気調和装置
JP6496958B2 (ja) 車両用空気調和装置
WO2016059945A1 (ja) 車両用空気調和装置
WO2016047590A1 (ja) 車両用空気調和装置
WO2015159485A1 (ja) 車両用空気調和装置
JP2014094677A5 (ja)
WO2018116962A1 (ja) 車両用空気調和装置
WO2018211957A1 (ja) 車両用空気調和装置
WO2018123636A1 (ja) 車両用空気調和装置
WO2018110212A1 (ja) 車両用空気調和装置
WO2018043152A1 (ja) 車両用空気調和装置
JP6738156B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15309374

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002160

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788800

Country of ref document: EP

Kind code of ref document: A1